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0. Introduction. The present paper is the latter one of twin papers on
invariant linear differential operators of Grassmann manifolds. In the former
one [9] we determined and clarified the structure of the algebra D(SG, ,-,(R)) of
invariant linear differential operators on the Grassmann manifold SG, ,-,(R) of
oriented 2-planes in R™*! by exhibiting a set of generators with their simultane-
ous eigenspace decompositions.

The complex Grassmann manifold G, ,-,(C) defined as the totality of complex
2-planes passing through the origin of C**!, is known to be a symmetric space
of rank 2. Hence, the algebra D(G, ,-,(C)) of invariant linear differential ope-
rators acting on C*=(G,,,-,(C), R) is generated by two differential operators,
where C=(M, K) denotes the algebra of K-valued C*-functions defined on a
complex manifold M and K denotes either the real number field R or the com-
plex number field C.

The aim of the present paper lies, as in [9], in exhibiting a simultaneous
eigenspace decomposition of an explicit set of generators Ag and Af of the al-
gebra (G, u-1(C))-

Define

S*(P,C)): = bEPS*”(P,,(C)) (direct sum),
SHPC)): = JSAPLC))  (direct sum),
S*(P,(C)): = 33 SH(P(C)) (direct sum),

where S#!(P,(C)) is the C~(P,(C), C)-module of complex (contravariant) sym-
metric tensor fields of bidegree (k,/) on the complex projective space P,(C).
S*¥(P,(C)) is a bigraded algebra over C*(P,(C),C). We obtained in [8] the
following about the complex projecitve space (P,(C), g,) with prescribed stand-
ard Riemannian mteric g,:

(1) The eigenspace decomposition of A, restricted to K**(P,(C), g,) is given,
Where A, is the Lichnerowicz operator acting on S**(P,(C)) and K**(P,(C), g,)
is the bigraded C-subalgebra of S**(P,(C)) defined as
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K**(Pn(c)sgo) = kEOKk'l(Pn(C)) go) 1)

where K*I(P,(C), go)=S"(P,(C)) N K(P,(C), &) for p=Fk-+1 and K*(P,(C), o)
is the C-submodule in S?(P,(C)) linearly generated by the totality of p-th sym-
metric tensor products of Killing vector fields on (P,(C), g,).

(2) Denote by A¢ the Laplace-Beltrami operator on (G, ,-,(C), £,), where
&1 is the standard metric on &, ,-,(C). Then Ag is related to the Lichnerowicz
operator A, through the Radon transform

A : S*¥K(P,(C))—>C=(G,,,-1(C))
by the formula:
(Af)" = AgE"

for EES*¥(P,(C)).

(3) The eigenspace decomposition in (1) is transferred to that of Ag by
means of the Radon transform.

In the present paper a new differential operator A; on S**(P,(C)) with
properties analogous to (1), (2) and (3) above is constructed. Especially, it is
shown that Aj togeher with Al generates the algebra D(G, ,-,(C)). In the
section 1 we recall the results obtained in [8] with some improvements. A, is
defined at the end of the section 1. In the section 2 the eigenspace decomposi-
tion of A, restricted to K*¥(P,(C), g,) is obtained. Ag and Al together with
their simultaneous eigenspace decomposition are studied in the section 3.

1. Fundamental operators. Let M be a complex manifold of complex
dimension #. Denote by E?(M) the C*(M, C)-module of complex linear dif-
ferential operators of order at most p. Put

EXM): = U E\M).

E*(M) will be abbreviated as E(M).

Let S*!(M) be the C=(M, C)-module of complex symmetric tensor fields
of bidegree (k, /) on M.

Define

S?(M) :=k§l:.;pS""(M) (direct sum),
S*(M): = Eo S?(M) (direct sum),
S**(M) :=HEZOS”"(M) (direct sum) .

S**(M) is a bigraded C*=(M, C)-algebra.
Denote the symbol operator of degree p by

o?: B*(M)> D o*(D)ESY (M),
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where o?(D) is the symbol tensor field of D.
Let

i E?Y(M)—E*(M)

be the canonical injection. Then we obtain a short exact sequence of C*(M, C)-
modules:

¥4
0 > E*-YM) 2 B M) S sH(M) - 0.
Put
L¥HM) := U LYM),
=31

where we set
E™* (M) for ¢g=—1,

Lq(M)‘:{ {0y for g=—2.

L*(M) is not only a filtered associative algebra over C with respect to the product
of operators, it is a filtered Lie algebra over C (cf. [8]) for the bracket product
[Dy, D,]:=D,D,—D,D,. In fact we have

[E*(M), E‘(M)]C E*™ (M) .

