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1. Introduction

Let X be a connected compact complex manifold, and assume that a closed
complex subgroup G of the group of holomorphic automorphisms, Aut(X), has an
open orbit Q in X. Then Q is a dense open connected complex submanifold
of X and its complement E: =X\Q is a proper analytic subset of X, possibly
empty. Such manifolds are called almost-homogeneous and they arise quite
naturally in many different settings. For example, if a manifold possesses
enough holomorphic vector fields to span the tangent space at some point, then
it is almost-homogeneous. Equivariant compactifications of complex homoge-
neous manifolds form another important example of this class of manifolds.
Recently, A. Borel [9] has shown that every compact symmetric manifold? is
almost-homogeneous; in fact, the automorphism group has only finitely many
orbits!

In this paper we are interested in almost-homogeneous manifolds which
are Kdhler. In this case, the albanese map X—A(X) of X into a compact
complex torus is actually a surjective, locally trivial fiber bundle whose fiber, F,
is a simply-connected almost-homogeneous projective algebraic manifold, [37],
[34]. With a further assumption on the exceptional set E, we can give a more
precise description (Theorem 5.2):

If E is a connected complex hypersurface orbit of G, then

(1) F is a projective rational manifold which fibers equivariantly FJEQ over
a homogeneous projective rational manifold Q with fiber M= P", the
n-dimensional quadric Q", the Grassmann manifold G,,,, or the ex-
ceptional manifold EIII (see Table 2.6).

(2) Omne of the following holds:

(2.1) X=FxA(X).

(2.2) There exist equivariant 2-to-1 coverings T—A(X) and X—X such
that X=Fx T. In this case M=Q".

1) A manifold X is symmetric if every point of X is an isolated fixed point of some involution
of X.
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(2.3) X=QXB where Q is a homogeneous projective rational manifold and
B is an almost-homogeneous P'-bundle over A(X) with structure group
C. In this case F=P'X Q.

This theorem can be viewed as an analogue of the Borel-Remmert theorem
for the homogeneous compact Kihler case, [10].

Note that one can always equivariantly modify an arbitrary compact almost-
homogeneous manifold so that E has pure codimension 1 [22], and then pass to
an equivariant desingularization [16]. 'This shows that the important assumption
on E is that it is also homogeneous with respect to G. It implies, for instance,
that equivariant meromorphic maps of X are holomorphic (Lemma 2.3), and
that equivariant projective algebraic compactifications of Q are unique (Lemma
2.5).

The above theorem also gives a good description of the compact homo-
geneous Cauchy-Riemann Hypersurfaces? which can be equivariantly imbedded
in a compact Kihler manifold, since these manifolds are almost-homogeneous
and can always be modified to contain a complex hypersurface orbit (Theorem
6.2).

We note in passing that one can consider the more general question of
classifying Q=G/H where a maximal compact subgroup of the complex Lie
group G has real hypersurface orbits. These hypersurface orbits can be thought
of as providing a natural “homogeneous” exhaustion for the homogeneous
manifold Q. The only case in which Q cannot be equivariantly compactified is
when the normalizer fibration G/H—>G|Ny(H") realizes € as a compact torus
bundle over an algebraic example where again a maximal compact subgroup
has real hypersurface orbits. The question is whether such a bundle extends to
the natural equivariant compactification of the base. The treatment of this
question, however, goes beyond the scope of this paper. Even when a com-
pactification exists, there are complicated problems arising in the non-Kihler
case.

The contents of this paper is as follows:

Notations and definitions are collected in §2, along with some useful lemmas.
General references to this material are [35], [21], [23].

In 83 we classify those almost-homogeneous compact Kahler manifolds
whose exceptional set is not connected (Theorem 3.2). These manifolds are
actually linked to special cases studied in later sections.

The important case of almost-homogeneous projective algebraic manifolds
whose exceptional sets are complex hypersurface orbits (i.e. the albanese fiber)
is the subject of §4. Similar results in this algebraic setting were recently

2) Here we must assume that the hypersurface is homogeneous with respect to a compact
Lie group.
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announced by Ahiezer [2] during the period in which the present paper was
being prepared. The reader should note that a more detailed description of the
algebraic groups involved can be found there.

We put the pieces together in §5, showing that the complex hypersurface
orbit assumption on E implies the albanese fibration has the restricted structure
mentioned in the above theorem.

In §6 we show how any compact Kihler manifold with a real hypersurface
orbit can be modified to satisfy the conditions of §5. We also collect several of
the preceding results to show that the Remmert-van de Ven conjecture is true
in several special situations.

Although most of our results are proven for manifolds, it is primarily a
technical matter to adjust them to apply to irreducible complex spaces. For
example, if (X, G)p is an almost-homogeneous irreducible compact Kihler space
whose exceptional set E is a connected complex hypersurface orbit of G, then the
equivariant normalization X of X,v: (X, ®)o—(X, G)e, must be an almost-
homogeneous compact Kahler manifold whose exceptional set E=v~'(E) has at
most two components, each of which is a complex hypersurface orbit of G.
Thus, either

1) E=~E and the singular set of X is exactly E (i.e. X is “pinched” along

E), or

2) Eis two disjoint copies of E and X is a P'-bundle over A(X) X O with
structure group C* (see Theorem 3.2). In this case, X is obtained from X by
identifying the zero and infinity sections.

2. Preliminaries

Let X be a complex space and let G be a Lie group. We say that G acts on
X if there exists a real analytic map

p:GXX =X, gx): =u(g x); x€X, gEG,

which induces a continuous homomorphism G—Aut(X). Here Aut(X) denotes
the topological group of biholomorphic maps of X onto itself with the usual
compact-open topology. We write (X, ) to denote such a real analytic action.
If G is a complex Lie group and if yx is a holomorphic map, then we write
(X, G)o. Finally, if X is an algebraic variety, G an algebraic group, and p a
morphism of varieties, then we write (X, G)_;. In most cases it will be clear
what type of group action is under discussion and we will simply say that G
acts on X or that X is a G-space. For any point x& X, we always have a natural
identification (in the appropriate category) of the orbit of x, G(x): = {g(x) |g= G},
with the coset space G/G, where G, denotes the isotropy subgroup of x,
G,:={g=G|g(x)=x}. The group G is said to act transitively on X if G(x)=X
for all x€ X, and we say that X is homogeneous with respect to G.
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Let (X, G)p be an irreducible complex space. If G has an open orbit in X,
then we say that X is almost-homogeneous with respect to G. We usually denote
the open orbit by Q=G(x) for some x€X. Its complement, denoted E: =X\Q,
is called the exceptional set of X. Since X is irreducible it is easy to see that Q
is connected and dense, and that E is a proper (not necessarily connected) analytic
subvariety of X.

