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Abstract

Neural networks were orginally mathematical models made to elucidate the com-
putational principles of networks of biological neurons, and it is natural to pursue
the possibility of neural network computation from the point of view of computer
science.

This paper considers continuous time recurrent neural networks (RNNs) called
additive neural networks or Hopfield neural networks. Recently, there has been
much interest in learning trajectories by RNNs. The goal of .neural network training
is not to learn the given data, but rather to build a model of the process which
generates the data, that is, to realize the neural network model which exhibits
good generalization. However, the previous works did not deal with the problem of
generalization for trajectory learning by RNNs. In order to allow us to discuss this
problem, this paper investigates the problem of approximating a dynamical system
by an RNN as one extension of the problem of approximating a trajectory by an
RNN.

The role of hidden units is crucial for the approximation capability, and an RNN
with hidden units cannot produce a dynamical system on the visible state space
unless a map is successfully specified from the visible state space to the hidden state
space. We define affine neural dynamical systems (A-NDSs) as dynamical systems
produced by RNNs, and propose A-NDS-based learning for approximating dynam-
ical systems by RNNs. We also verify the validity of the A-NDS-based learning.
Toward developing effective learning algorithms, we construct a unique parametric
representation of n-dimensional A-NDSs, and concretely construct a non-redundant

search set for learning dynamical systems by RNNs based on A-NDSs.
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1 Introduction

Neural networks were orginally mathematical models made to elucidate the com-
butational principles of networks of biological neurons, and it is natural to pursue
the possibility of neural network computation from the point of view of computer
science. Recurrent neural networks (RNNs) have connections that are allowed both
ways between a pair of units and even from a unit to itself, while feed-forward neu-
ral networks (FNNs) have layered feed-forward structures. Recently, there has been
much interest in potential abilities of RNNs (e.g., [10], [60], [19], {42]). On the one
hand, attention has been devoted to exploiting RNNs without, hidden units as asso-
ciative memory models (e.g., [25], [26], [19]) or as machines to solve combinatorial
optimization problems (e.g., [27], [28], [19]), and their convergent dynamics have
been investigated (e.g., [8], [26], [20], [21], [7], (62], [22], [12], [58]). On the other
hand, several learning algorithms of RNNs with hidden units have been proposed
for approximating predetermined trajectories ([46], [10], (16], [40], [60], (43], {47],
[59], [44], [52], [53], [17], [50], [55], [2], [42], [45]), and successfully used to memorize
and regenerate various temporal sequences of patterns (e.g., [10], [11], [40], [41],
[60], (48], [49], [57], [19], [45] ). By a trajectory we mean a continuous curve in a
Euclidean space, that is, a continuous map from an interval to the Euclidean space.

We consider the following continuous-time RNNs, called additive neural net-
works or Hopfield neural networks, since they are among the most common RNNs
and their electrical circuit implementations are also investigated (e.g., [26], [21],
[19], [22]): An RNN with n visible units consists of n + r units (the units 1 to n
are visible and the units n + 1 to n + r are hidden), and the state u;(¢) of unit 7 at

time ¢ is governed by the system of ordinary differential equations:

dui 1 e

o (t) = —;ui(t) + Z wijg(u;(t)) + wi, i=1,---,n+r (1.1)

where 7 is a fixed positive constant called the time constant, r is a non-negative
integral-valued parameter expressing the number of hidden units, wy; (3,7 = 1,- -+, n+

1) is a real-valued parameter called the connection weight from unit 7 to unit 4, w;o
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(¢ =1,--+,n+r) is also a real-valued parameter called the bias to unit 4, and g is
a fixed non-constant bounded C*-function called the the activation function. As
the activation function g(u), tanh(u) and 1/(1 + e™*) are commonly used from the
biological motivation. We mainly use tanh(u). |

Learning temporal sequences of patterns widely occurs in biological systems,
and the problem of constructing an RNN capable of generating a desired temporal
sequence of patterns is fundamentally related with the applications of RNNs to
spatiotemporal information processing such as robot arm control and speech recog-
nition (e.g., {1], [10], [48], [19], [42]). Therefore, trajectory learning algorithms for
RNNs have been extensively investigated as described above, and also applied to
path planning and temporal pattern recognition ([5], [51]). However, the goal of
network training is not to learn the given data itself, but rather to build a model
of the process which generates the data (e.g., [19], [6]). This is because it is im-
portant whether the network can exhibit good generalization, that is, can make
good predictions for new inpufs. Since there exist almost infinitely many possible
generalizations, mathematical studies of learning require the mathematical model
of the process.

For the problem of learning trajectories on R", it is fundamental to take a dy-
namical system on R", that is, a one-parameter group of tfansformations of the
C* manifold R", as the mathematical model of the process which generétes the
trajectories. This is because dynamical systems have been used to model many
mechanical, chemical, biological, ecological and social systems, and their mathe-
matical theory has been constructed (e.g., [23], [24]). For example, consider the
behavior of a robot arm such that each movement of the robot arm is determined
by a trajectory on the configuration space R™, and the trajectories corresponding
to the desired behavior are generated from a dynamical system on R™ by specifying
initial states.

In this paper, as one extension of the problem of approximating a predeter-

mined trajectory on R™ by an RNN, we investigate the problem of approximating



a dynamical system on R™ by an RNN. This allows us to discuss the problem of
generalization for the trajectory learning by an RNN, and leads to investigating
the problem of modeling a dynamical system on R™ using an RNN with n visible
units. Hence, within the framework of dynamical system learning for RNNs, we
should say that an RNN with n visible units approximates a dynamical system on
R™ if the RNN produces on the visible state space R™ such a dynamical system
that approximates the target dynamical system.

In trajectory learning, an RNN with n visible units and r hidden units is re-
garded as such a machine that generates the visible state trajectory R 3 ¢t —
(u1(t), - -, un(t)) € R™ for a given initial state p = (py, -, Pnsr) € R*™". Note
that the role of hidden units is crucial for the approximation capability. Funahashi
and Nakamura ([15]) proved that for any dynamical system ¢ on R",‘ given con-
stants € > 0, T' > 0, and a compact set K C R", there exist an integer r > 0, a
constant 7 > 0, and an RNN of time constant 7 equipped with n visible units and
r hidden units such that the trajectory of ¢ starting at a point of K can be ap-
proximated within error € by a visible state trajectory of the RNN in time interval
[0,T]. However, the visible state trajectories of the RNN used by them to approxi-
mate the trajectories of the target dynamical system were not generated from one
dynamical system on R™. For ’example, those visible state trajectories might have
self-intersections and intersect each other with nonzero angles.

An RNN with n visible units and 7(> 0) hidden units cannot produce a dynam-
ical system on R™ unless a map h : R™ — R" is successfully specified to determine
the initial states of the hidden units for initial states of the visible units. Therefore,
toward developing dynamical system learning algorithms, it is necessary to build
the framework of how such an RNN produces a dynamical system on R™ under map
h: R* — R" to approximate a givén dynamical system on R”™. In this paper, we
propose the notion of n-dimensional affine neural dynamical systems (A-NDSs) to
this framework, that is, propose A-NDS-based learning.

An n-dimensional A-NDS is the dynamical system on R" that an RNN with n



visible units and r hidden units can produce on the visible state space R™ under
an affine map h4 : R® — R", where the case r = 0 is naturally included. As far as
we know, an n-dimensional A-NDS is the only universal example of the dynamical
system that such an RNN produces on R™ under a C*®° map h: R™ — R". We prove
that any dynamical system on R™ can be approximated well by an n-dimensional
A-NDS in a given finite regioh. These facts support the validity of the A-NDS-based
learning for approximating dynamical systems by RNNs (see Theorem 3.6).

An A-NDS is represented by a suitable pair of an RNN and an affine map.
However, this representation is not unique. The aim of approximating a dynamical
system 1 by an RNN is to acquire an RNN model of 4 by learning the observed
trajectory data of 1, and learning trajectories by an RNN is basically performed
under the gradient descent method for the error function which measures the dis-
crepancy between the desired trajectories and the visible state trajectories of the
RNN (e.g., [2], [42]). Thus, the local minima problem is associated with the learning
algorithms and makes the performance dependent on the initial values of the learn-
ing parameters. From the point of view of developing effective learning algorithms,
it is important to investigate a non—redundant’search set for learning dynamical
systems by RNNs based on A-NDSs, that is, to investigate the non-redundant rep-
resentations of A-NDSs by the pairs of RNNs and affine maps. For example, such a
non-redundant search set helps restrict the initial values of the learning parameters.

In this paper, we construct a unique parametric representation of n-dimensional
A-NDSs by extending Sussmann’s work ([54]) for the redundancy in the function
representations of FNNs (see Theorem 4.7). Moreover, we construct the non-
redundant representations of n-dimensional A-NDSs by the pairs of RNNs with
n visible units and affine maps (see Theorem 5.1).

In general, simpler models are preferred to more complicated models to make
analysis and control easier. In order to obtain a simpler RNN model of a target
dynamical system, we consider simplifying the RNN model that has learned the

dynamical system based on an A-NDS. As a solution, we give a method of obtaining



all the minimal RNN models of an A-NDS from a given RNN model of the A-NDS.
The method is reached by the straightforward application of the unique parametric ‘
representation of A-NDSs.

This paper is organized as follows: In Section 2, we describe the definitions and
notation for RNNs and dynamical systems, and also discuss the issues of learning
a dynamical system by an RNN from the given trajectory data. In Section 3, we
define A-NDSs, and verify the validity of the A-NDS-based learning. In Section 4,
we construct a unique parametric representation of n-dimensional A-NDSs. In
Section 5, as the application of the unique parametric representation, we concretely
construct a non-redundant search set for learning dynamical systems by RNNs
based on A-NDSs, and give a method of obtaining all the minimal RNN models of
an A-NDS from a given RNN model of the A-NDS. In Section 6, as a first step to
a study of generalization for trajectory learning by RNNs, we investigate whether
or not an A-NDS can be identified from its given trajectories. Finally, Section 7
concludes the paper.

