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Generalization of Plastic Hinge Method for Plate Problems
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1. Introduction

Generally, there exist two different methods to analyse
elastic-plastic behavior of structural elements. One of these
is the ordinary method, that the spread of the plastic zone
is strictly considered introducing the plastic stress-strain
relations based on the mathematical theory of plasticity
to the regions where the yield condition is satisfied. The
other one is the method of so-called plastic analysis, that
the plastic deformation spread in the element is consider-
ed to be concentrated on the plastic hinges or plastic lines.
The former method has been developed with the aid of
the finite element method, which can evaluate accurately
the plastic strength, and the usefulness of this method is
well recognized. Before this method is established, the
basic theory of the latter method was already founded as
the analytical method for rigid plastic material?, but
problems which can be analyzed applying this method was
limited. However, this method is very simple, and recent-
ly, the applicability of this method to plate problems has
become to be paid attention in the combination with the
finite element method 2): 3), 4),

More than ten years ago, one of the authors developed
the new mechanism of plastic hinge based on the plastic
flow theory, and derived the elastic-plastic and the plastic
stiffness matrices for beam elements with plastic hinges.s)
Using these elements, the plastic hinge method is establish-
ed for elastic-plastic analysis of space-frame structures
including the case where large deflection is accompani-
ed.s) Furthemore, the idealized structural unit
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method is developed based on this plastic hinge method
considering the buckling and the post-buckling behavior
of the elements, which extremely shortens the comput-
ation time.”) 8

In this paper, the previous theory of plastic hinge
method is further extended for the analysis of the plastic
strength of plates in the combination with the finite ele-
ment method, and the general theory of plastic hinge
method is proposed. Applying this generalized plastic
hinge method, several examples including elastic-plastic
large deflection problems are analysed, and the usefulness
of this method will be demonstrated.

2. Theory of Generalized Plastic hinge method

In this chapter, a generalized theory of the plastic
hinge method will be derived in the combination with the
finite element method. For the derivation of this theory,
some assumptions are made, which are summarized as
follows.

(1) The finite element method is applied based on the
displacement method.

A plastic hinge is formed at the nodal point of an ele-
ment when the equivalent stress at this nodal point
satisfies the yield condition. After the plastic hinge is
formed, the plastic deformation is confined to the
plastic hinge, and the inside of the element is still
elastic.

The behavior of the plastic hinge is the same as that
of the elastic-perfectly plastic material, and is re-

(2
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presented by the plastic flow theory.

2.1 Yield condition of the nodal point of an element

First, consider the finite element with m nodal points.
The nodal forces, {X,}, and the nodal displacements,
{u,, }, of an element can be represented as follows.

X, = {X,%,,..., X, 1T )
{Xpr= {u,u,,.. ., uy }T )

If it is assumed that there exist s degrees of freedom
at each nodal point, the nodal forces, {X}, and the nodal
displacement, {u;}, at the ith nodal point become

{X;}={R,;, Ry - ..
{Xg}=1{hy;hyp. . b}t (G=1,2,...,m) (@)

In this theory, the yield condition at the ith nodal
point is described as follows.

The stresses at the ith nodal point are represented as
the function of not only the nodal force of the ith nodal
point, Xj, but also generally as the function of the

JRGIT (=1,2,...,m) @3)

This yield condition can be expressed in terms of the

stress components, Oy, ..., Tyy, ..., of the ith nodal
point in the following form,
fi(a'xi,...,Txyi,...)=0 (5)

The stresses at the ith nodal point are represented fun-
damentally as the function of not only the nodal force of
the 7th nodal point, X;, but also generally as the function
of the nodal forces of j nodal points, Xj, depending on the
displacement functions assumed in the element. There-
fore, the stresses, {o;} at the ith nodal point can be
expressed as follows.

{Gi}z{oi(X1>X23""Xj)}(jSm) (6)

Substituting Eq. (6) into Eq. (5), the yield condition of
the ith nodal point can be expressed by the function ofj
nodal forces in the following form.

Fi (X, X, --,Xj)=0(iSm) )

That is, the plastic hinge is formed at the ith nodal point,
when j nodal forces satisfy Eq. (7).