A holomorphic (or meromorphic) map f:(X, G)—(Y, G’) is said to be
equivariant if there exists a continuous homomorphism f,:G—G’ such that the
graph of fis invariant under the induced action of G on the product space XX Y,
(%, ¥)~(2(x), f+(8)()). We reserve the special notation (X, G)_ to mean that G
is an algebraic group and that there exists an equivariant imbedding (X, G)_;—
(P", Aut(P")_4. Given a G-space Y, we say that a compact space X is a G-
equivariant compactification of Y if there exists a G-action on X and an equivariant
imbedding 7: (Y, G)—(X, G) such that #(Y) is an open subspace of X which
intersects each component of X.

A locally trivial fiber bundle f:(X, G)—(Y, G) is called a homogeneous bundle
when f is equivariant and G acts transitively on Y. Given a homogeneous
manifold (Y, G)p with isotropy subgroup H, a complex space F, and a continuous
representation p: H—>Aut(F), then one can build a homogeneous bundle over
Y with fiber F:

GXy F: = GXF|~; (g 5)~(gh™, p(h)?).

The projection map G X z F—Y is given by (g, 2)—gHEG/H=Y. Any map of
coset spaces of complex Lie groups, G/H—G/J with fiber J/H, has such a
representation.

A parabolic subgroup P of a complex Lie group G is any subgroup of G which
contains a maximal solvable subgroup of G. The quotient space G/P is always a
compact simply connected projective rational manifold. Conversely, any
homogeneous compact projective rational manifold is the quotient of a complex
Lie group by a parabolic subgroup, [8].

If G is a real Lie group contained in a complex Lie group G’, then we define
the complex hull of G, denoted G¢, to be the smallest complex Lie subgroup of
G’ which contains G.

Let K be a compact Lie group and let (X, K) be an irreducible compact
complex space. There exists a desingularization z: X—X of X such that Xis a
K-space and 7 is equivariant, [16]. On the compact manifold X, K has at most
a finite number of orbit types, that is, a finite number of conjugacy classes of
isotropy subgroups (K,) for x€ X, [21]. 'Thus, there exists an orbit type (K,)
for which K(x)=K/K, has maximal dimension. Such orbits are called generic
K-orbits and their union forms a connected open and dense set in X, [21]. One
of the basic tools for working with compact Lie group actions is the “Differ-
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entiable Slice Theorem” which states that for each orbit K(x), x=X, there
exists a K-invariant neighborhood Uc X of K(x) such that every orbit K(y),
ye&U, fibers equivariantly over K(x).» Note that since = is K-equivariant, the
corresponding statements also hold for X.

A useful application of these notions is the following:

Lemma 2.1. Let K be a compact Lie group and let (X, K) be an irreducible
compact complex space. Suppose there exists a K-invariant proper analytic subset

E of X. Then, for a dense set of points y=E, there exists a generic K-orbit in X,
K(x) for some x= X, such that

dimp, , E—dim, K(y)<dimgz X—dim, K(x) .

Proof. Let y be a manifold point of E. Choose an open K,-invariant
neighborhood U of y small enough so that we can identify U with a complex
subspace of an open domain in the complex (Zariski) tangent space to X at y
where the action of K, on U is linear, [22]. Since K, stabilizes E, the represen-
tation K,—~GL(T (X)) reduces to K,—~GL(T,(E))+GL(V) where V is a com-
plementary subspace to T, (E) in T, (X). Since y is a manifold point of E,
dim, E=dim T,(E), and thus dim UNV =dim X—dim, E>0. Now, for an
open set of points x in U NV we have an equivariant fibration

K,(%)
K(x) —>K(3),

and thus the estimate

dim K(x) = dimg K(y)+dimg K,(x) <dimg K(y)+dimg ,UNV
= dimp K(y)+dimp X—dimg E .

Since the set of generic K-orbits forms an open dense subset of X, it is clear
that for a dense set of manifold points y in E there will be points x& U N V such
that K(x) is a generic K-orbit. [

An immediate consequence of this lemma is

Lemma 2.2. Let G be a connected complex Lie subgroup of Aut(X) and let
(X, Q)o be an irreducible compact complex space. If a compact subgroup K of G
has a real hypersurface orbit in X, i.e. if dimpK(x)=dimzX—1 for some x X,
then (X, G)o is almost-homogeneous and K acts transitively on each connectivity
component of the exceptional set of X.

Proof. It is clear that G has an open orbit in X since G(x) is a complex
manifold containing K(x). Also, K stabilizes the exceptional set of X, so the

3) In fact, this neighborhood U can be realized differentiably as a K-invariant neighborhocd
of the zero-section in the normal bundle of K(x) in X, [21].
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above lemma applies. []

ReMaRk. Since Aut(X) is a complex Lie group when X is compact [24], we
need only assume that there is a compact Lie group K acting holomorphically on
X with a real hypersurface orbit in the above lemma: Just define G to be K°.

For equivariant maps and compactifications we have the following lemmas:

Lemma 2.3. Let X be an irreducible normal complex space and let f:
(X, G)o—(Y, G")o be an equivariant meromorphic map. If, for all x € X,
dim¢ G(x) >dime X—1, then f is holomorphic.

Proof. The indeterminancy set of f has codimension at least 2 and must
be stabilized by G. Since the G-orbits have at most codimension 1, the indeter-
minancy set must be empty and f is holomorphic. []

Lemma 2.4. Let (Q, G) 4 be an algebraic manifold on which G acts transi-
tively. Then any G-equivariant compactification of (Q, G)_y to an irreducible
projective algebraic variety is unique up to birational equivalence.

Proof. Let (X, G) 4 and (X', G)_1 be two irreducible compact projective
algebraic G-spaces such that Q is biregularly equivalent to G(x)CX and G(x')
C X' respectively. Then there is a biregular equivariant map f: G(x)—>G(x')
whose graph F C X X X' is the orbit of the point (¥, ") under the algebraic action
of G on the product space. Thus, F is Zariski-open in its closure F, and G
stabilizes F. 'Therefore, F defines a birational G-equivariant map from X to X",

a

These two lemmas give us the following ‘“‘uniqueness lemma’ which will
be of particular use in later proofs.

