

Title	Invariant differential operators on the Grassmann manifold G2,n-1(C)
Author(s)	Sumitomo, Takeshi; Tandai, Kwoichi
Citation	Osaka Journal of Mathematics. 1993, 30(1), p. 81-99
Version Type	VoR
URL	https://doi.org/10.18910/4878
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Sumitomo, T. and Tandai, K. Osaka J. Math. 30 (1993), 81-99

INVARIANT DIFFERENTIAL OPERATORS ON THE GRASSMANN MANIFOLD $G_{2,n-1}(C)$

TAKESHI SUMITOMO AND KWOICHI TANDAI

(Received April 18, 1991)

0. Introduction. The present paper is the latter one of twin papers on invariant linear differential operators of Grassmann manifolds. In the former one [9] we determined and clarified the structure of the algebra $D(SG_{2,n-1}(\mathbf{R}))$ of invariant linear differential operators on the Grassmann manifold $SG_{2,n-1}(\mathbf{R})$ of oriented 2-planes in \mathbf{R}^{n+1} by exhibiting a set of generators with their simultaneous eigenspace decompositions.

The complex Grassmann manifold $G_{2,n-1}(C)$ defined as the totality of complex 2-planes passing through the origin of C^{n+1} , is known to be a symmetric space of rank 2. Hence, the algebra $D(G_{2,n-1}(C))$ of invariant linear differential operators acting on $C^{\infty}(G_{2,n-1}(C), R)$ is generated by two differential operators, where $C^{\infty}(M, K)$ denotes the algebra of K-valued C^{∞} -functions defined on a complex manifold M and K denotes either the real number field R or the complex number field C.

The aim of the present paper lies, as in [9], in exhibiting a simultaneous eigenspace decomposition of an explicit set of generators Δ_0^{\wedge} and Δ_1^{\wedge} of the algebra $D(G_{2,n-1}(C))$.

Define

$$\begin{split} \mathbf{S}^{\boldsymbol{p}}(\boldsymbol{P}_{\boldsymbol{n}}(\boldsymbol{C})) &:= \sum_{k+l=\boldsymbol{p}} \mathbf{S}^{k,l}(\boldsymbol{P}_{\boldsymbol{n}}(\boldsymbol{C})) \quad (\text{direct sum}) ,\\ \mathbf{S}^{\boldsymbol{*}}(\boldsymbol{P}_{\boldsymbol{n}}(\boldsymbol{C})) &:= \sum_{\boldsymbol{p} \geq 0} \mathbf{S}^{\boldsymbol{p}}(\boldsymbol{P}_{\boldsymbol{n}}(\boldsymbol{C})) \quad (\text{direct sum}) ,\\ \mathbf{S}^{\boldsymbol{*}\boldsymbol{*}}(\boldsymbol{P}_{\boldsymbol{n}}(\boldsymbol{C})) &:= \sum_{k,l \geq 0} \mathbf{S}^{k,l}(\boldsymbol{P}_{\boldsymbol{n}}(\boldsymbol{C})) \quad (\text{direct sum}) , \end{split}$$

where $S^{k,l}(P_n(C))$ is the $C^{\infty}(P_n(C), C)$ -module of complex (contravariant) symmetric tensor fields of bidegree (k, l) on the complex projective space $P_n(C)$. $S^{**}(P_n(C))$ is a bigraded algebra over $C^{\infty}(P_n(C), C)$. We obtained in [8] the following about the complex projective space $(P_n(C), g_0)$ with prescribed standard Riemannian metric g_0 :

(1) The eigenspace decomposition of Δ_0 restricted to $K^{**}(P_n(C), g_0)$ is given, Where Δ_0 is the Lichnerowicz operator acting on $S^{**}(P_n(C))$ and $K^{**}(P_n(C), g_0)$ is the bigraded *C*-subalgebra of $S^{**}(P_n(C))$ defined as T. SUMITOMO AND K. TANDAI

$$K^{**}(P_n(C), g_0) = \sum_{k,l \ge 0} K^{k,l}(P_n(C), g_0),$$

where $K^{k,l}(P_n(C), g_0) = S^{k,l}(P_n(C)) \cap K^p(P_n(C), g_0)$ for p=k+l and $K^p(P_n(C), g_0)$ is the *C*-submodule in $S^p(P_n(C))$ linearly generated by the totality of *p*-th symmetric tensor products of Killing vector fields on $(P_n(C), g_0)$.

(2) Denote by Δ_0^{\wedge} the Laplace-Beltrami operator on $(G_{2,n-1}(C), g_1)$, where g_1 is the standard metric on $G_{2,n-1}(C)$. Then Δ_0^{\wedge} is related to the Lichnerowicz operator Δ_0 through the Radon transform

$$\wedge: S^{**}(P_n(C)) \rightarrow C^{\infty}(G_{2,n-1}(C))$$

by the formula:

$$(\Delta_0 \xi)^{\wedge} = \Delta_0^{\wedge} \xi^{\wedge}$$

for $\xi \in S^{**}(P_n(C))$.

(3) The eigenspace decomposition in (1) is transferred to that of Δ_0^{\wedge} by means of the Radon transform.

In the present paper a new differential operator Δ_1 on $S^{**}(P_n(C))$ with properties analogous to (1), (2) and (3) above is constructed. Especially, it is shown that Δ_0^{\wedge} togeher with Δ_1^{\wedge} generates the algebra $D(G_{2,n-1}(C))$. In the section 1 we recall the results obtained in [8] with some improvements. Δ_1 is defined at the end of the section 1. In the section 2 the eigenspace decomposition of Δ_1 restricted to $K^{**}(P_n(C), g_0)$ is obtained. Δ_0^{\wedge} and Δ_1^{\wedge} together with their simultaneous eigenspace decomposition are studied in the section 3.

1. Fundamental operators. Let M be a complex manifold of complex dimension n. Denote by $E^{p}(M)$ the $C^{\infty}(M, C)$ -module of complex linear differential operators of order at most p. Put

$$\boldsymbol{E^*}(M) := \bigcup_{\boldsymbol{p} \geq 0} \boldsymbol{E^p}(M) \,.$$

 $E^*(M)$ will be abbreviated as E(M).

Let $S^{k,l}(M)$ be the $C^{\infty}(M, \mathbb{C})$ -module of complex symmetric tensor fields of bidegree (k, l) on M.

Define

$$\begin{split} \boldsymbol{S}^{\boldsymbol{p}}(M) &:= \sum_{\boldsymbol{k}+\boldsymbol{l}=\boldsymbol{p}} \boldsymbol{S}^{\boldsymbol{k},\boldsymbol{l}}(M) \quad (\text{direct sum}) \,, \\ \boldsymbol{S}^{\boldsymbol{*}}(M) &:= \sum_{\boldsymbol{p} \geq 0} \boldsymbol{S}^{\boldsymbol{p}}(M) \quad (\text{direct sum}) \,, \\ \boldsymbol{S}^{\boldsymbol{*}\boldsymbol{*}}(M) &:= \sum_{\boldsymbol{k},\boldsymbol{l} \geq 0} \boldsymbol{S}^{\boldsymbol{k},\boldsymbol{l}}(M) \quad (\text{direct sum}) \,. \end{split}$$

 $S^{**}(M)$ is a bigraded $C^{\infty}(M, C)$ -algebra.

Denote the symbol operator of degree p by

$$\sigma^{\mathfrak{p}} \colon \boldsymbol{E}^{\mathfrak{p}}(M) \ni D \mapsto \sigma^{\mathfrak{p}}(D) \in \boldsymbol{S}^{\mathfrak{p}}(M) ,$$

where $\sigma^{p}(D)$ is the symbol tensor field of D.

Let

$$\boldsymbol{\mu}^{\boldsymbol{p}} \colon \boldsymbol{E}^{\boldsymbol{p}-1}(M) \to \boldsymbol{E}^{\boldsymbol{p}}(M)$$

be the canonical injection. Then we obtain a short exact sequence of $C^{\infty}(M, C)$ -modules:

$$0 \to \boldsymbol{E}^{p-1}(M) \stackrel{\iota_p}{\to} \boldsymbol{E}^p(M) \stackrel{\boldsymbol{\sigma}^p}{\to} \boldsymbol{S}^p(M) \to 0 \; .$$

Put

$$L^*(M) := \bigcup_{q \in Z} L^q(M)$$
,

where we set

$$oldsymbol{L}^q(M) := egin{cases} oldsymbol{E}^{q+1}(M) & ext{for } q \geqq -1 \ \{0\} & ext{for } q \leqq -2 \ . \end{cases}$$

 $L^*(M)$ is not only a filtered associative algebra over C with respect to the product of operators, it is a filtered Lie algebra over C (cf. [8]) for the bracket product $[D_1, D_2] := D_1 D_2 - D_2 D_1$. In fact we have

$$[\boldsymbol{E}^{p}(M), \boldsymbol{E}^{q}(M)] \subset \boldsymbol{E}^{p+q-1}(M).$$

 $S^*(M)$ is canonically *C*-isomorphic to the associated graded Lie algebra $Gr(L^*(M))$:

$$\begin{split} \boldsymbol{S}^{\boldsymbol{*}}(M) &\cong \sum_{q \geq 0} \boldsymbol{E}^{q-1}(M) / \boldsymbol{E}^{q-2}(M) \text{ (direct sum)} \\ &= \sum_{q \in \mathcal{Z}} \boldsymbol{L}^{q}(M) / \boldsymbol{L}^{q-1}(M) \text{ (direct sum)} = \boldsymbol{Gr}(\boldsymbol{L}^{\boldsymbol{*}}(M)), \end{split}$$

as $S^{p}(M) \simeq E^{p-1}(M)/E^{p-2}(M)$ for $p \ge 0$. Hence, the bracket product in $S^{*}(M)$ inherited from that of $L^{*}(M)$ through the isomorphism $S^{*}(M) \simeq Gr(L^{*}(M))$ is given by

$$[\xi, \eta] = \sigma^{p+q-1}[D_1, D_2],$$

where $D_1 \in E^p(M)$ and $D_2 \in E^p(M)$ are chosen so that $\xi = \sigma^p(D_1)$ and $\eta = \sigma^q(D_2)$.