We have obtained the results of Section 3 in our papers ([30], [31], [34], [35]).
Also, we have obtained the results of Section 4 in our papers ([32], [36]). The
results of Section 5 include those of our paper ([33]). We have obtained the results

of Section 6 in our paper ([34)).



2 Preliminaries
2.1 Recurrent neural networks

Let us prepare notation together with some definitions.

An RNN with m units is parametrized by a matrix

W = (wij) & Mm,m+1(R)

i=1,,m; j=0,1,--;m

of connection weights and biases. Here, My ((R) is the set of k& x £ real matrices.
Hence, we denote by N*(W) the RNN with n {risible units and r hidden units such
that the matrix of connection weights and biases is W.

Consider an RNN N(W), where m = n+r. The space of possible states of all
the units is referred to as the state space of the RNN, which is the Euclidean space
R™. The space of possible states of the visible units is referred to as the wvisible
state space of the RNN, which is the Euclidean space R™. The space of possible
states of the hidden units is referred to as the hidden state space of the RNN, which
is thé Euclidean space R". The state space R™, the visible state space R™ and the

hidden state space R" have the following relation:
R™ = R*"xR/.

When initial state p = (p1, -+, pn) € R™ is given to the RNN, it outputs the

trajectory
w(t) = (w(t), -, un(t))

called the visible state trajectory of the RNN with initial state p. Here, the trajectory

u(t) = (w(t), -, um(t))

is the solution curve of system (1.1) of ordinary differential equations under initial
condition u(0) = p, and is called the state trajectory of the RNN with initial state

p. The trajectory
u'(t) = (unsa(t), -t (1))

is called the hidden state trajectory of the RNN with initial state p.
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In order to simplify expression, we often use vector expression. Let us introduce
notation. For an arbitrary positive integer ¢, we regard a function f on R as the

C* map from R’ to R defined by

F@) =), fwe),  y= (v, - v) €ER,

and regard an element of R¢ as a column vector whenever we use vector expression

and matrix operation. For W = (w;;) € My i (R) (6 =1,---,m; 5 =0,1,---,m),

we define
W_ = (wij)i,jzl‘...‘m € Mm,m(R);
Wy = ('lUl(), e )wm0> € Rm7
that is,
W = (a0 W),

and define the vector field Fyy on R™ by
)
Fw(u) = ——ut Wo(u) +wy, uweR™ (2.1)

Consider the RNN NV(W) with m = n-+r units. Then, dynamics (1.1) of the RNN
NMW) is described by

du

2.2 Dynamical systems

We reéall some basic notions and facts for dynamical systems on a Euclidean space
Rf (e.g., [38], [23]). _

A dynamical system ¢ on R¢is a C® map ¢ : R x Rf — R satisfying the
following conditions: Define ¢* : R — R¢, (t € R) by ¥*(p) = ¥(t,p), (p € RY),
then 9° is the identity map on Rf, and ¢° o ¢t = ¢**t, (s,¢t € R). The dynamical
system 9 on R defines a C® vector field Y on RY i.e., for each p € R define Y (p)
€ Rf by Y(p) = (d/dt)|,_¥'(p). Note that the curve R 3 ¢ - f(p) € R¢ is the

solution curve of the ordiniary differential equation

dy
= =YW | (2:2)
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under initial condition y(0) = p. The curve ¥*(p) is referred to as the trajectory of
the dynamical system v through p.

Conversely, let Y be a C* vector field on R, and consider ordinary differential
equation (2.2). For each p € RY, let 6,(¢) be the solution curve of ordinary differ-
ential equation (2.2) under initial condition 8,(0) = p. The vector field Y is said to
be complete if for each p € RY, the curve 6,(¢) is well-defined for any ¢ € R. When
Y is complete, we can define the dynamical system 1 on R? by 9*(p) = 6,(t) for
any t € R and any p € R

Consequently, the notion of dynamical systems on R is equivalent to the notion
of complete C™ vector fields on Rf. The following well-known result is used to prove

our approximation theorem in Section 3.

Lemma 2.1. Let v, 5 be dynamical systems on R, and Y, Y, the vector fields
on Rf corresponding to 1y, 1, respectively. Suppose that Y, satisfies a Lipshitz

condition with constant Ly, and there exists § > 0 such that

IVi(p) — Ya(p)|]] <6, peR-

Then, we have

W) — i)l < 2 (M1 -1),  teR, peRY,

1

where || - || denotes the Euclidean norm on RE.

2.3 Issues of dynamical system learning

Let us consider approximating a dynamical systerri by an RNN. There exist many
dynamical systems that RNNs without hidden units cannot approximate well. In
fact, it is known ([4]) that the numbers of equilibrium solutions of ordinary dif-
ferential equation (1.1) for n +7 = 1 and n + r = 2 are not more than 3 and 9,
respectively. For example, no RNN consisting of only 1 unit can approximate well
the dynamical system on R! defined by the ordinary differential equation dz/dt =
(z+1)(z — 1)(z +2)(x — 2). Therefore, we must consider RNNs with hidden units.

11



Let us consider approximating a dynamical system on R™ by an RNN N*(W)
with hidden units. Note first that an RNN with hidden units does not define a
dynamical system on the visible state space R™ although such RNNs have a greater
potential for representing dynamical systems than RNNs without hidden units.
In fact, wheh an element of R™ is input to an RNN N*(W) as initial state of a
dynamical system, the .initial states of the hidden units cannot be specified, while
the initial states of the visible units are specified. Namely, the RNN N.*(W) cannot
output a trajectory. To make such an RNN produce a dynamical system on R"*, we
must successfully determine the initial étates of the hidden units for initial states
of the visible units. In what follows, we will see that this is challenging work.
Therefore, there is the essential difference between the problem of approximating a
dynamical system by an RNN and that of approximating some trajectories by an
RNN.

Consider approximating a dynamical system 1 on R™ by an RNN N/*(W) using
the given trajectories of 1 as training data. The following example shows that
straightforward application of the existing trajectory learning algorithms is not

successful in approximating ¢ by N*(W).

Example 1. Let ¢ be the dynamical system on R? defined by the system of

ordinary differential equations

dz

—d—tl = —z; — tanh(2z; + )
dz

_cﬁz = —=z5 + tanh(z).

Let £(t) be the trajectory of the dynamical system 1 through p = (0,1) € R?; i.e.,
£(t) = ¥'(p) (see Figure 1). Consider the problem of approximating the trajectory
&(t) by an RNN using the existing trajectory learning algorithms. It turns out that
the RNN N?(W) with 7 = 1 and g(s) = tanh(s) is one of the solutions of this

problem, where

000 —1
W=1]1010 0|,
010 —2

12



that is, the dynamics of the RNN NZ(W) is described by

du

'?Zt—l = —Uyp — tanh(u3)

du

d—; = —Ug + tanh(ul)

d_:{s_ = —ug + tanh(u;) — 2 tanh(us).

In fact, if the initial state of the hidden unit 3 for the initial state‘p of the visible units
is set to the value 1, then it is shown that the visible state trajectory u"(t) of N3 (W)
for initial state (0,1, 1) coincides with the given trajectory £(¢). Based on this fact,
let us assume that the initial state of the hidden unit for initial states of the visible
units is always the value 1. Then, the RNN NZ(W) does not produce a dynamical
system on R%. In fact, for ¢ = (1/10,—1/20) € R?, the visible state trajectory
of the RNN NZ(W) with initial state (1/10,~1/20,1) is never a trajectory of one
dynamical system on R? since it has a self-intersection (see Figure 1). Hence, we

cannot make an RNN approximate the dynamical system % in this manner.

13
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Figure 1. An unsuccesful example of learning dynamical system ¢ by an RNN.
Dashed line: the visible state trajectory of the RNN with initial state
0,1,1).
Solid line: the visible state trajectory of the RNN with initial state
(1/10,-1/20,1).
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3 Neural Dynamical Systems

In this section, we begin with a systematic investigation of the dynamical system
produced by an RNN N™(W) with m = n + r units, and define the notion of
affine neural dynamical systems (A-NDSs). For approximating dynamical systems

by RNNs, we propose A-NDS-based learning and verify its validity.

Definition. A dynamical system ¢ on R™ is said to be produced by RNN (W)
if for an arbitrary € R", the trajectory p!(z) of ¢ through z coincides with some

visible state trajectory u"(t) of N*(W) with initial state p € R™.
3.1 RNNs without hidden units

First, we consider RNNs with no hidden units, that is, we consider the RNNs with
m units written in the form NJ* (W), W € M, ;ni1(R). In this case, n = m, r =
0, and the visible state space coincides with the state space R™, We will see that

these RNNs produce dynamical systems on R™ uniquely.

Proposition 3.1. For each W = (wy;) € Mppmi(R) (6 =1,--,m; j =0,1,---,m),

the vector field Fyww on R™ is complete.

Proof. Let p = (p1,-++,pm) € R™. Consider the following initial value p‘roblem of

ordinary differential equation on R™ with unkown functions u(t) = (u1(t), - - -, um(t)):
du
Et— = F w (U),
u(0) = p.

It is sufficient to prove that the solution curve to this initial value problem can
be extended to (—o00,00). Let &(t) = (£1(2), -+, &n(t)), t € (a,b), be the maximal
solution curve of this initial value problem. Because it is known ([15]) that b = oo,
it suffices to prove a = —oo.

Suppose a > —o0. There exists a positive constant ¢ such that

SC, ul,"'aumeRaizlv"')m (31)
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since the activation function g is bounded. For ¢ = 1, ---, m, we define the C*®

functions v;" and v; on R by
v (t) = (m+7c)e™" —71¢c, tER,
v (t) = (ps —71c)e™" +7¢c, teR.
We will prove that
v (t) < &(t) <ot (), te(a0],i=1---,m. (3.2)
Hence, there exists a compact subset K of R™ such that
Eit)e K, te(a,0)].

This contradicts a > —oo (e.g., [23]). This result proves the proposition.

