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Abstract
Let R, be the coinvariant algebra of the symmetric grdijp . Thyelada has
a natural gradation. For a fixdd1 €I < n), let R,(k;[) (0 < k < [—1) be the direct
sum of all the homogeneous componentsRyf whose degrees ageueat tok
modulo /. In this article, we will show that for eadh there &xis subgroupH,
of S, and a representatiow (k; [) of H, such that eacltR,(k;!) is induced byW (k;1).

1. Introduction

Throughout this article, we follow [5] for fundamental tarmology on partitions,
Young tableaux and symmetric functions.

A partition of a positive integem is a weakly decreasing sequehce A5 (
A2, ..., ) Of nonnegative integers with; +1,+---+A; =n. We also denote the parti-
tion A by (1272 ...n"™), wherem; is the multiplicity ofi inx for I<i <n . IfA is
a partition ofn , we simply write. = n . The&/oung diagramof a partitionA is a set
of points

Y, ={(i,j)eZ? 1<) <M,

in which we regard the coordinates increase from left totrighd from top to bottom.
Let [n] denote the set of integers, 1, .2.,n} . $tandard tableaul’ of shapex is
a bijectionT :Y, — | ] with the condition that the assigned numbstrictly increase
along both the rows and the columns ¥p . We illustrate the YodiagramY, and
a standard tableali for =,3,2 B) 7 in the following:

eeoe 134
Y,=ee , T=25
) 67

We denote by STak( ) the set of all the standard tableaux giesha
For a standard tableali of shapeé-n , definedbscent seDes(") by

Des(I'):={i € h — 1]| i +1 is located in a lower row than if}.
*The second author was partially supported by the grants fitee Miyata Foundation
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We call the sum of the elements of D&s( ) thmjor indexof 7', and denote it by
maj(7’'). In the preceding example, D&s( Js 1 4 5 and faj( ) =1+ 4+B.
Let S, be the symmetric group of degree , and

[)11 = C[XJ_, x27 AR ] xn]

denote the polynomial ring with  variables ov€r As customary,S, acts o, from
the left as permutations of variables by setting

(wf)(-xla X2, .00y xn) = f(xw(l)a Xw(2)s -+ Xw (I‘l))!

wherew € S, andf £i,x2,...,x,) € P,. Let I, = @,-¢ I¢ denote the graded
S,-stable ideal ofP, generated by the elementary symmefrictitnmm Hence the quo-
tient algebrar, =P,/I, is also a gradefl -module. We write its homeges de-
composition as

R, = PRy,
d>0
and call R, thecoinvariant algebraof S, It is well known that the coinvariant alge-
bra R, affords the left regular representation $f
Let us consider, for each integér $.0.,n— 1, the direct sRmk n( ; ) of ho
mogeneous components &  whose degrees are congruént to lamgdie.,

R,(k;n)= € R

d=k modn

Since each homogeneous compon®&it  Sjs -invariant, thesepaess also afford
representations aof, , and the dimensions of these repréiesstalo not depend oh
ie.,

dimR, (k;n) = (2 — 1)!

foral k=0,...,n— 1.
In [4], W. KraSkiewicz and J. Weyman consider thee -maoslubnd prove that
eachR, k n) is induced from a corresponding irreducible regmtion of a cyclic
subgroup ofS, (see also [2, Proposition 8.2] [6, Theorem 8.Pyecisely, lety
be the cyclic permutation (22-n ), and, the subgroup $f generéte y .
The cyclic subgroupC,, of degree has inequivalent irreduciblgresentations
w(k): C,— C*, yr—¢k

n’

where ¢, is the primitive root of unity, and the following eqalience ofS, -modules
holds for eachk =0...,n— 1:

Ru(k;n) =, ind2 (y®).
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Remark. In fact, the number by which we take modulo is tGexeter number
of §,, i.e., the order of the Coxeter elements of the Coxeteugraf type A,,_1. They
also obtain similar results for Coxeter groups of tyBe dnd tenfBridge obtains
more general results [8]. He treats the Complex reflecticmups G and shows that
the coinvariant algebra off has the similar properties fa itheducible representa-
tion of the cyclic subgroup of; generated bySgpringer's regular elemenfr]. We
can easily see that the Coxeter elements are regular.