Lemma 2.5. (Uniqueness of compactification). Let (Q, G)_z be an alge-
braic manifold on which G acts transitively, and let (X, G)_; be a G-equivariant com-
pacti fication of (Q, G)_j to a compact projective algebraic manifold. If X\ has
pure codimension 1, and if the comnectivity components of X\Q are homogeneous
with respect to G, then (X, G)_j is unique up to G-equivariant biregular equivalence.

It is perhaps worth noting that this lemma is not true if (X, G)o is a compact
projective algebraic manifold on which G acts only holomorphically. For example,
let Q=C*X C*=G. Then ( can be algebraically compactified to (P'X P!, G), ;.
However, Q also fibers equivariantly over an elliptic curve Q—T": =G/{(¢?, ¢'*)|
z€C} with fiber €. Therefore, Q can be compactified holomorphically and
G-equivariantly to an almost-homogeneous P!-bundle over T" which is algebraic
but not biregularly equivalent to P'x P*!

In this paper we shall often be concerned with (compact) complex manifolds
X on which a compact Lie group K acts with at least one real hypersurface orbit,
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H3=K(x) for some x&X. For convenience we call such manifolds (compact)
HZ-manifolds. Obviously, if X is compact, the generic K-orbits are all real
hypersurfaces. In fact, all but at most two K-orbits are real hypersurfaces, [31],
[33]. It follows that X must be almost-homogeneous and that the exceptional
set of X has at most two components, each of which must be homogeneous
(Lemma 2.2). Since HS, is homogeneous, the Levi-curvature of HY, in X has
constant signature. Whenever this signature is maximal (i.e. the eigenvalues
all have the same sign), we write simply HS,,.

The H3,,-manifolds have been studied in various contexts. For example,
in [30], Morimoto and Nagano show that a HZ, -manifold Q which is Stein is
either the ball B", C”, or K-equivariantly diffeomorphic to the tangent bundle of
a compact symmetric space 4 of rank 1. In this latter case, HS, is a unit sphere
bundle over 4. If K€ (abstract complexification) acts holomorphically on Q,
then Q==C", or Q=~KC¢|LC and A=K|L is realized as a totally real subamanifold
of Q. In either case Q is affine algebraic and K€ acts on Q as a linear algebraic
group. Let (X, K€) be a compact projective algebraic manifold which is a
KC€-equivariant compactification of Q. 'Then, since Q is Stein (affine algebraic),
E:=X\Q has complex codimension 1. By Lemma 2.2, E is homogeneous
under K. Lemma 2.5 then shows that

X is unique up to K-equivariant biregular equivalence.

We list all of the possible Stein HX,-manifolds M and their projective
algebraic K-equivariant compactifications X in the following table. We take K
to be the full connected isometry group of A (where applicable), although in
some cases a smaller compact group acts transitively (cf. [2]). For this
classification see [2], [19]. In [19] it is shown that the manifolds X\ A4 classify
all non-compact strictly pseudoconcave homogeneous manifolds (which are not
homogeneous cones or P"\B"). Note, in particular, that X is always homo-
geneous.

Table 2.6:
X M A K
Pt c — SU(n+1)
ory o™ N SO(n-+1)
P Pn\Q"-1 RP" SO(n+1)
p'xp" P"XP"\E® PyL® {(4, 4)| A SU@n+1)}
G20 Sp(n, C)/Sp(n—1, C) QpP"® Sp(n)
EIIID F£/Spin(9, C) F,/Spin(9) ® F,
1) O"={zleP"|izz=0}; 2) OP={zreC"*|tzx=1}; 3) E={(x], [u])|’=w=0};
4) PR={([2],[2)|[z]eP"}; 5) Grassman manifold; 6) Quaternionic projective
space; 7) EIII=Eq/Spin(10) X SO(2); 8) Cayley projective plane.

4) In [30], HE is assumed to be simply-connected, although one need only require that
n,(HZ) be finite, [39]. In fact, it was later proved that 7,(HZ) is always finite, [12].
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Finally, we state a lemma which will be useful in later structure theorems.
Lemma 2.7. Let X and Y be connected compact Kihler manifolds. If
HY(X, 0)=0, then
HY (X XY, O%)=z¥H\(X, O*)PzfH (Y, OF)
where ), m, are the natural projections.

Proof. Hodge theory and the Kiinneth formulas along with H'(X, 0)=0
imply that f,, f, and f; are isomorphisms in the following diagram (cf. [14]):

0 0

XY, 0) L% mx, 0) SH(Y, 0)

HY(XX Y, O%)—> H'(X, O%)®HY, O%)

HYXXY, Z) N HY(X, Z) HY(Y, Z)

H (XX ¥, 0) -1 mx, 0) @HYY, 0).

The lemma then follows by the Five-Lemma. O

3. Compact almost-homogeneous Kihler manifolds with dis-
connected exceptional set

Let (X, G)o be a compact almost-homogeneous Kihler manifold. The
exceptional set E of X can have at most two connectivity components, [4]. We
devote this section to collecting some results for the case when E does in fact

have two components.
In the algebraic setting we have the following (cf. [1], [13]).

Proposition 3.1. If (X, G)r is an almost homogeneous compact projective
algebraic manifold with a disconnected exceptional set E, then the open orbit Q=G[H
can be realized as a principal C*-bundle over a compact homogeneous rational

manifold Q,
C*

This bundle induces an almost homogeneous P'-bundle

X—ig

which defines a G-equivariant projective algebraic modification of X,
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(X, G)r— (X, G)r.

In addition, the two components of the exceptional set E in X are both isomorphic
to Q and fiber equivariantly over the corresponding components of E.