S*(M) is canonically C-isomorphic to the associated graded Lie algebra
Gr(L*(M)):

S*(M)= é}) EY(M)/E**M) (direct sum)
- Z‘;‘;{ LY(M)/L*~Y(M) (direct sum) = Gr(L*(M)),

as S’ (M)=E?*'(M)/E?"*(M) for p=0. Hence, the bracket product in S*(M)
inherited from that of L*(M) through the isomorphism S*(M)==Gr(L*(M)) is
given by

[E’ 77] = a.))+q—l[Dh Dz] ’

where D, € E?*(M) and D,E€ E?(M) are chosen so that £=g?(D;) and n=0c"(D,).
For a compact Kahlerian manifold (M, g), S*!(M) is equipped with a posi-
tive definite Hermitian inner product defined by

(L.1) (8 m) = k1 1L [ <& n> do for £, neS™(M),

where {, > is the pointwise inner product associated with the metric g and
do is the canonical volume element.

Let P=P(M, G) be a differentiable principal bundle on a differentiable
manifold M with Lie group G as its fibre. Let E°(P) be the totality of G-invari-
ant complex linear differential operators on P. [EC¢(P) is a C-subalgebra of
E(P) if we regard E(P) as an algebra over C.
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Lemma 1.1. (cf. [5] and [7]).
E(M)=E“P)J,

where J is the two-sided ideal in ES(P) generated by G-invariant vertical vector fields
on P.
Applying Lemma 1.1 to the Hopf fibering

@: S*1-P,(C)
with fibre S, we obtain an isomorphism
(1.2) wg: BS(S*)|J=E(P,C)),

where J is as in Lemma 1.1 the two-sided ideal in ES'(S?**!) generated by S'-
invariant vertical vector fields.

Lemma 1.2 ([6]). Let M; (i=1,2) be differentiable manifolds. There are
subalgebras E(M,) (i=1, 2) of E(M, X M,) canonically isomorphic to E(M,) re-
spectively, each one of which is the centralizer of the other in E(M,X M,).

Let

(1.3) 02 S C*H{0}

be the canonical imbedding whose image is the unit sphere: {z=(2", 2, -+, 2") €
C**1- {0} | »=1}, where P=3"_, 2°Z°.

C"*1-{0} can be regarded as a product bundle on S**! with R as its fibre.
Thus as an application of Lemma 1.2, the existence of

E(S*) := {DeE(C**-{0})|[D, *] = 0 and [D, 8/8(r*)] = 0}
as a subalgebra of E(C"*'-{0}) and of an isomorphism
7: E(S™)— E’( S+t

is assured.
Connecting 7y in (1.2) with ¢ above, we obtain an isomorphism

(1.4) z': B(P,(C))—E'(P,(C))/(7),

where E'(P,(C)) is a subalgebra of E(S?**!) defined as the image of ES'(P,(C))
by the isomorphism z. Here () is a two-sided ideal in E'(P,(C)) defined as
the image of Jin (1.2) by z. () is generated by the S'-invariant vertical vector
field:

7= \/:—l—(g'—f)EET(Pn(C)) ’
where §{=31;., 2°0/02" and £=31}., 2°0/0z" [8]. Here we have
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E(P,(0) = U (EV(P,(C))
with
(EV(PAC) = BAC™-{0}) NE'(P,(C)).

Notice that 7' is an infinitensimal generator of the S*-action of isometries
on S™*! given by the multiplication of z=C with |z|=1.
Put
(S)(PA(C)) := *(E"P(P,(C)),
(SH*(Py(C)) := é‘,o a?(E"?(P,(C)) (direct sum).

Then we have an isomorphism

(1.5) 7, S¥(Py(C)) = (S)X(Pu(C))/(7)s ,

where (7), is the two-sided ideal in (S")*(P,(C)) generated by
7= V=1¢~E)ESN(PL(C))

with §,=31_, 2°0/02° and &,=311., 2°0/0Z".

ReEMARK. When we regard an element {&(E")(P,(C)) as an element of
(S (P,(C)), we distinguish it from & just by putting a subscript s as &, above.
We need such a distinction specifically in (3) and (4) of Definition 1.3.

A representative in E'(P,(C)) of DEE(P,(C)) under the identification
(1.4) will be denoted by D' in the following. Similarly, a representative in
(SY*(P,(C)) of EES*(P,(C)) will be denoted by &'.