For a compact Kahlerian manifold (M, g), $S^{k,l}(M)$ is equipped with a positive definite Hermitian inner product defined by

(1.1)
$$(\boldsymbol{\xi},\eta) = k! \, l! \int \langle \boldsymbol{\xi},\eta \rangle \, d\sigma \text{ for } \boldsymbol{\xi},\eta \in \mathbf{S}^{k,l}(M) \, ,$$

where \langle , \rangle is the pointwise inner product associated with the metric g and $d\sigma$ is the canonical volume element.

Let P = P(M, G) be a differentiable principal bundle on a differentiable manifold M with Lie group G as its fibre. Let $E^{G}(P)$ be the totality of G-invariant complex linear differential operators on P. $E^{G}(P)$ is a C-subalgebra of E(P) if we regard E(P) as an algebra over C.

Lemma 1.1. (cf. [5] and [7]).

 $\boldsymbol{E}(M) \cong \boldsymbol{E}^{\boldsymbol{G}}(P) / \boldsymbol{J},$

where J is the two-sided ideal in $E^{G}(P)$ generated by G-invariant vertical vector fields on P.

Applying Lemma 1.1 to the Hopf fibering

$$\varphi: S^{2n+1} \rightarrow P_n(C)$$

with fibre S^1 , we obtain an isomorphism

(1.2)
$$\pi_H: \mathbf{E}^{S^1}(S^{2n+1})/\mathbf{J} \cong \mathbf{E}(\mathbf{P}_n(\mathbf{C})),$$

where J is as in Lemma 1.1 the two-sided ideal in $E^{S^1}(S^{2n+1})$ generated by S^1 -invariant vertical vector fields.

Lemma 1.2 ([6]). Let M_i (i=1,2) be differentiable manifolds. There are subalgebras $\tilde{E}(M_i)$ (i=1,2) of $E(M_1 \times M_2)$ canonically isomorphic to $E(M_i)$ respectively, each one of which is the centralizer of the other in $E(M_1 \times M_2)$. Let

. ..

$$(1.3) \qquad \iota: S^{2n+1} \to C^{n+1} - \{0\}$$

be the canonical imbedding whose image is the unit sphere: $\{z=(z^0, z^1, \dots, z^n) \in C^{n+1}=\{0\} | r^2=1\}$, where $r^2=\sum_{a=0}^n z^a \bar{z}^a$.

 C^{n+1} -{0} can be regarded as a product bundle on S^{2n+1} with **R** as its fibre. Thus as an application of Lemma 1.2, the existence of

$$\tilde{E}(S^{2n+1}) := \{D \in E(C^{n+1} - \{0\}) | [D, r^2] = 0 \text{ and } [D, \partial/\partial(r^2)] = 0\}$$

as a subalgebra of $E(C^{n+1} - \{0\})$ and of an isomorphism

$$\tilde{\iota}: \boldsymbol{E}(S^{2n+1})
ightarrow \tilde{\boldsymbol{E}}(S^{2n+1})$$

is assured.

Connecting π_{H} in (1.2) with $\tilde{\iota}$ above, we obtain an isomorphism

(1.4)
$$\pi^{\dagger} \colon \boldsymbol{E}(\boldsymbol{P}_{n}(\boldsymbol{C})) \to \boldsymbol{E}^{\dagger}(\boldsymbol{P}_{n}(\boldsymbol{C}))/(\tau) ,$$

where $E^{\dagger}(P_{n}(C))$ is a subalgebra of $E(S^{2n+1})$ defined as the image of $E^{S^{1}}(P_{n}(C))$ by the isomorphism $\tilde{\iota}$. Here (τ) is a two-sided ideal in $E^{\dagger}(P_{n}(C))$ defined as the image of J in (1.2) by $\tilde{\iota}$. (τ) is generated by the S¹-invariant vertical vector field:

$$au^{\dagger} = \sqrt{-1}(\zeta - \overline{\zeta}) \in E^{\dagger}(P_{n}(C)),$$

where $\zeta = \sum_{a=0}^{n} z^{a} \partial \partial z^{a}$ and $\overline{\zeta} = \sum_{a=0}^{n} \overline{z}^{a} \partial \partial \overline{z}^{a}$ [8]. Here we have

GRASSMANN MANIFOLD $G_{2, n-1}(C)$

$$E^{\dagger}(P_{\mathfrak{s}}(C)) = \bigcup_{\mathfrak{p} \geq 0} (E^{\dagger})^{\mathfrak{p}}(P_{\mathfrak{s}}(C))$$

with

$$(\boldsymbol{E}^{\dagger})^{p}(\boldsymbol{P}_{\boldsymbol{s}}(\boldsymbol{C}))=\boldsymbol{E}^{p}(\boldsymbol{C}^{\boldsymbol{s}+1}-\{0\})\cap \boldsymbol{E}^{\dagger}(\boldsymbol{P}_{\boldsymbol{s}}(\boldsymbol{C}))$$

Notice that τ^{\dagger} is an infinitensimal generator of the S¹-action of isometries on S^{2n+1} given by the multiplication of $z \in C$ with |z| = 1.

Put

$$(S^{\dagger})^{p}(\boldsymbol{P}_{n}(\boldsymbol{C})) := \sigma^{p}(\boldsymbol{E}^{\dagger})^{p}(\boldsymbol{P}_{n}(\boldsymbol{C})),$$

 $(S^{\dagger})^{*}(\boldsymbol{P}_{n}(\boldsymbol{C})) := \sum_{p \geq 0} \sigma^{p}(\boldsymbol{E}^{\dagger})^{p}(\boldsymbol{P}_{n}(\boldsymbol{C})) \text{ (direct sum)}.$

Then we have an isomorphism

(1.5)
$$\pi_s^{\dagger} \colon S^*(\boldsymbol{P}_n(\boldsymbol{C})) \to (S^{\dagger})^*(\boldsymbol{P}_n(\boldsymbol{C}))/(\tau)_s ,$$

where $(\tau)_{s}$ is the two-sided ideal in $(S^{\dagger})^{*}(P_{s}(C))$ generated by

$$\boldsymbol{\tau}_{\boldsymbol{s}}^{\dagger} = \sqrt{-1} (\boldsymbol{\zeta}_{\boldsymbol{s}} - \boldsymbol{\bar{\zeta}}_{\boldsymbol{s}}) \! \in \! (\boldsymbol{S}^{\dagger})^{1} \! (\boldsymbol{P}_{\boldsymbol{n}} \! (\boldsymbol{C}))$$

with $\zeta_s = \sum_{a=0}^n z^a \partial/\partial z^a$ and $\overline{\zeta}_s = \sum_{a=0}^n \overline{z}^a \partial/\partial \overline{z}^a$.

REMARK. When we regard an element $\zeta \in (E^{\dagger})^{1}(P_{n}(C))$ as an element of $(S^{\dagger})^{1}(P_{n}(C))$, we distinguish it from ζ just by putting a subscript s as ζ_{s} above. We need such a distinction specifically in (3) and (4) of Definition 1.3.

A representative in $E^{\dagger}(P_n(C))$ of $D \in E(P_n(C))$ under the identification (1.4) will be denoted by D^{\dagger} in the following. Similarly, a representative in $(S^{\dagger})^*(P_n(C))$ of $\xi \in S^*(P_n(C))$ will be denoted by ξ^{\dagger} .

Lemma 1.3. $\xi \in S^*(C^{n+1} \{0\})$ belongs to $(S^{\dagger})^*(P_n(C))$ if and only if

$$[\xi, r^2] = 0, [\xi, \zeta_s] = 0, \quad [\xi, \overline{\zeta}_s] = 0.$$

Proof. This is obvious from the construction of $(S^{\dagger})^{*}(P_{n}(C))$. Q.E.D.