2.2 Virtual work and plastic nodal displacement of the
element

First, it is assumed that the deformation of the element
is small, and the element is in the equilibrium condition
under the nodal forces, {X; +dX,}, with the plastic
hinges formed at s nodal points (s=1, ..., k). Under
this condition, the internal and the external virtual works,
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6W; and 8W,, are considered, which are done by the
internal and the external forces, respectively, during the
virtual displacement increments; {8du,, }.

Although the plastic hinge is formed at a nodal point
where the extension of plastic region is confined, the
plastic deformation may be produced. Then, the total
nodal displacement increment, {du,} is represented as
the sum of the elastic components, {du:’l } , and the plastic
components, {duﬁ } That is

{du, }= {duf’l + {duz } ®)

For the entire region except at the plastic hinge the ele-
ment is in the elastic state. The elastic strain components,
{€®} in the element can be expressed with the aid of the
strain-displacement matrix, [B], in the following form.

{e°}={eg. b, ... }=I[Bl {u;3 O

For the elastic behavior of the element, the well-known
relation between the nodal forces and nodal displacements
is represented as follows.

{Xp}=[K°] {u;} (10)

where [K®] is the elastic stiffness matrix of the element.

When the virtual displacement increments, {§du, },
are applied to the element with the plastic hinges, the vir-
tual work, 8W;, done by the internal forces can be re-
presented as the sum of the elastic work, 8WEI?, and the
plastic work, § WE. That is

[
N

(1)

In general, the elastic work increment per unit volume
can be represented by the product of the stresses and the
strain increments in the elastic range, and the plastic work
increment per unit volume by that of the equivalent stress
and the equivalent plastic strain increnent in the plastic
region. Therefore, Eq.(11) can be expressed in the follow-
ing form:

SW;=8WE +5WP

§Wi= S, (8de®}T {o+do}dV

+ 1y, 163?31 {o+do}av (12)
where V_; and V_, represent the volume of the elastic
and the plastic regions of the element, respectively. In this
theory, the inside of the element is assumed to be in the
elastic state, and the first term of the right-hand side of
Eq.(12) can be replaced by the product of the elastic
virtual displacements, {8du® }, the elastic stiffness matrix,
[K®], and the elastic nodal displacement, {u, +duy}.
On the other hand, the second term can be expressed by
the product of the virtual plastic displacement increments,
{6dup }, and the nodal forces, {X,+dX,}, since the
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plastic deformation is confined only to the nodal point
where the plastic hinge is formed. If it is assumed that the
yield function, F; (X, X,,..., Xj), in Eq. (7) can be re-
garded as the plastic potential, the plastic nodal displace-
ment increments at the ith nodal point of which nodal
forces contribute to the yield condition at the ith nodal

point are represented as

where dA; is a positive proportionality factor. Consequent-
ly, Eq. (12) can be expressed in the following form.

k
§W;= {3de? }T [K°] {uS+du}+ T sdn;
1=

(14)

On the other hand, the virtual work done by the exter-
nal forces is in the form,

{aF/0X;)T {X; +dX;}

§W, = {8du, }T {X, +dX, } (15)

Applying the principle of virtual work, 6 W, = 8 W;, the

following equation is obtained.
{Slf(lun 3T {X, +dX, ) = {8duS )T [K®] {ud +dul}
(16)

Considering the relation expressed by Eq. (10), the first
term of the right-hand side of Eq. (16) becomes {8 du® }T
{X, + dX,} Assuming that the nodal points are not
relevant to the yield condition of the ith nodal point from
the j + I to the n th, the partial derivative of F; with
respect to these non-relevant nodal forces should be zero,
that is {0F; 8Z;} = 0. Taking this matter into account,
the second term of the right hand side of Eq. (16) may be
expressed in a more general form, i2=15 dx; {9F;/0X, 1T

+2 8dn; {3F;/0X;}T {X; +dX;}
i=1

{X, +dX, }. Consequently, Eq. (16) becomes as follows
{8du, 3T {X,, +dX, )= {8dut 1T {X, +dX, }+ z
sdn; {oF;/aX, }T {X, +dX,} (17)

From this equation, the nodal displacement increments,
{du, }, can be expressed in the following form:

(18)

Eq. (18) indicates that the plastic displacement takes
place not only at the ith nodal point but also at the other
nodal points where plastic hinges are not formed, when the
yield condition is expressed as the function of the nodal
forces of these nodal points. However, the plastic hinges
are not formed at these nodal points until the yield condi-
tion at the individual nodal poinf is satisfied.

k
{dup} = {dup)+ 2 84N {3F;/3%y, )
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2.3 Elastic-plastic and plastic stiffness matrices of .the
element with plastic hinges

In this section, the elastic-plastic or the plastic stiffness
matrix of the element with plastic hinges will be derived.
Here, it is assumed that the plastic hinges are formed at
nodal points from the Ist to the kth.

