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Abstract

The dipole-dipole interaction often plays important roles on the surface systems.
The correlation function on the surface systems, where the dipole-dipole interaction
extending to longer distance are assumed to be dominant, is theoretically investi-
gated for the two examples, namely the alkali adsorbates on metal surface and the
Si(100) reconstructed surface.

In the adsorbate system with repulsive dipole-dipole interaction, a set of ap-
proximate integral equations, which proposed on the basis of the high temperature
expansion series at very low coverages in the disorder states, for two adsorbate corre-
lation function is solved numerically. The correlation function obtained as a function
of temperature and coverage is discussed with the experimental results of LEED and
EELS.

Analysis on the phase transition of the Si(100) clean-surface reconstruction is
made, in particuldr, on the two spin correlation function by computer simulation
with emphasis on the short range order. The asymmetric dimer is described by a
Ising spin and interactions short ranged as well as the dipole-dipole interaction are
assumed between them. The anisotropy in the short range order above the transition
point, which is observed experimentally, is examined in detail in the above mentioned

model.
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Chapter 1

Introduction

The statistical mechanics on surfaces is important for the investigation of the surface
structure at finite temperatures, the surface reconstruction, the structure of the
adsorbates on the surface, the phase transition on the surface and all phenomena
which occur on the surface at the finite temperatures. The ground state structures
can be pretty well discussed theoretically, for example, by ab initio total energy
calculations of the electronic structure[1][2] and also by the rigorous method for
possible arrangements of the surface atom or some adsorbates under some given
interactions[3][4].

Of course many rigorous and approximate methods of statistical mechanics for
two dimensional systems can be applied to surface properties. However, more devel-
opment in methods is necessary to investigate surface properties of complex systems
at finite temperatures. There are cases that the electric dipole-dipole interaction
may play important roles in the surface system. Here the surface system means
clean surfaces and adsorbate surfaces.

In this thesis, we deal with not only energy or specific heat, but also in very

details with correlation function and short ranged ordered states.



1.1 Dipole-dipole interaction on surface systems

The dipole-dipole interaction can be important for surface properties. In the bulk of
metals, the interaction for charged particle is screened, that is, Coulomb interaction
which is long ranged become the short ranged screened Coulomb interaction.

On the metal surface, however, the Coulomb interaction is not always perfectly
screened and there is some polarization because of the charged particles on the
surface which is formed by the charge of the particle and its image charge. Whether
the dipole on the surface is screened or not may be very sensitive to the position
of the dipole. When the dipole is not screened, the dipole-dipole interaction can
play a very important role on the surface. Of course the dipole-dipole interaction
is convergent in a two dimensional system but it has no characteristic length and
affects to longer distances. So the dipole-dipole interaction is never described by the
interaction of a small number of near neighbors .

The statistical mechanics of such a system which has dipole-dipole interaction,
have not yet been enough and satisfactory as far as we know, though some investi-
gations have been made[5]. In this thesis, we try to discuss the statistical mechanics
of such a system with focusing our attention on the correlation function and short

ranged order.

1.2 Alkali metal atom adsorption

Alkali atoms on the metal surface, for example Na, K or Cs on Ni, Cu and so on, have
been traditionally believed to be ionized at low coverages[6][7][8][9]. The alkali ions

form electric dipoles with their image charges and separate each other by repulsive



force between dipoles. This model shows the linear dependence for the coverage of
the work function at the low coverages. Recently, a different proposal for this system
is given by Ishida et al.[2]. According to their ab initio calculation, alkali atoms are
claimed not to be ionized, and the electric dipole for each adsorbate is given by a
different origin. They believe that the dipole field is so weak and screened on the
metal surface at the higher coverages where their calculation made.

The diffuse ring pattern is observed by low energy electron diffraction(LEED)
for these alkali adsorbed systems[10]. The diameter of the ring pattern increases
with coverages. This is in agreement with the model that adsorbates separate each
other by certain strong repulsive force.

In this thesis, we do not address whether alkali atoms are ionized or not but
discuss the statistical mechanics where the dipole-dipole repulsive interaction is as-
sumed to be a dominant interaction between alkali adsorbates. When the coverage
is low, the adsorbates are rather well separated by the strong repulsive dipole-dipole
interaction and they do not come to neighboring sites. With this reason, we assume
that only the dipole-dipole interaction is dominant and the near neighbor interac-

tion, for example electronic origin, can be neglected.

1.3 Asymmetric dimer on Si(100)

It is well known that Si(100) clean surface has a 2x1 reconstruction at room tem-
perature. This reconstruction is explained by the dimer model. Each two Si atoms
on the top layer of the surface makes a dimer as shown in Figure 1.1. The total

energy calculation of the tight binding scheme shows that the asymmetric dimer is
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The circles mean Si atoms on the top layer of Si(100) surface. The Si
atoms of the second layer are on the corner of the rectangle. (a) is the
ideal surface and (b) shows the symmetric dimer. (c) and (d) are two
sorts of the asymmetric dimer, respectively.

Figure 1.1: Dimer on Si(100) surface



more stable than the symmetric dimer[13).

In the topography of the Scanning Tunneling Microscopy(STM), it seems that
symmetric dimers are arranged on the plane surface[14]. The asymmetric dimer is
observed only around some defects. The core level shift of the Si atom observed by
X-ray photoemition spectroscopy(XPS) does not show the difference between two
Si atoms which make the dimer[16]. Although the symmetric dimer model is not
denied absolutely, the idea that the asymmetric dimer flips its direction faster than
STM scans each asymmetic dimer can explain the topography of STM. According
to Yamazaki and Cho [15], the problem of the core level shift does not contradict
with asymmetric dimer when one takes into account a final state interaction effect.
The result of the ab initio calculation with density functional scheme by Zhu et al.[1]
shows that the ground state is the c¢(4x2) structure based on the asymmetric dimer
model. In the asymmetic dimer model, two Si atoms in each dimer is not equivalent.
Each dimer has a polarization caused by asymmetry of the bonding charge. The
dipole-dipole interaction may play an important role in this system.

In this thesis, we assume the asymmetric dimer model with a dipole moment for
the Si(100) surface and discuss the short ranged order with strong anisotropy caused

by dipole-dipole interaction between asymmetric dimers.



Chapter 2

Alkali metal atom adsorption on metal
surface

2.1 Experimental results

The adsorption of the alkali metal atoms on transition metal surfaces is important
because of the work function lowering[17][18] and the adsorption induced reconstruction[19)
and also known as the poison of the catalysis, so many kinds of experiments have
been performed. They can give some important information for the study of the

surface structure at finite temperatures and the dipole on the surface.

2.1.1 Structural analysis

The diffraction patterns of alkali adsorption metal surface system observed by LEED
give some structural information[19]. The increase of back ground intensity is ob-
served at very low coverages. It is supposed to be due to the random arrangement
of the alkali metal atoms on the metal surface. The diffuse ring pattern appears as
the coverage increases. For example, this ring pattern is observed at § ~0.12-0.13
for the system of K on Ni(100) surface. The diameter of this ring pattern is said to

be proportional to square root of the coverage[19]. This ring pattern may be due



to short range correlation caused by the existence of the strong and longer ranged

repulsive interaction.

2.1.2 Work function

The typical coverage dependence of the work function of this system is shown in
Figure 2.1. The work function is proportional to the coverage at low coverage region
and have the minimum at a certain coverage. This variation of the work function is
corresponding to the variation of the dipole layer formed by alkali metal adsorbates.
At very low coverages, each adsorbate forms a dipole moment and the work function
depends on only the density of the dipole moment on the surface. But the magnitude
of the dipole moment varies itself at higher coverage where the minimum is observed.
This dipole moment may be formed by the alkali metal ion on the metal surface and
its screening (image) charge. The bonding of alkali metal atoms is not negligible at
high coverages. The recent ab initio calculation claims that the ‘Alkali ion’ picture

is not correct[2].

2.1.3 Spectroscopic analysis

Information about electronic structure of this system is obtained by electron energy
loss spectroscopy(EELS). The broad peak is observed by the EEL spectra of this
system at ~3-5eV. This peak may be understood as the excitation that an electron
is excited from Fermi surface to the unoccupied level localized on the adsorbate.
This peak energy also depends on the coverage and is said to be proportional to
6°/2. This coverage dependence may be related to the mean potential which an

adsorbate receives from another adsorbate.
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Figure 2.1: The coverage dependence of the work function change
Filled circles are experimental values of K on Ni(100) obtained by Ander-

son and Jostel[18] and the solid curve is their fitting with the fictitious
adsorbate lattice assumption.