Proof. Since Q has two ends, it follows from [1], [13] that Q is a principal
C*-bundle over a compact homogeneous rational manifold Q. Let (X, G)r
be the natural G-equivariant algebraic compactification of this C*-bundle
obtained by adding two sections. Then X is an almost-homogeneous P'-
bundle over Q, and we denote its exceptional set by E. Now, either this P;-
bundle is trivial or a maximal compact subgroup of G has real hypersurface
orbits in X. In either case, it follows that the two components of E are both
complex hypersurface orbits of G isomorphic to Q (see Lemma 2.2). Then, by
Lemmas 2.3 and 2.4, there exists a G-equivariant birational holomorphic map
(X, G)r—~>(X, G)p, i.e. Xis a G-equivariant projective algebraic modification of
X. U

ReMARk. If Q is minimal (i.e. the quotient of a semisimple complex Lie
group by a maximal parabolic subgroup), then either the modification map is
trivial, X=X, or a component of £ is blown down to a point, because Q cannot be
equivariantly fibered. In this latter case X must be P”, [36]. In all other cases
nontrivial modification maps exist. The Levi-curvature of the line bundle
structure of X (equivalently, the signature of the invariant Chern form) reveals
the extent to which a component of E can be (partially) blown down. For the
more general Kihler case, we make use of the albanese map which is a holo-

F
morphic map a: X— A(X) of a compact Kihler manifold X into a compact com-
plex torus A(X) with dim¢ A4(X) =%b1(X). In addition, if 7: X—T is a

holomorphic map of X into a compact complex torus, then there exists a holo-
morphic map ¢: A(X)—T such that r=o-a. If G is a closed connected com-
plex Lie subgroup of Aut’(X), and if (X, G)p is a compact almost-homogeneous
Kihler manifold with exceptional set E, then « is a G-equivariant holomorphic
fiber bundle inducing a surjective homomorphism a,: G—Aut’(4(X))=A4(X),
and a surjective holomorphic map «|E: E—~A(X), [37]. Moreover, the fiber
(F, G)_r is a compact almost-homogeneous simply-connected projective algebraic
manifold, where G': =Ker ay, is a linear algebraic group, [4].

Theorem 3.2. If (X, G)p is an almost-homogeneous compact Kihler manifold
with disconnected exceptional set E, then the open orbit Q=G|[H can be realized as
a principal C*-bundle over the product of a compact homogeneous rational manifold
O and the albanese torus A(X) of X,

*

Q—C—>Q><A(X) .
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This bundle induces an almost homogeneous P'-bundle

. P
X—0 X A(X)
which defines a G-equivariant modification of X,
(X, G)o—> (X, G)o .

In addition, the two components of the exceptional set E of X are both biholomorphic
to QX A(X) and fiber equivariantly over the corresponding components of E.

Proof. Let a: X—>A(X) be the albanese bundle with fiber F,: =a™(a(x)).
Since a|E: E—A(X) is surjective, it follows from the equivariance of ¢ that
E,: =F,NEis disconnected. Since (F,, G)_ris a compact almost-homogeneous
projective algebraic manifold with disconnected exceptional set E,, the previous
proposition implies that there exists an algebraic G-equivariant modification

v:(F,, Q) r— (F, G)r

where F,—Q, is the almost-homogeneous P!-bundle compactifying the principal
C*-bundle Q,: :G’/H —0,: =GP, Q,CF,, F,. Sincev is G-equivariant, we
can define a holomorphic fiber bundle space

~

F, =
X—5AX), X:=GxsF,;
and a holomorphic map
X=GxeF. > X=Gx¢F,, (g2 (8 v(3)

which is clearly a G-equivariant modification of X. Note that X is also a G-
equivariant almost-homogeneous P'-bundle over G/P, which is just the usual
G-equivarint compactification of the C*-bundle Q=G/H—G/P. In addition,
any equivariant imbedding (¥',, é’) (P, Aut(P"))_r defin esan imbedding of
Xinto a P¥-bundle over A(X) which is Kahler, [25]. Therefore, Xis Kihler,
and G/P being the proper image of a Kihler manifold must also be Kahler (cf.
[6]). Thus, the albanese map of G/P,

G/P - G|G = A(X)  with fiber G/P=Q,,

splits into a product, G/P=Q, X A(X), [10]. Finally, since E'is just the disjoint
union of two sections added to this C*-bundle, the components of E are bi-
holomorphic to Q, X 4(X). O

We now describe the bundle structure of these manifolds.

Corollary 3.3. There exist principal C*-bundles L,—Q and L,—A(X)
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with L, topologically trivial such that
Q=r¥(L,)@=%(L,) ,
where m,, 7, are the natural projections.

Proof. By Lemma 2.7 we have Qez¥(L,)Q=¥(L,). To see that L, is
topologically trivial we need only note that the holomorphic fibration Q— Q
is a map of coset spaces, so that L, is equivalent to a homogeneous principal C*-
bundle over a compact complex torus and therefore is topologically trivial,

[27]. O
REMARK. Since any such C*-bundles L,—Q, L,—T (L, topologically trivial)
are homogeneous, they always give rise to an example, X ——>]l OXxT.
From this structure theorem we easily deduce the following
Corollary 3.4. Let E,, E, be the components of E. Then
A(E,)) = A(E,) = A(X).

4. The algebraic case

We now restrict our attention to the case where G is a complex linear al-
gebraic group and (X, G)_r is an almost-homogeneous projective algebraic mani-
fold whose exceptional set E is a complex hypersurface orbit, E=G(x,). (See
§3 if E is not connected.)

In this section we wish to prove a fibration theorem for such manifolds,
but first we present two preparatory lemmas.

Lemma 4.1. Let S be a reductive linear algebraic complex Lie group and
H a closed algebraic subgroup of S. If S|H is not Stein, then H is contained in a
proper parabolic subgroup of S, i.e. there exists a homogeneous fibration, S|H—S|P,
where S|P is a non-trivial compact projective rational manifold.

Proof. If S/H is not Stein, then H is not reductive, [28], so that the uni-
potent radical, R,(H), of H is non-trivial. Then the increasing sequence of
subgroups N,C N,C---C N;C ---where Ny: =Ng(R,(H)) and N;: =Ny(R,(N;-1)),
must stabilize with a proper parabolic subgroup of S (see e.g. [20]). O

Lemma 4.2. Let (X, G)r be a compact almost-homogeneous projective
algebraic manifold with dim X >1. Assume that the open orbit Q is Stein (i.e.
affine algebraic) and that the exceptional set E of X is a (necessarily connected)
complex hypersurface orbit of G. Then the generic orbit of a maximal compact
subgroup K of G is a real hypersurface orbit in X, i.e. X is an equivariant projective



774 A.T. HuckLEBERRY AND D.M. Snow

algebraic compactification of a Stein HZ, -manifold (see Table 2.6).