At the ith nodal point (i = 1, 2, . . ., k) where the plastic
hinge is formed, the following equation is satisfied.

(19)

When unloading takes place at this nodal point, the incre-
ment of F; (X,,) becomes negative, that is

F,(X)=0 (i=1,...,k)

dF; (X,) <0 (20)

However, as far asloading condition continues, the follow-
ing equation must be satisfied.

k) @D

Here, Eq. (10) can be expressed in the incremental form
as

{dX,} =

Substituting Eq.(18) into Eq.(22), the following equ-
ation is derived.

{dXp } =

Substituting this equation into Eq. (21),

dF; = {0F;/0X,}T {dX,}=0(G=1,2,...,

= [K°] {duly (22)

(K] ({du }— 2 d\{0F,/0X,}) (23)
1=1

{9F;/8X, 1T [K°] ( {duy} —é an;
1=1

{9F;/3X,})=0 (i=1,2,...,k) (24)

The above equation is a set of linear simultaneous equations
about d\;. Defining the vector, {d\} = {dX,,d7,,...
,dy )T Eq (24) becomes

[G] {dA} = [H] {du,} (25)
where
Gyj = {0F;/3X, }T [K°] {8F;/0X,}
G,j=1,2,...,k) (26)
H;, = {9F/0X, )" [K°] A
(i=1,2,...,k, r=1,2,.. ,mxs) X))

Solving Eq. (25) with respect to {dA }, the following
equation is obtained,

{a\} =[G ! [H] {du,}= [M] {du,}

Substituting Eq. (28) into Eq. (23), the relation bet-
ween the nodal force increments, {dX, }, and the nodal
displacement increments, {duy, }, as derived as follows.

(28)
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{dX,} = [KP] {du,} (29)
where -
k
[KP] = [K°] _12=1 [K®] {8F;/0X,} [My] (30)

[KP] in Eq.(29), which is represented by Eq.(30), is
the elastic-plastic stiffness matrix of the element with
plastic hinges. If k=m, this [KP] represents the plastic
stiffness matrix of the element that the plastic hinges are
formed at all nodal points.

For example, if the plastic hinge is formed at only the
1st nodal point of the element, [KP ] becomes as follwos.

[KP] = [K®] — [K®] {0F, /oX,} {9F, /aX, }T [K°]/
{oF, /6X, }T [K°] {0F, /X, } (31)

For the derivation of the above equations, the defor-
mation of the element is assumed to be in the range of
small displacement. In the case where the element is
accompanied by large deformation, the elastic stiffness
matrix varies with respect to the deformation. At the
loading stage where the complete equilibrium of the entire
structure is satisfied, the incremental form of the stiff-
ness equation of the elastic element can be expressed in
the following form, instead of Eq. (22).

{dX,} = [KS] {dug} (32)

where [K?] is the elastic stiffness matrix considering the
large deformation, which varies with respect to the de-
formation. In contrast with this, the yield condition for
plastic hinge is not influenced by large deformation. As
far as the tangential stiffness of the element is concerned,
[K®] changes to [Kj]. Therefore, the procedure used in
the above case of small displacement is applied and the
tangential elastic-plastic stiffness matrix, [K‘I’ ], with large
deformation can be expressed in the following form.

k
(KD]=[KSI -2 (K] (OFy/0X,) M) (33)

where [M;,] is a function of {bFi/aXn} and [K7]. This
equation can be easily obtained from Eq. (30), replacing
[K¢] in Eq. (30) by [KS] .