They also prove that the multiplicity of a irreducible regeatation ofS, inR?
(d > 0) is described by the major index of standard tableauxs lvell known that
the irreducible representations §f  are in one to one coorefgnce with the parti-
tions ofn. ForA -n letV* denote the corresponding irreducible espntation ofS, .
They showed that the multiplicityR? V* ] o¥* imRR? equals the numlrstan-
dard tableaux whose major indices afe

[R?: V" = g{T e STab@.)| maj{ ) =d).

(see also [2, Theorem 8.6] [6, Theorem 8.8].) Combining eéhessults, the multiplic-
ities of the irreducible representation* in the induced eepntationsw(")']‘? =5,
R, (k;n) are easily obtained:

[Ru(k;n) : V*] = {T € STab@)| maj{’ )= k mod}.

It should be mentioned here that a more refined result is médaby R. Adin,
F. Brenti and Y. Roichman [1] recently. For each subSet n —[  hgytconstruct
an S, -moduleRs satisfying

R! =P RS,
S

where the direct sum is taken over the subsets » —[ 1] suchXhati dJ and,
describe the multiplicities of irreducible constituents B’ as follows:

[RS: V¥ =4{T eSTab@)| Des( ) =S).

They also consider an analogue of the theorem of KraSkevweiod Weyman for
the Weyl groups of typeB , and obtain a result on the irredeciléécompositions
of the coinvariant algebras of typB  finer than one alreadwinobtl by Stembridge
in [8].

The aim of the present article is to achieve a generalizatibthese results in
the following sense. Fix an integére n [ ] and consider subspader, obtained by
gathering homogeneous components whose degrees are eonhgradulo/ . Precisely,
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for eachk =0...,/ — 1 we will consider

Ru(ki)= € R

d=k mod/
We can see that the dimension of the sp&gek [ ( ; ) is independentie.,

dimR,(k;l) = n7|

for all k =0,...,/ — 1 (Proposition 4). In this article we will seek outsgstematic
realization of each submodulk, k£ ( ; ) asSa -module induced frosakayroup ofSs,
that is determined by . First we settle a subgradp  Spf for elaegh n], then
construct a representatioh k ( ; ) &f foreath =0,1-— 1. When we write

dl +r with 0 < r <[ — 1, the subgroupH; turns out to be isomorphic to a direct
product of the cyclic group of orddr and the symmetric grofiglegreer , i.e.,

H =C; xS,.

The representations k(/; ) off, is not necessarily irreduciblecamtrast to the case
=n (Section 4). Finally, we verify that

Ry(k; 1) =s, indy; (¥ (k;1))

for each/ andk by comparing the graded characterg,of  @g;indy; (¥ (k;1)) as
polynomials ing modulag! — 1 (Theorem 8).

2. Coinvariant algebra and its graded character

Let R, = @dzo Rg be the coinvariant algebra ¢, and its homogeneous decom-
position. Letg be an indeterminate ov&r Define the graded character ff, by

Xu(g) =) q“x™.

d>0

where x" is the character of the representatRth ~ Spf . We denot&,hyg) and
X,’}'"’ the value ofX, ¢ ) andy™¢ at elements of cycle-type- n , respectivehg-
cisely, X, , ¢ ) is a polynomial inj whose coefficient iif  jgi* . This ymbmial
X.p(q) is also known as &reen polynomialp®")(g) of type A [3] [5, I11.7].

The graded character @t, has a well-known product formula Afendix]. see
also [2, Proposition 8.1]), that plays an essential rolehim present article.

Proposition 1. For any partition p = (12”2 ...pn") of n, we have

(1-g)1-¢%)---(1—q")
(I—qym(1—q?)m2---(1—qmy™’

Xn.p(‘]) =
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From the Proposition above, we can prove the following &amil result.

Proposition 2. Fix a integer/ € [n]. Let p be a divisor of, n =ep+s (0<s <
p—1),and 6 a primitive p -th root of unity. Ifo - n satisfies

Xn,p(0) 70,
thenp = (1" ... 5" p°), wheremy + 2mp + - - - + smy =5.