DEFINITION 1.1. Define

$$(S^{\dagger})^{**}(P_n(C)) := \sum_{k,l \ge 0} (S^{\dagger})^{k+l}(P_n(C)) \cap S^{k+l}(C^{n+1} \{0\}) \quad (\text{direct sum}) \,.$$

Lemma 1.4. There is a canonical isomorphism ϕ of the bigraded algebras

$$\phi: (\mathbf{S}^{\dagger})^{**}(\mathbf{P}_{\mathbf{n}}(\mathbf{C})) \rightarrow \mathbf{S}^{**}(\mathbf{P}_{\mathbf{n}}(\mathbf{C})) ,$$

where the map ϕ is the restriction of the inverse of the isomorphism π_s^{\dagger} in (1.5) to $(S^{\dagger})^{**}(P_n(C))$.

Proof. Both of the surjectivity and the triviality of the kernel of ϕ are proved in [8; Lemma 1.3].

Q.E.D.

From now on, every $\xi \in S^{k,l}(C^{n+1} \{0\})$ with components $\xi^{a_1 \cdots a_k \overline{b}_1 \cdots \overline{b}_e} \in C^{\infty}(C^{n+1} \{0\})$ will be identified with a function on the cotangent bundle $T^*(C^{n+1} \{0\})$:

(1.6)
$$\xi = \frac{1}{k!\,l!} \sum \xi^{a_1 \cdots a_k \overline{b}_1 \cdots \overline{b}_l} \, w_{a_1} \cdots w_{a_k} \overline{w}_{b_1} \cdots \overline{w}_{b_l} \,,$$

where w_i 's $(0 \le i \le n)$ together with \overline{w}_j 's $(0 \le j \le n)$ are regarded as the current coordinates in

$$T^{*}(C^{n+1}-\{0\})_{(z,\bar{z})} = \{\sum_{i=0}^{n} (w_{i}dz_{i}|_{(z,\bar{z})} + \overline{w}_{i}d\overline{z}_{i}|_{(z,\bar{z})})\},\$$

where $T^*(\mathbb{C}^{n+1} \{0\})_{(z,\bar{z})}$ is the cotangent space at $(z, \bar{z}) \in \mathbb{C}^{n+1} \{0\}$. Namely, we regard a contravariant symmetric tensor field of bidegree (k, l) as a homogeneous polynomial of bidegree (k, l) with respect to the variables w_i 's and \overline{w}_j 's.

Denote by $\check{E}(C^{n+1}{0})$ the set of all linear differential operators of 4(n+1) variables $z^0, \dots, z^n, \bar{z}^0, \dots, \bar{z}^n, w_0, \dots, w_n, \bar{w}_0, \dots, \bar{w}_n$, the coefficients of which are C^{∞} with respect to the variables $z^{i'}$ s and $\bar{z}^{j'}$ s on $C^{n+1}{0}$ and are homogeneous polynomials with respect to the variables w_i 's and \bar{w}_j 's $(0 \le i, j \le n)$. An element of $\check{E}(C^{n+1}{0})$ can be regarded as a linear differential operator acting on $S^*(C^{n+1}{0})$ in virtue of the identification (1.6).

We also remark that $E(C^{n+1} - \{0\}) \subset \check{E}(C^{n+1} - \{0\})$.

EXAMPLES. ζ_s and ξ_s in (1.4) and τ_s^{\dagger} in (1.5) are reexpressed as follows:

$$\zeta_i = \sum_{a=0}^n z^a w_a, \, \zeta_s = \sum_{a=0}^n \bar{z}^a \overline{w}_a$$

and

$$au_s^{\dagger} = \sqrt{-1} \left(\sum_{a=0}^n z^a w_a - \sum_{a=0}^n ar{z}^a \overline{w}_a
ight).$$

Lemma 1.5. (1) $\zeta \in (S)^{k,l}(C^{n+1} \{0\})$ belongs to $(S^{\dagger})^{k,l}(P_n(C))$ if and only if (i) $\sum_{a=0}^{n} \bar{z}_a \partial \xi / \partial w_a = 0$, (ii) $\sum_{a=0}^{n} z^a \partial \xi / \partial \bar{w}_a = 0$, (iii) $\sum_{a=0}^{n} z^a \partial \xi / \partial z^a = k\xi$, (iv) $\sum_{a=0}^{n} \bar{z}^a \partial \xi / \partial \bar{z}^a = l\xi$. (2) If $\xi \in (S^{\dagger})^{k,l}(P_n(C))$, then we have necessarily

$$\sum_{a=0}^{n} w_{a} \partial \xi / \partial w_{a} = k \xi , \quad \sum_{a=0}^{n} \overline{w}_{a} \partial \xi / \partial \overline{w}_{a} = l \xi .$$

Proof. (1) (i) \sim (iv) follow from Lemma 1.3 if $\xi \in (S^{\dagger})^{k,l}(P_n(C))$. In virtue of (1.6) we can regard $\xi \in (S^{\dagger})^{k,l}(P_n(C))$ as a homogeneous function of homogeneous degree k and l with respect to the variables w and \overline{w} , respectively. The two identities in (2) follow from this fact by Euler's theorem. Q.E.D.

DEFINITION 1.2. (1) Denote by \check{I} the left ideal in $\check{E}(C^{n+1}-\{0\})$ generated

GRASSMANN MANIFOLD $G_{2, n-1}(C)$

by the following four linear differential operators:

(i) $\zeta - \sum_{a=0}^{n} w_a \partial/\partial w_a$, (ii) $\overline{\zeta} - \sum_{a=0}^{n} \overline{w}_a \partial/\partial \overline{w}_a$, (iii) $(1/r^2) \sum_{a=0}^{n} \overline{z}^a \partial/\partial w_a$, (iv) $(1/r^2) \sum_{a=0}^{n} z^a \partial/\partial \overline{w}_a$.

(2) We denote by $\widetilde{EO}(P_n(C))$ the normalizer of \check{I} in $\check{E}(C^{n+1}-\{0\})$ viewed as a Lie algebra, i.e.,

$$\widetilde{EO}(P_n(C)) = \{D | [D, \check{I}] \subset \check{I}\}.$$

Lemma 1.6. $D \in E(C^{n+1} \{0\})$ preserves $(S^{\dagger})^{**}(P_n(C))$ if and only if $D \in \widetilde{EO}(P_n(C))$.

Proof. The assertion is obtained by expressing Lemma 1.5 (1) in terms of $\widetilde{EO}(P_n(C))$. Q.E.D.

Put

$$\check{I}_{\scriptscriptstyle 0}:=\widetilde{EO}(P_{\scriptscriptstyle H}(C))\cap\check{I}$$
 .

Then \check{I}_0 is easily proved to be a two-sided ideal in $\widetilde{EO}(P_n(C))$ and

$$EO(P_n(C)) := EO(P_n(C))/\check{I}_0$$

is regarded as an algebra of linear differential operators acting on $S^{**}(P_n(C))$.

DEFINITION 1.3. Put (1) $(T^*)^{\dagger} := 2 \sum_{a,b=0}^{n} (r^2 \delta_{ab} - z^a \overline{z}^b) w_a \overline{w}_a$, (2) $T^{\dagger} := (1/2r^2) \sum_{a=0}^{n} \partial^2 / \partial w_a \partial \overline{w}_a$, (3) $(\partial^*)^{\dagger} := 2r^2 \sum_{a=0}^{n} w_a \partial / \partial \overline{z}^a + 2\zeta_s (\zeta - \overline{\zeta})$, (4) $(\overline{\partial}^*)^{\dagger} := 2r^2 \sum_{a=0}^{n} \overline{w}_a \partial / \partial z^a - 2\overline{\zeta}_s (\zeta - \overline{\zeta})$, (5) $\partial^{\dagger} := -\sum_{a=0}^{n} \partial^2 / \partial \overline{z}^a \partial w_a - \sum_{a=0}^{n} (\overline{\zeta}_s / r^2) \partial^2 / \partial \overline{w}_a \partial w_a$, (6) $\partial^{\dagger} := -\sum_{a=0}^{n} \partial^2 / \partial \overline{z}^a \partial \overline{w}_a - \sum_{a=0}^{n} (\zeta_s / r^2) \partial^2 / \partial \overline{w}_a \partial w_a$, (7) $\kappa_{a,b} := \sqrt{-1} (z^a \partial / \partial z^b - \overline{z}^b \partial / \partial \overline{z}^a + \overline{w}^a \partial / \partial \overline{w}^b - w^b \partial / \partial w^a)$, (8) $\kappa_{a,b} := \sqrt{-1} (z^a \partial / \partial z^b - \overline{z}^b \partial / \partial \overline{z}^a + \overline{w}^a \partial / \partial \overline{w}^b - w^b \partial / \partial w^a)$, where $0 \le a, b \le n$.

Lemma 1.7. (1) $(T^*)^{\dagger}$ is an element of $\widetilde{EO}(P_n(C)) \cap (S^{\dagger})^2(P_n(C))$. T^{\dagger} , $(\partial^*)^{\dagger}$, ∂^{\dagger} , ∂^{\dagger} , δ^{\dagger} , ζ and ζ are element of $\widetilde{EO}(P_n(C))$,

(2) $\kappa_{a,b}$ is an element of $\widetilde{EO}(P_n(C)) \cap E^1(P_n(C))$,

(3) $\check{\kappa}_{a,b}$ is an element of $EO(P_n(C))$,

where $0 \leq a, b \leq n$.

