<table>
<thead>
<tr>
<th>Title</th>
<th>Some notes on the radical of a finite group ring. II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Tsushima, Yukio</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 16(1) P.35-P.38</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1979</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/4833</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/4833</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
SOME NOTES ON THE RADICAL OF A
FINITE GROUP RING II

YUKIO TSUSHIMA

(Received October 31, 1977)

1. Introduction

Throughout this paper, \(p \) is a fixed prime number and \(G \) is a \(p \)-solvable group of order \(|G| = p^ah \), \((p, h) = 1\). Let \(k \) be a field of characteristic \(p \) and let \(\mathfrak{N} \) be the Jacobson radical of the group ring \(kG \). We denote by \(t(G) \) the smallest integer \(t \) such that \(\mathfrak{N}^t = 0 \).

We know that \(a(p-1)+1 \leq t(G) \leq p^a \). Let \(P \) be a Sylow \(p \)-subgroup of \(G \). In the previous paper [9], we have shown that the second equality \(t(G) = p^a \) holds (if and) only if \(P \) is cyclic. Here we shall show

Theorem 1. Assume that \(P \) is a regular \(p \)-group. Then if \(t(G) = a(p-1)+1 \), \(P \) is elementary.

A \(p \)-group \(P \) is called *regular*, if for any \(x, y \in P \), it holds that \(x^p y^p = (xy)^p \prod z_i^t \) with some \(z_i \in \langle x, y \rangle \). There are various examples of regular \(p \)-groups (see e.g. Huppert [7], III Satz 10.2).

To prove Theorem 1, it is sufficient to show that \(G \) has \(p \)-length one. Indeed if this were shown, then we have that \(t(G) = t(P) \) (Clarke [2]). However, for a \(p \)-group, our assertion is clear by Jennings [5] (without the assumption of regularity).

Of course Theorem 1 does not hold in general. A counter example is known for \(p=2 \). However, since a regular 2-group is necessarily abelian (hence \(t(G) = t(P) \)), Theorem 1 tells nothing new for \(p=2 \). Our proof is almost group theoretical. We owe heavily to a recent result of Gagola [3], a special case of which is quoted in Lemma 2 of the next section.

2. Preliminary results

For convenience of later arguments, we shall here provide a proof of the following result.

Theorem 2 (Wallace [10]). \(t(G) \geq a(p-1)+1 \).

Proof. First of all, we remark that if \(\mathfrak{N}_e \) is the radical of the group ring \(kP \)
and \(t=t(P) \), then \(\mathfrak{R}_0^{-1}=k\sigma=(0: \mathfrak{R}_0) \), where \(\sigma=\sum_{r\in P} a_r \). This follows easily from the fact that \(kP \) is completely primary.

We shall prove the Theorem by the induction on the order of \(G \). We may assume that \(O_{p'}(G)=1 \). Let \(V \) be a (non-trivial) normal \(p \)-subgroup of \(G \). For a \(p \)-group, our assertion is clear by Jennings [5], so that if \(|V|=p^4 \), then \(t(V)\geq b(p-1)+1 \). By the induction hypothesis, we have \(t(G/V)\geq(a-b)(p-1)+1 \).

We recall that \(\mathfrak{N}_p=\{\sum a_x(x-1)\mid x\in V, a_x\in k\} \) is the radical of \(kV \). Furthermore, since \(G> V, kG\mathfrak{N}_p \) is a nilpotent two sided ideal of \(kG \), which coincides with the kernel of the natural map \(kG\rightarrow k\overline{G}, \) where \(\overline{G}=G/V \). In particular, we have that \(\mathfrak{N}^{(a-b)(p-1)}\subset kG\mathfrak{N}_p \). Hence, if we put \(\sigma=\sum_{r\in V} a_r \), then \(\mathfrak{N}^{(a-b)(p-1)}\sigma\neq 0 \).

Since we have \(\sigma\in \mathfrak{N}^{(p-1)}\subset \mathfrak{N}^{(p-1)} \) as remarked above, we conclude that \(\mathfrak{N}^{(p-1)}\neq 0 \). This completes the proof of Theorem 2.