Proof. We apply Stembridge’s argument for the casen = (se&¢g2tion 8]) to
our situation. By Proposition 1, we have

1-9)1-¢?)---(1—q")

Xn,,p(e) = (1 — q)’"l(l — qZ)mz L. (1 _ qn )m,, 4= 3

for p = (1™2"2...n"™)F n. ThusX, , 6 ) ~ O implies that all the vanishing factors in
the numerator are canceled by corresponding factors in ¢ém@rdinator. There are
vanishing factors: +¢” , 2¢%",..., 1—¢° in the numerator, angb, mt,+---+m,,
vanishing factors: (& ¢? "y , (£ ¢?’)">, ..., (1— ¢ Y™ in the denominator. Since

pmp+2pmo, + - +tepme, <mi+2mo+---+nm, =n (Sep +s),

we have
mp+2mo, +---+em, < e.
Therefore,
e=mp+tmopt--tme <mp+2my, +---+temy < e.
Hence, we haven, = . We also obtaim; =0for +li<n i (p= ) since

n—pm,=n— pe=s. Thus, we have
my+2mo+---+smy =s. O
Let / € [n] be a fixed integer. For each =50 .1.,/— 1, we define

Ri(k;D) = €D R,

d=k mod/

-1
Ry = @ Ru(k; ).
k=0
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We prove that the dimensions of the spaégsk [ ( ; ) are indepemdehe choice
of k. We first show the following lemma.

Lemma 3. Let g be an indeterminate and(q) = > ,.oaiq’ € C[g] a polyno-
mial in ¢g. Let/ > 2 be an integer and;; a primitive -th root of unity. Then the
following conditions are equivalent
(1) f5H=0foreachk=1,...,1—1,

(2) The partial sumse; =3, moa; @ (K =0, 1 ...,1— 1) of coefficients of the poly-
nomial f(g) are independent of the choice bf

Proof. If the condition (b) holds, theif g( ) is divisible by

1+g+q°+---+q" 1= :

and hence we have (a).
We shall prove the converse. From (a) we have

feh =ao+argf +ax(gf?+---=0 k=01....1—1)
By the definition of¢; , it reduces to the linear equation sysianay, ..., ¢/_1:

-1 _
cotery teff+e+eag Tt =0,
cotcrlf+ea¢P)P+ o+t =0,

cot C]_{'/il + CQ(C1171)2 +...+ C1_1(§/71)1_1 =0.
Since the rank of the coefficient matrix of the equation sysie [ — 1, it has an
one dimensional solution space. It is clear that, §1,...,¢-1) = (1, 1 ..., 1) satis-
fies the equation system, hence we haye ¢y =--- =¢;_1. ]

By using the above lemma, we easily reach our aim.

Proposition 4. Let! € [n] be a fixed integer. Then the dimension Rf(k;!) is
independent of the choice #f=0,1 ...,/ — 1,i.e, we have

|
dimRn(k;l):%
forall k=0,1,...,1.

Proof. If [ =1, then the assertion is trivial. Suppose that ét 4 be a prim-
itive [-th root of unity. If we evaluate the formula in Proptisn 1 at the identity ele-
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mente € S, , then we have

[Xu(D)](e) = Xn,n)(q)
_(1-9(1-4¢%---(1-¢g")
(1—q)
= (1+q)1+q +g?) - (L+g +--- +¢q" )

It follows immediately that, for eackh =0..,71— 1,

X @)(6f) = D _(dim R )g?| = = 0.

d>0

By Lemma 3, we obtain that diR, k(/; ) 3_,_; noq; iMR? is independent of G<
k<l-—1andis equal t: / . O

If we S, the cycle typep (v ) ofw is the partitiop u( ) = {22"2...n"). For
a partitionp ofn, letC, be the conjugacy class $ containinge S, stict
p(w) = p. For any partitionp = (1:2"2...pn"), define

nl
2p = — = 1"mq12"2myl - - n"m,,).

Let f andg be arbitrary class functions ) . There is a naturalas@roduct
of f andg defined by

(f.8)s, = = Z f(w)g(w).