3. Analysis of plate problems by the generalized plastic
hinge method

3.1 Procedure for analysis

In this chapter, the validity and usefulness of the
generalized plastic hinge method will be demonstrated by
analysing several plate problems. For the analysis, the
triangular finite element is used. As for inplane defor-
mation, the displacement function which guarantees
constant strain in the element is assumed. As for out-of-
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plane deformation, two types of displacement functions
are used, which are conforming and non-conforming with
respect to the slope along the boundaries between the ele-
ments. The number of nodal poihts of this element is
3 (m=3), and that of possible plastic hinges is also 3
(k=3). In the range of‘small displacement, the inplane
stresses, {op }, and the bending stresses, {oy }, are re-
presented respectively as follows.

{0,} = {0y, Oyps Typ 1T = [Ap] {Xpp )} (34)

{0y} = {041 Oyp Txyp 1T = [Ap] {Xpp ) (35)
where

X o} =1X1, Y1, X2, Y2, X5,Y3} T (36)

Kyt = {2, M M ,Z M .M _,Z,
1)
M, M (37)

X, Y and Z ; nodal forces in x, y and z directions, res-
pectively,
My and M, : nodal bending moments about y and x
axes, respectively.
The stresses, {0;}, at the ith nodal point can be re-
presented as the sum of the inplane and the bending
stresses, that is

{03} ={opi} + {op} =([Ap] + [Ap] ) {Xp} (38)

As is known from the above expression, the stresses at the
ith nodal point of the element is the function of all nodal
forces.

The yield condition at the ith nodal point of this ele-
ment can be derived in terms of resultant stresses apply-
ing Mises’s yield condition, that is

- 2 —
fi—- [mi|+ti~l-—0 (39)
where
2
m? _ m3; —my;my;+ m;i +3myy; (40)
2 2 2 2
t; =ty —txibyi® tyi + 3ty (41)

my; =20,y/30y, my; =20/ 30y,

Myyi= 27'xybi/?’oY (42)
tyi = Oxpi/oY» tyi = oypi/UY >

txyi =‘7xypi/0Y (43)
Oy ; Yield stress of the material

The derivation of Eq. (39) is described in the appendix.
Substituting Eq. (38) into Eq. (39), the yield condition
of the ith nodal point is expressed with respect to the
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nodal forces, that is

F;(X,Y,,Z,,M,,,M s My, )=0 (44)

X1 yi> -

In the actual computation, the computation program is
developed in such a way that a plastic hinge is formed at
each nodal point strictly satisfying the yield condition,
F.=0

;= 0.

3.2 Analysis of small displacement problems

3.2.1 Analysis of inplane and out-of-plane behaviors of a
strip

First, the fundamental characteristics of the yield con-
dition of the plastic hinge are examined analysing the be-
havior of a cantilever using a non-conforming finite ele-
ment. The loading condition is produced by forcing dis-
placements at the free end of the cantilever in the follow-
iﬁg three manners.

‘ - CASE (A) ; Inplane displacements are applied.
CASE (B) ; Out-of-plane displacements are applied.
CASE (C) ; Inplane displacements are applied after

1.0 A A A T AY

P/PD ® ; Plastic hinge
Pp=bt0'Y

i 1 J

0 0.05 O.jo u/L 0.15

(a) Load-displacement curve: under forced
displacement, u ‘

1.0¢
VL/Mp e; Plastic hinge
0.5k
Mp = t20y/4(1-v?)
1 []
0 0.5 1.0

w/t

(b) Load-deflection curve under forced
displacement, w

Fig. 1
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the plastic hinges are formed at the fixed
end by out-of-plane displacement.

Figures 1 (a) and (b) show the relation between the
load and displacement in CASE (A) and CASE (B), res-
pectively. In CASE (A), the stresses are the same in the
entire region of the element due to the nature of the as-
sumed displacement function, and plastic hinges are form-
ed at all nodal points of all elements at the same time.
Consequently, the strip can carry no more load. In this
case, when plastic hinges are produced at all nodal points,
the stresses in the element satisfy _the yield condition.
From this fact, it is apparent that the plastic hinge
method indicates exact the same collapsing load as that of .
the ordinary finite element method. On the other hand,
in CASE (B), plastic hinges are formed at the nodal points
of the fixed ends. At thisinstant, the collapsing mechanism
is formed, and no more load is carried. The plastic strength
of CASE (B) is somewhat higher than the exact value

using the mesh division shown in Fig. 1. The accuracy of
the collapsing load obtained by this method will be dis-
cussed in the following section.

b
t= 4 mm ! f'_T_ V, w
b= 20mm 4 [:.j.—rt
L = 1000 mm 4 I T I —=P, u
O ;:[= L -
(\ Oy=  30kg/mm?
E =21000 kg/mm?