2.2 Theoretical Study

2.2.1 Lattice gas model

Almost every adsorbate on the crystalline surface has its own energetically favorable
sites for adsorption. So the lattice gas model is suitable for many adsorption systems.
In this analysis, the adsorbate sites are assumed to form a two-dimensional Bravais
lattice on the substrate surface. The occupation number of adsorbate at the i-th
site is denoted by n;. The Hamiltonian of the lattice gas system with dipole-dipole

interaction is given by

1
=3 Z Jijnin; (2.1)
i
and
I
Ji; = ——-—l'f'i — les (2.2)

where pg is the magnitude of the dipole moment of the adsorbate and »; is the
position vector of the i-th site of the adsorbate. The grand partition function, =, of

the system is given by

E = trexp{—f(H —pN)}, (2.3)

N = Zn,-,

where p is the chemical potential. The coverage, 6, is controlled by the chemical

potential and determined by

1 1
6 = ]—‘Z(N) = E_ltl‘-ﬁ Znie—ﬂ(H_“N), (24)



where M is the total number of the sites. The correlation function of two adsorbates

is defined by

(ninj) = E Mtrnn e PH—#A), (2.5)
2.2.2 Ordered structure on ground state

The ordered structure on the ground state for the lattice gas system which has the
repulsive interaction presented by the power of the distance between two particles on
the Bravais lattice, is already studied by Pokrovsky and Uimin[5], when the coverage
is given by 1/p, where p is a positive integer.

In this simplest case, according to Pokrovsky and Uimin, particles form the
quasi-triangular lattice which is commensurate to the substrate in the ground state
as intuition tells us for the repulsive force, and the ground state energy, Ey, of
the lattice gas system particularly with the dipole-dipole interaction is obtained as
follows.

When the fundamental lattice vectors of the lattice of possible adsorbed sites,
which is assumed to be the Bravais lattice, are denoted by ao and by, the fundamental

lattice vectors of the lattice formed by adsorbates, a, b are written by

a = koao+ Loby,

b = m0a0+n0b0,
where ko, £, mo and np are integer. The coverage is given by

f = Ikono - moeol—.l.

10



Table 2.1: Ordered structures for the square lattice

a b
P ’ (kO) eO) (mo, no) C cos ¢ f(C) ¢)

16 0.0625 (4,0) (1,4) 1.109 0.526 4.428
17 0.0588 (7,2)  (2,3) 0.522 0.870 4.430
18 0.0556 (6,0)  (2,3) 0.687 0.728 4.482
19 0.0526 (7,1)  (2,3) 0.558 0.809 4.451
20 0.0500 (5,0) (1,4) 0.887 0.526 4.432

This table shows the informations of the ordered state which has the
lowest energy for given p. These ordered state was obtsined by Pokrovsky
and Uimin[5].

The total energy is represented by

By = Npgt*2f (€, ¢), (2.6)

where N is total number of adsorbates, £ is the ratio of lengths of the lattice vector,

ITZ—II and ¢ is the angle between the lattice vector @ and b. f((, @) is given by

f(¢, ¢) = (sin ¢)"3/2 {i i [(sz + 122 + 2kL cos ) 73/?

k=1{=1 f
HER + 1~ 2hecos) | 4 COE + 1),

where ((z) is the Riemann zeta-function and {(3) = 1.202056 - - -.

For the quasi-triangular lattice of the ground state, one can find from the expres-
sion (2.6) that f((,#) is almost constant as in Table 2.1. The potential energy
value at a particle from the other particles is obtained as in the same form. So the

dipole field of an adsorbate is almost proportional to #%/2 on the ground states.

11



2.2.3 High temperature expansion

The information on the short-range order can be drawn from two particle correlation

function. The problem to obtain the correlation function of the lattice gas system is

to obtain an effective interaction which acts upon each particle on the lattice from

the others. The effective interaction between the adsorbate on the i-site and on the

j-site, J;;, is defined by the correlation function denoted by (n;n;) = 6 exp{—J;}.

This effective interaction can be obtained by high temperature expansion method

when the coverage is very low[20]. In the following, throughout in this chapter, we

assume that there is no long range order in the system.

The high temperature expansion results for the quantities, =, 8 and (n;n;) are

as follows (they are listed up in Appendix up to 4th order).

—
—
—

(nin;)

1= B3 J1ad +---. (2.7)
12

¢~ (é) [2 YoJa+ D T =) Jnd| 4+, (2.8)
2 1 122 12

¢’ — (g) {2 Yo Jac + 23 e + 2050

1% 15
+ D0 Jict = Juact| 4o, (2.9)
1,2#4,5 12

where 1 and 2 abbreviate running indices, ; and /£, respectively, and c is the

coverage of the non-interacting system, defined by

1

- m. (2.10)

c

Here for example in (2.9), the third term in the square bracket cancels almost

the second term exclusive of the case of £;(4;) = 1. Similar cancellations occur in

12



each expansion, which correspond to the linked cluster expansion theorem. So =, 8

and (n;n;) are obtained as follows.

E = exp {—ﬁz Jiic® + (g) [22 JiaJasc* (1 — ) + ) J53(1 — c)z} — } ,
12 12

123

6 - c—(é)ZZJucz(l—C)ﬁL“-,
2 1

(ninj) = - (g) [2;Jilc3(1 —c) + 2213 Ji;2 (1 —¢) + 2J;;¢%(1 — c)ZJ SERR

(2.11)

2.2.4 Diagram analysis

The high temperature expansion in the previous section can be described by diagrams[20].

For example, the expansion of the partition function is represented by

E=1+/ +// + /N + 7 +--

These diagramatical expressions correspond to the analytical expression by following

rules,
1. Each line corresponds to the interaction —fJ;;.

2. Bnd points and joint points of lines represent the site indices of J;;, which are

summed up over all lattice points.

3. The end points and joint points of lines are corresponding to certain functions
of ¢. For example a lone end point, that is, a simple line end, corresponds

to ¢ and a joint point of two lines and three lines correspond to ¢(1 — ¢) and

13



c(1—¢)(1—2c), respectively. Generally F,(c) corresponding to the joint points

of n lines is obtained as

Fo(c) e(1—7¢) %Fn_l(c) (2.12)

Fc) = ¢ (2.13)
These relations are proven by Green function method (see 2.4.1).

4. The coefficient of each graph, which is supposed to be included in the graph of
the graphical representation, is the number of all possible equivalent arrange-

ment which are obtained by exchanging the running indices.

The expansion of 8 is represented by

0=o+</+c/+o/\+c<+--~.

where open circles denote the fixed ¢ site which is not summed up. The correlation

function, (n;n;) is expanded as

(ninj)zoo+c/o+o—o+o/o/+</o
+<<o+o/:+of—o+ =0+ N 4.

where open circles denote 7 and 7 sites. Particularly the end points with open circle

are corresponding to ¢(1 — ¢).

When 6 is so small as

1

" exp(Bp), (2.14)

14



the interaction denoted by the line with free end may be renormalized in the cover-

age, 6, for example, as follows.

e s St St Tt SN 4

where end points named £ and m are fixed or connected to other graphs, and the
other end points and joint points presents indices which are summed up indepen-
dently. Solid circles corresponds to renormalized coverage, §. The correlation func-

tion can be rewritten as

(ninj>= ® e L o—¢ | & /\.+
These graphs are corresponding to the following expansion,

ﬁz

(nin;) = 6° — BJ;6° + 292 + 2' Z JiJr;6°. (2.15)

These renormalized diagrams for correlation function at low coverages corre-

sponds to the analytical expressions by following rules.
1. Each solid fine line corresponds to the —g8J;.
2. Two end points and joint points of lines give the site indices of J;;.
3. Two end points have also site indices of the correlation function (n;n;).
4. The site indices given by joint points are summed up over all lattice points.

5. All end points and joint points correspond to the renormalized coverage, 6.

15



6. The coefficient of each graph, included in the graph of the graphical represen-
tation, is the number of all possible equivalent arrangement which are obtained

by exchanging the running indices.

There are three sorts of diagram in this expansion. The first two are reducible,
and are classified into the open graph and the closed graph. The closed graphs are
decomposed into more than two graphs by cutting the graph into parts at both end

point. Followings are typical closed graphs,

::./_A.AQ

The open graphs are decomposed into more than two parts by cutting the graph

into parts at a joint point. Followings are typical open graphs,

8 VA N AV A

The last is the remaining ones, that is, the irreducible graphs described in the

cluster expansion theory as follows,

One can find that all open graphs are constructed by products of Fourier com-

ponents of the irreducible graphs and the closed graphs. We define that the effective

interaction, J;, is the summation of all ¢rreducible graphs and open graphs, so that

16



summation of all over the graphs actually having the correct coefficients for the

exponential expansion, which denotes the correlation function, can be obtained as
(nin;) = 0% exp{~T;}. (2.16)

The effective interaction is rewritten by the graphs as follows,

/:——+/\+/\+/\/+A___+...,

where the wavy line is the effective interaction.

The summation of all the close graphs and irreducible graphs is defined as follows,

/{=—+:+A+A+O+w.

where we express this summation by a line with a box like the graph on the left
hand side.

All the closed graphs are constructed by products of summations in real space
and each part of their products is represented by a irreducible graph or a open graph.