! wes,

(For a general finite group G, the scalar product is defined{ By) = (1/|G]|) x

> wec f(w)g(w), where g(w) denotes the complex conjugate gfw (). However, we
can useg ¢ ) instead of(w) here since all characters 6f  are rational.) Note that if
8, (A n) is the class function defined by

() = :1 it p(w) = A

0 otherwise

then (8;, f)s, =z f(A).
If n=di+r (0<r <I[-1), then we can embefl; x S, i, by

Sy={wesS,|wi)=iforali=di+1...,n},

(2.1) N .
S, ={wes,|w@i)=i foralli=1...,4dl}.

We see that, it € S;; and € S, , the elememtx v € S, has cycle-type x (v ) =
p(u) U p(v).
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Let f andg be characters of the representatipns Spf and S.of | acespe
tively. Then f x g defined by

(f x g)u,v) = fu)g(v) (u€ Sa, veS,)
is the character of the tensor product representatiagny S 0k S, ddme
fog=indy o (f x g).

which is a character of the induced representatiorjzj’”ng oW 3.0f
The following is a key proposition to the main result.

Proposition 5. Letrn be a positive integeand choose an integdr (1 <[ < n).
If n=dl+r (0<r <), then we have

Xu(q) = Xalg). X,(g)) modg' — 1
Proof. We show that

(2.2) X.p@)= Xarlg) X, @), modg'— 1

for eachp =-n , whereXu )X, « )) is the value okf, q (. X, ¢ ( )) at elements of
cycle-typep . By the Lagrange interpolation and Proposi@rin order to verify (2.2),
it is sufficient to show that

Xn,,p(e) |f o - (lml - Sm"'pp)
0 otherwise.

(Xai(0) - X,(0)), = {

for eaché :gl" k =0...,1— 1), wherep is the multiplicative order ®f . Nokatt
p divides/ . Using the property of the class function , we theweha

Z;l(Xa’l(e) . X, (0)),
= ((Xa1(0). X(0)), 85)s,

= ((Xdz(G) x X,(0)), re%i,xs,. 0p )>S s (by Frobenius reciprocity)
- (dl)L'rI Z Z(Xdl(e) x Xr(G))(u, v)8,(u x v)
T u€eSy ves,

1
=@ DO Xarpw)(0) Xr () (0)8,1()8,2(v)

llES([] UES,- pl,pz

= Z 1;11 Zgzlxdl.pl(e) Xr,pz(g)!

pt.o?
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where p! - dl and p? - r are partitions such thai* U p?2 = p. Now letn =ep +s and
r=fp+s (0<s < p). Thendl/p =e— f . By Proposition 2X,, ,» X, ,- = 0 unless
ot = (p°~7/) and p? = (™ ...s" pl). Hence, ifp is not of the form (1L ...s"s p°)
for some (¥+-..5s™) F s, we have s € ) X, € )) = 0. On the other hand, we pick
ot =(p¢~f) and p? = (1™ ...s" pl) so thatp = (T*-...s™ p¢), and finally we have

2, 1 (Xai(6) . X, (6)),

= Z(_p%*f) Z(_l’:hl..._ym.\' I,f)Xdl,(p"*f)(Q) Xr.(l’”l---sl”»ﬁ' pf)(e)

1 (1-gq)--(1-¢")  (1-gq)1-q)
Z(pe—f) Z(l"'l...s'ﬂx 12)) (1 —qr )eff (1 _ q)ml .. (1 _ qs)mx (1 —qr )f

S ()T A=a) - (@A-g) g™ (11— g™
(pt'*_f) (1’"1...5”“ pf) f (1 _ q)ml L. (1 . qs )mx (1_ qp)e

4 (-9)-¢%)---(1—¢q") ‘

P A=gyn o (L—g Yy (1—qP¥ | =

= 2,1 X,,(0) 0

q=6

q=0

Translating Proposition 2 and Proposition 5 into the lagguaf the Green poly-
nomials, we obtain the following formula.

Corollary 6. Letn > [ be positive integersp a divisor of/, and 6 a primitive
p-th root of unity. If we writen =dl +r =ep+s (O<r <l—1, 0<s < p— 1),then
(1) Qﬁjln)(G) =0unlessp = (1" -..s™p®)y and my +2my+--- +smy =s.

(2) If p= (1" 5™ po),

n dl r
0%(q) = 05 (q) 0% )(q) modg' — 1
where pt = (p¢ /) dl and p? = (1™ ---s™ pl) - r.