= 0.3

A ; By forced displacement, u
O ; By forced displacement, w

0O ; By forced displacement, u
after w

ev——

A
g A,

1 A
A

0.5 ' 1.0

(c) Interaction between

Plastic behaviors of plates under tension or/and bending
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The result of the analysis that is performed for CASE
(C) is shown in Fig. 1 (c), which represents the relation
between the non-dimensionalized bending stress, m;, and
the inplane stress, t;, of the nodal point at the fixed end.
At the first stage of loading, only the bending stress, m;,
increases up to 1.0, and the plastic hinges are formed at
the fixed end of the cantilever. Then, the inplane dis-
placements are applied, and m; decreases with the increase
of t;. Finally, m; becomes zero when t; becomes 1.0, as
shown by O in Fig. 1 (c). The deviation from the exact
interaction curve, Imi | + ti2 —1=0, is fundamentally
due to the linearization of the non-linear analysis. How-
ever, if the magnitude of load increment at every step is
taken as small as possible, the deviation may be negligible.

In the case of small displacement analysis, the intera-
ction terms between the inplane and out-of-plane compo-
nents .do not appear in the stiffness matrix if no plastic
hinge is formed. However, once the plastic hinge is form-
ed, such interaction terms appear even in the small dis-
placement analysis.

3.2.2 Analysis of collapsing strength of a plate under
lateral load

First, using non-conforming elements, the collapsing
load of a square plate is analyzed under uniformly distri-
buted lateral load for different supporting conditions.
Figure 2 (a) shows the load-deflection curve calculated for
the square plate of which all edges are simply supported,
and Fig. 2 (b) that of the square plate of which all edges
are fixed. In each figure, o represents the location of the
plastic hinge, and the first hinge is formed at point A on
each load-deflection curve. . As the load increases, plastic
hinges are formed one by one and almost all nodal points
become the plastic hinges. However, the load is still carri-
ed but very small increase. Then, it is difficult to define
the exact collapsing load. Here, the approximate collaps-
ing load is defined as that indicated by the intersecting
point of the two tangential lines shown by the chain lines
in Figs. (2) (a) and (b):" The accuracy of the resulting col-
lapsing load depends on the fineness of the mesh division.

To examine the effect of the fineness of the mesh divi-
sion on the plastic collapsing load, a series of analyses is
carried out using the conforming and the non-conforming
elements. The collasping loads obtained are plotted in
Figs. 3 (a) and (b) both for the simply supported edges
and the fixed edges, respectively, together with the loads
which gives the same deflection .in the elastic range. In
the case of the simply supported edges shown in Fig. 3 (a),
the upper bound and the lower bound solutions of the
collapsing load obtained by the plastic analysis® °) coincide
with each other, and this gives the exact solution. As the
fineness of the mesh increases, the collapsing strength by
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50.0p
2
qb /Mp
A B c
My = t20y/4 Yayav4 T D P2y
f
40.0F¢ = gomm ' i 0 ' 0
b =1200m
Oy= 28 kg/mm? l ! f
. i | 1 fi
g -4 - - - -
xS ;
T q ; Uniformly distributed lateral loads

I w ; Lateral deflection at center

30.0+
1
I
! @; Plastic hinge

KIS

|

£
" [ .
7~ y )
L—b— , s c D E F
Upper bound, Lower bound!®

A

20.0p

! 1
10.0F
[}
i I
1 1 1 1 J
0 0.1 0.2 0.3 0.4 Wit 0.5
(a) Square plate being simply supported along all edges
50.0r
Upper bound®
b2/M
d 7 Lower bound® '
- e 1
‘]L‘ 1E q !
40.0- / 0
q; Uniformly distributed
lateral loads
! B w; Lateral deflection
at center
®; Plastic h“'inge
30.0
! A B C
= ;
b
20.01-
A U
D E F
Z
B
t = 60mm
b =1200mm 4% R
Oy= 28 kg/mm?
1 L 1 1 '}
0 0.1 0.2 0.3 0.4 0.5