Lemma 1.3. E£&S*(C*"*'-{0}) belongs to (S")*(P,(C)) if and only if
[£,7"]=0,[58]=0, [£8]=0.
Proof. This is obvious from the construction of (S")*(P,(C)). Q.E.D.
DeriniTION 1.1, Define
(S)**(P(C)) := 31 (ST)"(P(C)) NS*(C™*1-{0}) (direct sum).
Lemma 1.4. There is a canonical isomorphism ¢ of the bigraded algebras
b: (8T)**(P,(C))— S**(P,(C))

where the map ¢ is the restriction of the inverse of the isomorphism =! in (1.5) to
(SY**(P,(C)).
Proof. Both of the surjectivity and the triviality of the kernel of ¢ are

proved in [8; Lemma 1.3].
QE.D.
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From now on, every £ESH{(C*'-{0}) with components E% %1% e
C=(C**'-{0} ) will be identified with a function on the cotangent bundle T*%(C**!-
{0}):

1 aya, BB N
(1.6) E= T S ECrosbyb, Wa, " Wa Wy, W,
where w;s(0=<i<n) together with @ s(0=<j=<mn) are regarded as the current
coordinates in

TXC"-{0} ), = {go (w,d2;| o0+ W A% | ¢,0)}

where T*(C"*'-{0}), 5 is the cotangent space at (2, Z) €C"*'-{0}. Namely, we
regard a contravariant symmetric tensor field of bidegree (%, /) as a homogeneous
polynomial of bidegree (&, /) with respect to the variables @;’s and @ ’s.

Denote by EV'(C”“- {0}) the set of all linear differential operators of 4(n+1)
variables 2°, +-+, 2", 2°, -++, 2", wy, ++*, W, Wy, ***, W,, the coefficients of which are
C> with respect to the variables 2’ s and z”’s on C**-{0} and are homogeneous
polynomials with respect to the variables w;’s and @;’s (0=<4,j<n). An element
of EV(C”“- {0} ) can be regarded as a linear differential operator acting on S*(C**-
{0}) in virtue of the identification (1.6).

We also remark that E(C**-{0})C E(C*+-{0}).

Exampres. §, and &, in (1.4) and 7! in (1.5) are reexpressed as follows:

Z;i = Enoza‘wa) fa = Z;';’gawa
and
=—1 (io z“w,—gnoé“w,) .

Lemma 1.5. (1) &&(S)*/(C**'-{0}) belongs to (S")*!(P,(C)) if and only if
(i) X%-0Z0E[0w,=0, (i) 33i.02°0§/0w,=0,
(ifl) S0 2°0F/02°=RE,  (iv) S)i.o 2°0E[02°=IE.

(2) If Ee(SH*(P,(C)), then we have necessarily

2 w, 00w, — kE z‘. w,0E[0w, = IE .

Proof. (1) (i)~(iv) follow from Lemma 1.3 if ¢€(S"*!(P,(C)). In vir-
tue of (1.6) we can regard £ E(S")*!(P,(C)) as a homogeneous function of homo-
geneous degree k and [ with respect to the variables w and w, respectively. The
two identities in (2) follow from this fact by Euler’s theorem. Q.E.D.

DErFINITION 1.2. (1) Denote by I the left ideal in E(C**'-{0}) generated
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by the following four linear differential operators:
() §—iaow,0/0m,, (i) §—i.,w,0/0mw,,
(iii) (1/7%) 302-02°0/0w,,  (iv) (1/r*) X%, 2*0/0w,.

(2) We denote by E%(P,,(C)) the normalizer of I in EV'(C”“- {0}) viewed
as a Lie algebra, i.e.,

EO(P,(C)) = {D|[D, ¥]c 1}.

Lemma 1.6. DEE(C*'-{0}) preserves (S')**(P,(C)) if and only if DE
EO(P,(C)).

Proof. The assertion is obtained by expressing Lemma 1.5 (1) in terms

of EO(P,(C)). QED.
Put

I, := EOo(P,(C))NT.
Then I, is easily proved to be a two-sided ideal in Eé(P,,(C)) and
EO(P,(C)) := EO(P,(C))],
is regarded as an algebra of linear differential operators acting on S**(P,(C)).

DrriNITION 1.3. Put
(1) (T*)':=2300 -0 (r*8,—2°2)w, w0, ,
(2) T':=(1/2r%) X% 3 /0w,0w, ,
(3) (0% :=2r" X0 w,0/02°+25(£—0),
4 @% =200 w,0/02°—2E,(5—F),
(5) 9" := —1i-0 0%/82"0w, —}.o(E,/r}) 0% 0w 0w, ,
(6) 0':= —1i.0 08%/0z°0w,— X5 -0(8,/r?)0% 0w, 0w, ,
(7) k45 := \/—1(2°0/02"—20/02°%) ,
(8) 44 := /—1(2°0/02"—2"0/0Z°+w"0 /0w’ —w"0/0w") ,
where 0=a, b=n.
Lemma 1.7. (1) (T*)' is an element of E’B(P,,(C)) N(SHY(P,(C)). T,
(0%)', (3%)', 8", 3", & and T are element of EO(P,(C)),
(2) K44 1s an elememt of E’B(P,,(C)) nEY(P,C)),
(3) k5 s an element of E’Z(P,,(C)),
where 0=a, b=<n.