Let us prove inequalities (3.2). First, we put

alt) = ) - &),  te (a0

It is easily seen that the C* curve 2(t) = (21(¢), - -, 2 (t)), t € (a,0] is the solution

curve of the following initial value problem of ordinary differential equation on R™:

Cf;i ) = filt,bu(t), - um(t)), di=1,---,m,
Uz(o) - O, 7 = 1, cee,m, (33)

where each f; is the C* function on (a,0] x R™ defined by

u.
fi(taul)"'aum) = —"?Z—Qz(t)y te(a'>0]) ula"')umeR,

qi(t) = c+ iwi]’ g(fj(t)) + w;p, t € (a, O]

j=1
For non-negative integer k, we inductively define the C*® curve on R™, z*)(t) =

(z{k)(t), o, 28()), t € (a,0] as follows: For i =1,---,m and t € (a, 0],
27 = 0,

T

A = [ ) s

16



Then, for i =1,---,m and t € (a,0],
0
A0 -0 < [ lals)lds < 2l

6~ 200 s [ |hls, 4006 = fls, 242 ds
25 0(s) — sz_z)(s)l ds, 2<keN,

0
< /
t

where IN denotes the set of all natural numbers. By induction on k, we can prove

. t|*
() - 25V < QCL/JT’ te(a,0),i=1,---,m, ke N.

Thus, we have

k
27 () - 2700 < QLkIT t€(a,0], i=1,,m keN.

Hence, there exists a curve on R™, 2(t) = (21(¢), - -+, Zm(t)), t € (a,0] such that
2 (t) uniformly converges to Z(t) on (a,0]. Note that #(t) is a continuous curve

since each z(®(t) is continuous curve. From

(k1)
kl}fgloz /0 kh—I»rolofz 5,2"" 71 (s)) ds
for t € (a,0] and 7 = 1,---,m, we obtain

t
= / fi(s,z(s))ds, te€(a,0],i=1,---,m.
0
It is easily seen that
- dz; _ _
z(0) =0, —d;(t) = fi(t,2(t)), te(a,0],i=1,---,m.

By the uniqueness of the solution to initial value problem (3.3) of ordinary differ-

ential equation, we obtain
Z(t) = 2(t), te€(a,0].
Hence, z(®(t) converges to z(t) for all ¢ € (a,0]. From inequality (3.1) we have

t
) = /0 [—zi(k”l)(s) — qi(s)] ds, te€(a,0],i=1,---,m, k€N,

@) > 0, tc(a,0],i=1,---,m.

17



Using induction on k it is derived that 2z (t) > 0forallte€ (a,0,2 =1, -, m,
and £ € N. Hence,

Zz(t) > 0, i.e., 61(t) < ’l):—(t), t¢c ((1,,0], 1= 1,. <M.
In the same way, the following inequality is proved:

v () < &),  te€ (a0, i=1,---,m.

Proposition 3.1 implies that the vector field Fy defines a dynamical system on R™.

We denote this dynamical system by
Py : RxR™ - R™.

Note that the trajecotry ®%,(p) of the dynamical system @y through p coincides
with the state trajectory u(t) of the RNN NM*(W) with initial state p, and is also
the visible state trajectory. Hence, the RNN NJ*(W) without hidden units always
produces the dynamical system ®w on R™. ,
The following proposition shows that the RNNs consisting of m units without

hidden units represent uniquely a certain class of dynamical systems on R™.

Proposition 3.2. Let W = (wy;), W' = (W'y;) € Mpmu(R) (@ = 0,1,---,m;
j=1,---,m). Then,
| Dy =y = W=W.

Proof. Since a dynamical system and a complete vector field are equivalent notions,
it suffices to prove that

Fow=Fy = W=W.

Suppose Fy(u) = Fy(u), (u € R™). Then, for each %, we have

m
(wij — w'i;) g(uy) + (wio — w'io) = 0,  w= (ug, - -,un) € R™
ji=1

18



Differentiating this equation with respect to u;, we obtain

d .
(wij—w’ij) ZZ—(’U,]):O, U GR, ]:1,-~-,m.

Since the activaton function g is not a constant function, we obtain
! P
wij = UJij, Y,,j:l,'-',m.

Then it is straightforward to show that wip = w'yo, (¢ = 1,---,m). Hence, we obtain

W =W'. ;
3.2 RNNs with hidden units

Next, we consider RNNs with r hidden units; i.e., m = n + r, 7 > 0. As seen in
Section 2.3, such an RNN does not deﬁne a dynamical system on the visible state
space R™ unless we successfully determine the initial values of the hidden units for
inital values of the visible units. We will propose neural dynamical systems (NDSs)
as dynamical systems produced by RNNs with hidden units.

Consider an RNN N*(W) with m = n + r units, where W € M, my1(R). Let
¢ be a dynamical system on R" produced by the RNN N(W). We begin by
observing how ¢ is described. We fix any z € R™ and consider the trajectory ¢*(x)
of the dynamical system  through z. By definition, there exists some p € R™
such that the trajectory ¢*(z) coincides with the visible state trajectory u”(t) of
the RNN N*(W) with initial state p. Let u(t) be the state trajectory of the RNN
N(W) with initial state p. We denote by

m: Rm—= R"

the projection from R™ = R™ x R" to R™. Since z = ¢%(z) = v'(0) = 7(u(0)) =

7(p), there exists some h(z) € R” such that

p = (z,h(z)).
By definition, we have

Pz) = u'(t) = w(u(t)), teR.



Since u(t) = &%, (p) (t € R), and z is any point of R", we obtain
o) = 7 (@tw(a:,h(a:))) , teR,zeR™

Note that h is a map from the visible state space R™ to the hidden space R", but
it is not necessarily continuous.
Based on the above observation, we define in the following way an NDS as one

dynamical system produced by the RNN N*(W) with hidden units.

Definition. Let W € My, 1 1(R) and h: R®™ — R"™ a C® map from the visible
state space R™ to the hidden space R". We define the C* map

(pW,h'RXRnHRn

by
Owp(@) = 7 (P (z,h(z)), teR, zeR™ (3.4)

We call ¢y, the n-dimensional neural dynamical system (NDS) produced by the
RNN AV (W) under C* map h if it forms a dynamical system on R™ (see Figure 2).

hidden state space R’

hx) b @, (x,h(x))

/

}

t
. ‘pW, h (x)
visible state space R”

Figure 2. The definition of NDS OW.h-
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We denote by C°(R™; R") the set of all C* fnaps from R™ to R". Note that
for any W € M,, my1(R) and any h € C*°(R™ R"), the C* map pw, does not
necessarily form a dynamical system on R™. In fact, there may exist a trajectory
@iy (p) having a self-inetersection (see Figure 3 and Example 1), or there may exist
distinct trajectories o}, (p) and @iy ,(g) intersecting with some nonzero angle (see

Figure 4 and the following example).

hidden state space R”
hP)f-._ Py (p,h(p))

~

~

(prh (p)

visible state space R"

Figure 3. Case where C* map ¢w,, does not form a dynamical system:

Self-intersection.
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hidden state space R”

"N g, h(g)

\

visible state space R”

Figure 4. Case where C* map ¢, does not form a dynamical system:

Intersection with a non-zero angle.

Example 2. Let m=3,n= 2, r=1,and let W = (w;;) € M3,4(R) be

oo =i=1),
771 0, (otherwise).

We consider the RNN NP(W) with 7 = 1 and g(s) = tanh(s). The dynamics of
NE(W) is written as follows:

du

_dj[;}— = —u1+tanh(u3)
dup

a 2

dus

a "

Let h : R? — R be the constant function 1. We put p = (0,1) € R? and ¢ =
¢wr(0,1) € R% Then, we can show that the two trajectories Ol n(p) and @i, (q)
intersect at the point ¢ with some nonzero angle (see Figure 5). Hence, the C'®

map @w,, does not form a dynamical system on R?2.
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Fugure 5. Example where C* map ¢w;, does not form a dynamical system.
Solid line: the trajectory ¢iy ,(p).
Dashed line: the trajectory ¢iy ,(q).

The following proposition gives a necessary and sufficient condition to produce
NDSs and the general form of NDSs. We use the following notation: For any

W = (’wij)izly..l,m-yjzo,l,.‘.’m € Mm,m+1(R) with m =n + T, we set

wy = (Wio, ", Wnho) € R™,
wy = (Wny10," ", Wmo) € R,
W = (Wap), goy...n € Mnn(R),
wvh = (wan+k)a=1,.-.,n;k:1,~-~,r € Mn,r(R)a

Wh’v = (wn+ka)k‘—tl,-..,r;a:l,'“,nEMr’n(R)’
Wh’h = (wn+kn+€)k,£=1,~-,reMT’T(R)’

WY = (waj)agl’...,n;jzo’l’...,m € Mn,m-l—l(R))
that is,

wy WYV Wv,h
W = <wgl Wh,v Wh’h>’
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wV

0

w fosnad

0 <w(})1>a

_ WV Wv,h
W = (Wh,v Wh,h)a

WY = (w(\Jr 1,704 Wv,h)‘

Proposition 3.3. Let W € M, mi1(R) and h € C°(R™ R"). Consider the RNN
NHW) with m = n+r units, r > 0. The RNN N™(W) produces the n-dimeﬁsional
NDS @y, under C*® map h if and only if for any z° € R", the visible state trajectory
u"(t) and the hidden state trajectory ul(t) of N*(W) with initial state (2°, h(2°)) €
R™ satisfies

g(h(w'(t)) — g(u"(t)) € Keae W™,  t€R,
that 1s,

W (g(h(u (1)) — g(uh()) = {0}, teR.
Moreover, for the NDS @y, on R", the corresponding vector field Xw,, on R™ is
gen by

. 1
Xwn(z) = -zt WYg(z) + WYPg(h(z)) + w3, z€R™ (3.5)

Proof. Define the vector field Xw,, on R™ by equation (3.5). Since ®J,, is the
identity map on R™ and
d

dt

@f»v,h(% h’(x)) : FW(mv h(.’E)), Tz € R",

t=0
we obtain by equation (3.4) that ‘P%V,h is the identity mapping on R™ and

4
dt

own(z) = Xwpu(z), z€R™
t=0

As is well-known (e.g., [38]),

K] t — s+t
PwhO Pwhr = Pwhn S tER,

if and only if for any z° € R,

d
d_tSOtW,h(mo) = Xwa(pwn(a®), teR. (3.6).
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Hence, the C* map @w,, forms a dynamical system on R”™ if and only if equation
(3.6) is satisfied. We fix any z° € R™, and consider the state trajectory u(t), the
visible state trajectory u¥(t) and the hidden state trajectory uP(t) of the RNN
M"(W) with inital state (z°, h(z%)). Observe first that

cp{,v,h(a;o) = u'(t), teR.