The effective interaction can be described as the following graphical sum,

S A, e, e
LR L \/\/\)
YN

BV NN

]

17



where the solid broad line does not represent the —AJ;; but the summation of all
irreducible graphs. This series of graphs are valid inclusive their coefficients.
The summation of all sorts of graphs gives the correlation function, one can ob-

tain following relation.

TR Y

So the relation between graphs is obtained as follows,

VAN SR

where a chain represents a function £;; defined by
ﬁ,’j = eXp(—J,'j) - 1. (2.17)

The closed relation between the graphs of J;; and £;; can be obtained by use of

previous relations of graphs as follows,

ARG AN
VAN
VAN A NV AN

/(/)/(%)A

18



These diagramatical expressions are corresponding to the following equation,

0L (k)?

— J(k) = (k) + 1T 6L(R)

(2.18)

where £07) is the Fourier component of the summation of all irreducible graphs.
J (k) and L(k) are the Fourier component of J;; and L,;, respectively. When we
substitute only —fJ;; for the summation of all irreducible graphs, we can get the
same set of equations as our previous paper[21]. Here we get a set of self-consistent

integral equations for the effective interaction and the correlation function as follows,

8L(E)? ...
Ji; = ﬁl‘j"%ﬁ%ﬁ)(—k)@'kr”, (2.19)
L(k) = Y (exp{-Jy} — 1) e T,

Tij
2.2.5 Numerical solution

It is not very easy to find the solution of the set of equations(2.19) even by numerical
calculation. Since the dipole-dipole interaction extends to a longer distance, we
have to make the system larger to have the summention convergent in the numerical
calculation.

Since the set of equations(2.19) is valid for the state without long-range order,
we may assume that there is a certain distance R, and J;; << 1 for |r; — r;| > R..

Then e~7 can be replaced by 1 — J;; for |r; — r;| > R.. Then the equation(2.19)

19



1s rewritten as

L) = X [fro1ageme o gm),  20)
|7:—7;I<Rc
Tk) = Z‘Z,J,eik‘(ri—rj)_ (2.21)

Together with,

LEYO  goip .
ﬁjzﬁJ;j—%ﬁ%mek(r. vy,

(2.20) and (2.21) form a set of equations to determine (n;n;). The correlation

(2.22)

functions at given temperatures and given coverages are calculated numerically by

solving this set of equations.

Correlation function

2

The correlation function is calculated for several systems. The H—g is the only pa-

Qo
rameter which determines properties of this model. For alkali adsorbate systems,

ap 1s the lattice constant of the two dimensional lattice of the metal surface and
the dipole moment g is determined from the slope of the 8-dependence of the work

function at § = 0.
2
The values of H§ in numerical calculation are so chosen that they correspond to
Qo

Na on Ni(100), K on Ni(100) and K on Cu(100) of which the coverage dependent

diffuse ring in LEED are observed. The § is the reciprocal of the temperature.
2
The values of § corresponding to room temperature(7'=300K) and ﬁ;l for the
a

0
2

several systems are shown in Table 2.2 with £ = 1 and -6—3— = 1 where kg, ¢ and
B
ap are Bolzmann constant, the charge of an electron and Bohr radius, respectively.

Throughout this section, this unit system is used. (n;n;) and F(k) at several tem-

20



Table 2.2: Dipole moments for alkali adsorption systems

p)
to(a.u.) d(A) %g-(eV) Br=300K
0

Na/Ni(100)  2.83 075 2.1 40.0
K/Ni(100) 426 113 48 90.0
K/(Cu(100) 660 1.73 105  200.0

d is the distance between the adsorbate and the metal surface and de-
termined with the assumption that each alkali metal atom is ionized
completely. Pr_soox is the value of S corresponding to room temper-
ture(T=300K).

peratures and § = 0.03 are shown in Figure 2.2a and Figure 2.2b, where F'(k) is the
component of Fourier transform of (n;n;) and corresponding to the structure factor
of diffuse LEED. It is defined as,
F(R)=1—0+03 (e — 1)tk =T (2.23)
i#]
R, is taken to be 40ay or 60ay. Of course it is confirmed that J(7) is so small that
eI ~ 1~ J(r) at |r] > R, for these numerical results.

Figure 2.2a shows that the adsorbate can not approach on the nearest site even at
the high temperature. The peak is found at r;; = 6 that is almost corresponding to
the nearest neighbor distance of the ordered lattice formed by adsorbates on ground
state for # = 0.03. The intensity of this peak increases as the temperature decreases.
This short range order is more remarkable at lower temperatures and larger dipole
moments. A stereogram of the Fourier components of the correlation function, F(k),
is sketched in Figure 2.3. F(k) is corresponding to the structure factor of LEED as

mentioned above. The clear ring shape is found at the temperature where the short
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Figure 2.2: Calculated correlation function at § = 0.03

(a):The correlation function, (n;n;), along the (10) direction

(b):The structure factor along I'—X direction
The solid curve, the dashed curve and doted curve are the results and

f = 40, f = 90 and f = 200, respectively. These are calculated at
6 = 0.03.
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range order is appreciable. Of course the adsorbate cannot move on the surface,
that is, surface diffusion stops at some lower temperatures so that the numerical
results at the low temperature may not be observed experimentally.

The coverage dependence of the radius of this ring pattern is not so simple as
6'/2, which comes from the fictitious adsorbate lattice assumption[8][9], as is shown

in Figure 2.4.

Average dipole interaction

The coverage dependence of the average local dipole interaction is calculated as
shown in Figure 2.5-2.7.  Each parameter of § corresponding to room temperature
for Na(K) on Ni(100) or Cu(100) is shown in Table 2.2. In Figure 2.5-2.7, the
EELS peak energies observed by the experiment[18][19] are shown. Their coverage
dependence is may to reflect the average local dipole interaction. Those data points

are log Aw;, as a function of log 8, where
Aw, = w,(8) — w,(0)

and w, is the EELS peak energy. This excitation is understood as the electronic
excitation from the conduction band states of the metal to the empty states, which
is localized on the alkali metal adsorbate. If this empty state is constructed by the
valence state of the alkali atom, the energy level of the adatom state has the coverage
dependence coming from the average local dipole interaction.

The data points indicate that following relation holds, for § < 1.

Aw, = AB?,
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Figure 2.4: The coverage dependence of the radius of the diffuse ring

The radius of the diffuse ring, |k, is ploted for the coverage, 6, on alog-
log scale. Open circles, filled circles and filled box are repersenting the
results of Na on Ni(100), K on Ni(100) and K on Cu(100), respectively.

The solid line is given by 271/v/3/26'/2, which comes from the fictitious
adsorbate lattice assumption.
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Figure 2.5: The EELS peak of Na on Ni(100)

Filled circles are experimental results obtained by [18] and the solid curve
is the numerical calculation in this thesis. They are ploted on a log-log
scale.
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Figure 2.6: The EELS peak of K on Ni(100)
Filled circles are experimental results obtained by [18] and the solid curve

is the numerical calculation in this thesis. They are ploted on a log-log
scale.
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Figure 2.7: The EELS peak of K on Cu(100)

Filled circles are experimental results obtained by [19] and the solid curve

is the numerical calculation in this thesis. They are ploted on a log-log
scale.
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where A is a certain coefficient and o is the exponent which is determined by the

short range order. The calculated results show a similar relation,
Z']ij (n’lgnJ) — Alga"
r

for < 1.

o' is not the simple value of 3/2, which comes from the fictitious adsorbate
lattice assumption[8][9], or 1, which comes from the mean field theory, but the
value between 1 to 1.5. If we assume that the coverage dependence comes from
the average local dipole interaction and the alkali adsorbate is ionized completely,
this numerical result can be compared with the experimental results without any
adjustable parameter.

The coverage dependence of calculated local dipole interaction and its absolute
value are in agreement with ones of the EELS peak obtained experimentally. Of
course it is too early to say that this mechanism is the origin of coverage dependence
of the EELS peak. There are several assumptions to relate these two quantities. For
example, we do not quite understand the excitation process, which gives the EELS
peak. This dipole field is also claimed to be in question at higher coverages by the

recent calculation[2].

Diffuse LEED

The structure factor gives us some information to discuss the defuse LEED pattern.
However, the dynamic form factor is needed for completely analysis of the defuse
LEED pattern.