Proof. (1) These properties can be verified immediately. (2) is an im-
mediate consequence of Lemma 1.5 (1). (3) is verified by examining the bracket

products of i, ; with the four generators of I, respectively. Q.E.D.
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Denote by «¥, and ¥, the adjoint operator of «,, with respect to the
Hermitian inner product defined on C~(P,(C)) and the adjoint operator of &, ;
with respect to the canonical Hermitian inner product defined on (S")*¥(P,(C)),
respectively.

Lemma 1.8.
(1) /Cf_,,:—/c,,’,, and (2) l‘éf_br——l\éb'a.

Proof. These follow immediately from their definitions, respectively.

Q.E.D.
Lemma 1.9. (1) 7' can be expressed as follows :
(2) Each of &, 1(0=a, b=n, a=b) satisfies

[’ca,b; ET] = ’\én,b(ft)

for E'&€(SNY*(P,(C)), where the bracket in the left-hand side is the bracket product
in (S)¥(P(C)).

(3) Put
Fim D,
a=0
Then
reEOP,(C)NI.
Proof. This can be verified immediately. Q.E.D.

DrFiNITION 1.4. (1) Define AjE(E"(P,(C)) by
Al = 5"3 “ib"a,b‘i‘ 2” l‘a,blcf,b .
a,b=0 a,b=0
(2) Define A€ EO(P,(C)) by

n ”
1- v v \A A
A= >} ’C:zk.b"a,b'{“ > "a,b"f.b .
a,b=0 a,6=0

Lemma 1.10. (1) A}in Definition 1.4(1) is a representative in E'(P,(C))
modulo (7) of the Laplace-Beltrami operator A, on (P,(C), g).

(2) Al in Definition 1.4 (2) is a representative in ]’Z'Z(P,,(C)) modulo I:, of
the Lichnerowicz operator A, acting on (S")**(P,(C)) (cf. [8] pp. 123~129 for the
definition of the Lichnerowicz operator).

Proof. (1) By a direct calcluation we have
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” n ”
2 ’cz‘,k"a,b'}' 2 Ka,b"z‘.b == _‘4' 2 (1'28"”——2“2”)6"’/62"65”
a,b=0 a,b=0 a,b=0

+2n % 2°0[02°+2n bE:o 2°0/62"—2(7')? .

This operator satisfies the following three conditions:

(i) its symbol tensor field coincides with —g} modulo (7),; (ii) it is a
selfadjoint linear differential operator; (iii) it annihilates constant functions.
Such an operator must be a representative of the Laplace-Beltrami operator.

(2) A representative AEE%(P,,(C)) of the Lichnerowicz operator A, is
given by (c.f. [8] Lemma 2.13)

[8", (8*)T+4{(+T) (n—1)+-2L2++202—2LE} —8T*T,

where (8%)":=(9%*)'+(0*)" and 8':=8'4+3" are representatives of 8*:=08%{-5%*
resp. 8:=0-+0. (Compare with [8] pp. 137~139 for the representatives of A,,
&*, and 8, where representatives of these operators are treated in a slightly dif-
ferent manner from the present paper). By direct calculations we can verify

n
Al = >3 (1F kg 3414 3% ) modulo I, .
a,b=0

Q.E.D.

DrrinITION 1.5.  Define
(1) an endomorphism S of bidegree (—1, —1) on the bigraded algebra

(S)**(P,(C)) by
S = AJT Ny g1 THH6(TH) (T2 — B T*(3%)!4-(8%)! T"8"
on (S")¥(P,(C)), where in general
Mnim = 4(2k—m)nt- 3R PP — 2k1—(m+-1) (k+1) -+ m?+-2m}
for k,I,m=0, (k, I, mEZ),
(2) BE :=4m(m+-1)(T*)'+2(0)*@")* for m=1 (meZ),
() 4% := 7% BH(TY" (Af=id) for m21 (mEZ).

DeriniTION 1.6. (1) (K")*(P,(C), g,) is the graded C-subalgebra of
(SH*(P,(C)) generated by «,; (0=a, b=n), i.e.,

(E*(P,(C), go) := g(K*)’(P,,(C), g0 (direct sum),

where
(K(Py(C), £0) := (K')¥(Pu(C), £) N (S (P,(C)) .