Since u(t) = (u¥(t),u"(t)) and (du/dt)(t) = Fw(u(t)) for any t € R, we have

duY
dt

&) = 7 (Fw(w'(®),u(t)), teR.
Hence, equation (3.6) is equivalent to the following equation:
m (Fw(u'(t),uh(t)) = Xwa(u'(t)), teR.

From these results, we can easily prove the proposition. j

Remark. 1If rankW"! = 7, the condition g(h(u'(t))) — g(ul(t)) € Ker W¥! for
any ¢t € R implies that |
ul(t) = h(u'(t)), teR

in the case where the activation function g is a monotone function.

From Proposition 3.3, it turns out that for any W € M, me1(R) with WY =0
and any h € C*(R™R"), the RNN AM*(W) consisting of m units with r(> 0)
hidden units always produce the NDS ¢, under h, which coincides with the dy-
namical sysytem ®wv produced by the RNN AJH(WV) consisting of n units without
hidden units. This gives trivial examples of NDSs. Thus, the notion of NDSs
includes the dynamical systems produced by RNNs without hidden units.

Next, let us construct a non-trivial and universal example of NDSs. We restrict

attention to the case where h is an affine map. We denote by
ha:R"— R
the affine map corresponding to

A= (akj)kzl,...’r;jzo,lyu.,n € Mr,n-’rl(R),
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that is,
ha(z) = Az +ay, z€R" (3.7)

where A = (agy) € Myn(R) (k=1,---,7; a=1,---,n) and ag = (a1, ", ) €
R, that is,
A = (ao A) )

Consider the direct product of the set of RNNs with n visible units and r(> 0)
hidden units, and the set of affine maps from the visible state space R™ to the hidden
state space R". Note that the product set is identified with the set My mi1(R) X
M, i1 (R), where m = n + r. Define its subset M™ by

AW = Whv .

M = {(VV, A) € Mpmi1(R) X My pni1(R) f:lW"’h = Whh } . (3.8)
Aws + (1/7)ag = wh

Corollary 3.4. For any (W, A) € M™, the RNN N*(W) produces the n-dimensional
NDS pwp, under affine map hy, and the corresponding vector field Xwy, on R™

s given by

1 o
Xwna(@) = ==a + W*g(a) + W"'g(Ar+a)) +wj, zeR™  (39)

Proof. Let z° € R™, and let u¥(¢) and u®(¢) be the visible and hidden state trajec-
tories of N*(W) with initial state (z°, ha(z?)), respectively. Then, it is easily seen
from definition (3.8) of M™ that the trajectory (u¥(t), Au'(t) + ag) on R™ is the
state trajectory of the RNN N(W) with initial state (z°, Az® + ao). Hence,

u'(t) = Au'(t)+ay, teER.
This means that
g(ha(w'(®)) — g(u'(®t)) = {0}, teR.

Hence, we get the corollary from Proposition 3.3. y

Corollary 3.4 supplies universal examples of NDSs.
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3.3 Affine neural dynamical systems

Now, we give the framework of approximating dynamical systems by RNNs. Based
on Proposition 3.1 and Corollay 3.4, we define the notion of affine neural dynamical
systems (A-NDSs), and propose to use an n-dimensional A-NDS as a dynamical
system that an RNN with n visible units actually produces on the visible state
space R" to approximate a target dynamical system on R™. Namely, we propose

the A-NDS-based learning for approximating dynamical systems by RNNs.

Definition. First, for any p = W € Mg, we call the dynamical system @y
the n-dimensional affine neural dynamical system (A-NDS) produced by the RNN
NG (W), and define

v = Pw,

where,

g = Mn,n+1 (R)

Next, let 7 be a positive intger and p = (W, A) € M7?. We call the NDS @y,
the n-dimensional affine neural dynamical system (A-NDS) produced by the RNN
N(W) under affine map h,4, and define

80/1. = (pW,hA .

Note that A-NDSs are the only univeral example of NDSs as far as we know,
and include the concept of pseudo-neural system defined by Funahashi ([14]), which
was introduced as the extension of usual RNNs for approximating trajectories.

Let us consider the approximation capability of A-NDSs to verify the validi-
tiy of the A-NDS-based learning for approximating dynamical systems by RNNs.
We prove that any dynamical system on R™ can be approximated well by an n-
dimensional A-NDS in a given finite region.

Let 9 be a dynamical system on R™ and Y the corresponding vector field on

R™. We fix a positive constant €, a bounded closed interval J containing 0 € R,
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and a compact set K C R™ Our purpose is to construct such an n-dimensional
A-NDS ¢, that approximates within error € the dyﬁamical system 7 in J x K, that
is,
|let(z) —vi@)| <& ted zek, (3.10)
where || - || is the Euclidean norm on R™.
The following well-known result, due to Cybenko([9]), Funahashi ([14]), and |
Hornik, Stinchcombe and White ([29]), is essentially used to prove our approxifna—

tion theorem. Note that this result has been variously extended (e.g, [3], [39]).

Lemma 3.5. (FNN approximation theorem) Let K be a compact subset of R®
and f a continuous function on K. Then, for an arbitrary € > 0, there exist a non-
negative integer v, by € R, (k =1,---,7), e € R, (k=1,---,1; a=1,---,n),
and O, € R, (k=1,---,7) such that

XT: bkg (271: Cho Ta -+ 9k> - f(:l,‘)
k=1 a=1

Here, in the case of r =0 the second term of the above expression is regarded as

< g, z € K.

n

CaTo + 0,

a=1
where ¢, € R, (=1, --,n) and 6 € R.
We fix p € K. For R > 0, let B,(R) denote the n-dimensional closed ball with
center p and radius R. Since ¥ : R x R"™ — R is continuous and J x K is

compact, there exists a positive constant p such that
$(J x K) C Bylp).
Since Y : R® — R™ is O, there exists a positive constant L such that
max{|DY @) |+ € By(p+<)} < L,

where DY (z) is the Jacobian matrix of Y at z and Il - || is the Euclidean norm on
M, (R) (~ R™). Observe that Y is a Lipshitz map from By(p +¢€) to R™ with
constant L. Choose a positve constant § such that

Le

0 < elT-1°
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where
T = max{|t| |t € J}.
By virtue of Lemma 3.5, there exist a non-negative integer r, P € M, ,(R) Q €

M, (R), 6 € R", A € M,,(R), and ay € R" such that

HY(JE) + %x — Pg(z) — 0 — Qg(Az + ap)|| < 6, z € Bp(p+e).

We define p = (W, A) € M? by
— 0 P Q
W= ( A9+ %a() AP AQ ) € Mn+r,n+r+1(R),
4 = ( a A ) € M,,11(R).

Consider the A-NDS ¢, on R™ produced by the RNN N*(W) under the affine
map hy : R" — R’. Then, by equations (2.1) and (3.9), the vector field X,
corresponding to the A-NDS ¢, satifies the following condition:

IXule) = Y@)I < 6 z€Bylp+e)
Here, observe that
¢l (z) € Bylp+e), telJ zekK.

By using Lemma 2.1, we can easily show that the A-NDS ¢, satisfies condition
(3.10). Hence, our purpose is accomplished.

From the above arguments, we obtain the following theorem.

Theorem 3.6.

(1) For any W € Mg, the RNN NJHW) without hidden units produces the dynam-

ical system Dy on the visible state space R™.

(2) Letr be a positive integer. For any u = (W, A) € M?, the RNN N*(W) with
7 hidden units produces the dynamical system ¢, on the visible state space R™

under affine map hy : R™ — R".
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(3) Let 1 be a dynamical system on R"™. Given a constant € > 0, a bounded closed
winterval J C R, and a compact set K- C R", there exist a non-negative integer

T and p € M7 such that

lou () - ¥' (@)l <&, teJ zekK.

Theorem 3.6 supports the validity of the A-NDS-based learning for approximat-
ing dynamical systems by RNNs.
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4 Representations of A-NDSs

For the problem of approximating a dynamical system by an RNN, we proposed
A—NDS—based learning in the previous section. This section deals with a unique
parametric representation of n-dimensional A-NDSs. In this and next sections, we
focus on the case where the activation function g(u) is tanh(u).
Let D™ denote the set of n-dimensional A-NDSs, and let
F: U MM - D"
0<rez

denote the parametric representation of n-dimensional A-NDSs by RNNs and affine
maps, that is,

Flp) = Pu

Note that for p = W € Mg, F(u) is the n;dimensional A-NDS produced by the
RNN NJ(W) without hidden units, and for p = (W, A) € M? (r > 0), F(u) is
the n-dimensional A-NDS produced by the RNN N*(W) under affine map h,. For
p € D", p e M7 is called a representation of ¢ if F(u) = .

By definition, the map F is surjective. We also know by Proposition 3.2 that

the restriction

]7|M3:M6‘—>D"

is injective. However, as seen below, the parametric representation F has redun-
dancy. By extending Sussmann’s work ([54]) for the redundancy in the function
representations of FNNs, we construct a unique parametric representation of D" to-

ward developing efficient learning algorithms of dynamical systems for RNNs based

on A-NDSs.