Proof. Since Q is Stein, E must be connected, [40]. Since G acts linearly,
algebraically and transitively on E, E is a compact homogeneous projective
rational manifold, [15]. Thus, if K is a maximal compact subgroup of G, K
acts transitively on E also. Therefore, the generic K-orbits in X have real
codimension 1 or 2.

If the generic K-orbit has codimension 2, then the normal (complex line)
bundle of E in X is topologically trivial. This follows from the fact that one can
always smoothly and K-equivariantly realize a neighborhood NCX of E as a
neighborhood of the zero section in the normal bundle of E in such a way that
K(p)—E is a homogeneous fibration for p& N, [21]. This fibration is a diffeomor-
phism because E is simply connected.

We now show that this is a contradiction. Let (X', G)_r be an equivariant
compactification of the affine algebraic manifold Q to a projective algebraic
variety such that E':=X'\Q is a connected hyperplane section (see [5]). It
follows from Lemmas 2.3, 2.4 that there exists a holomorphic equivariant bira-
tional map »: X—X’, showing that E’ is homogeneous under G. Equivariance
also implies that » is 1-to-1 (X is the G-equivariant normalization of X'!). If
H denotes the hyperplane section bundle on X', then »*H | E is isomorphic to
a power of the normal bundle of E in X and clearly has non-constant sections.
Therefore, the normal bundle of E cannot be topologically trivial. O

Theorem 4.3. Let (X, G) be an almost-homogeneous connected compact
projective algebraic manifold with open orbit Q=G|H. Assume that the exceptional
set E=X\Q is a connected complex hypersurface orbit of G. Then there is a G-
equivariant fibration of X

M
X—>0
where Q=G/P is a compact projective rational manifold, P is any minimal parabolic

subgroup of G containing H, and the fiber M is biregularly equivalent to P", Q",
G 24, or EIII (see Table 2.6).

Proof. Let P be any minimal parabolic subgroup of G which contains H.
Then we have an equivariant fibration Q—G/P=: Q. Let M be the P-equi-
variant compactification of the fiber P/H in X. By blowing up E,;: =M\(P/H)
and passing to an equivariant desingularization of M, we may assume that M
is a manifold and that E, has pure codimension 1 (see §1). We define
X': =GXpM. Then (X', G)_is an almost-homogeneous projective algebraic
manifold with open orbit Q. Lemma 2.4 implies that X' is equivariantly
birationally equivalent to X. Since E':=X"\Q has pure codimension 1, equi-
variance implies that the components of E’ are homogeneous. Lemma 2.5
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then implies that X’=~X. Thus, we obtain an equivariant fibration of X,

M
X—0. Note that the induced equivariant fibration E—Q shows that E,=
E N M is homogeneous and connected.

If dim M<dim X, then an induction argument on dimension® implies

that there exists an equivariant fibration of M, M—>Q’, as in the statement
of the theorem, where Q'=P/P’. By the minimality of P we have P=P’ and
M=M’, and the theorem is true.

Therefore, we may assume that M=X, i.e. that any minimal parabolic
subgroup of G which contains H must be G itself. In this case we claim that Q is
Stein, which by Lemma 4.2 implies that X is an equivariant compactification of
a Stein HZ,,-manifold (Table 2.6). Let K be a maximal compact subgroup of
G and let S=K¢€. Recall that the generic K-orbits in X have real codimension
at most 2. We then have the following possibilities:

1) S has a compact orbit in Q with complex codimension 1, S(x)= K(x)

2) 8§ has an open Stein orbit S(x).
or 3) S has an open orbit which is not Stein, S(x).

In case 2) we have S(x)=Q—unless S(x)=C* and Q=C, since a Stein
manifold has only one “end” in dimensions greater than 1, [40]-—showing that
Q is Stein as claimed.

Case 1) can only occur when X=P'. To see this, let G=R,S where R,
is the unipotent radical of G, [20]. Then, since G acts algebraically on X, the
orbits of R, are Zariski-open in their closures, and hence we obtain an equivariant

fibration of Q, Q=G/H f»G/R,,H. It follows from Lie’s Theorem that, since
it is solvable and acting algebraically, the R,-orbits are holomorphically separable.
Since such an orbit intersects S(x) in a compact analytic set, this intersection
must be finite. Thus the fibration S(x)—G/R,H is finite, and thus the base
G/R,H is a homogeneous rational manifold having the same dimension as S(x).
In fact, they intersect in exactly one point since S(x) is a compact simply-con-
nected projective rational manifold, and thus G/R,H==S(x). The above as-
sumption on G implies that R,H=G, so that S(x) reduces to a point. Therefore,
X, being a compact connected 1-dimensional almost-homogeneous manifold of a
linear algebraic group, must be biregularly equivalent to P

Finally, we show that case 3) implies that X=P" and Q=C". Let S(x)=
S/S N H be the open S-orbit in X which is not Stein. There are two cases
which we handle separately:

(a) X\S(x) is connected.
or (b) X\S(#x) is not connected.

5) If dim X=1, the theorem is trivial.
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In (a), we apply Lemma 4.1 to obtain a proper parabolic subgroup P, of .S
which contains S N H, and the corresponding equivariant fibration S(x)—S/P,=
: 0, Just as in the beginning of the proof, if M, denotes an equivariant
compactification of the fiber to a projective algebraic manifold, then X is biregu-
larly equivalent to the almost-homogeneous manifold Sx My, since E is homo-
geneous with respect to .S and has complex codimension 1. We thus obtain a
fibration of X, X—Q,, which is equivariant with respect to G since the fiber is
compact and connected, [38]. Therefore, Q;=G/P’ where P’ is a parabolic
subgroup of G containing H. By our assumption on G, we have G=P’ so that
S=P,, contradicting the fact that P, is a proper subgroup of S. This shows that
(a) does not occur.