Lemma 1. Assume that \(O_{p'}(G)=1 \) and \(U=O_p(G) \) is abelian. Let \(V \) be a minimal normal \(p \)-subgroup of \(G \).

If \(O_{p'}(G/V)\neq 1 \), then there is a normal \(p \)-subgroup \(W \) of \(G \) such that \(U=V\times W \).

Proof. Let \(O_{p'}(G/V)=TV/V \), where \(T \) is a \(p' \)-subgroup of \(G \). Then \([TV, U]=[T, U] \) is a normal subgroup of \(G \), which is contained in \(V \). If \([T, U]=1 \), then \(T\subset C_G(U) \), a contradiction, since \(C_G(U)\subset U \) by Hall and Higman [6]. Therefore we have \(V=[T, U] \).

On the other hand, from the well-known Theorem on relatively prime automorphisms, we get \(U=[T, U]\times C_v(T)=V_u\times C_v(T) \) (see e.g. Gorenstein [4] Chap. 5). Since \(C_v(T)=C_v(TV) \) is normal in \(G \), we have the desired conclusion by letting \(W=C_v(T) \).

The following lemma is a special case of a result of Gagola [3].

Lemma 2. Assume that \(O_{p'}(G)=1 \) and that \(U=O_p(G) \) is minimal. Then \(U \) has a complement in \(G \).

Proof. Let \(F \) be the prime field of characteristic \(p \) and let \(G=\overline{G}/U \). If the irreducible \(FG \)-module \(U \) belongs to the principal \(p \)-block of \(\overline{G} \), then \(O_{p'}(G) \) acts trivially on \(U \) by Theorem 1 of Brauer [1]. But this is impossible, since \(C_G(U)\subset U \). Therefore \(U \) has a complement by a theorem of Gagola [3].

3. **Proof of Theorem 1**

We proceed by the induction on the order of \(G \). We may assume that \(O_{p'}(G)=1 \). Let \(V \) be any non-trivial normal \(p \)-subgroup of \(G \) and let \(|V|=p^4 \). From the proof of Theorem 2, we see that \(t(V)=b(p-1)+1 \) and \(t(G/V)=(a-b)(p-1)+1 \). This implies that \(V \) is elementary by Jennings [5]. Also \(P/V \)
is elementary by the induction hypothesis.

If G has distinct minimal normal subgroups V and W, then G can be embedded in $G/V \times G/W$ and the result is clear by induction hypothesis. Hence we may assume that G has a unique minimal normal p-subgroup, say V.

Assume that $O_p(G) > V$. If $O_{p'}(G/V) = 1$, we have a contradiction by Lemma 1. If $O_{p'}(G/V) = 1$, then using that P/V is abelian, we conclude that $G/V > P/V$, namely $G > P$. Then the assertion is clear. Thus we may assume that $U = O_p(G)$ is minimal. Then by Lemma 2, there is a subgroup H of G such that $G = HU$ and $H \cap U = 1$. If Q is a Sylow p-subgroup of H, then Q is elementary and $P = QU$. Using now that P is regular, we have easily that P has exponent p. Then G has p-length one by Hall and Higman [6]. As is remarked in the introduction, this completes the proof of Theorem 1.

Acknowledgement

1. Soon after the earlier work [9] was completed, the author was informed from S. Koshitani that the assertion "(3)⇒(1)" of Theorem 4 [9] as well as the result of Clarke [2] (mentioned in the introduction) is direct from a result of Morita [8]. The author expresses his thanks to S. Koshitani.

2. The author expresses his thanks also to H. Matsuyama, who gives a direct proof of Lemma 2 as the following.

By the Schur and Zassenhaus Theorem, we may put $O_{p,p'}(G) = HU$, where H is a p'-subgroup and it is uniquely determined up to U-conjugates. Hence by the Frattini argument, it is easily shown that $N_G(H)$ is a desired complement of U.

OSAKA CITY UNIVERSITY

References

[8] K. Morita: On group rings over modular field which possess radicals expressible as