3. ||n case

In this section, we consider the case whére divides , and sia each
R, (k;1) is induced from a representation of a cyclic subgroups,of

Suppose that divides , and sdy n# . L@t be the cyclic group oérard
and we embed”; int&#, as follows:

Ci={ny2---va) C S,

wherey; = (L, 2....0) v = (+L1+1...,2)...,ys =(@— 1) +1...,dl).
The cyclic groupC; has inequivalent irreducible represémtaty©, ... (-1 je.,

y®:C— C*, yyaeya— ¢,
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where¢; denotes a primitive -th root of unity. Let
1 -1
® .= TR reya) (k=0,1...,1—1).
T l;& (ri---va) k=01..., )

We can easily check that eaatf) is an idempotent by a direct calculation.

Let C[S,] be the group algebra of5, . Consider the representationS,of - af
forded by the left idealC[S,]t®), which is equivalent to the induced representation
indY (y®). Its charactery €[S,]®] is given by I',7®, wherer', is an operator de-
fined by

r,:C[S,)] — C[S)], pr— Z w pw

weS,

(see e.g., [2, Proposition 5.2] [6, Lemma 8.4]). Here we mkgan elementp =
Zwes” oww € C[S,] as the function onS, that maps € S, to the coefficignt

ind® (x [y ®]) = 1, 7®,

where x [y®] stands for theC, -character af®).
We have shown in Proposition 4 that the dimension of the space

R(kD)= D R

d=k mod!

is constant with respect t&6 =,0..,/ — 1. This fact suggests thatyewg(k;!)
(k =0,...,1 — 1) are induced from the same dimensional representatdra cer-
tain subgroup ofS, . In fact, we can verify that, for each ,=.0,/ — Eréhexists
an irreducible representation ¢f,  that yielés £ I( ; ).

Proposition 7. Letn be a positive integer antl a divisor of . Write= n/I.
Fori=12...,d, lety, be the cyclic permutatio((i —1)/ +1, (— 1)y +2...,il) Let
C; be the cyclic subgroup of, generated py---y, and {y® |k =0,1,...,1— 1
the set of its inequivalent irreducible representationbei, we have an isomorphism
of S,-modules

Ru(k;1) =5, ind2 (y®) (k=0,1...,1— 1)

Proof. We prove that

-1
(3.1) X,@)=Y q"indi(x[y¥]) modg' -1
k=0

Using the Lagrange interpolation again, we only have to slibat the both sides
of (3.1) coincide whery % s( =0,1..,1— 1).
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Recall that
indZ: (x [y ®]) = T,7®
for eachk =0...,/— 1. Substituting & in the right hand side of (3.1¢, ebtain

-1 -1 -1
@)k indg v ®) = > ¢ Tr® =T pa) Y 7
k=0 k=0

k=0

-1, 1-1

s 1 —i i

=Tu(yr---va) 27 > g™ 0nva)
k=0 ' =0

-1
1 —i —2i —(-1)i i
:Fn()’l"')/d)sj E (A+g7 +g72+ g =D y)
=0
=Tu(y1---va)

for eachs =0 1...,/ — 1. Since the cycle-type afi(--y,;)* can be written asg® )
(e =n/p), wherep is the multiplicative order o {”) =1, we have

-1
> @ ind [ ®), =

k=0

2oy, i p=(p9)
o, otherwise

for a partition p . Hence the congruence (3.1) immediatelyofes from Proposition 1
and Proposition 2. [l

4. Main result

Let n be a positive integer, and choose an integer ,=,1.2n . Supitzge
n =dl+r, where O<r <[ — 1. LetR, be the coinvariant algebra$f , atd =
@dzo Rg’ its homogeneous decomposition. For each ,=0.117— 1, define
R, (ki) = @ RY.
d=k mod!

