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Abstract

Quark-hadron matter at finite temperature and density is studied using a two color
and two flavor (Polyakov loop extended) Nambu-Jona-Lasinio model with scalar
diquark channel. A hadronic effective Lagrangian is derived by bosonization of the
quark fields and renormalized using the Eguchi method. Although the bosoniza-
tion technique has been used only for mesons, we can apply the technique not
only for mesons (quark-antiquark) but also baryons (diquark) in two color scheme.
Since baryons construct a matter, the bosonization of diquark-baryons is important
to understand the behavior of the chiral symmetry in medium. We find the de-
rived Lagrangian can be identified as an extended linear sigma model with meson
and diquark-baryon fields. Hence our Lagrangian can describe both the quark and
hadron dynamics.

The derived hadron effective Lagrangian is applied to thermodynamics by drop-
ping the interaction terms (Gaussian approximation). We introduce the Polyakov
loop and its effective potential to investigate the quark confinement kinematics in fi-
nite temperature. Since the diquark-baryons are bosons in two color scheme, Bose-
Einstein condensation arises at finite density at a certain chemical potential. The
order parameters which are the chiral condensate, the diquark condensate and the
expectation value of the Polyakov loop are studied as functions of temperature and
density in the mean field approximation. Masses of mesons and diquark-baryons
are investigated at finite temperature and density. At finite temperature, the behav-
iors of the masses are discussed with and without the Polyakov loop effect. For
a finite density system, the diquark mass goes to zero and becomes the Nambu-
Goldstone boson which comes from the baryon number symmetry breaking. We
investigate the equation of state of quark-hadron matter by taking into account
the contributions of mesons and diquark-baryons in addition to the quark quasi-
particles. We describe the baryon number density and compare our results with
lattice QCD simulations. We find the Gaussian approximation for the hadron La-
grangian is not enough to reproduce the lattice results and the hadron Lagrangian
should be treated fully by including the interaction terms using a non-perturbative
method.

Finally, we review the Gaussian functional method as a non-perturbative treat-
ment. We have not applied this method to our extended linear sigma model yet, but
we report the features of the Gaussian function approach.
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Chapter 1

Introduction

Nucleus is one of most important ingredients in our universe. A collection of nucleons form
a many body system (nucleus or nuclear matter) by strong nuclear interaction and realize various
non-trivial physical phenomena. Nucleon is known as one of strongly interacting particles
called hadrons. Hadrons such as nucleons are classified into baryons which construct matter and
mesons such as pions which intermediate interaction among nucleons. The hadron interaction
is about 100 times stronger than the electromagnetic interaction and has to be treated non-
perturbatively.

It is considered that the origin of long range attractive nuclear force comes from pion ex-
change between nucleons. The middle range attractive force also can be described with light
mesons. The light mass mesons such as pions are considered as generated from spontaneously
breaking of chiral symmetry as Nambu-Goldstone (NG) particle. The concept of spontaneous
chiral symmetry breaking (SCSB) is introduced by Y. Nambu and G. Jona-Lasinio [1,2]. When
we consider massless particles (nucleons) in a chiral invariant model, their masses are generated
by the SCSB and the massless particles appear as a bound state of nucleaons. Since the real pion
has a small mass, it is considered the fundamental particles have a small mass (current mass).
The SCSB realizes the light mass pions which intermediate the interaction between nucleaons,
then combine the nucleons and eventually make nucleus and nuclear matter (hadron matter).
The chiral symmetry and its spontaneously breaking mechanism are important ingredients of
hadron many body physics. It is believed that the chiral symmetry is spontaneously broken by
the effect of many body correlation and the symmetry is restored at high temperature and/or
density. Hence it is very interesting to study the behavior of the chiral symmetry in medium and
the property of hadron matter.