w/t

(b) Square plate being fixed along all edges

Fig. 2 Elastic-plastic analysis of square plates under uniformly
distributed lateral loads

the conforming element ‘approaches to this exact value
from the upper side, and that by the non-conforming ele-
ment from the lower side. On the other hand, in the case
of the fixed edges shown in Fig. 3 (b), the upper bound
and the lower bound solutions of the collapsing strength
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9 Collapsing load
qo ; Necessary load for unit elastic deflection

p N ; Number of elements along an edge R
(><10"‘2 Plate thickness ; t = 30mm (><10"‘2
"9/']"'1“5()] Plate breadth ; b =1200mm  |<9/™°)

Yield stress ;3 Oy= 30 kg/mm?
1125 Upper bound solution'®
°T Lower bound solution®
~65
\
1100} h\

O ; Conforming element - 64
A 3 Non-conforming element

n - 63
1075} Sl 6
Exact solution O o o 1 161.7)
A=
A —aem=t {&
A _A-mT L
T . N . : T
8 12 16 20

(a) Simply supported edges

4 3 Collapsing load
qo ; Necessary load for unit elastic deflection

2500
q N ;3 Number of elements along an edge
P Plate thickness ; t = 30mm 9%
-4
ﬁ;}gmz) Plate breadth ; b=1200mm (x'lo'“2
yield stress  ; Oy= 30kg/mm? |k9/mm*)
ionl®
(2080) Lower bound solution!? -~ 220
- \
2000 \Q O s Conforming element 4210
N A3 Non-conforming element
~
\h
Exact solution O~~=wco o __ o 200
PN —— e (198)
175 S
- -
0 AT <190
2 < o~
6]: 1 ! t 1 T 0

(b) Fixed edges

Fig.3 Accuracy of the collapsing load and elastic deflection

do not coincide.!®) In this case, the calculated collapsing
load by the conforming element approaches from the
upper side to a certain value between the upper and the
lower bound solutions as the fineness of the mesh division
increases, and that by non-conforming element from the
lower side. Based on the fact in the above case, thé exact
collapsing load should be found between the two calculat-
ed loads. In both cases, the tendency of approaching the
exact value is very similar to the case where the elastic
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deflection is computed.

For various boundary conditions, the collapsing loads
of square plates are calculated under uniformly distribut-
ed lateral load. The collapsing loads and the location of
the plastic hinges near the collapsing load are represented
in Fig. 4.

3.3  Analysis of large deflection problems

In this section, the elastic-plastic behavior of a both
end fixed strip under a centrally concentrated lateral load
is analysed. In this case, the menbrane stresses due to large
deflection can not be ignored. Figure 5 shows the relation
between load and central deflection. As the load increases,
the plastic hinges are formed at the center and both fixed
ends. This load corresponds to that of point A in Fig. 5.
Above this load, the membrane stress increases as the
deflection increases, and further load is carried. Then, as
the load increases, the number of the plastic hinges in-
creases, and finally the plastic hinges are formed at all
nodal points of all elements. Point D in Fig. 5 correspond
to this condition. The result of the analysis represented
by O and the solid line well agrees with that of experi-
ment®) represented by the dashed line in Fig. 5.

Furthermore, the analysis is performed on the elastic-
plastic large deflection behavior of a plate which is simply
supported along all edges and is subjected to compression.

The results are shown in Ref.9 . However, the com-
pressive ultimate strength analysed by this method is some-
what lower than that obtained by the ordinal finite ele-
ment analysis. One of the reason of this difference may
be attributed to that the equilibrium condition for large
deflection problem is very sensitive to the tangential stiff-
ness matrix. In the actual behavior of the plate, the
gradual expansion of the plastic zone in the element de-
creases gradually the stiffness of the element. In the con-
ventional elastic-plastic analysis by the finite element
method, this change of the stiffness is taken into account
in evaluating the stiffness matrix. On the other hand, in
this plastic hinge method, the stiffness changes suddenly
when the plastic hinge is produced. For this reason, the
difference in the evaluated magnitude of the stiffness
matrix by both methods becomes large, when the effect of
large deflection is coupled with plastification. Further
investigation is necessary into the applicability of this
method to such problems.