Proof. (1) These properties can be verified immediately. (2) is an immediate consequence of Lemma 1.5 (1). (3) is verified by examining the bracket products of $\check{\kappa}_{a,b}$ with the four generators of \check{I} , respectively. Q.E.D.

Denote by $\kappa_{a,b}^*$ and $\check{\kappa}_{a,b}^*$ the adjoint operator of $\kappa_{a,b}$ with respect to the Hermitian inner product defined on $C^{\infty}(\boldsymbol{P}_n(\boldsymbol{C}))$ and the adjoint operator of $\check{\kappa}_{a,b}$ with respect to the canonical Hermitian inner product defined on $(\boldsymbol{S}^{\dagger})^{**}(\boldsymbol{P}_n(\boldsymbol{C}))$, respectively.

Lemma 1.8.

(1) $\kappa_{a,b}^* = -\kappa_{b,a}$ and (2) $\check{\kappa}_{a,b}^* = -\check{\kappa}_{b,a}$.

Proof. These follow immediately from their definitions, respectively.

Q.E.D.

Lemma 1.9. (1) τ^{\dagger} can be expressed as follows:

$$au^{\dagger} = \sum_{a=0}^{n} \kappa_{a,a}$$
 .

(2) Each of $\check{\kappa}_{a,b}(0 \leq a, b \leq n, a \neq b)$ satisfies

$$[\kappa_{a,b},\xi^{\dagger}] = \check{\kappa}_{a,b}(\xi^{\dagger})$$

for $\xi^{\dagger} \in (S^{\dagger})^*(P_n(C))$, where the bracket in the left-hand side is the bracket product in $(S^{\dagger})^*(P_n(C))$.

(3) Put

$$\check{\tau} := \sum_{a=0}^{n} \check{\kappa}_{a,a}$$

Then

$$\check{\tau} \in \widetilde{EO}(P_n(C)) \cap \check{I}.$$

Proof. This can be verified immediately.

Q.E.D.

DEFINITION 1.4. (1) Define $\Delta_0^{\dagger} \in (\boldsymbol{E}^{\dagger})^2(\boldsymbol{P}_{\boldsymbol{n}}(\boldsymbol{C}))$ by

$$\Delta_0^{\dagger} = \sum_{a,b=0}^n \kappa_{a,b}^* \kappa_{a,b} + \sum_{a,b=0}^n \kappa_{a,b} \kappa_{a,b}^*.$$

(2) Define $\Delta_0^{\dagger} \in \widetilde{EO}(P_n(C))$ by

$$\Delta_0^{\dagger} = \sum_{a,b=0}^{n} \check{\kappa}_{a,b}^* \check{\kappa}_{a,b} + \sum_{a,b=0}^{n} \check{\kappa}_{a,b} \check{\kappa}_{a,b}^*.$$

Lemma 1.10. (1) Δ_0^{\dagger} in Definition 1.4(1) is a representative in $E^{\dagger}(P_n(C))$ modulo (τ) of the Laplace-Beltrami operator Δ_0 on $(P_n(C), g_0)$.

(2) Δ_0^{\dagger} in Definition 1.4 (2) is a representative in $\widetilde{EO}(P_n(C))$ modulo \check{I}_0 of the Lichnerowicz operator Δ_0 acting on $(S^{\dagger})^{**}(P_n(C))$ (cf. [8] pp. 123~129 for the definition of the Lichnerowicz operator).

Proof. (1) By a direct calculation we have

GRASSMANN MANIFOLD $G_{2, n-1}(C)$

$$\sum_{a,b=0}^{n} \kappa_{a,k}^{*} \kappa_{a,b} + \sum_{a,b=0}^{n} \kappa_{a,b} \kappa_{a,b}^{*} = -4 \sum_{a,b=0}^{n} (r^{2} \delta^{ab} - z^{a} \bar{z}^{b}) \partial^{2} / \partial z^{a} \partial \bar{z}^{b}$$
$$+ 2n \sum_{a=0}^{n} z^{a} \partial / \partial z^{a} + 2n \sum_{b=0}^{n} \bar{z}^{b} \partial / \partial \bar{z}^{b} - 2(\tau^{\dagger})^{2}.$$

This operator satisfies the following three conditions:

(i) its symbol tensor field coincides with $-g_0^{\dagger}$ modulo $(\tau)_s$; (ii) it is a selfadjoint linear differential operator; (iii) it annihilates constant functions. Such an operator must be a representative of the Laplace-Beltrami operator.

(2) A representative $\Delta_0^{\dagger} \in EO(P_n(C))$ of the Lichnerowicz operator Δ_0 is given by (c.f. [8] Lemma 2.13)

$$[\delta^{\dagger}, (\delta^{*})^{\dagger}] + 4\{(\zeta + \overline{\zeta})(n-1) + 2\zeta^{2} + 2\overline{\zeta}^{2} - 2\zeta\overline{\zeta}\} - 8T^{*}T,$$

where $(\delta^*)^{\dagger}:=(\partial^*)^{\dagger}+(\bar{\partial}^*)^{\dagger}$ and $\delta^{\dagger}:=\partial^{\dagger}+\bar{\partial}^{\dagger}$ are representatives of $\delta^*:=\partial^*+\bar{\partial}^*$ resp. $\delta:=\partial+\bar{\partial}$. (Compare with [8] pp. 137~139 for the representatives of Δ_0 , δ^* , and δ , where representatives of these operators are treated in a slightly different manner from the present paper). By direct calculations we can verify

$$\Delta_0^{\dagger} = \sum_{a,b=0}^{n} (\check{\kappa}_{a,b}^{*}\check{\kappa}_{a,b} + \check{\kappa}_{a,b}\check{\kappa}_{a,b}^{*}) \text{ modulo } \boldsymbol{I}_0.$$
Q.E.D.

DEFINITION 1.5. Define

(1) an endomorphism S of bidegree (-1, -1) on the bigraded algebra $(S^{\dagger})^{**}(P_{*}(C))$ by

$$S = \Delta_0^{\dagger} T^{\dagger} - \lambda_{\mathbf{k},\mathbf{l},\mathbf{l}} T^{\dagger} + 6(T^*)^{\dagger} (T^{\dagger})^2 - \partial^{\dagger} T^{\dagger} (\partial^*)^{\dagger} + (\partial^*)^{\dagger} T^{\dagger} \partial^{\dagger}$$

on $(S^{\dagger})^{kl}(P_{n}(C))$, where in general

$$\lambda_{k,l,m} = 4\{(2k-m)n+3k^2+l^2-2kl-(m+1)(k+l)+m^2+2m\}$$

for k, l, $m \ge 0$, $(k, l, m \in \mathbb{Z})$,

(2)
$$B_m^* := 4m(m+1)(T^*)^{\dagger} + 2(\partial^{\dagger})^*(\partial^{\dagger})^*$$
 for $m \ge 1 \ (m \in \mathbb{Z})$,

(3) $A_m^* := (\prod_{i=1}^m B_i^*)(T^{\dagger})^m (A_0^* = id.)$ for $m \ge 1 \ (m \in \mathbb{Z})$.

DEFINITION 1.6. (1) $(\mathbf{K}^{\dagger})^*(\mathbf{P}_n(\mathbf{C}), g_0)$ is the graded **C**-subalgebra of $(\mathbf{S}^{\dagger})^*(\mathbf{P}_n(\mathbf{C}))$ generated by $\kappa_{a,b}$ $(0 \leq a, b \leq n)$, i.e.,

$$(\boldsymbol{K}^{\dagger})^{*}(\boldsymbol{P}_{n}(\boldsymbol{C}),g_{0}):=\sum_{p=0}^{\infty}(\boldsymbol{K}^{\dagger})^{p}(\boldsymbol{P}_{n}(\boldsymbol{C}),g_{0}) \text{ (direct sum),}$$

where

$$(\boldsymbol{K}^{\dagger})^{p}(\boldsymbol{P}_{n}(\boldsymbol{C}),g_{0}):=(\boldsymbol{K}^{\dagger})^{*}(\boldsymbol{P}_{n}(\boldsymbol{C}),g_{0})\cap(\boldsymbol{S}^{\dagger})^{p}(\boldsymbol{P}_{n}(\boldsymbol{C})).$$

(2) Define

T. SUMITOMO AND K. TANDAI

$$(\mathbf{K}^{\dagger})^{**}(\mathbf{P}_{\mathbf{n}}(\mathbf{C}),g_0) := \sum_{k,l \ge 0} (\mathbf{K}^{\dagger})^{k,l}(\mathbf{P}_{\mathbf{n}}(\mathbf{C}),g_0) \text{ (direct sum)},$$

where

$$(\mathbf{K}^{\dagger})^{k,l}(\mathbf{P}_{n}(\mathbf{C}),g_{0}) := (\mathbf{K}^{\dagger})^{k+l}(\mathbf{P}_{n}(\mathbf{C}),g_{0}) \cap (\mathbf{S}^{\dagger})^{k,l}(\mathbf{P}_{n}(\mathbf{C})).$$
$$(\mathbf{K}^{\dagger})^{**}(\mathbf{P}_{n}(\mathbf{C}),g_{0}) \text{ is a bigraded } \mathbf{C}\text{-subalgebra of } (\mathbf{S}^{\dagger})^{**}(\mathbf{P}_{n}(\mathbf{C})).$$

Theorem 1.1. ([8] p. 136) (1) We have

$$(\boldsymbol{K}^{\dagger})^{\boldsymbol{k},\boldsymbol{l}}(\boldsymbol{P}_{\boldsymbol{n}}(\boldsymbol{C}),g_{0})=\{0\}$$

for $k \neq l$.