4.1 Parametric representation

Suppose that r is a positive integer. By defintion (3.8), the set M can be identified
with the set My, nir41(R) X M, ni1(R) in the following way:

M:‘l 3 (W, A) ~r (WV,A) < Mn’n+r+1(R) X Mr’n.,}_l(R).
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Thus, M? can be regarded as the (n? + 2nr + n + r)-dimensional Euclidean space.
From now on, we often use this identification.

Let p = (W, A) € M? (r > 0), W = (wyj) € Mpyrnirpa(R) =1, ,n+
;7 =01,---,n+r),and A = (ag;) € Myni(R) (kK =1,---,r; 5 =1,---,n).
Then, we can describe the vector field X, on R™ corresponding to the n-dimensional

A-NDS ¢, as follows:

Xu@) = (X)), (X, (2)), =z €RH

(Xu),(z) = —%xi-# z": w;; tanh(z;)

J=1

T n
4+ Y Winyk tanh (Z ag; T; + ako) + Wi,

k=1 =1
z=(x1, - ,zn) ER", i=1,--- n. (4.1)

Example 3. Let n =1 and 7 = 2. We define yu = (W, 4) € M} and i = (W, A)
€ M3 as follows:

v ~ (12
WY=(13 -1 2), A_<_13),

— o v x (1 -3
WY=(13 -2 -1), A_<1 2).

Note that the matrices W and W of connection weights and biases are respectively

1 3 -1 2
W=|2+1/r 6 -2 4 |,

3-1/7 9 —3 6

N 1 3 —2 -1
W=| -3+1/r =9 6 3|,
241/7 6 —4 —2

and the affine maps h4 and hj from the visible state sapce R! to the hidden state

space R? are respectively
ha(z)=(2z+1,3z—1), =z &R,
hi(z) =(-3z+1,2z+1), =xeR.
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By equation (4.1), we have

1
X,(z) = Xu(z) = ——T+3 tanh(z) — tanh(2z + 1) + 2tanh(3z —~ 1) +1, =z e€R.
Hence, we obtain the following:

T €My st pAh, Flu) = F().

Example 3 shows that the parametric representation F has reduridancy. In
particular, it implies that there exist distinct RNNs with the same number of hidden
units such that they produce the same A-NDS. In the next example, we seé that
there exist distinct RNNs such that they produce the same A-NDS while their

numbers of hidden units are different.

Example 4. For n =1 and r = 2, we define u = (W, A) € M. by
v (-1 2
vosan as(2)

Note that the matrix W of connection weights and biases is

5 1 2 3\
W=| 10-1/r 2 4 6|,
“1041/7 —2 —4 —6

and the affine map hy : R* — R?is
ha(z) = (22— 1,-2x+1), =zcR.L
Next, for n = 1 and 7 = 1, we define ji = (W, A) € M! by
WY=(51 —-1), A=(-1 2).
Note that the matri); W of connection weights and biases is
W= < 10—?1/7 ; :;)
and the affine map h; : R* — R! is
hi(z)=2z-1, =ze€R.
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By equation (4.1), we have
;nug=Xﬂ@=-éx+mm@g—mm@x—n+a zE€RL
Hence, we obtain the following:
Jue M, Ipe Mi st. Flu) = F().
4.2 Symmetric transformations

Let us consider the case where distinct RNNs with the same number of hidden units
produce the same A-NDS. Assume that r is a positive integer. A C* diffeomor-
phism of M7 is referred to as a transformation of M?. We introduce the notion of

symmetric transformations of M.

Definition. A transformation vy of M} is said to be symmetric if for each u € M?,

p and y(u) represents the same A-NDS, that is,

Flp) = Fly(w), pmeM;.

Let us construct some symmetric transformations of M?.

First, for £ = 1,---,r, We define the transformation 6, of M?" by
0 (W, 4) = (W,A), (W,A)eM}
w'ij = Wij, izlv"'an;jzoala""n’
0 _ —Wi ntk, (k = E)’
Entk Wi ntky (k 7& E))

G = {—a”cj’ (k= 1), E=1.--.

i=1,--m; k=1,---,r

ak;j ars, (k#10), vy 3=0,1,---,n,
where
W = (Wi)imy g gm0 temar A= (G5 o1,
W= (Dis) it 5=0,1,0+, 147 A= (dkj)kzl,m,r; §=0,1,-,n"

Note that the trasnformation 6, means changing the signs of all the weights associ-
ated with the hidden unit n + ¢. By equation (4.1), it is easily proved that 8, is a

symmetric transformation of M7 for £ =1,--- 7.

34



Next, let S, denote the set of permutations on the set {1,---,7}. For o € &,

define the transformation ¢ of M7} by

W, A) = (W,A), (W,A)eMy

’J)ij = Wi, izla"'an;jzo)la”')n’
Wi nto(k) = Windk 7':1,)”) k=1,"',T,
a(7()6)]' = Okj, k=1,~-,7‘;j=0,1,--~,n,
where
W= (wij)izl,---,n+r; 3=0,1,-n4r A= (akj)kzl,m,r; §=0,1,--,n

W= (wij)izl,-u,n+r; 7=0,1,-,n+r’ A= (a'kj)kzl,v--,r; 7=0,1,--,n’

Note that the transformation & means relabeling the hidden units according to
the permutation . By equation (4.1), it is easily proved that ¢ is a symmetric
transformation of M7 for any 0 € ;.

Let G be the transformation group of M7 generated by the symmetric trans-
formations 6, (( = 1,---,7) and & (0 € S,). We can easily prove the following

proposition.

Proposition 4.1. G is a non-commutative finite group of degree 2'r\. In partic-

ular,

(1) bpoby=id (k=1,---,7), whereid is the identity transformation of M7,
(2) Ox00p =000,  (kl=1,---,1),

(8) G0y ="0,p00 (c€S8,, £=1,---,1),

(4) ¢r = {91’\1 o---08, o 5\ A1, - Ar=0,1; 0 € ST}, where 6,° expresses id

and 8," expresses 0.

For the case r = 0, we define G} as the trivial group consisting of the identity

transformation of M.
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Example 5. Let n =1 and r = 1. Then, we have

S
g1

{id},
{id, 0,}.

Let us identify M7 with My 3(R) x M;2(R). Then, the symmetric transformation
0, is described as follows: For each (WY, A) € M} = Mi3(R) x M;»(R),

6 (WY, A) = (( wyp Wi —wi2 ), ( —aw —aun ))»

where

WY = (w0 wi waz), A= {aip an).

Example 6. Let n =1 and r = 2. Then, we have

Sz = {ld, O'},

G, {id, 61, 64, G, 6100,, 6107, 6305, 106,05},

where ¢ is the transposition of 1 and 2. Let us identify M} with M 4(R) x M2 2(R).
Then, the symmetric transformations 6, 6, and & are described as follows: For each

(WV,A) S Ml = M1’4(R) X M272(R),

Oh(W¥, A) = <( Wi Wi ~Wiz Wi ), ( ;(21;0 —‘Zil )) ,
O(WY, A) = <( Wi Wi Wi —wi ), ( wCL;ZO “a‘;;l )) ’
G(WY,A) = (( Wi Wi Wiz Wiz ), ( ng Zi )) ’

where

a9 0411

v

WY = (wm Wi W2 ’LU13), A = _ .
Gy a2

4.3 Irreducible representétions

Let us consider the case where distinct RNNs with different numbers of hidden units
produce the same A-NDS. Let 7 be a non-negative intger. First, we introduce the

notion of minimal representations of A-NDSs.
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Definition. Let u € M7 be a representation of an n-dimensional A-NDS ¢. Then,
i is called a minimal representation of ¢ if there is no other representatoin of ¢

using an RNN with fewer hidden units than 7, that is, if

IpeM} st F(R)=9v = 1

AN
=

In order to state the minimality condition of u € M7 in terms of u itself, we

introduce the notion of irreducible representations of A-NDSs.

Definition. An element u = (W, A) of M7 is said to be irreducible if r = 0 or the

following conditions hold:

A (W1 gk 0y Woonak) 7 (0, -+, 0), k=1,--- .
B: (akl,-.-,akn)%(o’...,()), k:l,...’r.

C: (a'k07 Ar1, " akn) 7é j:ela T )ien (k = 1)' v )T)a
i+1

where ¢; = (0,---,0, 1,0,---,0) € R*l for i = 1,...,m
D: (a’k()aakl) e ’akn) %v:t(G/ZOaa'lfla' te ’aln)’ k) Z = 13 Ty k 7& ea

where W = (wij) € Mpyrniri1(R) (6 = 1,--,n+7r; 5 =0,1,---,n+r), and
A=(ag) € Mrp(R) (k=1,---,1;5=1,---,n).

We call p € M™ an irreducible representation of an n-dimensional A-NDS ¢ if
F(u) = ¢ and p is irreducible. Let ./(/t\{f denote the set of irreducible elements of
M?. Note that M = MP. We call the set M? the irreducible set of M?. By

equation (4.1), we can easily prove the followin proposition.

Proposition 4.2. Ifu € M™ is not an irreducible representation of an n-dimensional

A-NDS ¢, then it is not a minimal representation of .
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Example 7. Let n =1 and r = 1. We identify M] with M;3(R) x My 2(R).
Then the irreducible set M} of M! is identified as follows:

A WY = (wyj) ;0,12 |
Mi = (WY, A) € Mi3(R) x Mya(R) | A=(ay;);_q, :
' L wiz # 0, an # 0, (aw,an) # (0,%1)

Example 8. Let n = 1 and r = 2. We identify M} with M, 4(R) x Mys(R).
Then the irreducible set M} of M} is identified as follows:

WY = (wlj)j=0,1,2,3 W
A= (akj)k=1,2;j=0,1
. w2 7# 0, w13 # 0,

M; (WY, A) € My4(R) x Moa(R) | ayy # 0,a9 # 0,

(alo,au) # (0, 31:1),
(azo,a21) # (0, ZH),
(alo,au) 79 i(azo,am) )

I

Here, we explain our irreducibility conditions in terms of RNNs and affine maps

according to Sussmann’s view ([54]) on irreducible FNNs. We begin with the fol-

lowing definition:

Definition. Two functions f; andf; on R™ are said to be sign-equivalent if

|fi(z)] = |fo)], =z €R™M

Let r > 0, p = (W, A) € M?, and let (zy,...,z,) denote the canonical coordinate
system in R™. Consider the affine map h,4 from the visible state space R" to the
hidden state space R", which is written as follows:

ha(z) = ((ha)y(2),---, (ha),(x)), = e€RT

(ha)i(z) = Zaijj + ago, = (1, ,Tn), K=1,---,7
j=1
Now, we can state the conditions A, B, C and D for i to be irreducible as follows:

Condition A states that there exists at least one connection from each hidden unit

n+ k to the visible units. Condition B states that each affine function (h4),(z) is
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not a constant function. Condition C states that each affine function (ha),(z) is
not sign-equivalent to any of the affine functions z,, ---, z, on R™. Condition D

states that no two of the affine functions (h4),(z), - - -, (ha).(z) are sign-equivalent.