4. Conclusions

In this paper, the generalized theory of the plastic
hinge method for plate problems is presented based on the
plastic hinge method for one dimensional element in
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under centrally concentrated load

110



Generalization of Plastic Hinge Method for Plates

(4) In general, the plastic displacement takes place even
at the nodal point where the plastic hinge is not
formed, if the nodal force of this node is related to
the plastification of the other nodal point. However,
the plastic hinge is not formed at this nodal point
until the yield condition of this nodal point is
satisfied.

As the fineness of the mesh division increases, the
collapsing load calculated by this method approaches
to the exact value.

Applying this generalized plastic hinge method, several

problems including the elastic-plastic large deflection pro-

blem are analysed, and the usefulness and the validity of
this method are demonstrated except for inelastic stability
problems of plates.
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APPENDIX: YIELD CONDITION FOR THE PLASTIC
HINGE AT A NODAL POINT

In this theory, the element is in the elastic state until
the yield condtion at any nodal point is satisfied. When
the yield condition is satisfied at a certain nodal point,
the stress distributions at this nodal point are assumed as
shown in Fig. A-1. In this state, the stress components,
Oxb» Oyp and Ty gy, which contribute to the bending and
tortional moments can be expressed in terms of the yield
stress, 0y, as follows.

[‘—kIUY — ~k2'Oy — k20y — I~ kaOy -
(6 () (1y)

T i f i T
HE R at t et
i ! | !

— -k10y -J~ kq' Oy k- -k20y -~ ﬁ-k,UY‘l ks' Oy

Oy ; Yield stress, t ; Thickness of the plate

Fig. A-1 Distributions of stress componets at plastic hinge

Oxb =k1 Oy, O'yb =k2 Oy, Txyb =k30Y (A-l)

For the stress distribution shown in Fig. A-1, the bending
moment about y axis is calculated as

M, =k, oyt?/4 —k, oy(at)? /4 = kM, (1 - a?)
(A-2)
In the above expression, M, = t? oy /4 represents the

fully plastic moment of the plate. Here, the following
non-dimensionalized bending moment is defined, that is

m, =My /M, =k, (1 —a?) (A-3)
Similarly,

my, =k, (1 — a?) (A-4)

my,, =k, (1 —a?) (A-5)

The Mises yield condition in the plane stress state is
represented as

2 2 2 _ 2
0,— 0x0y*to +3'rXy oy

v (A-6)

Substituting Eq. (A-1) into the above equation, the follow-
ing expression is obtained.

k? —kk, +k3 +3k2 =1 (A7)
Substituting Eqs. (A-3), (A-4) and (A-5) into Eq. (A-7),

2 2 2 ~(1 _ 42)2
mx—mxmy+my+3mXy (1-a*)

(A8)
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On the other hand, the stress components, Oxp> Oyp
and 7yy,, which distribute in the middle portion of the
thickness, at, contribute to the inplane forces except the
bending and the tortional moments. They are represented
in the same manner as those in Eq. (A-1), that is

Oxp =k’ 0y, Oyp = kioy, Txyp =k30y (A-9)

The inplane forces, T, in the x direction due to the stress

component, ¢ Xp? is

Ty =kjoyat=ak Ty (A-10)

where Ty = toy . Here, the following non-dimensionaliz-
ed inplane forces are defined.

ty, =T, /Ty =ak] (A-11)
y = ak; (A-12)
tyy = ak; (A-13)

Substituting Eq. (A-9) into Eq. (A-6), and considering the
relations expressed by Egs. (A-11), (A-12) and (A-13), the
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following equation is obtained.
2 2 2 42
ty —txty Tt5 +3t5 =a (A-14)

From Egs. (A-8) and (A-14), the yield condition is derived
in the following form.

m} —mymy +m? +3m} =
2 2 2 2
{1 —(tx—txty+ty+3txy)} (A-15)
Here, the following quantities are defined.
m? =m? —mymg +m} + 3mi, (A-16)
2242 2 2
=t — by T F3 (A-17)

Substituting Eqgs. (A-16) and Eq. (A-17) into Eq. (A-15),
the following equation is obtained
|m | +t> —1=0 (A-18)

The above equation is the yield condition for the plastic
hinge.