(2) $(\mathbf{K}^{\dagger})^{**}(\mathbf{P}_n(\mathbf{C}), g_0)$ is generated by $\kappa_{ab,cd} \in (\mathbf{K}^{\dagger})^{1,1}(\mathbf{P}_n(\mathbf{C}), g_0)$ $(0 \leq a, b, c, d \leq n)$, where

$$\kappa_{a,\bar{b}} := z^a \partial/\partial \bar{z}^b - z^b \partial/\partial \bar{z}^a ,$$

$$\kappa_{\bar{c},d} := \bar{z}^c \partial/\partial z^d - \bar{z}^d \partial/\partial z^c ,$$

$$\kappa_{ab,cd} := \kappa_{a,d} \kappa_{b,c} - \kappa_{a,c} \kappa_{b,d} = \kappa_{a,\bar{b}} \kappa_{\bar{c},d} .$$

DEFINITION 1.7. (1) Denote by $(T^*)_0^{\dagger}$ the restriction of $(T^*)^{\dagger}$ to $(\mathbf{K}^{\dagger})^{**}$ $(\mathbf{P}_n(\mathbf{C}), g_0)$. Notice that $(T^*)_0^{\dagger}$ preserves $(\mathbf{K}^{\dagger})^{**}(\mathbf{P}_n(\mathbf{C}), g_0)$.

(2) Denote the image of $(T^*)_0^{\dagger}$ by Im $(T^*)_0^{\dagger}$ (\subset (K^{\dagger})**($P_n(C), g_0$)) and denote the orthogonal complement of Im $(T^*)_0^{\dagger}$ in (K^{\dagger}) **($P_n(C), g_0$) by $P^{**}(P_n(C), g_0)$.

Thus we have

$$(\boldsymbol{K}^{\dagger})^{**}(\boldsymbol{P}_{\boldsymbol{n}}(\boldsymbol{C}),g_0) = \operatorname{Im}(T^*)^{\dagger}_{\boldsymbol{0}} \oplus \boldsymbol{P}^{**}(\boldsymbol{P}_{\boldsymbol{n}}(\boldsymbol{C}),g_0),$$

and $P^{**}(P_n(C), g_0)$ has a bigradation:

$$\boldsymbol{P^{**}}(\boldsymbol{P}_n(\boldsymbol{C}),g_0) = \sum_{k,l=0}^{\infty} \boldsymbol{P}^{k,l}(\boldsymbol{P}_n(\boldsymbol{C}),g_0) \quad (\text{direct sum}),$$

where

$$oldsymbol{P}^{k,l}(oldsymbol{P}_n(oldsymbol{C}),g_0):=oldsymbol{P}^{**}(oldsymbol{P}_n(oldsymbol{C}),g_0)\cap(oldsymbol{K}^{\dagger})^{k,l}(oldsymbol{P}_n(oldsymbol{C}),g_0)$$

Lemma 1.11. ([8] p. 147, Lemma 4.2.) (1) The endomorphism S leaves $(\mathbf{K}^{\dagger})^{**}(\mathbf{P}_{n}(\mathbf{C}), g_{0})$ invariant.

(2) $A_k^*(k \ge 0)$ also leaves $(\mathbf{K}^{\dagger})^{**}(\mathbf{P}_n(\mathbf{C}), g_0)$ invariant.

Denote the canonical projection by

$$\prod_{0}: (\boldsymbol{K}^{\dagger})^{**}(\boldsymbol{P}_{n}(\boldsymbol{C}), g_{0}) \rightarrow \boldsymbol{P}^{**}(\boldsymbol{P}_{n}(\boldsymbol{C}), g_{0}) .$$

 Π_0 can be proved to be commutative with Δ_0 .

Put

$$C_m^* := \Pi_0 A_m^* \, (m \geq 0) \, .$$

C^{*}_m's satisfy

GRASSMANN MANIFOLD $G_{2, \pi-1}(C)$

$$\Delta_{0}^{\dagger}C_{m}^{*} - \lambda_{k,m}C_{m}^{*} + \frac{1}{(m+1)^{2}}C_{m+1}^{*} = 0 \ (k \ge m+1 > m \ge 0)$$

on $(\mathbf{K}^{\dagger})^{k,k}(\mathbf{P}_{n}(\mathbf{C}), g_{0}),$ where $\lambda_{k,m} := \lambda_{k,k,m} = 4 \{(2k-m)n + 2k^{2} - 2(m+1)k + m^{2} + 2m\}.$

DEFINITION 1.8. (1) Define an operator

$$P_{k,m} := \frac{n+2k-2m-2}{m! (n+2k-m-2)!} \sum_{i=m}^{k} \frac{(-1)^{i-m}(n+2k-i-m-3)!}{2^{2i}(i!)^2 (i-m)!} C_{m+1}^*$$

: $K^{**}(P_n(C)) \to P^{**}(P_n(C))$ for $k \ge m \ge 0$.

(2) Denote the image of the map $P_{k,m}$ by $E_{k,m}$. Notice that Δ_0^{\dagger} preserves $(\mathbf{K}^{\dagger})^{**}(\mathbf{P}_n(\mathbf{C}), g_0)$.

Theorem 1.2. (c.f. [8]) Let k and m be as in Definition 1.8, then

- (1) $\Delta_0 P_{k,m} = \lambda_{k,m} P_{k,m}$ on $(\mathbf{K}^{\dagger})^{k,k} (\mathbf{P}_n(\mathbf{C}), g_n)$.
- (2) Each $E_{k,m}$ is non-trivial under the assumption $n \ge 3$.
- (3) We have direct sum decompositions:

$$(\boldsymbol{K}^{\dagger})^{k,k}(\boldsymbol{P}_{n}(\boldsymbol{C}),g_{0})=\sum_{h=0}^{k}((T^{*})^{\dagger})^{h}\boldsymbol{P}^{k-h,k-h}(\boldsymbol{P}_{n}(\boldsymbol{C}),g_{0})$$

and

$$\boldsymbol{P}^{k,k}(\boldsymbol{P}_n(\boldsymbol{C}),g_0) = \sum_{m=0}^k E_{k,m}$$

(1)~(3) yield the eigenspace decomposition of the restriction of Δ_0^{\dagger} on $(\mathbf{K}^{\dagger})^{**}(\mathbf{P}_n(\mathbf{C}), g_0)$.

DENINITION 1.9. Define

- (1) $D_{abcd} := \frac{1}{8} \sum_{e,f,g,h=0}^{n} \delta^{efgh}_{abcd} \check{\kappa}_{e,f} \check{\kappa}_{g,h} \in \widetilde{EO}(P_n(C)).$
- (2) $\Delta_1^{\dagger} := \frac{1}{4!} \sum_{a,b,c,d=0}^n (D_{abcd}^* D_{abcd} + D_{abcd} D_{abcd}^*) \subset \widetilde{EO}(P_n(C)).$

(3) The linear differential operator on $S^{**}(P_n(C))$ corresponding to Δ_1^{\dagger} is denoted by Δ_1 .

Theorem 1.3.

(1) $[\check{\kappa}_{a,b}, \Delta_0^{\dagger}] = 0.$ (2) $[\check{\kappa}_{a,b}, \Delta_1^{\dagger}] = 0.$

Proof. These identities follow easily from their definitions. Q.E.D.

Theorem 1.4. Δ_0^{\dagger} and Δ_1^{\dagger} commute with the operators introduced in Definition 13 as follows:

(1)
$$[(T^*)^{\dagger}, \Delta_i^{\dagger}] = 0,$$
 (2) $[T^{\dagger}, \Delta_i^{\dagger}] = 0,$
(3) $[(\partial^*)^{\dagger}, \Delta_i^{\dagger}] = 0,$ (4) $[\partial^{\dagger}, \Delta_i^{\dagger}] = 0,$

(5) $[(\overline{\partial}^*)^{\dagger}, \Delta_i^{\dagger}] = 0,$ (6) $[\overline{\partial}^{\dagger}, \Delta_i^{\dagger}] = 0,$

(i=0, 1).

Proof. From Definition 1.3 we obtain these formulae immediately (cf. [8] pp. 54~55 and p. 59). Q.E.D.