Recently, Kawamura [22] calculated the dynamic form factor of this system for
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several distances between an alkali atom and metal atoms and the symmetric ad-
sorbate sites, which are the on top, the bridge and the four fold hollow site at lower
coverages where adsorbates do not interact each other. The LEED intensity, I(k)
is obtained as the structure factor multiplied by the dynamic form factor. They are
shown in Figure 2.8-2.10.  The stereograph of the dynamic factor shows a com-
plex structure in the reciprocal lattice. The stereographs of the LEED intensity for
certain parameters and adsorbate sites are shown in Figure 2.8-2.10. Some of stere-
ographs show a clear ring pattern but others does not. One can find that the LEED
pattern is very sensitive to a position of adsorbate. In the case that the dynamic
form factor enhances the structure factor, the LEED pattern is determined mainly
by the structure factor and the ring pattern will be observed. But when the effects
of both the dynamic form factor and the structure factor compensate each other,
LEED shows a very complex pattern determined by the dynamic form factor. The
structure factor plays the role like a filter or a window for the dynamic form factor.
The analysis of defuse LEED patterns by these numerical results of the correlation
function combined with the dynamic form factor may determine the local structure
of the surface system though it may be difficult to observe the diffuse LEED pattern
with the required accuracy at lower coverages by the theoretical calculations.

The structure factor obtained here can be more easily compared with the diffuse
pattern of X-ray diffraction because the kinematical analysis with simpler form fac-
tors is enough. Experimental studies of the diffuse diffraction for this system by use

of SR(syncrotron radiation) X-ray are anxiously expected in future.
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Form Factor / On-top site
E=25,d= 68139 (au.)
(x77)

On-top site ;
E=25,d = 6.8139 (a.u.)
6 =0.04

(x1y)

Figure 2.8: The stereograph of diffuse LEED intensity I

The calculation are made at § = 0.04 and T=300K, for the on top site
of K on Ni(100). The stereographs are drawn on the four unit cells and
the contour map is draw on the unit cell of the reciprocal lattice around
(0,0), where each corner corresponds to (0,0) point. E(eV) is the energy
of the incident electron beam and ‘d’ is the distance between adsorbate
and the metal surface.
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Form Factor / Bridge site
E=25,d=4.8256 (a.u.)
(x1r)

Bridge site
E=25,d= 48256 (a.u)
6 =0.04

(x15)

Figure 2.9: The stereograph of diffuse LEED intensity II

Same as in Figure 2.8. The calculation are made at § = 0.04 and
T=300K, for the bridge site of K on Ni(100).
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Form Factor / 4-fold hollow site
E=25,d=5.2141 (a.u.)
(x3g)

4-fold hollow site
E=25,d=5.2141 (a.u.)
6 =0.04

Figure 2.10: The stereograph of diffuse LEED intensity 111

The calculation are made at § = 0.04 and T=300K, for the four fold
hollow site of K on Ni(100).
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2.3 Monte Carlo study

The solution of the set of integral equations(2.19) in previous section can be consid-
ered as that of the infinite system within the accuracy of the numerical calculation.
However, it is valid only at low coverages and high temperatures. The computer sim-
ulation with the Monte Carlo method has no such a limitation about temperatures
and coverages, although it can calculate the properties only in the finite system.
One has to make the finite scaling procedure to obtain the infinite system results.
The results in this section are preliminary. We need more extensive investigations

to reach definit conclusions.

2.3.1 Model and method

The computer simulation of the alkali adsorbate system is made by Monte Carlo
method. The square lattice gas model is used for computer simulation as in the
previous section. The Hamiltonian is given by (2.1). The system is treated as
the canonical ensemble. Its sampling are performed by the Metropolis important
sampling algorithm. The longer potential range of the dipole-dipole interaction
also makes this calculation very difficult. We consider an nxn finite system and
use the periodic boundary condition. And we put enough number of nxn systems
around the central nxn system which is the object of sampling, in order to get the

convergent summation of the dipole-dipole interaction.
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2.3.2 Size effect of the correlation function

The simulation is made for the several system size, 20x 20, 25x25 and 30x 30 at the
temperature corresponding to the room temperature of K/Ni(100). The ensemble
average are given as the average over 3000 Monte Carlo steps after discarding first
3000 steps.

The correlation function along the z is shown in Figure 2.11. They agree with
the solution of (2.19) qualitatively but not quite quantatively. They are not smooth
and somewhat unnatural compared with the results in the previous section probably
because of effects due to the periodic boundary condition. This trend is more re-
markable in the larger system. This may be partly because the number of sampling
Monte carlo steps is very small. We have to take more sampling points as the phase
space of larger even with important sampling algorithm. Particularly the correlation
function needs more sampling points than the energy of the system needs.

Then the results for the 20x20 system agree with the solution of (2.19) rather
than those of the larger systems. It is not smooth but is in agreement, with respect to
the peak or dip positions and with the results from the high temperature expansion.

These results indecates a hope that we can discuss this type of the systems, which
has the dipole-dipole interaction, by the Monte Carlo method. The Monte Carlo
simulation is expected to be useful at high coverage and low temperature regions
where the high temperature expansion is not valid. In such a high coverage region,
not only the dipole-dipole interaction but the short range interaction between alkali
metal atoms with an electronic origin may be also needed to explain the experimental

results[19].
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Figure 2.11: Size dependence of correlation function
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2.4 Discussion

2.4.1 Temperature Green function

The diagramatical perturbation theory of Green function is also useful to obtain the
self-consistent effective interaction of lattice gas system as well as high temperature

expansion method. Here we have the Hamiltonian as follows,
1
H =53 Jydaaia; —p}ala;, (2.24)
1 T

where a! and a; are creation and annihilation operator of particles on i site on the

lattice. These operators satisfy the commutation relation of the Fermi operator,

{a;, a}} = aia} + a;-a,- = 6y, (2.25)
{al,al} = o, (2.26)
{a,-, aj} = 0, (2.27)

and it is reasonable because two or more adsorbates cannot occupy the same adsorp-
tion site. The Fermi statistics does not affect results, because 7 does not contain

the particle transfer term. The one particle Green function is defined by
Gi(1,7") = (Tai(r)al (1)), (2.28)

where a;(7) and a}(7) are annihilation and creation operators in the Heizenberg
representation on the i-th site. The particle density which means a coverage can be

obtained as

(ny=6= lim Gi(r,7). (2.29)

T/ r40+

We take the first term of (2.24) as the perturbation. The perturbation expansion

of Green function can be described by Fymann’s diagram as follows.
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|l o RE oo D

where the broad and fine solid line are corresponding to the Green function, G;(:w,),

)

and the unperturbed Green function, Q’,-(O)(iw,), respectively. They are defined as

Gi(r, ") = %Zgi(iwz)e‘i‘”‘(r'T'), (2.30)
r;

GO(r,7') = %Zggo)(z'wt)e_i‘”‘(r'r'), (2.31)
¥4

particularly, Q’fo)(z’w,) is obtained as,

G iwr) = —

, 2.32
wy + [ ( )

(2¢+ Dm
B

Each diagram corresponds to each perturbation term and follows Fymann’s rule

where w, = and £ =0, £1, £2, ---.

in the lattice space with the Fourier transform of the imaginary time except for

following modifications.
1. Label each vertex with a internal site index.
2. The wavy line is corresponding to J;;.
3. Sum up all internal site indices over lattice.
4. w,; conserves at each vertex.

These diagrams have one to one correspondence to the graphs of high tempera-
ture expansion. The end with n interaction lines and the joint of n 4 1 interaction

lines correspond to n + 1 external lines of unperturbed Green functions with the
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same site index or a ring of n+ 1 internal lines of unperturbed Green functions with
same site index, respectively. On the limit of 7 — 7 4 0%, the both of them are

corresponding to function F, obtained as,

F, = nz%iz (gff’)(z'w,))”“ , (2.33)
¢
(=1 1 © ()"
= At jJ (6™ flw)d, (2.34)
where f(w) is the Fermi distribution function defined by
flw)= —
w) = exp{fw} +1

The coefficient, n! indicates that this sort of diagram have n! topological equivalent
diagrams.

F,, can be described with the chemical potential as follows,

e e W

F, = it | d PR (2.35)
GV L ()
= \s/_mdww+“, (2.36)
_ (—ﬂi) £ (=), (2.37)

where f(*)(w) means the n-th derivative respect to w. By use of ¢ = f(—pu), we can
obtain the same relation of (2.13).
Two particle Green function describing two particle correlation function is de-
fined as
gi5(r, ') = (Tri(7)nl(7")), (2.38)
where n; is the number operator of ith site. Two particle correlation function is
obtained by

(nin;) = Nlm  gy(r, 7). (2.39)

=740+t
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The perturbation expansion of two particle Green function can also performed

by use of previous rule as follows,

| Lol L R R pee ]
0|, ST R o

where the diagram of the left hand side of this diagramatical equation corresponds

to the two particle Green function.
All internal lines and interaction lines which are not connected with external
lines and other internal lines, can be renormalized to exact Green function. The

two particle Green function can be expanded as follows by use of the exact Green

o I R R e RO

where thick solid lines are representing exact one particle Green function. In this

function.

case, the unperturbed Green function does not depend on the site index, so we can
take the limit of 7 — 7 + 0% on each site independently. Those diagramatical
expression is the same as the expression of the high temperature expansion within

the approximation,

/_ (W) f(w)dw ~ 6. (2.40)
2.4.2 Kirkwood method

The set of integral equations for the effective interaction obtained from the high

temperature expansion can be also derived by a lattice version of the Kirkwood
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method[23]. Kirkwood applied this method for liquid and gas systems to obtain
effective field. We apply the same procedure as the Kirkwood method for the lattice
gas system.