4.4 Unique parametric representations

Now we investigate a unique parametric representation of D™. First, we state the

following result by Sussmann which is used to prove our proposition.

Lemma 4.3. (Sussmann [54]) Let fi, ---, fq be non-constant affine functions
on R™ such that no two of them are sign-equivalent, where d is a positive integer.
Then, the C* functions tanhofy, ---, tanhof; and the constant function 1 on R™

are linearly independent in the real vector space of C® functions on R™.
Let us prove the following proposition.

Proposition 4.4. Suppose that Let v and ¥ be non-negative integers. u = (W, A)
e MM and i = (W, A) € M satisfy F(u) = F(i). Then, r =F, and there egists
avy €GP such that y(u) = fi.

Proof. Put
W= (i) e, §=0,1, 4,
W= (wij)izl,---,n—ﬁ; 3=0,1,+,n+F,
A = (akj)k=1,~~-,r;j=0,1,-~-,n,
A = (ﬁkj)izl,---,f»; §=0,1, .
Let (@y,---,,) denote the canonical coordinate system in R™. Observe that the
affine functions (h4),, - - -, (ha), and (hz)y, -+, (hg): on R™ are written as follows:
n
(hA)k(x) = Zaijj + QAko; z = (xla e )xn)) k= 1, e, T

1

<.
I

=
E/
~_
S

I
M=

ag;T; + Gy, T= (21, " ,2n), £=1,---,T.
1

<.
Il
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By assumption, we have ¢, = ¢;. Thus, by equation (4.1), it follows that
wip — Wio + Y_(wij — Wy) tanh(z;) + ) Wi nek tanh(hk(z))

j=1 k=1

—Zwi n+/¢ tal’lh(;bg($)) = 0, €T == (561,' T ,CL‘n), i=1,--,n. (42)

=1

Since p and fi are irreducible, each (ha),(x) and each (h;),(z) are non-constant
affine functions, and are not sign-equivalent to any of the affine functions 1, x;,
-+, T, on R™ Moreover, no two of (ha),(z), ---,, (ha).(x) are sign-equivalent,
and no two of (hz),(x), ---, (h4):(x) are also sign-equivalent. Suppose that for any
k=1,---,r and any £ = 1,---,7, the affine functions (ha),(z) and (hz),(x) are

not sign-equivalent. Then, by equation (4.2) and Lemma 4.3 we have
Wingg = 0, =1, n k=1,---,7,
Winye = 0, i1=1,---n; £=1,---,F

However, this contradicts the fact that 4 and fi are irreducible. Hence, there exists

a pair of (ha),(z) and (hj),(z) such that they are sign-equivalent. Let {(k1, £1), s

(ka, £4)} be all of the pairs (k, £) such that (ha),(z) and (ha),(z) are sign-equivalent,
and put ‘

(hi)e, (€)= pro (ha)y, (@), a=1,-,d
where pi, = lor — 1, (¢ = 1,---,d). Then equation (4.2) is equivalent to the

following equation:

n
Wig — ’U~Ji0 -+ Z(w” —_ 'II)U) tanh(xj)
j=1

d
+ 3 (Wi ntke — Pratingr,) tanh ((ha)y, ()
a=1

+ Z W; .y tanh ((ha), ()

k#k1, kg
— ) Wy tanh ((hA)e'(x)) =0, = (1, ", %), t=1,---,n.(4.3)
O£l 0y

By Lemma 4.3 and the irreducibility of u and i, the following C* functions on R"

are linearly independent;:
1, tanh(z,),- -, tanh(z,),
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tanh ((4),(2)) .-, tanh (), (2)) , tanh ((hg)y(@)), (€# 6,01 la)

Hence, by equation (4.3) and the irreducibility of u and fi, we have

r = r=d,
Wiy = u~)ija i=1,--~,n;j=0,1,'--,n,
win+o(k) = Pk Wi ntk, Z=1)an) kzla"')ry

where ¢ is the element of S, defined by o(ky) = €4, (o =1,---,7). Observe that
(hfi)a(k) () = px (ha), (2), zeR™ k=1,---,7
Now we define v € G by

y = 91(1—01)/2 Oer 0 Qr(l‘pr)ﬂ o0.

Then, it can be easily verified that v(u) = . We have completed the proof of

Proposition 4.4. y

Consider an n-dimensional A-NDS ¢ and an element i of M} with F() = ¢.
In general, it is difficult to decide whether [ is a minimal representation of .
Indeed, in order to verify the minimality of [i, we need to examine all elements of
the sets M7, (r € Z; 0 <r < 7). By definition, it is much easier to decide whether
i1 is irreducible. We have seen in Proposition 4.2 that a minimal representation of
an A-NDS is an irreducible representation of the A-NDS. The following corollary

shows that the converse is also true.

Corollary 4.5. Let ¢ be an n-dimensional A-NDS and pu an element of M? such
that F(u) = @. Then, p is a minimal representation of ¢ if and only if u s
irreducible, that is, p € M™. '

Proof. 1t is sufficient to prove that if p is irreducible, then it is a minimal repre-

sentation of . Suppose that p is irreducible but not a minimal representation of
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¢. Then, there exist a non-negative integer 7 and an element fi of M? such that

7 <rand F(u) = F(i). Taking a minimal representation fi € M2 of @, we have
LT < (4.4)

Since minimal representations are irreducible, j is irreducible. Hence, we obtain
m = 7 by Proposition 4.4. This contradict inequality (4.4). We have thus proved

the corollary. y

Corollary 4.5 states that the notion of minimal representations of A-NDSs are
equivalent to the notion of irreducible representations of A-NDSs. Let ¢ be an
n-dimensional A-NDS and i an irreducible representation of . Proposition 4.4

implies that the set of all irreducible representations of ¢ is given by

{v(8) | vegr}. (4.5)

Hence, the set of all minimal representations of ¢ is obtained by the set (4.5). In

the following examples, we explicitly express all the minimal representatations of

the A-NDSs in Examples 4 and 3.

Example 9. Let ¢ be the 1-dimensional A-NDS in Example 4. Then, the vector
field X on R! corresponding to ¢ is of the form

1
X(z) = ——z + tanh(z) — tanh(2z -~ 1) +5, =z e RL.
T

Example 7 implies that (W, A) € M! in Example 4 is an irreducible representation
of p. Let us identify M7 with M;3(R) x M;2(R). From expression (4.5) and

Example 5, we obtain that all the minimal representations of ¢ are given by

((5 1 -1), (-1 2)), ((5 1 1), (1 =2)).

Example 10. Let ¢ be the 1-dimensional A-NDS in Example 3. Then, the vector
field X on R' corresponding to ¢ is of the form »

X(z) = —l:c + 3tanh(x) — tanh(2z + 1) + 2tanh(3z — 1) +1, =z e R
. T
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Example 8 implies that (W, A) € M} in Example 3 is an irreducible representation
of p. Let us identify Mj with M;4(R) X M,o(R). From expression (4.5) and

Example 6, we obtain that all the minimal representations of ¢ are given by

((134 2 ), _i?), , (1312),(1 —?), ,
(13 -1 —2), 1_; ,o((1 32 —1), “};’ ,
(131 -2), “1 ::23 , (13 =2 -1), i"g :
((1321), :} _‘; , (1 3 =2 1),(“1 :g

Let r be a non-negative integer. Note that the irreducible set ﬂ’} is an open

set of M? and
7(Mp)=Mr, yegr
Consider the quotient space M™/G™. Let
oo My — MG
be the canonical projection. Then, we have the following.

Proposition 4.6. The quotient space /\72/93 has a unique structure of C™ man-

ifold such that the canonical projection w, is a covering map.

Proof. 1t is sufficient to prove that G7 acts freely and properly discontinuously on
./\//t\;‘. Since G} is a finite group, it is sufficient to show that G acts freely on /\//l\;‘.

Thus, our task is to prove that if u = (W, A) € M" and
g?9’7=91)“o"‘9r’\7057éid (A, oo A € {0,1}, o €S,),

then ~y(n) # p.

First, consider the case o # id. Then, there exists an integer k € {1,---,7} such

that o(k) # k. If v(u) = p, then we have

(ako, ax1, =, kr) = % (Go(k) 05 Go(k) 15 * s Go(k) r)-
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This contradicts p € /\//1\;‘.
Next, consider the case 0 = id. Then, there exists an integer k € {1,---,7} such

that A\, = 1. If y(u) = u, then we have

0U1n+k""’ thn+k) = (0,"'7 0)

This contradicts p € /{/l\;‘.

Hence, we have completed the proof of Proposition 4.6. §

Now we construct a unique parametric representation of D". We define the

parameter space A™ by
A" = (ﬂ;‘/gﬁ) (disjoint union).
0<reZz
Note that A™ is a countable disjoint union of C'* manifolds with distinct dimensions.

We also define the map F : A™ — D" by

Flm(w) =F(p), peMr 0<rel
Note that this definition is well-defined since
Flp)=Fy(w) (ne M, yegr, 0<reZ).