2. The simultaneous eigenspace decomposition of Δ_0 and Δ_1 on $K^{**}(P_n(C), g_0)$. In this section we assume $n+1 \ge 4$, where *n* is the complex dimension of $P_n(C)$.

Theorem 2.1. Δ_1^{\dagger} can be expressed as follows :

$$\Delta_{1}^{\dagger} = -2(T^{*})^{\dagger}T^{\dagger}\Delta_{0}^{\dagger} + (pn+2kl-2p)\Delta_{0}^{\dagger} - 8(T^{*})^{\dagger})^{2}(T^{\dagger})^{2}$$

$$-2(T^{*})^{\dagger}(\partial^{\dagger}\overline{\partial}^{\dagger} + \overline{\partial}^{\dagger}\partial^{\dagger}) - 2((\partial^{*})^{\dagger}(\overline{\partial}^{*})^{\dagger} + (\overline{\partial}^{*})^{\dagger}(\partial^{*})^{\dagger})T^{\dagger} - 2(n+2l-2)(\overline{\partial}^{*})^{\dagger}\overline{\partial}^{\dagger} + 8((p-2)n+k^{2})$$

$$+l^{2}-3p+4)(T^{*})^{\dagger}\overline{\partial}^{\dagger} - 2(n+2k-2)((k-1)n+k^{2})$$

$$l^{2}-kl-2k+1) - 4l(n+k-2)((l-1)n+k^{2}+l^{2}-kl-2l+1)$$

$$l^{2}-kl-2k+1) - 4l(n+k-2)((l-1)n+k^{2}+l^{2}-kl-2l+1)$$

 $(p=k+l) on (S^{\dagger})^{k,l}(P_n(C),g_0).$

Proof. From the definition of Δ_1^{\dagger} in **1** and Definition 1.3 we can obtain the required relation by direct calculations. Q.E.D.

Corollary. Restricting the action of Δ_1^{\dagger} to $(S^{\dagger})^{k,k}(P_n(C))$, we obtain the reduced form of Theorem 2.1:

$$\begin{aligned} \Delta_{1} &= -2(T^{*})^{\dagger}T^{\dagger}\Delta_{0}^{\dagger} + 2k(n+2k-2)\Delta_{0}^{\dagger} - 8((T^{*})^{\dagger})^{2}(T^{\dagger})^{2} - \\ & 2(T^{*})^{\dagger}(\bar{\partial}^{\dagger}\partial^{\dagger} + \partial^{\dagger}\partial^{\dagger}) - 2((\partial^{*})^{\dagger}(\bar{\partial}^{*})^{\dagger} + (\bar{\partial}^{*})^{\dagger}(\partial^{*})^{\dagger}T - \\ & 2(n+2k-2)((\partial^{*})^{\dagger}\partial^{\dagger} - (\bar{\partial}^{*})^{\dagger}(\bar{\partial})^{\dagger}) + 16(k-1)(n+k-2)(T^{*})^{\dagger}T^{*} - \\ & - 8k(n+k-2)(k-1)(n+k-1) . \end{aligned}$$

Lemma 2.1 Δ_1^{\dagger} and S satisfy

$$\begin{split} \Delta_{\mathbf{i}}^{\dagger} + 4(T^{*})^{\dagger}S &= 2(k+1)(n+k-1)\Delta_{\mathbf{i}}^{\dagger} - 8k(n+k-1)(k+1)(n+k) \\ &- 2(n+2k-1)(\partial^{\dagger}(\partial^{*})^{\dagger} + (\bar{\partial})^{\dagger}(\bar{\partial}^{*})^{\dagger}) - 2((\bar{\partial}^{*})^{\dagger}T(\partial^{*})^{\dagger} \\ &+ (\partial^{*})^{\dagger}T^{\dagger}(\bar{\partial}^{*})^{\dagger}) \quad on \quad (S^{\dagger})^{k,k}(P_{\mathbf{n}}(C),g_{0}) \,. \end{split}$$

Proof. From Definition 1.5 (1), we can express $(T^*)^{\dagger}S$ in terms of fundamental operators. Eliminating the first term of the right-hand side in the formula in Theorem 2.1, we obtain the required relation. Q.E.D.

Theorem 2.2. We have

$$\Delta_1^{\dagger} = \sum_{m=0}^k \mu_{k,m} P_{k,m}$$

as the eigenspace decomposition of Δ_1^{\dagger} restricted to $(\mathbf{K}^{\dagger})^{k,k}(\mathbf{P}_n(\mathbf{C}), g_0)$, where $\mu_{k,m} =$

8(k-m)(k+1)(n+k+1)(n+k-m-2).

Proof. Restricting Δ_1^{\dagger} on $E_{k,m}$, we obtain in virtue of Lemma 2.1

$$\Delta_{1}^{\dagger} = 2(k+1)(n+k-1) \{\Delta_{0}^{\dagger} - 4k(n+k)\} \\ = 2(k+1)(n+k-1) \{4(2k-m)n+2k^{2}-2(m+1)k+m^{2}+2m-4k(n+k)\},\$$

which coincides with the desired value $\mu_{k,m}$.

3. The Radon transform and $D(G_{2n-1}(C))$. In this section we also assume $n+1 \ge 4$. Denote by $W_2(C^{n+1})$ the Stiefel manifold of all 2-frames in C^{n+1} and denote by $V_2(C^{n+1})$ the submanifold of $W_2(C^{n+1})$ defined as the totality of orthonormal 2-frames with respect to the standard Hermitian metric g on C^{n+1} . $V_2(C^{n+1})$ is identified with a homogeneous space:

$$U(n+1)/U(n-1)$$
.

Denote by $G_{2,n-1}(C)$ the Grassmann manifold of all complex 2-planes passing through the origin of C^{n+1} . As is well known, $G_{2n-1}(C)$ is identified with a homogeneous space

$$U(n+1)/U(n-1) \times U(2)$$
.

 $V_2(C^{n+1})$ can be regarded as a principal bundle on the complex Grassmann manifold $G_{2,n-1}(C)$ with structure group U(2), where the projection π_V is defined canonically.

Applying Lemma 1.1 to the principal bundle

 $\pi_{\mathbf{V}}: \mathbf{V}_{2}(\mathbf{C}^{n+1}) \to \mathbf{G}_{2,n-1}(\mathbf{C})$

with U(2) as its fibre, we obtain an isomorphism:

$$(3.1)_{\mathbf{V}} \qquad \qquad \mathbf{E}(\mathbf{G}_{2,n-1}(\mathbf{C})) \cong \mathbf{E}^{U(2)}(\mathbf{V}_2(\mathbf{C}^{n+1}))/\mathbf{J}$$

where **J** is the two-sided ideal in $E^{U(2)}(V_2(C^{n+1}))$ generated by U(2)-invariant vertical vector fields. On the other hand, there is a polar decomposition of the Stiefel manifold $W_2(C^{n+1})$:

$$(3.2) W_2(C^{n+1}) \simeq H_2^+ \times V_2(C^{n+1}),$$

where H_2^+ is the space of positive definite 2×2 Hermitian matrices [8]. Denote by $\pi_V : W_2(\mathbb{C}^{n+1}) \to V_2(\mathbb{C}^{n+1})$ the canonical projection to the second factor of (3.2).

Put $\rho_{\alpha\beta}^2 := \langle \boldsymbol{q}_{\alpha}, \boldsymbol{q}_{\beta} \rangle$, where $0 \leq \alpha, \beta \leq 1, q = (\boldsymbol{q}_0, \boldsymbol{q}_1) \in \boldsymbol{W}_2(\boldsymbol{C}^{n+1})$ and \langle , \rangle denotes the pointwise inner product as introduced in (1.1). The positive definite square root matrix $(\rho_{\alpha,\beta})$ of $(\rho_{\alpha\beta}^2)$ is called the *radial part* of q, which can

Q.E.D.

be regarded as the H_2^+ part of q in the polar decomposition (3.2). In virtue of Lemma 1.2 the polar decomposition (3.2) assures the existence of two subalgebras, each one of which is the centralizer of the other in $E(W_2(C^{n+1}))$ and the second one of which is canonically isomorphic to $E(V_2(C^{n+1}))$. Thus a linear differential operator $D \in E(V_2(C^{n+1}))$ can be represented by a linear differential operator $D^{\dagger} \in E(W_2(C^{n+1}))$ satisfying

(3.3)
$$[D^{\dagger\dagger}, \rho_{\alpha\beta}^2] = 0 \text{ and } [D^{\dagger\dagger}, \frac{\partial}{\partial \rho_{\alpha\beta}^2}] = 0 (0 \leq \alpha, \beta \leq 1).$$

The totality of such operators in $E(W_2(C^{n+1}))$ is designated as $E^{\dagger\dagger}(V_2(C^{n+1}))$. Similarly, we have an isomorphism:

$$(3.1)_{W} \qquad \qquad \mathbf{E}(\mathbf{G}_{2,n-1}(\mathbf{C})) \simeq (\mathbf{E}^{U(2)})^{\dagger\dagger}(\mathbf{V}_{2}(\mathbf{C}^{n+1})))/\mathbf{J}^{\dagger\dagger}$$

where $(\boldsymbol{E}^{U(2)})^{\dagger\dagger}(\boldsymbol{V}_2(\boldsymbol{C}^{n+1}))$ is the subalgebra of $\boldsymbol{E}^{\dagger\dagger}(\boldsymbol{V}_2(\boldsymbol{C}^{n+1}))$, which is canonically isomorphic to $\boldsymbol{E}^{U(2)}(\boldsymbol{V}_2(\boldsymbol{C}^{n+1}))$ and $\boldsymbol{J}^{\dagger\dagger}$ is the ideal in $(\boldsymbol{E}^{U(2)})^{\dagger\dagger}(\boldsymbol{V}_2(\boldsymbol{C}^{n+1}))$ corresponding to \boldsymbol{J} in $(3.1)_v$.