We consider the lattice gas system including N + 1 particles. The lattice has M
sites where particles can sit on. Treating this system in the canonical ensemble, the
coverage, 6, is obtained by

_N+1

9 T. (2.4:1)

According to the Kirkwood method, Hamiltonian of this system is defined by
N N
HE) =EY I(ri—ro)+ Y, J(r;i—73), (2.42)
i=1 i>5>1
where 7; is the position vector of the ¢-th particle on the discrete lattice, and J(r; —
;) is the interaction between the i-th particle and the j-th particle. Particularly
the potential between the zeroth particle and the other particles is multiplied by
a parameter £. So & = 1 corresponds to the N + 1 particles system and £ = 0
corresponds to the N particles system. The summation of rg, 71,---, 7y runs over
M lattice sites excluding the sites that another particles already sit on.
The conditional probability, Po(r; : )/M that the first particle sits on the krl

site when the zeroth particle sits on the rq site, is obtained by

M Z e~ PAH(E)

T2,73--Tn

Po(r1:&) = 5 g (2.43)
”"l’rz...TN
An effective interaction is defined from the conditional probability as follows,
Po(ry: &) = exp[—T (r1 : £)], (2.44)
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where we put 7o onto the origin. The particle sitting on r experience the mean
effective interaction, J (I'r : €), from the particle sitting on the origin. Thus J(r :
£) = 0 for £ =0, and we denote J(r : §) = J(r) for £ = 1.

The differential equation of J (7 : £) is obtained by

N N
Boie™PHO B e~ M)
07(r1:6) _ 2 . 2575
6€ 2,73, N E e_ﬂH(f) )T,y Z e—ﬁ’H(f)
LETUERaL 71,72, N
N -1 N
= BJo + > BIeaPor(ra 1 §) — =D BJoaPo(r2 : ), (2.45)
M-17%, M

where Py (72 : £) in (2.45) is the conditional probability that the second particle
sits on the 7, site, when the zeroth and first particle sit on the 7o and the 7y sites,

respectively. Poi(rs : €) is related to the three particle correlation function and

defined b
Y (M —1) E Joie—[‘m(f)
r ,7' RN
Poy(r2: §) = if :fﬁH(E) ' (2.46)

72,73, TN

Here we apply an approximation of superposition to Py;(rs : £) as follows,

Por(r2:€6) = Po(ra:€) -Pi(ra:€=1)

~ exp[—J(r2: &)]exp[—T (r2 — 71)]. (2.47)

This would be a good approximation at low coverages.

In the limit of N — co and M — oo with keeping 8 constant, (2.45) becomes

6‘7(7’1 : 6)
a¢

Integrating over £ (2.48) with use of J(r : £ = 0) = 0, we get

= BI(r1) + B8 J(ry)e I T28)(= (M=) _q), (2.48)
T2

J(r1: €)= BI(r)E+ P> L(ry —7r1)J(rs) /£ e 7Tz dn, (2.49)
) 0
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where £(r) = e~7(")—1, which is the same definition of £() in previous section(2.2.5)
The integral in (2.49) is rewritten by integration by parts over 7 in (2.49) and use
of (2.48) and (2.49) itself as ,

4
Ba(ry) [ &7

—_ /f eI (T :n)+ﬂJ(T1)ie—ﬂJ(T1)dn
0 dn

= —L{ry :€) = B8 3 Llrs 1) (1) [ dne=IT1WeITE - (250)

2
where L(r : £) = e 7T — 1,
(2.49) and (2.50) can be rewritten by the Fourier transformation as
T(k) = BI(k)+0L(E)T(R), (251)
T(k) = —L(k)—86L(E)T(k)—8A(E), (2.52)

where J(k), L£(k) and J(k) are Fourier components of J(7), £(r) and J(r), re-
spectively. I'(k) and A(k) are defined as,

Tk) = Y ekTpi(r) /Ole—m*f)dg, (2.53)

l

AR) = 3 k7 /0 GBI T OL( — ) L(r s E). (2.54)

7,7
I'(k) can be written as

L), AR

I = —Torm ~ b Tvecmy (2:55)
Then J(k) is obtained by use of (2.52) and (2.55) as
J (k) = pJ(k) - 0L(E) _ OLIAK) (2.56)

1+0L(k)  1+0L(k)
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Table 2.3: Error estimation of Kirkwood method

U €

40 0.04 -—8.102x 1073
90 0.02 -—9.123 x 1073
90 0.04 3.592 x 1072

We have the first iteration to the right hand side of (2.52) as
—B0 55 L12L02L01, where we assume that cJoa(n) = Jo2(0) -1, Jo2 = Joo
and Lo2(n) = Lo2(1). The estimated error, ¢, is defined by the ratio of
the summation of the third term over k to the summation of second term

of the right hand side of (2.52).

By neglecting the third term of the right hand side of (2.56), we can obtain the
same equation as the equation obtained from high temperature expansion. This
approximation may be good when 8 is very small.

Using the solution in section 2.2.5, we can estimate the error due to the neglected
term. The third term of the right hand side of (2.56) is estimated as order of 1072 of
second term at § = 40, § = 0.04 and R, = 60ao, so that our approximation may be
good. However the approximation becomes poor at further low temperatures even

at lower coverages as we notice from Table (2.3).

2.5 Conclusion

The correlation function of alkali metal adsorbates on the metal surface was obtained
from a set of approximate but plausible integral equations at lower coverages and
higher temperatures without any adjustable parameter. It shows temperature and

coverage dependence, which seems quite reasonable. We believe that the present

44



set of integral equations provides a reasonable approximation for the dilute dipole-
dipole repulsive systems in the two dimension. The coverage dependence of the
average local dipole interaction was obtained from the calculated correlation func-
tion. Traditionally, it is considered that this property relates the peak of EELS
spectra. Muscat and Newns[8][9] explained this coverage dependence of EELS peak
by the assumption of a fictitious adsorbate lattice incommensurate to the substrate
before. However in fact, no long range order has been observed by LEED at cov-
erages and temperatures where EELS were measured. We got a good agreement
with the coverage dependence of the EELS peak with short range order but without
long range order. If the system shows diffuse ring patterns whose diameter depends
coverage, then it would be likely that this mechanism has some contribution to the
EELS peak excitation, although physical picture of this excitation is not clear. This
system has a very strong short range order caused by the existence of dipole-dipole
interaction which extends to longer distance.

The coverage dependence of the diameter of the ring pattern of LEED is dis-
cussed. This is also explained by the short range order. We got more natural
dependence than one which had been obtained by a fictitious lattice before. We
can get the realistic diffraction image theoretically by the combination of the struc-
ture factor calculated by this method and the dynamic form factor obtained by
Kawamura[22]. Unfortunately, our method to calculate the correlation function is
valid at lower coverages. The ring pattern has not been observed by LEED at such
a low coverage yet. But the comparison of the diffuse ring pattern obtained by the

experiment and the calculation must give much information about the adsorbates,
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if such a measurement is possible.
The computer simulation for the dipole-dipole interaction system is examined
preliminarily. It is found that one has to construct an appropriate finite size scaling

method.
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Chapter 3

Asymmetric dimer on Si(100) surface

3.1 Phase Transition on Si(100)

The Si(100) surface has the (2x1) reconstruction at the room temperature, and
undergoes the phase transition at about 200K[24]. The low temperature phase has
the c(4x2) structure. It is believed that the c(4x2) structure is the ordered state of
asymmetric dimers, which is proposed by Yin and Cohen[25]. Two sorts of asym-
metric dimers which have opposite directions of asymmetry each other are arrayed
alternately in the c(4x2) structure like an antiferromagnetic Ising spin system.

For the (2x1) phase, several possible structures have been considered. The
symmetric dimers system, the ferro magnetic like ordered structure of asymmetic
dimers or the disordered state of asymmetic dimers can give the (2x1) diffractional

structure.

47



3.1.1 Experimental results

Diffractional analysis

According to LEED by Kubota and Murata [26], a clear streak pattern is observed
above the transition temperature. Weak streak patterns are observed even at 450K.
The intensity of streak patterns is enhanced as the temperature decreases.

These streak patterns represent the short range order where dimers are arranged
with twice periodicity of the substrate in each dimer row, however, dimer rows have
little correlation each other down to a temperature region near the transition point.
The quarter-ordered diffraction spots appear in the more enhanced streak pattern
at 320K. At the temperature below about 200K, the c(4x2) structure is observed
clearly.

These diffraction results indicate that the Si(100)2x1 surface has very strong
antiferro correlation along the dimer row even at high temperatures and there exists

the correlation between dimer rows only near the transition temperature.