Proposition 4.4 implies that the map F is injective. Corollary 4.5 implies that the

map F is surjective. Hence, we have proved the following theorem.

Theorem 4.7. Let A™ and F : A — D" be as above. Then, the set A™ is a
countable disjoint union of C°° manifolds with distinct dimensions, and the map F

is bijective. Namely, the map F : A — D" gies a unique parametric repesentation

of the set D™ of n-dimensional A-NDSs.
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5 Application of Unique Representations

In this section, we describe two applications of the unique parametric repesentation
of n-dimensional A-NDSs constructed in the previous section. One is concerned with
non-redundant search sets for learning dynamical systems. The other is concerned

with simplification of RNN models of dynamical systems.

5.1 Construction of a non-redundant seach set

From the point of view of developing effective learning algorithms, it is important
to investigate a non-redundant search set for learning dynamical systems by RNNs
based on A-NDSs. For example, such a non-redundant search set helps restrict the
initial values of the learning parameters.

Let us construct the set B” C Up<,ez My of non-redundant representations of
n-dimensional A-NDSs by the pairs of RNNs and affine maps.

In order to simplify expression, we use the following notations: First, for any
positive integer 7 and any (W, A) € M?, we denote by w;; the (%, 7)-component of
W, and denote by ay; the (k, j)-component of A, and define

wj = (Wi, W, W) €RY, j =01, ,n 4T,

1
ar = (aro, k1, "+, 0kn) € R, k=1,

Next, for any positive integer d, and x = (21, -, %a), ¥ = (¥1,--*,%) € R? such
that © # vy, we write

T Xy

if £ <yporx =y, Ta <Yz, 00 -+, OF Ty =Yy, ***, Tgo1 = Yd-1, Td < Ya-
Note that for any positive integer 7, any element (W, A) of M? is determined
by specifying w; € R* (j =0,1,..,n+7) and a;y € R**! (k=1,...,7).

Remark. Let v = 0;M o008 05 € G* (A, -, A € {0,1}, ¢ € S,) and
1= (W, A) € M". Then, y(1) = (W, A) can be expressed as follows:

'LD] = W (j:()’l)"')n),
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wn+k = ("1)/\’C Wnto-1(k) (k =1,--- ,7‘),

(—1)/\’C aa-—l(k) (k‘ = 1, e ,7‘).

S
I

Now, we define the subset B" of Uy<,cz M7 by
Br= |J B,
0<rez

where

B¢={<vv,A>eA7¢

ijn+1,"',ojwn+r
3 S 8 '

The following theorem shows that the set B™ gives a non-redundant search set for

learning dynamical systems on R™ by RNNs based on n-dimensional A-NDSs.
Theorem 5.1. Let B™ be as above. Then, the restriction
Flgn : B* > D"

of the parametric representation F of D" is bijective. Namely, B" gives the set of
non-redundant representations of n-dimensional A-NDSs by the pairs of RNNs with

n vistble units and affine maps.
Proof of Theorem 5.1. 1t is sufficient to prove that the map
ﬂ'rlzsp B — M\?/g?

is bijective for any positive integer .
Surjectivity: First, we prove the surjectivity. It is sufficient to prove that for
any u € M?", there exsits a v € G® such that y(x) € B*. The following lemma is

needed to prove the surjectivity.

Lemma 5.2. Let p= (W, A) € C,, where
C={(W,4) € M} | 0= wppa,++,0 < Wnr} -
Then, there exists ay € G such that y(u) € BP.
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Proof of Lemma 5.2. Since u = (W, A) € C, C /\//\lf, ay # ag if k # £. Thus, there
exists a 0 € S, such that

Ag-1(1) == Ag—-1(r)-

Then, it is easily verified that ¢(u) € B. This completes the proof of Lemma 5.2.

Now, let us prove the surjectivity. Let u = (W, A) € M™. Note that wnyq #0, - -+,
Wn4r # 0. We define the constants Ay, ---, A, by

_ [0 i 0= wark, L
/\k—{l if wn+kj0, (k—l, ,T‘).

Then, it is easily verified that
0, o060, M) €C,.

Hence, by Lemma 5.2, we can prove the surjectivity.

Injectivity: Next, we prove the injectivity. It is sufficient to prove that if u € B?
‘and v € G" satisfy v(u) € B”, then v(u) = . In particular, it is sufficient to prove
that

id#yegl, neB = 7 ¢B.

Hence, the proof of the injectivity is achieved by the following two lemmas:

Lemma 5.3. Let 0 € S, and Ay,---, A, € {0,1} such that A\y + -+ X\, # 0. If
y=60Mo--00> 05, then y(w) & BZ for any p € B2,

Proof of Lemma 5.3. Let = (W, A) € B and v(u) = (W, A) € B?. Suppose that
Ax = 1, where & is an integer such that 1 < k < r. Since 0 X wpy1, -+, 0 < Wy,
we can easily show that w,x < 0. Hence, v(uu) ¢ BP. This completes the proof of

Lemma 5.3.
Lemma 5.4. Let 0 € S, such that o # id. Then, 6(u) ¢ B* for any u € BP.

Proof of Lemma 5.4. Let u = (W, A) € B* and &(u) = (W, A) € B". Since o # id,

there exist integers k and £ such that 1 < k < £ <r and 07 1(k) > o~*(f). Since
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a; =% -+ < a,, we can easily show that d¢ = ag. Hence, 6(u) ¢ B This completes

the proof of Lemma 5.4.

We have completed the proof of Theorem 5.1. §

5.2 Simplifying RNN models of A-NDSs

In general, simpler models are preferred to more complicated models to make anal-
ysis and control easier. In order to obtain a simpler RNN model of a target dynami-
cal system, we consider simplifying the RNN model that has learned the dynamical
system, that is, consider decreasing the number of hidden units.

Let us develop a method of simplifying the RNN model (M5(W?); h40) that has
learned a dynamical system 1 on R" based on an n-dimensional A-NDS ¢. As a
solution, we give the method of obtaining all the minimal] RNN model of the A-NDS
¢ from the learned RNN model (N75(W%); h 40).

We put u® = (W9 A%). A minimal RNN model of the A-NDS ¢ is equivalent
to a minimal representation of . We have shown in the previous section that
the notion of minimal representations are equivalent to the notion of irreduible
representations. Thus, our goal is no more and no less than to obtain all the
- irreducible representations of ¢ from the given representation u°.

Using the criterion of irreducibility, we can easily prove that obtaining one min-
imal RNN model of the A-NDS ¢ from the RNN model (N5(W?); h40) is achieved
by successively performing the following four opereations: Each operation derives
an RNN model (NV]* ;(W’); ha') of ¢ from the prime model (N*(W); h4) via elimi-
nation of a hidden unit n+¢, where W = (wy;), A = (akg), W = (w's;), A’ = (d'xg),
£=1,---, 7.

1. Eliminate the hidden unit n + ¢ such that

Uinte = 0 = Wpnppp = O,

and let W’ be the matrix obtained by eliminating from the matix W the
elements Wi;’s withi=n+ /£ or j =n+ ¢, and let A’ be the matrix obtained
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by eliminating from the matix A the elements Ayg’s.

. Eliminate the hidden unit n + ¢ such that
ap =+ =aym =0,

and let A’ be the matrix obtained by eliminating from the matix A the ele-
ments agg’s, and let W’ be the matrix obtained by eliminating from the matix

W the elements w;;’s with ¢ =n + £ or j =n+ ¢, and

wla() = Wao + Wy nie tanh(aeo) (OA - 17 e an)a

Woiko = O AraWao + (dro/T) (k=1,---,7r=1).
a=1

. Eliminate the hidden unit n 4+ £ such that there exists one and only one [,

(1 < By < n) such that

Qe gy = p(:101' —1)a Qg = O(ﬁ?éﬁ()),

and let A’ be the matrix obtained by eliminating from the matix A the ele-
ments agg’s, and let W' be the matrix obtained by eliminating from the matix

W the elements w;j’s withs =n+ £ or j =n+ ¢, and

w,aﬁo = Wy Gy + P Wy ntt (a——:l,---,n),

n
Wik, = Za'kaw'ago (k=1,---,7r=1).
a=1

- Eliminate the hidden unit n + £ such that there exists some kg (1<ko<T)

such that
ko < ¢, akep = pagg (B=0,1,---,n),
where p = 1 or —1, and let A’ be the matrix obtained by eliminating from the .

matix A the elements agg’s, and let W' be the matrix obtained by eliminating

from the matix W the elements w;;’s with ¢ =n+ £ or j =n+ ¢, and

’
Wantke = Wantke + P Wy ntt (a———l,---,n),
n
' ' '
Wotkniko = 9 @kaWaniko (k=1,---,7r=1).
a=1
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Consequently, we have achieved a method of obtaining the minimal RNN model
(N2(W); A) of the A-NDS ¢ from the given RNN model (N3 (W?); A°). Hence, all
the minimal RNN models of the A-NDS ¢ is obtained by '

{NEW); A) | (W, 4) = (W, A), ye GF }.
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6 A Study of Generalization

In this section, we deal with the problem of generalization for trajectory learning by
RNNs within the framework of dynamical system .learning. Namely, we would like
to discuss whether or not an RNN model of a dynamical system can be acquired
by learning its given trajectories. As a first step, we investigate whether or not an
A-NDS can be identified from its given trajectories. First, for an A-NDS produced
by an RNN without hidden units, we give a geometric criterion for whether or not
the A-NDS can be identified from its given trajectories, and present those examples
that the A-NDS can and cannot be identified from its given trajectories. Next, this
theory is slightly extended to the case of A-NDSs produced by RNNs with hidden

units.

6.1 A-NDSs produced by RNNs without hidden units
Consider the set

RNG = ANG'(W) | W € MG = My mia(R)}
of all RNNs consisting of m units without hidden units. Fix W* = (wj;) €
Mymii(R), (i = 1,---,m; j = 0,1,---,m), and consider the m-dimensional A-
NDS @y« produced by the RNN AMJ*(W*). Suppose that £*(#) (A € A) are the

observed trajectories of the dynamical system ®y+~ on R™ through p* € R™; i.e.,
) = ..