(2) Define
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(K")*¥(P,(C), &) =33 (K)"(P,(C), g) (direct sum),
where

(K*H(PW(C), &) 1= (K (P,(C), 8) N (S")*(P,(C)) .
(K"**(P,(C), g,) is a bigraded C-subalgebra of (S")**(P,(C)) .

Theorem 1.1. ([8] p. 136) (1) We have

(K?)k'l(Pn(c)’ go) = {0}
for k1.

(2) (KN**(P,(C),go) is generated by Ky ., (KVY(P,(C),8) (0=a,b,c,d
=n), where

K 5 = 2°0/02"—2'3/02° ,
Kz 4 1= 20/02°—2°9/02",
Kap,ca += Kg,alKp c—Kg, Kb, d=—Kg,5Kz,d -

DeriniTION 1.7. (1) Denote by (T*)) the restriction of (T*)' to (K')**
(P,(C), g). Notice that (T*)} preserves (K")**(P,(C), g).

(2) Denote the image of (T*)§ by Im (T*)§ (C(K")**(P,(C), g,)) and de-
note the orthogonal complement of Im (T%*)) in (K')**(P,(C), g,) by P**(P,
(C), go)-

Thus we have

(K')**(P,(C), g0) = Im(T*);@P**(P,(C), &) »

and P**¥(P,(C), g,) has a bigradation:

©o

P**(P,(C), g0) =hg PH(P,(C), g,) (direct sum),
where

PH(P,(C), &) := P**(P,(C), g) N (K" (P,(C), &) -

Lemma 1.11. ([8] p. 147, Lemma 4.2.) (1) The endomorphism S leaves
(K")**(P,(C), g,) invariant.

(2) A¥(k=0) also leaves (K")**(P,(C), g) invariant.

Denote the canonical projection by

Ho: (KT)**(Pn(C)’ gO) - P**(P”(C), go) .
II, can be proved to be commutative with A,,.

Put
% 1= ILA% (m=0).
C¥’s satisfy
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AlCE— ,,.C*+( +1)2 Chir=0(kZm+1>m=0)

on (Kt)k'k(Pn(C)) gO)a
where Ny mi=nNs s w=4{(2k—m)n—+2k*—2(m~+1)k+m*+2m} .
DrerFiNITION 1.8. (1) Define an operator
nt-2k—2m—2 & (=1)"(n-+2k—i—m—3)!
m! (n+-2k—m—2)! i== 25(31)? (i—m)! e
: K*(P,(C)) — P**(P,(C)) for k=m=0 .

Plt,m =

(2) Denote the image of the map P, , by E;,. Notice that A} preserves
(K')**(P,(C), g)-

Theorem 1.2. (c.f. [8]) Let k and m be as in Definition 1.8, then
(1) AOPk,;n:)\'k,mPk,m on (Kf)k'k(Pn(C)’ gﬂ)
(2) Each E, ,, is non-trivial under the assumpiton n=3.
(3) We have direct sum decompositions :

(KHP,(C), 20) = 33 (T*)) P++HP,(C), £,)
and
Pk’k(Pn(C)’ gO) = mz:‘lth,m »

(1)~(3) yield the eigenspace decomposition of the restriction of A} on (K')**(P,
(©); &)-

DENINITION 1.9. Define
(1) Diupes := 5 2% 1.5.8m0 48K, i s EEO(P, (C’))

(2) Al:i=4 3 s.c.dm0 (DabcdDabcd+DabcdDabcd)CEO( P,(C)).
(3) The linear differential operator on S**(P,(C)) corresponding to A] is

denoted by A;.
Theorem 1.3.
(1) [#a5 A=0. (2) [kas, Al]=0.
Proof. These identities follow easily from their definitions. Q.E.D.
Theorem 1.4. Al and A] commute with the operators introduced in De-
finition 13 as follows :

(1) [(T*,Al=0, (2) [T, A]]=0,
(3) [(@%),A]=0, (9 [0 A]]=0,
(5) [@%),Al=0, (6) [8',A]]=0,
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(=0, 1).
Proof. From Definition 1.3 we obtain these formulae immediately (cf. [8]
pp. 54~55 and p. 59). Q.E.D.

2. The simultaneous eigenspace decomposition of A, and A, on
K**(P,(C), 8). In this section we assume n+1=4, where # is the complex
dimension of P,(C).

Theorem 2.1. Al can be expressed as follows :

Al = —2(T*) T'Ajr+(pn+-2H—2p) A—8(T*) (T
_2(T*)T(aTaT_l__aTaY)_2((6*)7(6*)T+(5*)?(6*)7)1‘7_
2(n+21—2)(0%*)'0"—2(n+2k—2)(3%*)'0"+-8((p—2)n+k?
+P—3p+4)(T*)'T"—4k(n+1—2) ((k—1)n-+K?
P—kl—2k+1)—4l(n+k—2) (({—1)n+ R+ P—kI—2]+1)

(p=Ek+1) on (SY(P,(C), g)-
Proof. From the definition of A} in 1 and Definition 1.3 we can obtain the

required relation by direct calculations. Q.E.D.