Spectroscopic analysis

The surface electronic structure of Si(100)2x 1 surface, particularly for the surface
states consisting of dangling bonds of the dimers, is observed by angle resolved ultra-
violet photoemission spectroscopy(ARUPS)[27]. The short range order in the dimer
rows have an effect on the electronic structure of the dangling bonds of dimers.
Enta, Suzuki and Kono find that the photoelectron spectra change dramatically
between 2x 1 and c(4x2) along the (I' — J) direction which is the direction perpen-

dicular to the dimer rows. The surface Brillouin zone is shown in Figure 3.1. For
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Figure 3.1: The surface Brillouin zone of Si(100)2x 1 surface

the (I' — J') direction, which is parallel to the dimer rows, most of the electronic
structure of c(4x2) are already observed even in the spectra of 2x 1 surface.

These spectra of the surface states for 2x1 and ¢(4x2) surface are in agreement
with an ab initio calculation for the c(4x2) structure by Zhu et al.[1], which is based
on the asymmetric dimer model. The mixed spectra of 2x1 and c(4x2) are discussed
theoretically by Inoue, Nakayama and Kawai[28]. In their model, the asymmetric
dimers are arranged alternately like the antiferromagnetic spins in the dimer rows,
that is, the well developed short range order is assumed even in the high temperature

2x1 structure.

STM and XPS results

The STM is a very powerful tool for the surface study. The topography of STM for
Si(100) shows the image that is the arrangement of symmetric dumbbells with 2x1

periodicity in the terraces which are wide enough and have no defect{14], while it
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shows the zig-zag arrangement of dumbbells near the step and near the regions of
dark contrast considered as some defects like a missing dimer. The former image is
in agreement with the symmetric dimer model and the latter one agrees with the
asymmetric dimer model. So, apparently, the stational asymmetric dimer cannot
explain the topography of STM.

This results, however, may be interpreted as the symmetric dimer is stable but
not observed in the STM topographic image. That is to say, each asymmetric dimer
flips its direction so fast that STM observes an average image of the asymmetric
dimer. Near the step and some defects, the asymmetric dimer cannot flip so fast or
at all by some mechanism.

Not only the topography of STM but the core level shift of spectra observed in
soft X-ray photoemission spectroscopy(XPS) also questions thé asymmetric dimer
model[16]. If there are the asymmetric dimers on the Si(100) surface, Si atoms con-
structing a dimer must see two different environments and corresponding two surface
peaks are expected in the core level photoemission. However, the XPS experiment
shows only one surface peak. If this fact means that Si atoms on the surface have
only one environment, it may favor the symmetric dimer model. Yamazaki and
Cho[15] show that it is possible to be observed only one peak in the XPS spectrum
because of a final state interaction effect, even for the asymmetric dimer model.

Of course the symmetric dimer model may be possible. However the model of
this system will have to explain the LEED and UPS. It seems that the symmetric
dimer model has not succeeded in explaining these experimental results yet. We

believe that the asymmetric dimer model favors in this surface.
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In this chapter, we try to discuss this reconstruction transition on the Si(100)
surface focusing the short ranged order and the role of the dipole-dipole interaction
on the basis of the asymmetric dimer model. It is difficult to determine the mag-
nitude of this dipole moment formed by the polarization of the bonding charge on
the asymmetric dimer, which is suggested by the ab initio calculation[1]. We made

a very simple model including the dipole-dipole interaction as a parameter.

3.2 Monte Carlo study

3.2.1 Ising spin model

Each asymmetric dimer has two equivalent configurations, so it can be described
by a Ising spin[29]. We consider the interacting Ising spins on the rectangular
lattice whose lattice constants are ao and 2ap. In this model, the Ising spin may
not represent only an asymmetric dimer itself but also a whole local structure with
asymmetric dimer, for example it may include a lattice distortion of substrate atoms.

The Hamiltonian is given by

H = Ji; 555, 3.1
AR 3
.3
I = JP+IY, (3.2)
2
d I
Ji(j) = ——-—-——l 'r.'j |3 [1 - 3COS2 @,‘j] s (3.3)

where 4 is the dipole moment of an asymmetric dimer and »;; is its position vector.

g

Jij is two spin interaction constant and consists of dipole-dipole interaction, J;;”,

and the near neighbor interaction, J, () which represents short ranged interaction,

13 )

for example, of an electronic origin and/or due to lattice distortion. © is the angle
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Figure 3.2: Geometrical arrangement of the interaction

between 7;; and the z-axis where the z-axis is taken perpendicular to the dimer
rows as shown in Figure 3.2.

Then the ground state of the Ising spin system with only dipole-dipole interaction
is the p(2x2) structure as seen in Figure 3.3. The potential surface, in the reciprocal
space, of the dipole-dipole interaction is shown in Figure 3.4. In a model where the
dipole-dipole interaction is dominant, the short range interaction of J,, J, and J,
must be introduced to make the c(4x2) structure more stable than p(2x2) struc-
ture. The purpose of this analysis is to examine how the dipole-dipole interaction
affects the detailed statistical properties of this system. To construct the computer
simulation scheme for the dipole-dipole interaction system is another purpose of this

work.
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Figure 3.3: Possible ordered structure

(a):p(2x1), (b):p(4x1), (c):p(2x2), (d):c(4x2). The dashed lines show
the unit cell of the reconstructed structure.
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Figure 3.4: Potential surface of the dipole-dipole interaction
3.2.2 Computer simulation

The computer simulation is made by a Monte Carlo method. Its sampling is per-
formed by the Metropolis important sampling algorithm. We consider an nxn finite
system and use the periodic boundary condition. The dipole-dipole interaction ex-
tends its effect all over the finite system which is used by computer simulation. We
put enough number of nxn systems around the central nxn system which is the
object of sampling, in order to get the convergent summation of the dipole energy.
For the units in the analysis we take ayp = 1, p = 1 and kg = 1 so that energy
and temperature are measured in the unit of y?/a3, but, in case of u = 0, we take
Jy, =1, a0 = 1and kg = 1 so that energy and temperature are in the unit of J,.
For the sake of comparisons, however, we take finally 7; as the unit of temperature

and energy in each set of parameters.
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Figure 3.5: The temperature dependence of the energy and specific heat

Each symbol is introduced in Table 3.1

In this simulation, the system size is always 20x 20 and most of values of ensemble
average are given as the average over 10000—20000 Monte Carlo steps. The sampling
starts from a snap shot which is determined at 7" = 0.5 and exclude first 500010000
Monte Carlo steps. This simulation is performed for several kinds of the interaction

sets as in Table 3.1.

3.2.3 Energy and specific heat

Figure 3.5(a) and Figure 3.5(b) show the temperature dependence of the energy
and the specific heat, respectively, for several parameter sets as shown in the Table
3.1(a). The temperature scale is normalized by the transition temperature, Tt,
estimated by the peak temperature of the specific heat for each parameter set. The

energy determined from the ground state energy, which is calculated numerically for
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(a)
parameter set  J, Jy Juy i symbol
(I) set 1.00 0.20 -0.15 1.00 .
(I)set  1.00 0.20 —0.15 0.00 o

(II) set  1.00 0.05 0.00 000  x
(IV) set 1.00 0.07 0.00 0.00 +
(V) set ~1.00 0.10 0.00 0.00 o
(b)
parameter set J. Jy 7 T: exact T,
(s) set —0.05 —1.0 0.0 076 0.74
(d) set -0.075 0.0 1.0 0.64 —

Table 3.1: The parameter sets for the simulation

(a):The result for each parameter set is repersented in Figure 3.5 and 3.9
by the ‘symbol’ in this table.

(b):These two sets of the parameters have the same anisotropy in the
sense discussed in the section 3.2.5.
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the c(4x2) structure, is renormalized by T;. Some snapshots are shown in Figure
3.6. The peak of the specific heat and the snapshots show the second order phase
transition from the para magnetic 2x 1 state to the antiferro magnetic c(4x2).

Both of the energy and the specific heat when temperatures are normalized.by
T; have the similar behavior for any parameter chosen in this simulation. Of course
this seems somewhat natural because the dipole-dipole interaction extends to longer
distances but it is convergent in the two dimensional system. The system with the
dipole-dipole interaction is considered to belong to the same universality class of the
system with only the nearest neighbor interaction for the critical phenomena around
the transition temperature. The specific heat shows the same behavior even outside
of the critical region as that in the isotropic Ising system, which has very isotropic
nearest neighbor interaction as shown in the Table 3.1(a). The T} value for the (s)
set can be estimated as 0.74 from the exact expression[30],

P J
sinh sinh —>

o M =

The error by the finite size system of this computer simulation can be estimated
by the comparison with this value and the value, 0.76, obtained by the simulation.
It may not be very precise but may be enough for the discussion of the correlation

function.