To an arbitrary element $q \in W_2(C^{n+1})$ corresponds a linear isometric imbedding $\iota_q: (C^2 - \{0\}, \iota^* g_0) \hookrightarrow (C^{n+1} - \{0\}, g_0)$, where g_0 is the metric in $C^{a+1} - \{0\}$ defined as

$$g_0=\frac{1}{r^2}g,$$

where g is the canonical flat metric in C^{n+1} and r^2 is as in (1.3).

Let ξ be a contravariant tensor field on a Riemannian manifold. We denote by ξ^* the corresponding covariant tensor field. Conversely, if ξ is a covariant tensor field, we denote by ξ^* the coresponding contravariant tensor field. A contravariant symmetric tensor field ξ defined on $(C^{n+1}-\{0\}, g_0)$ induces a contravariant symmetric tensor field $((\iota_q)^*\xi_*)^*$ on $(C^2-\{0\}, \iota_q^*g_0)$ through the above imbedding ι_q . Fundamental differential operators of $(S^{\dagger})^{**}(P_1(C))$ will be denoted by lower index 1, e.g., T_1 , (δ_1^*) .

DEFINITION 3.1. Define the Radon transform

$$\wedge: (\mathbf{S}^{\dagger})^{**}(\mathbf{P}_{n}(\mathbf{C})) \to C^{\infty}(\mathbf{G}_{2,n-1}(\mathbf{C}),\mathbf{C})$$

by

$$(\xi)^{\wedge}(\Gamma) = \begin{cases} (2^{k}/\mathrm{Vol}(S^{3})) \int_{S^{2}} (T_{1}^{\dagger})^{k} ((\iota_{q})^{*}(\xi)_{*})^{*} d\sigma & (k=l) \\ 0 & (k=l) \end{cases}$$

for $\xi \in (S^{\dagger})^{k,l}(P_n(C))$, where $\Gamma = \pi_V \pi_W(g)$ for $q \in W_2(C^{n+1})$ and Vol (S^3) is the total volume of the standard sphere S^3 . The corresponding map

$$\wedge: S^{**}(\boldsymbol{P}_{n}(\boldsymbol{C})) \to C^{\infty}(\boldsymbol{G}_{2,n-1}(\boldsymbol{C}),\boldsymbol{C})$$

is also called the Radon transform.

Notice that behind the naturality of such a definition of the Radon transform lies a fact that the Hopf fibering φ in (1.2) is a Riemannian submersion.

Let $p=(p_0, p_1) \in V_2(\mathbb{C}^{n+1})$. Put $P^{ab}=p_0^a p_1^b-p_1^a p_0^b$, where $p_{ab}=\sum_{a=0}^n p_a^a e_a$ for a fixed orthonormal basis (e_0, \dots, e_n) in (\mathbb{C}^{n+1}, g_0) . We can easily verify that $\sum_{a,b=0}^n P^{ab}\bar{P}^{ab}=2$.

 $\{P^{ab}|0 \leq a, b \leq n, a \neq b\}$ determined by a frame $p \in V_2(\mathbb{C}^{n+1})$ is called a system of normalized Plucker coordinates of the 2-plane spanned by the frame p.

Theorem 3.1. (1) The image of $(\mathbf{K}^{\dagger})^{**}(\mathbf{P}_n(\mathbf{C}), g_0)$ by the Radon transform is the subalgebra of $C^{\infty}(\mathbf{G}_{2,n-1}(\mathbf{C}), (\mathbf{C})$ generated by the totality of products $P^{ab}\overline{P}^{cd}$'s $(0 \leq a < b \leq n \text{ and } 0 \leq c < d \leq n)$. It is uniformly dense in $C^{\infty}(\mathbf{G}_{2,n-1}(\mathbf{C}), \mathbf{C})$.

(2) The kernel of the Radon transform restricted to $K^{**}(P_n(C), g_0)$ is the ideal generated by $g_0^*/2-1$.

Proof. Both of (1) and (2) were proved in [8] as the basic properties of the Radon transform (cf. p. $150 \sim p$. 153 in [8]). Q.E.D.

DEFINITION 3.2. Define

$$\begin{array}{ll} (1) & {}_{w}\hat{k}_{a,b} := \sqrt{-1}(q_{0}^{a}\partial/\partial q_{0}^{b} - \overline{q}_{0}^{b}\partial/\partial \overline{q}_{0}^{a} + q_{1}^{a}\partial/\partial q_{1}^{b} - \overline{q}_{1}^{b}\partial/\partial \overline{q}_{1}^{a}) \\ & \in E^{1}(W_{2}(C^{n+1})). \\ (2) & {}_{w}\Delta_{0}^{\wedge} := \sum_{a,b=0}^{n} {}_{w}\hat{k}_{a,b} {}_{w}\hat{k}_{a,b} + \sum_{a,b=0}^{n} {}_{w}\hat{k}_{a,b} {}_{w}\hat{k}_{a,b}^{*} \in E^{2}(W_{2}(C^{n+1})). \\ (3) & D_{abcd}^{\wedge} := \frac{1}{2^{3}} \sum_{e,f,g,h=0}^{n} \delta_{abcd}^{efgh} {}_{w}\hat{k}_{e,f {}_{w}}\hat{k}_{g,h}. \\ (4) & {}_{w}\Delta_{1}^{\wedge} := \frac{1}{4!} \sum_{a,b,c,d=0}^{n} \{(D_{abcd}^{\wedge})^{*}D_{abcd}^{\wedge} + D_{abcd}^{\wedge}(D_{abcd}^{\wedge})^{*}\} \\ & \in E^{4}(W_{2}(C^{n+1})). \end{array}$$

Lemma 3.1. ${}_{w}\hat{\kappa}_{a,b}(0 \leq a < b \leq n)$ and ${}_{w}\Delta_{i}^{\uparrow}(i=0,1)$ belong to $(\mathbf{E}^{U(2)})^{\dagger\dagger}$ $(\mathbf{V}_{2}(\mathbf{C}^{n+1}))$ and each of them is a representative of some linear differential operator in $\mathbf{E}(\mathbf{G}_{2,n-1}(\mathbf{C}))$.

Proof. We can verify by routine calculations that these operators satisfy the equations (3.3). Moreover, these operators can be proved to be GL(2, C)-invariant by direct caluclations. Thus our second assertions follow from $(3.1)_W$. Q.E.D.

DEFINITION 3.3. Denote by $\hat{k}_{a,b}(0 \le a < b \le n)$ and $\Delta_i^{\wedge}(i=0,1)$ the linear differential operators belonging to $E(G_{2,n-1}(C))$ whose representatives in $E(W_2(C^{n+1}))$ are $_w \hat{k}_{a,b}$ and $_w \Delta_i^{\wedge}(i=0,1)$, respectively. Denote by g_1 the canonical U(n+1)-invariant metric on $G_{2,n-1}(C)$.

Notice that

(1) $\hat{\kappa}_{a,b}$ is a Killing vector field on $(G_{2,n-1}(C), g_1)$. (2) Δ_0^{\wedge} is the Laplace-Beltrami operator on $(G_{2,n-1}(C), g_1)$. In virtue of Lemma 3.1, for (1) it is fuffi-

cient to show that ${}_{w}\hat{k}_{a,b}$'s are infinitesimal generators of the action of U(n+1) on $W_2(C)$ and this can be immediately chekced. The second proof of them to be Killing is obtained in conjunction with (2) as follows: ${}_{w}\Delta_0^{\Lambda}$ is expressed explicitly as

$${}_{w}\Delta_{0}^{\wedge} = -4\sum_{\sigma,eta,\gamma,\delta=0}^{1}\sum_{a,b=0}^{n} (\delta^{ab} - \bar{q}^{a}_{\sigma}q^{b}_{eta}(
ho^{2})^{\sigmaeta})
ho^{2}_{\gamma\delta}\partial^{2}/\partial \bar{q}^{a}_{\gamma}\partial q^{b}_{\delta}$$

 $+2n\sum_{\sigma=0}^{1}\sum_{a=0}^{n} (q^{a}_{\sigma}\partial/\partial q^{a}_{\sigma} + \bar{q}^{a}_{\sigma}\partial/\partial \bar{q}^{a}_{\sigma}),$

where $((\rho^2)^{\alpha\beta})$ is the inverse matrix of $(\rho_{\alpha\beta}^2)$. ${}_{w}\Delta_0^{\circ}$ can be proved to be a representative of the Laplacian on $(G_{2,n-1}(C)), g_1$, for the proof of which we refer to Lemma 3.4 of [8]. A vector field on a Riemannian manifold is Killing if and only if it commutes with the Laplace Beltrami operator (cf. [7]) and we have $[_{w}\hat{k}_{a,b}, {}_{w}\Delta_0^{\circ}] = 0$ by direct calculation. The second proof of (1) follows from this fact immediately.