Corollary. Restricting the action of A] to (S")**P,(C)), we obtain the
reduced form of Theorem 2.1 :

A, = —2(T*)' T A} 2k(n+2k—2) A —8((T*)NX(T")*—
2(T*)(@'9'+018)) —2((0%)/(6*) +(8%/(@*))T —
2(n-t2k—2)((8%)'0'— (3%)'(@))+ 16(k— 1) (n-+-k—2) (T*)!T"

—8k(n+k—2)(k—1)(n+k—1) .
Lemma 2.1 A] and S satisfy
Al+4(T*)'S = 2(k+1) (n+k—1)A] —8k(n+k—1) (k+1)(n+k)
—2(n-+2k—1)(8'(0%)'+(8)'(6%))—2((8*)'T (8*)'
+@*)'T'@*))  on (8)H(Py(C), 8) -

Proof. From Definition 1.5 (1), we can express (T*)'S in terms of fun-
damental operators. Eliminating the first term of the right-hand side in the
formula in Theorem 2.1, we obtain the required relation. Q.E.D.

Theorem 2.2. We have
k
Al = Eol"k,mpk,m

as the eigenspace decomposition of Al restricted to (K'Y*(P,(C), g,), where py w=



GRaSsMANN MANIFOLD G, ,-1(C) 93

8(k—m) (k+1)(n+k+1)(n+k—m—2).
Proof. Restricting A] on E, ,,, we obtain in virtue of Lemma 2.1

Al = 2(k+1)(n+k—1) {A]— 4k(n+k)}
= 2(k+1)(n-+-k—1) {42k —m)n-+ 28— 2(m~+-1)k+m?+ 2m—4k(n+E)},

which coincides with the desired value s . Q.E.D.

3. The Radon transform and D(G.,—;(C)). In this section we also as-
sume #+1=4. Denote by W,(C**!) the Stiefel manifold of all 2-frames in C**!
and denote by V,(C**!) the submanifold of W,(C"*!) defined as the totality of
orthonormal 2-frames with respect to the standard Hermitian metric g on C**%.
V,(C™*) is identified with a homogeneous space:

Umn+1)/Un—1).
Denote by G, ,-1(C) the Grassmann manifold of all complex 2-planes pas-

sing through the origin of C**'. As is well known, G,,-,(C) is identified with a
homogeneous space

Un+1)/Un—1)x U(2) .

V,(C**') can be regarded as a principal bundle on the complex Grassmann
manifold &, ,-,(C) with structure group U(2), where the projection 7y is defined
canonically.

Applying Lemma 1.1 to the principal bundle

wy: V(€™ — @G,,,-, (C)
with U(2) as its fibre, we obtain an isomorphism:
G-y E(G,,,-(C))=E"(V,(C*) T,

where J is the two-sided ideal in EV®(V,(C"*')) generated by U(2)-invariant
vertical vector fields. On the other hand, there is a polar decomposition of
the Stiefel manifold W,(C**'):

(3.2) WAC)=H X VC™),

where H7% is the space of positive definite 2 x 2 Hermitian matrices [8]. Denote
by my: Wy(C*"*')—V,(C**") the canonical projection to the second factor of
(3.2).

Put pZg :=<a,, 9>, where 0=a, B=1, g=(2, 1) EW,(C*) and <, >
denotes the pointwise inner product as introduced in (1.1). The positive defi-
nite square root matrix (p,,g) of (pZg) is called the radial part of ¢, which can
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be regarded as the H3 part of ¢ in the polar decomposition (3.2). In virtue of
Lemma 1.2 the polar decomposition (3.2) assures the existence of two subal-
gebras, each one of which is the centralizer of the other in E(W,(C"*')) and the
second one of which is canonically isomorphic to E(V,(C**')). Thus a linear
differential operator D&€ E(V,(C"*")) can be represented by a linear differential
operator D' € E(W,(C**")) satisfying

0

2
(7

The totality of such operators in E(W,(C"*")) is designated as E"(V,(C**")).
Similarly, we have an isomorphism:

G-Dw E(Gy,u-1(C)) =(E"O)(V(C™)IT,

where (EY®)"(V,(C**)) is the subalgebra of E™(V,(C**")), which is canonically
isomorphic to EV®(V,(C**')) and J'™ is the ideal in (EV®)"(V,(C**')) corre-
sponding to J in (3.1),.