Our purpose is to investigate whether or not the A-NDS ®y/« can be identified from
the given trajectories £2(t) (A € A) in the set

Dy = {(I)W l We Mm,m+1(R)}

of m-dimensional A-NDSs produced by those RNNs belonging to the set RN
By Proposition 3.2, identifying the A-NDS ®y« in the set D' is equivalent to
identifying W* in the set My, m4+1(R). We put |

WA EN) = (W € Mpmn(R) | 9y (p") =€)(1), teR, A€ A}
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Then,
{dw e DJ | W e W(E X e )}

is the set of those A-NDSs belonging to Dj* that generate the given trajectories
EMt) (A e A).

The next proposition gives a geometric interpretation for the set W(£*; A € A).

Proposition 6.1. Let W = (w;;) € My (R) (0 = 1,---,m; 5 = 0,1,---,m).
Then,
W e W(EMN X € A)

if and only if
('U)i(),'w“, o awim) € (wz(Oiw;‘l" . ’w:m) + V(‘S/\?)‘ € A)la 1= 1) T,

where V(EX; X € A) is the vector subspace of R™! spanned by the set

U {(L, 9(€*(®)) eRxR™ | te R},

and the symbol “L” means the orthogonal complement with respect to the canonical

inner-product (, ) on R™*! (see Figure 6).

V(e re A)_L

V(& reA) “I\/'

0
(1, g(g*®) )

m-+1

R

Figure 6. An illustration of the subspace V (ﬁ’\; A€ A)L of R™H,
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Proof. We observe that W € W(E*; X\ € A) if and only if £*(¢) is the solution curve
of the ordinary differential equation du/dt = Fy (u) under initial condition u(0) =
p* for any A € A. Hence, a necessary and sufficient condition for W € W(€*; X € A)

is that
Fw(EMt) = Fw-(€Mt)), teR, AeA. (6.1)

A straightforward calculation yields that condition (6.1) is equivalent to the follow-

ing condition:
(W—-W")g(X®) + (wo—wy) =0, tER, AE€A, (6.2)
Condition (6.2) is also equivalent to the condition

((wio — wioywis — Wiy, wim = wip,) 5 (1, 9(€(1)) = 0,

foranyt € R, A€ A,and ¢ = 1,---,m. From these results, we can easily prove the
proposition. y

3

By Proposition 6.1, we get the following geometric criterion for the possibility

of identifying the A-NDS @y from the given trajectories £*(¢) (A € A).

Corollary 6.2.

WEN e N) = (W)
if and only if

V(EM» A e A) = R™HL

Next, using Corollary 6.2, we present those examples that the A-NDS &y« can
and cannot be identified from the given trajectories £*(t) (A € A). Weput 7 =5
and g(s) = tanh(s).

Example 11. Let m =2, W* =0 € My3(R), A = {)\}, p* = (p},p3) € R? and
EMt) = @Y. (p). Then, the dynamics of the A-NDS ®yy+ is described as follows:
du1 1

@ T s
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d’U,z 1

gt 5™
dup _ 1
ad 5

Figure 7 illustrates the phase portrait of the A-NDS ®y+. We can easily prove that

1, (P =0)
dimV(EY) =1 3, (ppy #0, p} # £p3)
2, (otherwise).

Hence, from the given trajectory £2(¢) in Figure 6, the A-NDS ®y+ can be identified
for A =9, ---, 12, while it cannot be identified for A =1, - -+ 8.

1t L a
30

gw P
e
p2 .
N PS
£
1 2 3 4 5

. Figure 7. Phase portrait of dynamical system ®yy-.
p' = (3,0}, p* = (3,3), P = (0,3), p" = (-3,3),
p°=(=3,0), p° = (-3,-3), p’ = (0,-3),
P = (3,-3), p° = (25,15, p'® = (=1,2.5),
p' = (-25,-15), and p'? = (1, -2.5).

Example 12. Let m = 3,

co o
O - O
—_ o o

I
oo L
N
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A = {A}, p' = (=3.5,0.5,3.2), p? = (0.1,0.2,0) and £*(¢) = (), (A

Then, the dynamics of the A-NDS ®y« is described as follows:

1,2).

du 1
_Et_l = ~gu1 - tanh(ug)
d’UQ 1
—zl-t* = —g’LLz + tanh(ul)
du 1
—d—tz = —5'1113 + tanh(uz).

Using the result of Hastings, Tyson and Webster ([18]) for monotone cyclic feedback
- systems, which has been improved by Mallet-Paret and Smith ([37]), it has been
shown ([1], [62], [61]) that the dynamical system ®y~ has a limit cycle around
the origin and the two trajectories £!(£) and £2%(t) converge to the limit cycle (see

Figure 8). We can easily prove that
dimV(e*) =4, Ar=1,2.

Hence, the A-NDS @+ can be identified from the given trajectory £*(t) for A =
1,2. |
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Figure 8. Phase portrait of dynamical system ®yy-.
Solid line: the trajectory &1(¢).
Dashed line: the trajectory £2(t).
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6.2 A-NDSs produced by RNNs with hidden units

Let us attempt to extend our theory to the case of RNNs with hidden units. Con-
sider RNNs consisting of m units with n visible units and r(> 0) hidden units. Fix
A € Mypnii(R) and W* = (w};) € Mpymia(R) (i=1,---,m; j =0,1,---,m) such
that (W*, A) € M. Consider the n-dimensional A-NDS @y , . produced by the
RNN NM*(W*) under affine map h4. Suppose that €*(t) (A € A) are the observed

trajectories of the dynamical system ©w=pn, on R™ through p* € R™; e,

At) = (/J%/V*,h,;(p,\)'

Our purpose is to investigate whether or not the A-NDS ©w=h, can be identified
from the given trajectories £*(¢), (A € A) in the set

DHA) = {own, | (W, 4) € M7}

of n-dimensional A-NDSs produced by RNNs with n visible units and 7 hidden
units under affine map h 4.

We put

(W,4) € Mn,
On, () = EMt), teR, AeA |-

Wa(ENA e h) = {W € Mpmi1(R) l
Then,
{own, € DFA) | W € Wa(eX 1 e )}
1s the set of those A-NDSs belonging to D7(A) that generate the given trajectories
&Nt) (A e A).
The following proposition gives a geometric interpretation for the set W4 (M e
A), which is an extension of Proposition 6.1. Using Corollary 3.4, the proposition

can be proved in the same way as Proposition 6.1.

Proposition 6.3. Let W = (wi;) € Mpmmyi(R) = 1,---,m; j = 0,1,--+,m)
such that (W, A) € M™. Then,

W e Wa(e X € A)
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if and only if
(wio’wil, Ty wzm) € (w:(),w;'kl, e ,w:m) + VA(§>\7 AE A)'L’ 7 = ]_, e,
where V4(€*; X € A) 1is the vector subspace of R™1 spanned by the set

U {(1, 9@ @), gona@®)) eRxR" xR |t €R}.

A€A

As an extension of Corollary 6.2, we get the following geometric criterion for
the possiblity of identifying the A-NDS ¢y, from the given trajectories (1),
(A€ A).

Corollary 6.4.
WalE e A) = (W}

if and only if
Vald e A) = R™L
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7 Conclusion

We have considered continuous time RNNs called additive neural networks or Hop-
ﬁeld neural networks. As one extension of the problem of approximating a trajectory
on R™ by an RNN, we have investigated the problem of approximating a dynamical
system on R™ by an RNN. This has ailowed us to discuss the problem of gener-
alization for trajectory learning by RNNs, and leads to investigating the problem
of acquiring an RNN model of a dynamical system on R™ by learning its observed
trajectories.

The role of hidden units is crucial for the approximation capability. However,
an RNN with n visible units and (> 0) hidden units cannot produce a dynamical
system on the visible state space unless a map h : R™ — R is successfully specified
to determine the initial states of the hidden units for initial states of the visible units.
Thérefore, toward developing dynamical system learning algorithms; it is necessary
to build the framework of how such an RNN produces a dynamical system on R”
under mép h : R®™ — R" to approximate a given dynamical system on R". By
investigating systematically the dynamical systems produced by RNNs, we have
defined the notion of n-dimensional A-NDSs, and proposed to use an n-dimensional
A-NDS as a dynamical system that an RNN with n visible units actually produces
on the visible state space to approximate a target dynamical system on R™, that is,
proposed A-NDS-based learning for approximating dynamical systems by RNNs.
By proving that any dynamical system on R™ can be approximated well by an
n-dimensional A-NDS in a given finite region, we have verified the validity of the
A-NDS-based learning (see Theorem 3.6).

An A-NDS is represented by a suitable pair of an RNN and an affine map.
However, this representation is not unique. The aim of approximating a dynamical
system by an RNN is to acquire an RNN model of the dynamical system by learning
1ts given trajectories, and the existing trajectory learning alogrithms for RNNs are
based on the gradient descent method for an error function. Thus, the local minima

problem is associated with the learning algorithms, and makes the performance
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dependent on the initial values of the learning parameters. From the point of view
of developing effective learning algorithms, it is significant to understand a non-
redundant search set for learning dynamical systems by RNNs based on A-NDSs.
For example, such a non-redundant search set helps restrict the initial values of the
learning parameters. We have constructed a unique parametric representation of
n-dimensional A-NDSs (see Theorem 4.7), and also constructed the non-redundant
representations of n-dimensional A-NDSs by the pairs of RNNs with n visible units
and affine maps, that is, concretely constructed a non-redundant search set for
learning. (see Theorem 5.1).

As the straightforward application of the unique parametric representation of
n-dimensional A-NDSs, we have presented a method of obtaining all the minimal
RNN models of an A-NDS from a given RNN model of the A-NDS. This method
helps simplify the RNN model that has learned a target dynamical system based on
an A-NDS. We have also investigated whether or not an A-NDS can be identified
from its given trajectories as a first step to a study of generalization for trajectory

learning by RNNs.
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