3.2.4 Correlation function

The two spin correlation function, (S;S;), is calculated for the parameter sets in the
Table 3.1(a). The correlation function of the system with dipole-dipole interaction

1s shown in Figure 3.7 at several temperatures. When T; is assumed about 200K
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Figure 3.6: Snap shots for the parameter set(l)

The temperature is estimated with the assumption that 7} = 200.
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Figure 3.7: Corelation function for parameter set(I)

(a) and (b) is the correlation function between dimer rows and in a dimer
row at T'/T; = 1.4, respectively. (c) and (d) is ones at T'/T; = 15. The
distance is scaled by the lattice constant along each direction.
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from the LEED experiment[26], that temperature, T'/T; = 1.5 is corresponding to
about the room temperature.

It shows that the strong short rang order exists even at high temperatures,
(T'/T; > 1.0). The spins in the same dimer row is partially arranged an antiferro
magnetic chain. Particularly at near the transition temperature, and such a small
system as 20x 20 which is used in this simulation, the correlation of spins extends
all over the system and the one dimensional antiferro magnetic chains are formed
everywhere in the system. Of course the correlation between dimer rows exists but
is still very weak.

The structure factor, F(k), shown in Figure 3.8, which is calculated for the

parameter set (I), is defined as

R = RIT SR (5.4
= 14 3S:5)e R, (3.5)

where 7;; = r; —7; and N is the number of spins. It shows a large peak along the J!
to the K point in the surface Brillouin zone, which is in agreement with the streak
structure observed by LEED.

The temperature dependence of the structure factor at the symmetry points, J,
J' and K in the surface Brillouin zone is shown in Figure 3.9.

There is the fundamental spot of 2x1 structure at the I' point, so the structure
factor at that point is not discussed.

The structure factor at the K point is corresponding to the staggered magne-

tization of the antiferromagnetic system. It is almost zero at T' > T; because of

the random arrangement of spins and increases rapidly near T = T;. This shows
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Figure 3.9: The structure factor at symmetric points
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the phase transition to the c¢(4x2) ordered state. It becomes such a large number
determined by the system size bellow T' = T; that it is difficult to discuss the detail
of its behavior there. The structure factor on the J’ point increases slowly with the
formation of the one dimensional antiferro chains as the temperature decreases. It
has the peak at T' = T; and goes to zero bellow T' = T; because of the extinction rule
on the c(4x2) ordered state. The structure factor on the J point gives only a back
ground, which represents the degree of disorder of the system, in all temperature
region. It goes to zero bellow T' = T; because of the transition to the long range
ordered state.

The variation of the structure factor at several temperatures is shown by the
stereograph in Figure 3.10. This is in good agreement with the qualitative behavior

of the streak structure in the experimental results by LEED[26].

3.2.5 Discussion

The clear difference between the system with dipole-dipole interaction and the sys-
tem with only near neighbor interaction is not found qualitatively in the quantities
like the energy and the specific heat as in Figure 3.5. Here, we are going to examine
the effects due to the dipole-dipole interaction in the two spin correlation function.
We consider only two sets of the interaction parameters as the Table 3.1(b), which

is determined in such a way that

JOI) — JNEK)  JEOT) - JOJ
J

)
TOF) = IO(E) ~ TOF) =~ JT)’

where J((T) etc. are values of the Fourier components of the interaction for the

two set (s) and (d) at the symmetry points in the surface Brillouin zone. The values
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T=450K T=320K

T=400K T=260K

T=350K T=180K

Figure 3.10: Stereograph of diffuse LEED for Si(100)

Calculations are made for the parameter set (I) in Table 3.1. The tem-
peratures are estimated with the assumption of T; = 200K". The stere-
ograph is drawn on the unit cell of the reciprocal lattice. The long side
and the short side are I' — J' — T and T' — J — T line, respectively.
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Figure 3.11: The short range order parameters

o and e are o, and o, in the (d) set and + and x are those in the (s)
set.

of T, for those two sets are obtained from the specific heat peak where kg = 1.
The two spin correlation function, (S;S;), and the structure factor, F(k), are
obtained at several temperatures above 7; for the (s) and (d) sets. The short range
order parameters, o, and o, which are defined by the absolute value of the two spin
correlation function for the nearest neighbor pair along the z and y-axis, respectively,
are obtained as functions of temperature. The temperature dependence of ¢, and
o, is shown in Figure 3.11. The short range order parameters are not quite different
between the two parameter sets in the quantities. Although it seems that the short
range order of the (d) set is more enhanced in the dimer row and prohibited between

dimer rows, that difference may be within the error of this calculation.
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Both of them show that there is a strong short range order in the dimer row
even at high temperatures and there is almost no correlation between dimer rows
until near the transition temperature. For example, we have 0, =~ 0 and o, = 0.6
at T/T; = 2 in the both sets.

The temperature dependence of the structure factor at the symmetric points in
the surface Brillouin zone is shown in Figure 3.12. The delicate difference is found
at the J point. But the Si(100) surface has two equivalent domains perpendicular
intersecting each other and this point will be shaded by the I'—J' line of the opposite
domain. The single domain has been obtained by an ingenious method of an electric
current effect for stepped surfaces[27], but the LEED diffuse measurement has not

been made yet.

3.2.6 Correlation length

When we have well developed correlation between spins, the wave vector dependence
of the structure factor around the K point in the surface Brillouin zone may be

described approximately by the Lorentzian as

C
e(ke — k") + (ky = KM)2 4 €27

F(k) ~ (3.6)

where k, and k, are z and y components of the vector k. k) is the wave vector

™ ™

which represents K point and k) = ( ). €71 is corresponding to the correla-

2ay’ ag
tion length along the y-axis and ¢ is a parameter representing the anisotropy of the
two spin correlation. The correlation length along the z-axis is denoted by £71\/e.

This Lorentzian fitting is valid for the wave vector near the J'—K line in the

surface Brillouin zone as shown in Figure 3.13.
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Figure 3.12: The structure factor at J, J' and K (I1)

o and e are the results for (d) set and (s) set,respectively.
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Figure 3.13: The Lorentzian fitting of the structure factor

The circle means F(k) calculated by Monte Carlo simulation for the
parameter (d) set at T/T; = 2.0. The dot shows the Lorentzian fit by
the least square means method on I'—J’ and T—K line. The fitting
performed with the central five data points.
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Figure 3.14: Temperature dependence of correlation length

o and e represent & and £/+/z in the (d) set, and + and x represent &
and £/+/z in the (s) set, respectively.

The temperature dependence of the correlation length is shown in Figure 3.14.
In both parameter set (s) and (d), It is found that the correlation length along
the dimer row approaches the system size near the transition temperature. However
the correlation length that describes the correlation between dimer rows remains the
distance of the near neighbor even near the transition temperature in this simulation
with the finite size system. This strong anisotropy is in good agreement with the

LEED results[26]

3.3 Conclusion

The qualitative behavior of the calculated correlation function and structure factor is

in good agreement with the temperature dependence of the LEED pattern. Almost
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all properties of the model with dipole-dipole interaction have the same behavior as
the model with only near neighbor interaction qualitatively although some difference
are seen.

The larger anisotropy is needed apparently to explain quantatively the results
of LEED. There are two ways to increase the anisotropy in the interactions in our
limited two models. In the (s) set, we have to go to a smaller J, values and, in the (d)
set, to a smaller values in the difference between |J,| and |J®(J") — J@(M1)|. Such a
small J, value will be unlikely in the Si(100) surface. Probably the latter cancellation
type might be likely in either cases where the dipole-dipole interaction is involved
or not. It is remarkable that the dipole-dipole interaction with supplemented short

range interactions can put such a large anisotropy into the model.
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Chapter 4

Summary

The set of integral equations has been derived by use of diagramatical procedures
on the bases of the high temperature expansion as well as the temperature Green
function method. The two adsorbate correlation function has been obtained from the
set of approximate integral equations guessed from the high temperature expansion
series at low coverages of adsorbates having the repulsive dipole-dipole interaction.
The results show a reasonable behavior in temperature and coverage dependence.

The errors in the solutions are estimated from the expression obtained by the
Kirkwood method. These solutions are good approximation at low coverages and
high temperature within Kirkwood approximation.

The repulsive dipole-dipole interaction makes the adsorbate not to come to neigh-
bor sites even at low coverages and high temperature. The calculated structure fac-
tor shows the diffuse ring pattern because of such a strong short range order. Some
calculated diffuse ring patterns are shown with the dynamic form factor. They are
very sensitive to the environment of the adsorption site and the comparison of the
theory and the experimental LEED pattern will give us more information about the

adsorbate system.
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The local structural information of the Si(100) 2x 1 surface is obtained by the two
spin correlation function, where the asymmetric dimer model on Si(100) is considered
with the Ising spin system. The computer simulation with the Monte Carlo method
is performed on the assumption that the two spin interaction is including the dipole-
dipole interaction. The calculated correlation function and the structure factor are
in good agreement with the LEED results. The correlation function shows that this
system has a very anisotropic short range ordering. The structure factor can explain
the temperature dependence of the streak pattern of LEED.