Now, for eachl =1 2...,n , we define a subgrotfp  SHf by

(yivz---va) x S
= C[ X S,,

H,

wherey; is the cyclic permutationi(¢ 1) +X € (1) +.2.,il ), and the syrmime
group S, of degreer is identified as the subgroup € S, | wi () = foriall =
1,2...,n—r} of S,.
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Foreachtk =0 1...,/— 1, we construct a representation [ ( ; Hof as fetlow

Vi) =@ @ vt e v,

Abr TeSTabg.)

wherek — maj{’ = k—maj’) mod! ,{y® |i=0,...,I—1} is the set of inequivalent
irreducible representation af;, , arikk® A r ) is the irreduciblpresentation ofS,
corresponding to the partition of . Then it can be seen thatdimension of X { )
does not depend oh and hence so does dégiridk ( (;)). Actuaie sleg* =
¢ STab¢.) andy_,, , & STak(?)=r!, we have

degl ) =) > degy® I g v*

AFr TeSTabg )

=Y ) ¢STabg)

AFr TeSTabg )

=) #STabg ¥

Abr
=rl,

and deginé;] WKL) =rh)rt =n)l, which coincides with the dimension
of R,(k;1). Moreover, we prove that these two representatioeseguivalent.

Theorem 8 (Main result). Letn be a positive integer. Fix an integér [n] and
write n =dl+r (0<r <[—1) Let H = C; x S, be the subgroup of, defined above
and W(k;l) (k=0,1...,1 — 1)representations of it defined by

vk = P v e v

AFr TeSTabg.)

where @ and V* stand for the irreducible representations@f  afid respectively.
Then for eachk =0, 1,...,1 — 1,there is an isomorphism

Ru(k; 1) =5, indy; (W (k;1)).
as ansS, -module.

Proof. By the definition of¥ K £ ), it suffices to show

41 X, (q)—Zq > > indy (x [v D @ v])  modg' - 1

k=0  Ar TeSTabg )

Let S; and S, be the subgroup of, defined in (2.1). Sindg is a subgroup
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of Sy x S., we have
indj; (=m0 © v7) =g, indj, s (indjy ™" (ymiD @ v7))
for any A F r. Therefore, the right hand side of (4.1) equals

-1
EX X o m (e o 0 )

k=0 Abr TeSTabg )

=33 gk indd s (indd (x [WEmEO)) x y[v7)
k r T
= i”dgﬁ},xs,. (Z Zqu_maj(T)indg:’ (X [w(%)]) x qmaj(T)X[VA]>
k A T
42 =indy . Xalq) <qumai<”x[v*]) mod ¢' — 1 by (3.1).
r T

By the theorem of KraSkiewicz-Weyman, the multiplicitg{ V?] of irreducible com-
ponents isomorphic t&* A(-n ) is the number of standard Youngetab! of shape
A whose major index equals , that is,

[R?: V¥ = #{T e STab@.) : maj{’ ) =d).
Hence we have

(4.3) X.@)=)_ > ™y v

AFr TeSTabg )

Applying (4.3) and Proposition 5, we see that (4.2) equals

ind 5 Xdz(q)(z > qma“T)x[V*])

M-r TeSTabg )
=i S”
=indg .5 Xa(g) x X (q)

= (X(I/(Q)~ Xr(CI))
= X.(q) modg' — 1

and complete the proof. O

Whenr = 0 or 1,H;, is a cyclic group an@ k ( ; ) is irreducible. In thizse,
the generator ofd, coincides with a regular elementSpf  definedjringer [7].

It is obvious that the multiplicity ofV* inR, K £ ) is obtained by woting
the number of standard Young tableaux of shape  with the mia#x congruent
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to k modulo! , that is,
[Ru(k; 1) : V¥ = #{T €STab@.)| maj¢ )=k mod]}.

EXAMPLE. In the case olr =5 and =3, the subgroaR is ((123) x ( (45) , which
is isomorphic toC3 x S,. Then we have

Re(k; 3) s, indy, (v @ V@) @ (y&-9 @ vE-D))

for eachk =0 1 2.

If we consider the case =11 aridd =4 (thus = 3), then the subgrus
((1234)(5678) x ( (9 1Q) (10 11) isomorphic ©, x S3. Hence, for eachRyi(k;4)
(k=0,1 2 3) is isomorphic to the representation induced by

v, =0V ewPeveewPe vl e e vty
VL) =YV ewe vl ey eve e y@e vty
v =P evieyWe vl e e vE ey e vty
V34 =g v®ewPeveheyWeved) e w®eveil),
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