For (b), we apply Proposition 3.1 to show there exists an S-equivariant
1

algebraic modification of X, u: X—X, where z: X—Q’ is an almost-homo-
geneous P'-bundle over a homogeneous projective rational manifold Q' with
structure group C*. Let E=E,UE. be the exceptional set of X, i.e. the zero
and infinity sections of the P!-bundle.” By Proposition 3.1 we know E,=~E.=Q’
and that E, (say) is biholomorphic to E, while E,— p(E,)=: Q" is an equivariant
fibration of E, onto another compact homogeneous projective rational manifold
QO”cX. We now construct a holomorphic map from X to Q" as follows:

_17‘{
b Gl SN, N, T

Note that 7! is only a meromorphic map so that z': =pgoemou™ is a priori only
a meromorphic map. However, due to the equivariance of the maps involved, it
is easy to see that z’ is well-defined and continuous, and therefore holomorphic.
Since the fiber is compact and connected, this map is equivariant with respect
to G, [38]. Thus, O”=G/P” where P” is a parabolic subgroup of G containing
H. Once again, this means that G=P”, so that Q" reduces to a point. Therefore,
X can be realized as a compact almost-homogeneous manifold (with respect to
S) whose exceptional set contains an isolated fixed point. A theorem of E.
Oeljeklaus [36] implies that X==P" and S(x)=C"\{0}. Therefore, Q==C" as
claimed. :

To-conclude the proof, we need only check Table 2.6 to see that, since P
is minimal, the possibility that M =P" X P" cannot occur. O

We now list a few consequences of this theorem which further describe
the properties of X.

Corollary 4.4. 7,(0)=0 or Z,.

Proof. This follows from the homotopy sequence 7,(M N Q)—n,(Q)—7,(Q)
and Table 2.6. Cl
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Corollary 4.5. Unless X=P' X E and every K-orbit is biregularly equivalent

to E, the generic orbit of a maximal compact subgroup K of G is a real hypersurface
orbit in X.

Proof. By the theorem, X has a G-equivariant fibration X %Q Lemma
4.2 applied to M shows that K has real hypersurface orbits in X unless dim¢ M=1.
In this case M=P'. Now, if K does not have real hypersurface orbits in X, then
the generic K-orbit must have real codimension 2, as before. These K-orbits
show that the affine or line bundle structure of X is topologically trivial. Since
H'Y(Q, ©)=0, it follows that the bundle structure is in fact holomorphically
trivial and X=P'X Q=P'XE. ' 0

Corollary 4.6. The manifold M cannot be P-equivariantly and non-trivially
fibered with positive dimensional fiber.

Proof. 'If M—Y is a P-equivariant fibration of M with positive dimensional
fiber Z, then the open Stein orbit P/H also fibers onto an open homogeneous
submanifold of Y. Since P/H is Stein, the fiber Z must intersect ENM. By,
equivariance, P/H then fibers onto Y so that Y=P/P' is a compact homogeneous
projective rational manifold. By minimality of P, ¥ must reduce to a point. []

Corollary 4.7. If the generic K-orbit is a real hypersurface in X, then the
isotropy subgroup H has at most index 2 in Ny(H"), i.e. either H=Ny(H°) or
H<INyH®) and Ny(H°)|H=Z,. This latter possibility can only occur when
M=Q", a projective quadric hypersurface.

Proof. We first show that N (H°)/H is finite. If the orbits of N (H°)
are positive dimensional in G/H, then they each intersect a fixed generic real
hypersurface orbit of K. Since G is acting linearly, it follows that these orbits
cannot be compact. Therefore, G/Ny(H®) is compact and indeed a projective
rational manifold so that Ng(H°) is parabolic. We choose P to be a minimal
parabolic subgroup of G containing H which is contained in Ng(H?). Then H°
is a normal subgroup of P and therefore fixes every point in the Stein manifold
P/|H=(P[H")/(H|H") which is now group theoretically parallelizable. This can
only happen when P/H=C" or C* (see Table 2.6), and the latter possibility is
eliminated by our assumption that E is connected. Thus, H=H" and P/H=C*
is an abelian complex Lie group. But then no maximal compact subgroup of
P can have real hypersurface orbits in P/H. This contradiction implies that the
orbits of Ny(H®) are 0-dimensional. Thus, since Ny(H") is an algebraic group,
N(H°)/H is finite. o PR

Now consider the G-equivariant finite covering X—X' of X onto the orbit
space X’ of the action of Ng(H®) on X. Thismap is given by Q=G/H—Q': =
G|/Ny(H®) on Q and is a biholomorphism of E onto E’: =X"\Q' since E is



778 A.T. HuckLEBERRY AND D.M. SNow

simply connected. It is clear that K still has real hypersurface orbits in X’
and that E’ is a complex hypersurface orbit in X’ (cf. Lemma 2.2. The con-
struction of X" is also given by Theorem 6.1). It follows that the G-equivariant
normalization X of X’ is a manifold satisfying the conditions of the theorem.
Therefore, there exists a parabolic subgroup P’ of G containing N (H°). We now
choose P to be a minimal parabolic subgroup containing H which is contained in
P’. However, since the above map is finite, it follows that P=P' and Ng(H")
=Np(H"). Table 2.6 shows that N,(H%)=H unless M=0" in which case
N(H)/H=Z,. O

Corollary 4.8. X is a projective rational manifold.

Proof. Let B be a Borel subgroup of G. Then B has an open orbit in E
isomorphic to €*™! (n=dim X)) since E is a compact homogeneous projective
rational manifold. According to [26], X is birationally equivalent to P* !XV,
where V is a 1-dimensional compact projective algebraic variety. Theorem 4.3
shows that b,(X)=0, and since this is a birational invariant it follows that
b(V)=0,i.e. V=P'. Therefore, X is rational. O

5. The compact Kihler case

In [10], Borel-Remmert prove that the albanese fibration a: X—A(X) of a
compact homogeneous Kahler manifold X splits X into a product X=0 x 4(X)
where Q is a compact homogeneous projective rational manifold.

In general, this kind of splitting does not occur when X is a compact almost-
homogeneous Kihler manifold. However, in this section we prove that if the
exceptional set E of X is a connected complex hypersurface orbit, then with two
exceptions the albanese fibration does split X into a product X=FX A(X). In
any case, the complex hypersurface orbit assumption implies that (F, G)ris
always a compact almost-homogeneous projective rational manifold as described in
§4. Of course, we must take GC Aut’(X) in order to guarantee that G is linear
algebraic (see §3).