To an arbitrary element g& W,(C**') corresponds a linear isometric im-
bedding ¢,: (C?-{0}, ¢* g,) — (C***-{0}, g,), where g, is the metric in C**'-{0}
defined as

(3.3) [D", pae] = 0 and [D",

1=0(0=<a, B<1).
B

n==+
0 rzg’

where g is the canonical flat metric in C**! and 7% is as in (1.3).

Let £ be a contravariant tensor field on a Riemannian manifold. We denote
by &* the corresponding covariant tensor field. Conversely, if £ is a covariant
tensor field, we denote by &* the coresponding contravariant tensor field. A con-
travariant symmetric tensor field £ defined on (C**'-{0}, g,) induces a contra-
variant symmetric tensor field ((¢,)*£4)* on (C?-{0}, ¢¥g,) through the above im-
bedding ¢,. Fundamental differential operators of (S')**(Py(C)) will be denoted
by lower index 1, e.g., T4, (8%F).

DEerINITION 3.1.  Define the Radon transform
A (8)**(Py(C)) = C(G,,s-:(C), C)
by
{ (24/Vol(87)) Js2 (T])*((¢g)*(§ )x)*da (k=)
0 (k1)

for £€(SNYH(P,(C)), where T'=rymy(g) for g€ W,(C**') and Vol (S?) is the total
volume of the standard sphere S®. The corresponding map

)@=

A : S¥K(P,(C)) = €=(G,,-1(C), C)

is also called the Radon transform.
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Notice that behind the naturality of such a definition of the Radon trans-
form lies a fact that the Hopf fibering @ in (1.2) is a Riemannian submersion.

Let p=(py, P1) EV,(C**'). Put PP=pipl—pipi, where p,=31i.0 pae, for
a fixed orthonormal basis (e, -+, e,) in (C**!, g,). We can easily verify that
Ez,b-o Pabpabzz.

{P*|0=<a, b<mn, a=+b} determined by a frame pEV,(C*") is called a sys-
tem of normalized Plilcker coordinates of the 2-plane spanned by the frame p.

Theorem 3.1. (1) The image of (K'")**(P,(C),g,) by the Radon trans-
form is the subalgebra of C=(G, ,-,(C),(C) generated by the totality of products
PP (0<a<b=n and 0=c<<d=n). It is uniformly dense in C=(G,,,-(C),C).

(2) The kernel of the Radon transform restricted to K**(P,(C),g,) is the
ideal generated by gf[2—1.

Proof. Both of (1) and (2) were proved in [8] as the basic properties of
the Radon transform (cf. p. 150~p. 153 in [8]). Q.E.D.

DEerINITION 3.2. Define

(1) whap 2= /—1(¢60/095—7:0/0g5+410/091 —710/07?)

EEI( Wz(cﬂ'l“l)).
(2) "’A{)\ = E:.b—o w;éa,b wléa,b_’_zz,b-o w’?"a,b w’ea_b EEZ(WZ(C”'H)),
1 R R
() Diea := 55 X%, 1.0.8m0 Ok whe, 7 whig,ne
1
@) WA 1= 47 24 c0m0 {D5ea)*Dseat Divea(Disea
S B (WL(C").

Lemma 3.1. %, ,(0<a<6=n) and ,A}i=0,1) belong to (EU®)"
(VAC*™) and each of them is a representative of some linear differential opera-
tor in E(G,,,-,(C)).

Proof. We can verify by routine calculations that these operators satisfy
the equations (3.3) . Moreover, these operators can be proved to be GL(2, C)-
invariant by direct caluclations. Thus our second assertions follow from (3.1).

Q.E.D.

DerINITION 3.3. Denote by #,,(0<a<b=n) and A?(=0.1) the linear
differential operators belonginsg to E(G,,-,(C)) whose representatives in
E(W,(C"*Y) are ,#, 5 and ,A7 (=0, 1), respectively. Denote by g, the canonical
U(n-1)-invariant metric on G, ,-,(C).

Notice that

(1) #,5 is a Killing vector field on (G;,-,(C), g). (2) A¢ is the Laplace-
Beltrami operator on (&3, ,-1(C), £1). In virtue of Lemma 3.1, for (1) it is fuffi-
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cient to show that ,&, ;’s are infinitesimal generators of the action of U(n-1)
on W,(C) and this can be immediately chekced. The second proof of them
to be Killing is obtained in conjunction with (2) as follows: ,Ag is expressed
explicitly as

1 ”

WA = —4 3] (8 —7294(p%)*?)p3:0°/075943

®,6,7,5=0 a,6=0

™,

1

2n 33 31 (¢20/005+-20/073)

where ((p%)*) is the inverse matrix of (pZg). ,A¢ can be proved to be a represen-
tative of the Laplacian on (G, ,-,(C)), g;), for the proof of which we refer to
Lemma 3.4 of [8]. A vector field on a Riemannian manifold is Killing if and
only if it commutes with the Laplace Beltrami operator (cf. [7]) and we have
[wa,5» A0 1=0 by direct calculation. The second proof of (1) follows from this
fact immediately.