There is no remarkable effect found by the dipole-dipole interaction for the energy
and the specific heat. The structure factor, however, has the delicate modification

by the dipole-dipole interaction.
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Appendix A

Terms of high temperature expansion

Here we list up the high temperature expansion results. The partition function of

the interacting system describing in previous section is expanded up to 4th order as

follows.

Ylm

(=% LJisminsy
1-2 (g) > Jiac?
51'! (§) [ Tiadasct + 43 T Jpc®(1— ) + 2 ) (Ji2)%c*(1 - ¢)?]

3

% (52’)-) [>° T2 JsaJosc® + 123 JraJsa Jusc® (1 = c)

8> JiaJizJiac* (1 — ) (1 — 2¢) + 24 Y JiaJozJaac? (1 — ¢)?

6> Jia(Ja)?c* (1 — ¢)> + 8> JiaJas s’ (1 —¢)?

243" J1a(J2s)2c*(1 = €)2(1 — 20) + 4 ) (J12)>cP(1 — ¢)*(1 — 20)?]
4

% (-g) (3 Ji2JaaJos Jrsc® + 243" JraJasJs Jorc™ (1 — ¢)

96> JioJasJus Jsec® (1 — ¢)* + 32 JipJaed3sJ36c® (1 — ) (1 — 2¢)

483 T s JasJssc®(1 = )2 + 123 JiaJss(Jss)2cS (1 — ¢)?

192 Z J12J23J34J3505(1 - C)2(1 - 2C) 4 32 z J12J34J45J5365(1 - 0)3
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+ 96 Jia(J34)? Jasc®(1 = ¢)*(1 — 2¢) + 48 ) J12J23(Jas)?c*(1 — ¢)®
+ 192 Ji2JasJsadasc® (1= ¢)* + 16 Y JiaJ13J1aJ15¢%(1 — ¢)(1 — 6c + 6¢2)
+ 96> (J12)*JasJ2ac® (1 — ¢)*(1 — 6c + 6¢%) + 48 Y J1pJos JaaJaac*(1 — ¢)*
+ 96 J1a(J23)? Jaac* (1 — €)*(1 — 2¢) + 192 JiaJas Jaa Jaoc* (1 — ¢)*(1 — 2¢)
+ 192 (J12)?JasJzact (1 — )*(1 = 2¢) 4+ 12 ) (J12)?(J34)%c*(1 — ¢)*

+ 16 (J12)*Jaac* (1 — )*(1 = 26)° 4+ 96 Y (J12)* Tz Js1 P (1 — €)*(1 — 2¢)?
+ 483 (J12)*(Jas)?e® (1 — 6)*(1 — 6c + 6¢2)

+ 963 (J12)*Jasc®(1 — ¢)(1 — 2¢)(1 — 6c+ 6c°)

+ 83 ()t (1 — (1~ 6+ 62%)],

where = and =y are the partition function of the interacting and non-interacting sys-

tem respectively and c is the average particle density in the non-interacting system,
defined by
1
c= —r.
e~Fr+1

& m

Then = is expresséd by summation of only linked clusters in the exponent as follows,

exp [-—ﬁz Ji;c? + -21—’ (g) [42 J,'J'Jjgcs(l —c)+2 Z(Jij)zcz(l — C)z]
— %- (g—) [8 z J12J13J14C4(1 - C)(l — 26) -+ 242 J12J23J34C4(1 —_ 0)2

+ 83 JiadosJnc® (1 — )’ + 24> J1a(Jas) (1 — ¢)*(1 — 2¢)

+ 43 ()% — 0)*(1 - 2¢)7]

_I_

1 4
-LF (g) [1922 J12J23J34J3565(1 - 6)2(1 - 20)

+ 192 E J12J23J34J4565(1 — C)3 + 16 Z J12J13J14J1565(1 - C)(]. —6¢c+ 602)
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96 > (J12)? a3 Jasc®(1 — ¢)*(1 — 6c + 6¢%) + 48 3 JiaJas Jae Jarc*(1 — ¢)*
96> J1a(J23)? Jaact (1 — €)?(1 = 2¢)* + 192 JioJas J3e Jaac* (1 — ¢)*(1 — 2¢)
192> (J12)* JasJaac* (1 — )*(1 = 2¢) + 96 D (J12)? a3 J51 % (1 = ¢)*(1 - 2¢)?
483 (J12)%(J23)?c*(1 = ¢)*(1 — 6¢c + 6c°)

64> (J12)3Josc®(1 — ¢)(1 — 2¢)(1 — 6c + 6¢%)

8 S (J12)*c*(1 — ¢)*(1 - 6c + 6c2)]] .

As in the partition function, the coverage 8 and the correlation function can be

expanded up to the 3rd order as

6

and

I

(n:)

c—= B3 Ja?(1—c) + % (-’i—)z 83 JaJnc®(1 = o)

43 JaJoc® (1= e)(1 = 20) + 43 ()22 (1 = ¢)*(1 — 2¢)]

% (5)3 243" T iac® (1 — )3 (1— 2¢) + 48 Y JaJ1aTasc*(1 — ¢)
48> JiJindosc (1 — ¢)*(1 — 2¢) + 24 > JiJ1aJ1ac* (1 — ¢)*(1 — 20)

8 JuJiaJisc* (1 —¢)(1 — 6c + 6c%) + 24> (Ji)? J12c®(1 — ¢)*(1 = 2¢)?
24 " (Ji1)?Jiac® (1 — €)*(1 — 6c + 6¢%) + 24> Jia(J12)*c* (1 — ¢)*(1 — 2¢)

8> (Ja)*c(1 — ¢)*(1 — 2¢)(1 — 6c + 6c%)]

(nin;) = ¢ — (-g) [4‘2 Jac(T—c)+ 2> Jyc*(1— 0)2]

+ S (g) [82 JiaJoc*(1—c)(1—2c) + 4> JuJac*(1—c)?
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+ 83 JaJiyd(1—c)® +16J; Y Juc®(1—¢)*(1 = 2¢)
+ 16 Judiac*(1—c)* + 8> J3*(1 — )*(1 — 2c)

+ 4J3(1 - (1 - 20)?)
3
1/(8
+ E«;—I (_2—) [482 J£21Ji264(1 - 0)3(1 - 26) + 96 Z J,'1J12J2305(1 —_ c)s
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-+

48" JuJiaJijct (1 — ¢)*(1 — 2¢) + 48 ) J3 Juac* (1 — ¢)*(1 — 6c + 6¢7)
483" JA Jiact (1= ¢)*(1 — 2¢)* + 96 ) JinJ1aJisc®(1 — ¢)*(1 — 2c¢)

96> JinJizJa;c® (1 —¢)® + 48 JinJiaJ1ac®(1 — ¢)?(1 — 2c¢)

48723 Jac®(1— c)?(1 — 2¢)(1 — 6c + 6¢%) + 48 ) Jiy Jij Jajc* (1 — ¢)*(1 — 2¢)?
16> JiJipJisc®(1 — ¢)(1 — 6c + 6¢%) + 48 Y Jin JiaJa;¢*(1 — ¢)(1 — 2¢)

483" JudiaJoict (L= ¢)* + 48> JiJ1;¢* (1 — ¢)*(1 — 2¢)?

48J:; Y JAC*(1 = ¢)*(1 — 6+ 6¢%) + 48> JiJipc* (1 — ¢)*(1 — 2¢)

+ + + o+ o+ o+ o+ o+

48" JidinJiact (1= ¢)*(1 = 2¢) + 48J;; Y Jin ;¢ (1 — €)*(1 — 2¢)?

163 J5(1 = €)% (1~ 20)(1 — 6 + 6¢2) + 8J3 D" c2(1 — ¢)*(1 — bc + 6¢%)?] .

-+

Thus assuming that the coverage is small, one can be the following series for the

correlation function from the result of the high temperature expansion.

4 .
NNy = 0% — 2J;,0° + 3 J k)Ze kgl 4 92 g2
tm

8 -1 -t
—NEJ (k)% krtme‘* + kgkj J(k)J(K')J (k — k)~ *xemg®
8

N

——]%J,m Z J(k)2e™kTimg3 _ §Jlm92 +

%Jlm92+ _Z’](k 4 —ikerem, 95 _']lmz'] 3 —zk r4m94

T Z J(k)?etkremp?
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N2 Z J(k)?J(K')J(k — k')e Kk Tem gt

kk’
+ 163 Z J(k)‘](kl)‘](k”)‘](k + kK + k")e_i(k+k'+k")'rzm g3
3N kk!k
— Z J(k)?J(k')2e k=KD Tem g3
N kk'
YT Z J k+ k’)z (k)](k’) —ik'' v, 94
N kk'
> sz S J(K)I(K) T (k + k) RAK)ITem g2
N kk!
+§g S I IE I (k + K + K)o g
kkk
=5 E J(k)J(K')J (k + k)2~ kFK)Temge
N kk’

where J(k) is a Fourier transform of J,,, and its inverse transformation is defined
by

1 —idor
S D

k

7
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