We begin with the following

Proposition 5.1.  Let G be a closed connected complex Lie subgroup of Aut®(X)
and let (X, G)o be a compact almost-homogeneous K dhler manifold whose exceptional
set E is a connected complex hypersurface orbit of G. Let (F,G)_r be the fiber of the
albanese fibration a: X—A(X). Assume that a maximal compact subgroup of
has a real hypersurface orbit in F. Then there exists a compact complex central
subgroup T C G such that either

1) G=GXT, or

2) G=GXT]|] where J: ={(2,27V)|2€GNT} is a finite group of order
two.
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Proof. We first assume that G is the connected component of the stabilizer
of E in Aut(X). Let H be the isotropy subgroup of a point x in the open G-
orbit, x€Q, and set F,: =a ' (a(x)), Q,: =QNF,. Then,

No(H")(x) N Q, = (No(H")/H) N(G/H) = Ns(H)H

which is at most two points by Corollary 4.7. Therefore, the equivariance of
the albanese fibration implies that

Ne(H)(x) = A(X)

is a 1-to-1 or 2-to-1 equivariant covering map. Thus, since H acts trivially on
A(X), H acts trivially on the component of Ng(H)(x) which contains x. Also,
there are at most two components of N;(H°(x) so that H must act trivially on
all of Ng(H®)(»). This shows that H is normal in Ng(H° and that T:=
Ng(H")[H= Ng(H"(x) is a compact complex torus, perhaps with two com-
ponents.

We now define a holomorphic action of T on  in the following way: Let
teT and xQ. Then t=nH&N (H")/H and x=gH&G|H. Define

t(x): = gnH .

This is a well-defined holomorphic action since H is normal in Ng(H°’) and T
is abelian.

We wish to extend the action of T to all of X. To do this, we must inspect
both the albanese fibration, a: X—A(X), and the fibration

B:Q=GH—Y:=G[NyH".
By [17], B extends to a G-equivariant meromorphic map
B: XY

where ¥ is an appropriate compactification of ¥ to a complex space. Lemma
2.3 implies that B is holomorphic. Since 3 is also a proper map, we can find a
bounded Stein neighborhood Z of B(x,), x,€E, such that V:=8"2) is 8-
saturated, 8~ (B(V))=V. This implies that V'\E is invariant under the action
of T. Note that the restricted albanese map

a: Q= G/H - A(X) = G|G

is also T-equivariant when the action of T on 4(X) is defined via left multiplica-
tion of cosets by elements of Ny(H?). Fix tT. By the above remarks it
follows that there exists a small coordinate neighborhood U of a(x,) in A(X)
such that W:=V Na }(U) is a bounded coordinate neighborhood of x, and

{W\E)Ca ¢tU)NV
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where a”}(tU)N V is also a bounded coordinate neighborhood. The action of
t on W\E is now given by bounded holomorphic functions and therefore ¢ ex-
tends to all of W and indeed to all of X. We thus obtain a holomorphic Lie
group monomorphism
p:T'>G

whose image we denote by T,

We claim that T is a central subgroup of G. To see this let t=nHe&T°,
neNy(H; and #,: =p(f). Then, we have for gHeG/H=Q

tigH = p(t)gH = t(gH) = gnH = gt,H

since p(t)H=nH. Therefore, t,g=gt, for all gG, t,&T, because G acts
effectively on Q. Consider the complex Lie group homomorphism

GxTy—G; (g1 gt,

whose kernel is J: = {(2, 27%) |z€GNT,}. Since dim T,=dim A(X), it follows
that the image of this homomorphism is open and hence all of G. Now
J=GNT,and

GNT,= GNT/HNT, = (G/H)NT(x) = QN No(H")(x)

which we have already seen consists of at most two points. Therefore, J= {1}
or Z,. :

Finally, we note that if G’ is any closed subgroup of G acting transitively
on Q and E, then G=GX T, or GxT,/J as above. Let T'=ker (B4|G')=
G’ Nker By. Then, since T’ acts transitively on A(X), it follows that
dim A(X)<dim 7’ <dim ker B4 = dim Ty=dim A(X). In particular, T,c T",
so that G'=G'X T, or G'XT,|J’, where G'=ker (ayx|G')=G'NG and J'=
{(z 2 |2€G'NTy. 0

We now prove our main structure theorem.

Theorem 5.2. Let (X, G)o be a compact almost-homogeneous Kdhler
manifold whose exceptional set is a connected complex hypersurface orbit of G. Let

F
X — A(X) be the albanese fibration of X. Then
(1) F is an almost-homogeneous compact rational manifold which fibers

equivariantly, F ]—‘{ O, over a compact homogeneous rational manifold Q
with fiber M=P", Q", G, ,,, or E III (see Table 2.6);
and (2) One of the following holds:
(2.1) X=Fx A(X).
(2.2) There exists an equivariant 2-to-1 covering of A(X),

T — A(X),
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and an equivariant 2-to-1 covering of X,
XX

such that X=~Fx T. In this case M=Q".

(2.3) X=QO X B, where Q is a compact homogeneous projective rational mani-
fold and B is an almost homogeneous P*-bundle over A(X) with structure
group C. In this case, F=P!X Q.

REMARK. A maximal comipact subgroup of G has a real hypersurface orbit
in X only in cases (2.1) and (2.2), and we have G=Gx A(X) and G=G X T/],
J={(z, ™) |2€G N T}, respectively (see Proposition 5.1).

Proof. We have already noted that statement (1) is true. Let (F,G)_r be
the fiber of the albanese fibration. We consider two cases: 1) A maximal
compact subgroup of G has a real hypersurface orbit in, F, or 2) there are no such
real hypersurface orbits.

1): By the previous proposition we know G=G X T or G’ X T[J. Consider
the holomorphic map

vi FXT - X, (3,t)—1=2).

If G==Gx T, then this map is biholomorphic since T acts trivially on F and
transitively on A(X). In this case it is clear that T'=A4(X), proving (2. 1). .
G=Gx T|]J, then v defines a 2-to-1 map since every orbit of G T in F consists
of two points. Corollary 4.7 implies that M=Q", proving (2.2).

2): If there are no real hypersurface orbits, then Corollary 4.5 implies
that F=P'x Q. In fact, G/H—G[P=Q is a trivial C-bundle and F is its com-
pactification. 'The fibration

a=cu-Ssqp

is therefore an affine C-bundle and X is its compactification to a P*-bundle.