Theorem 3.2. The U(n+1)-actions commute with the Radon transform. Namely,

$$\wedge
ho_0 =
ho_1 \wedge ,$$

where ρ_0 and ρ_1 are the natural representation of U(n+1) on $(S^{\dagger})^{**}(P_n(C))$ and on $C^{\infty}(G_{2,n-1}(C), C)$, respectively.

Proof. This follows from the definition of the Radon transform obviously. Q.E.D.

Corollary.

$$\hat{\kappa}_{a,b}(\eta^{\dagger})^{\wedge} = (\check{\kappa}_{a,b}\eta^{\dagger})^{\wedge}$$
,

where $\eta^{\dagger} \in (S^{\dagger})^{**}(P_{n}(C))$ is the unique representative of $\eta \in S^{**}(P_{n}(C))$.

Proof. In virtue of Lemma 1.9 (2) our assertion is the infinitesimal version of Theorem 3.2. Note that the uniqueness of the representative follows from Lemma 1.4. Q.E.D.

Theorem 3.3. Let $\eta^{\dagger} \in (S^{\dagger})^{**}(P_n(C))$ be a representative of $\eta \in S^{**}(P_n(C))$ and $(\eta^{\dagger})^{\wedge}$ the Radon transform of η^{\dagger} . Then

> (1) $((\Delta_0 \eta)^{\dagger})^{\wedge} = \Delta_0^{\wedge} (\eta^{\dagger})^{\wedge} .$ (2) $((\Delta_1 \eta)^{\dagger})^{\wedge} = \Delta_1^{\wedge} (\eta^{\dagger})^{\wedge} .$

Proof. In virtue of Definition 3.1, Definition 3.2 and Definition 3.3, the assertions follow from Corollary above. Q.E.D.

DEFINITION 3.4. (1) Denote by $E_{k,m}^{\wedge}$ the image of $E_{k,m}$ by the Radon transform.

(2) Denote by $D(G_{2,n-1}(C))$ the algebra of the totality of U(n+1)-invariant differential operators acting on $C^{\infty}(C_{2,n-1}(C), \mathbf{R})$ [3].

The eigenvalues of Δ_0^{\wedge} and Δ_1^{\wedge} restricted to $E_{k,m}^{\wedge}$ coincide with $\lambda_{k,m}$ and $\mu_{k,m}$, respectively. These are direct consequences of Theorem 3.3.

Main theorem. (1) Δ_0^{\wedge} , together with Δ_1^{\wedge} generates $D(G_{2,n-1}(C))$. (2) Each $E_{k,m}^{\wedge}(k \ge m \ge 0)$ is a U(n+1)-irreducible representation subspace of $C^{\infty}(G_{2,n-1}(C), R)$.

Proof. Notice first that $\Delta_i^{\wedge}(i=0, 1)$ preserve $C^{\infty}(G_{2,n-1}(C), R)$ and they can be regarded as elements belonging to $D(G_{2,n-1}, (C))$.

(1) It is known that $D(G_{2,n-1}(C))$ is generated by two invariant linear differential operators of order 2 and 4, respectively (cf. [3]). It remains to show that Δ_i^{\wedge} (i=1,2) are algebraically independent over the field of real numbers.

Now suppose that

$$f(\Delta_0^{\wedge}, \Delta_1^{\wedge}) = 0$$
,

where f(x, y) is an irreducible real polynomial in two variables. Then we have

$$f(\Delta_0^{\wedge}, \Delta_1^{\wedge})\xi = f(\lambda_{k,m}, \mu_{k,m}) = 0,$$

where ξ is a non-trivial element of $E_{k,m}^{\wedge}$. Therefore we have

$$f(\boldsymbol{\lambda}_{k,m}, \boldsymbol{\mu}_{k,m}) = 0, k \geq m \geq 0 (k, m \in \mathbf{Z})$$

We can deduce from this that the left-hand side of the equality above vanishes as a polynomial of two real variables k and m. By the chain rule, we obtain

$$rac{\partial \lambda_{k,m}}{\partial k} rac{\partial f}{\partial x}(\lambda_{k,m}, \mu_{k,m}) + rac{\partial \mu_{k,m}}{\partial k} rac{\partial f}{\partial y}(\lambda_{k,m}, \mu_{k,m}) = 0,$$

 $rac{\partial \lambda_{k,m}}{\partial m} rac{\partial f}{\partial x}(\lambda_{k,m}, \mu_{k,m}) + rac{\partial \mu_{k,m}}{\partial m} rac{\partial f}{\partial y}(\lambda_{k,m}, \mu_{k,m}) = 0,$

As we can prove the non-vanishing of the determinant of the coefficient matrix of the simultaneous euqations above for sufficiently large values of the indices k and m by direct calculations, we can conclude that there exist k_0 and m_0 such that

$$\frac{\partial f(\lambda_{k,m}, \mu_{k,m})}{\partial x} = 0 \text{ and } \frac{\partial f(\lambda_{k,m}, \mu_{k,m})}{\partial y} = 0$$

for $k \ge k_0$ and $m \ge m_0$. This means that the real algebraic curve defined by f(x, y) = 0 has an infinite number of singular points in virtue of the following lemma. This is a contradiction.

In ordr to prove (2) we also need the following

Lemma 3.2. $\lambda_{k,m} = \lambda_{k',m'}$ and $\mu_{k,m} = \mu_{k',m'}$ if and only if

k = k' and m = m'.

Proof. Assume that $\lambda_{k,m} = \lambda_{k'm'}$ and $\mu_{k,m} = \mu_{k',m'}$, Put $\varphi(t) = t^2 + (n-2)t$, Then

$$\lambda_{k,m} = 4(\varphi(k-m) + k(n+k))$$

and

$$\mu_{k:m} = \varphi(k-m)\varphi(k+1) = \varphi(k+1) \{4\lambda_{k,m} - k(n+k)\}.$$

If we substitute this into

$$\mu_{k,m}=\mu_{k',m'},$$

we obtain

$$(k-k')(n+k+k')$$
 { $4_{\lambda_{k',m'}}-\varphi(k+1)-k'(n+k')$ } = 0.

Q.E.D.

From this we can verify the assertion.

Proof of (2) in Main theorem. From Lemma 3.2, $E_{k,m}^{\wedge}$ is concluded to be a maximal simultaneous eigenspace with eigenvalue $\lambda_{k,m}$ and $\mu_{k,m}$ of Δ_0^{\wedge} and Δ_1^{\wedge} , respectively. The irreducibility of the space follows from a known result (cf. [3]). Q.E.D.

References

- [1] M. Berger, P. Grauduchon et H. Mazet: Le spectre d'une variété riemannienne, Lecture Notes in Math. 194, Springer, Berlin-Heidelberg New York, 1971.
- [2] S. Helgason: Differential geometry and symmetric spaces, Academic Press, New York, 1961.
- [3] S. Helgason: Groups and Geometric Analysis, Academic Press, New York, 1984.
- [4] A. Lichnerowicz: Propagateurs et commutateurs en relativité générale, Publ. Math. IHES, 10 (1961), 293-344.
- [5] R. Michel: Problèmes d'analyse géométrique liés à la conjecture de Blaschke, Bull. Soc. Math. France 101 (1973), 17-69.
- [6] T. Sumitomo and K. Tandai: On Killing tensor fields of degree 2 and the spectrum of $SO(n+1)/SO(2) \times SO(n-1)$, Osaka J. Math. 17 (1980), 49-75.
- [7] T. Sumitomo and K. Tandai: Killing tensor fields on the standard sphere and the spectra of $SO(n+1)/SO(2) \times SO(n-1)$ and $O(n+1)/O(2) \times O(n-1)$, Osaka J. Math. 20 (1983), 51-78.
- [8] T. Sumitomo and K. Tandai: On the centralizer of the Laplacian of $P_n(C)$ and the spectrum of complex Grassmann manifold $G_{2,n-1}(C)$, Osaka J. Math. 22 (1985), 123-155.
- [9] T. Sumitomo and K. Tandai: Invariant differential operators on the Grassmann manifold SG_{2,n-1}(R), Osaka J. Math. 28 (1991), 1017-1033.

Takeshi Sumitomo College of General Education Osaka University Toyonaka, Osaka 560 Japan

Kwoichi Tandai Yoshida College Kyoto University Kyoto 606–01 Japan