Theorem 3.2. The U(n-+-1)-actions commute with the Radon transform.
Namely,
Ap=p A,

where p, and p, are the natural representation of U(n+1) on (SN)**(P,(C)) and
on C*(@,, ,—1(C), C), respectively.

Proof. This follows from the definition of the Radon transform obviously.
Q.E.D.

Corollary.
/éa.b(ﬂ?)/\ = (’\éa.b’f)/\ ’
where o' E(S")**(P,(C)) is the unique representative of nES**(P,(C)).

Proof. In virtue of Lemma 1.9 (2) our assertion is the infinitesimal version

of Theorem 3.2. Note that the uniqueness of the representative follows from
Lemma 1.4. Q.E.D.

Theorem 3.3. Let o' &(S")**(P,(C)) be a representative of nES**(P,(C))
and (¢")" the Radon transform of w'. Then
(1) (A" = A5 ()"
2) (Am)) = AT ()"

Proof. In virtue of Definition 3.1, Definition 3.2 and Definition 3.3, the
assertions follow from Corollary above. Q.E.D.

DeriNITION 3.4. (1) Denote by Ei s the image of E,, by the Radon
transform.
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(2) Denote by D(G,,,-,(C)) the algebra of the totality of U(n--1)-invariant
differential operators acting on C*(C, ,_,(C), R) [3].

The eigenvalues of Ap and A7 restricted to Ef s coincide with A4, and
1x,m Tespectively. These are direct consequences of Theorem 3.3.

Main theorem. (1) Ag, together with A} generates D(G, ,-,(C)). (2)
Each Epm(k=m=0) is a U(n+1)-irreducible representation subspace of C*(Gy,,-,
(C), R).

Proof. Notice first that A(i=0, 1) preserve C=(G,,,-,(C), R) and they
can be regarded as elements belonging to D(G,, ,-,, (C)).

(1) Itis known that D(G,,,-,(C)) is generated by two invariant linear differ-
ential operators of order 2 and 4, respectively (cf. [3]). It remains to show that
A? (i=1, 2) are algebraically independent over the field of real numbers.

Now suppose that

where f(x,y) is an irreducible real polynomial in two variables. Then we
have

f(A(/)\’ Ai\)g =f(7\'k,m’ l"k,m) =0,
where £ is a non-trivial element of E; ,. Therefore we have
f(xk,nn ll'k,m) = O, kgmzo (k’ m(—EZ) .

We can deduce from this that the left-hand side of the equality above vanishes
as a polynomial of two real variables k and m. By the chain rule, we obtain

axk,m 6f al-’fk,m af _
ok ‘a"x_()\'ﬁ,m’ Mk,m)+ ok ’a-y“()\'k,nn llfk,m) =0 ’
67\4, m all'k,m af

0
a—i(hk,m’ “k.m)_i— (7\'#,1m I"k,m) =0,

om 0y
As we can prove the non-vanishing of the determinant of the coefficient matrix
of the simultaneous euqations above for sufficiently large values of the indices
k and m by direct calculations, we can conclude that there exist k, and m, such
that

af(xk,m ll'k.m) — 0 and af()‘k.m ”‘k.m) -0
T o oy

for k=k, and m=m, This means that the real algebraic curve defined by
f(x,¥)=0 has an infinite number of singular points in virtue of the following
lemma. This is a contradiction.

In ordr to prove (2) we also need the following
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Lemma 3.2. N\ ,=N\p w and py n=pw w if and only if
k=Fk and m=m'.

Proof. Assume that Ay =Ny and py =4’ w,
Put @(2)=t*+4(n—2)t, Then

Aim = Hp(k—m)+k(n+E))

tiim = @k—m)p(k+1) = @(k+1) {4\ n—k(n+R)} .

If we substitute this into

Mrm = 8 ,m’ >

we obtain

(k—F) (n+k+E") 4Ny — p(k+1)—F'(n+k)} = 0.
From this we can verify the assertion. Q.E.D.

Proof of (2) in Main theorem. From Lemma 3.2, E; . is concluded to

be a maximal simultaneous eigenspace with eigenvalue A4, and p;, of Ag and

Al
sult

(1]
[2]

[3]
(4]

(5]
(6]
71

(8]

[9]

respectively. The irreducibility of the space follows from a known re-
(cf. [3])- Q.E.D.
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