Let L denote the principal C*-bundle associated to this affine C-bundle.
By Lemma 2.7 we have that L=n{¥(L,)Q@n¥(L,), where L,—Q and L,—A(X)
are principal C*-bundles. In addition, since the restricted affine C-bundles
over QX {t}, t€ A(X), are trivial, L, is the trivial bundle. Thus, the structure

c
group of the affine C-bundle Q— QX A(X) has the form (agt) b(ql’ t)) 9€0,

te A(X). Now the restricted affine C-bundles over {g} X A(X), ¢ Q, are
homogeneous (they are the fibers of the map of coset spaces Q—Q). Therefore,
it follows from [29] that for fixed g this group can be further reduced to either

(C(%’ f) (1)> with ¢(g,#)*1, or <(1) d(ql’ t)) The first possibility is eliminated by

our assumption that the exceptional set is connected (Q has one end). This
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shows that L, is also the trivial bundle, and hence Q is a principal C-bundle.
The structure group is now equivalent to ((1) f (lt)) te A(X), since H(Q X

A(X), O)= HY(Q, O)®H(A(X), O) = H(A(X), ©). Thus, Q=0x Q' where
Q' is a principal C-bundle over A(X), and X=Q X B as claimed. O

It is quite easy to illustrate the phenomenon of (2.2) in the above theorem:
Let T=C"|T" and let p: I'>Z,: ={1, 0} be a non-trivial representation. We
identify o with the involution of Q" C P™*, [2): 2;: ***: 2] > [— 20 212 *** : -
Then we define X: = QX T/~, where (g, t)~(p(7)g, t+7) for y=I'. This
example is also presented in [4], where it is shown among other things that the
structure group of the albanese fibration can always be reduced to a finite
group when X is an almost-homogeneous compact Kihler manifold. Of course,

. . o -
we can construct similar examples using any equivariant fibration F— Q as in
(1) with fiber M=Q". This is because ¢ commutes with the structure group of
the bundle and hence acts on F.

6. Compact Kihler manifolds with real hypersurface orbits

In this section we consider a compact Kahler manifold X on which a compact
Lie group K acts with at least one real hypersurface orbit, H3=K(x), for some
x€X. Recall from §2 that such an X is called a compact (Kihler) HX-manifold
and is almost-homogeneous with respect to S: =K¢ (we may as well assume that
K is a closed subgroup of Aut(X)). In addition, the connectivity components of
the exceptional set E of X are homogeneous under K and S.

As usual, we begin with a proposition for the algebraic case. 'The proof uses
the same argument as in Theorem 4.3.

Proposition 6.1. Let (X, S)_rbe a compact projective algebraic HS-manifold.
Then there exists an equivariant algebraic modification of X,

(X, 8)r— (X, 8)r,

such that the conmectivity components of the exceptional set E of X are complex
hypersurface orbits of S.

Proof. First note that we may assume the exceptional set E is connected,
since otherwise we apply Proposition 3.1. If S(x)=S/H is Stein, we refer
directly to §2 and Table 2.6. If S/H is not Stein, then there exists a proper
minimal parabolic subgroup P of S which contains H by Lemma 4.1. Thus,

PIH
we obtain a non-trivial fibration S/H —/—>S/P=: Q. The fiber P/H has

real hypersurface orbits with respect to PN K (for appropriately chosen K in
S). 'Therefore, Sp: =(P N K)C has an open orbit in P/H, say Sp(x). As in the
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proof of Theorem 4.3, it follows from the minimality of P that Sp(x) is Stein.
Let M be the equivariant compactification of Sp(x) in X. Then the complex
hypersurface M\Sy(x) is an orbit of Sp by Lemma 2.1. Hence the equivariant
normalization of M, which we again denote by M, is an almost-homogeneous
projective algebraic manifold whose exceptional set is a complex hypersurface
orbit. Define

X:=SXPM.

Then X is an almost homogeneous projective algebraic manifold whose
exceptional set is a complex hypersurface orbit. Now S(x)=S/H is a dense
open orbit of both Xand X so that Lemmas 2.3 and 2.4 imply that there exists an
equivariant holomorphic and birational map X—X, i.e. X is an equivariant
algebraic modification of X. O

We now prove the corresponding Theorem for the compact Kihler case
using the albanese fibration.

Theorem 6.2. Let (X, S)o be a compact Kihler HS-manifold. Then
there exists an equivariant modification of X,

(X, S)o — (X, S)o

such that X is a compact almost-homogeneous K dihler manifold whose exceptional set
is a complex hypersurface orbit of S.

Proof. Again we may assume that the exceptional set E is connected for
otherwise we apply Theorem 3.2. Let (F, §) _r be the fiber of the albanese map

F
X > A(X)=S/S. Then KNS has real hypersurface orbits in F. By Pro-
position 6.1, there exists an equivariant algebraic modification

v: (F, (KN 9)°).L— (F, (KNS~
Note that $=(K N S)" since S/S=K/KNS$is a compact complex torus. Now,
X: = Sx3F - SxsF=X; (s, %) (s, »(3)),

defines an S-equivariant modification of X, and the exceptional set E of X is a
complex hypersurface orbit of S since ENF is a complex hypersurface orbit of
S. The same argument as in the proof of Theorem 3.2 shows that X is Kahler.

a

Theorem 5.2 can now be used to understand any compact Kahler H=-
manifold, and to give a classification of the real hypersurface HS, by means of

the above theorem. The reader may wish to compare [11] for a classification of
P" as an H3-manifold.
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- As a final remark we would like to mention a conjecture atttibuted to
Remmert and van de Ven (see [34]) that any almost-homogeneous compact
Kihler manifold X with 4,(X)=0 should be a projective rational manifold,”
i.e. bimeromorphically equivalent to P". In our special case of exceptional sets
as complex hypersurface orbits, we can show that this conjecture is true:

Theorem 6.3. Let (X, G)o be an almost homogeneous compact Kdihler
manifold with b(X)=0. Assume any one of the following is true:

1) The exceptional set of X is disconnected.

2) The exceptional set of X is a connected complex hypersurface orbit of G

3) A maximal compact subgroup of G has a real hypersurface orbit in X.
Then X is a projective rational manifold.

Proof. Case 1) follows from Theorem 3.2 and the fact that equivariant
compactifications of homogeneous rational cones are rational (see e.g. [19]).
Case 2) follows from Theorem 5.2 and case 3) from Theorems 6.2 and 5.2. [J
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