Although the hadron many body theory itself requires a complicated non-perturbative treat-
ment with chiral symmetry, hadrons themselves furthermore have internal structure in terms
of quarks and gluons. The quarks and gluons have a quantum number of color charge and its
dynamics is described by quantum chromodynamics (QCD). The quarks are fermions and con-
struct a matter and the gluons are the gauge bosons and provide interaction among quarks. QCD
is a non-Abelian gauge theory belonging SU(3) color group.

The chiral symmetry is nowadays understood as a fundamental symmetry of QCD. The
QCD Lagrangian is invariant under global chiral symmetry SU(Nf )L × SU(Nf )R × U(1)L ×
U(1)R when all the Nf quarks are massless. The U(1)A axial symmetry is exact only at the
classical level, and quantum corrections break the U(1)A axial symmetry. At low energy scale,
the chiral symmetry SU(Nf )L × SU(Nf )R is spontaneously broken to the vector symmetry
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SU(Nf )V which is characterized by a non-vanishing chiral condensate ⟨q̄q⟩. Finally, the vector
symmetry U(1)V corresponds to the baryon number which is an exact symmetry.

QCD is further characterized by two important features. The first one is asymptotic freedom
that the interaction strength becomes weaker at high energies, or equivalently small distances
and hence the perturbation theory can be applied at some energy scale much larger than the
so-called QCD scale ΛQCD ∼ 200 [MeV]. The second one is color confinement, i.e. the phe-
nomenon that a colored object, such as a single quark and gluon, does not exist as a single
isolated body and they make colorless composites, the hadrons. Therefore the hadron physics
should be described from quarks and gluons based on QCD. However, since QCD is a strong
coupling theory at low energies, almost no hadron phenomena are derived analytically from
QCD directly yet and are described by lattice QCD simulation numerically.

It is believed that QCD quark-gluon matter at finite baryon density ρB and temperature T
has a rich phase structure characterized by the chiral symmetry and confinement. The order pa-
rameter of chiral symmetry breaking corresponds to the chiral condensate. At low temperature
and density, the quarks and the gluons are confined inside the hadrons and chiral symmetry is
spontaneously broken. When the temperature and/or density is increased, the chiral symmetry
is restored at certain temperature and/or density. The confinement is also an important property.
To discuss the hadron physics from quarks and gluons, we need the confinement mechanism,
which, however, is not described from QCD analytically yet. At high temperature and/or den-
sity it is believed that the quarks and gluons are de-confined and become active degrees of
freedom. At finite temperature, Polyakov loop Φ can be treated as an order parameter of the
confinement [3–5]. Thus, hadron matter described from QCD or in terms of quarks and gluons
at various temperature and density should have these behaviors, chiral symmetry breaking and
color confinement.

In the theoretical approach there are usually two different strategies to investigate the strongly
interacting matter. The first one is the numerical simulation by using lattice gauge theory, which
is called lattice QCD. Lattice QCD simulations can handle strongly interacting matter at finite
temperature and at very small baryon chemical potential. As a consequence of the sign problem
in lattice QCD at finite density, it is extremely difficult, however, to deal with the QCD quark-
gluon matter at finite density covering broad ranges of real baryon chemical potential. The
other is a model calculation based on fundamental symmetries of QCD called effective model
or effective theory. Effective model approaches have successfully explained many experimental
results of low energy hadron phenomena historically. In this thesis we adopt the second ap-
proach, because our main interest is the hadron phase in QCD matter and at finite density which
cannot be dealt with in the present lattice QCD simulation. Our study has several steps:

1. Start from an effective theory in terms of quarks and gluons having the SCSB and the
kinematical confinement mechanisms.

2. Construct mesons and baryons and their dynamics from the effective theory.

3. Apply the quark and hadron dynamics to finite density and temperature and investigate
the matter properties.

The comparison with the lattice QCD at finite temperature and our analysis is important because
the ab initio calculation can be considered as “experimental data” to check our approach. Then
we want to explore the quark-hadron matter property at finite density.
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The Nambu-Jona-Lasinio (NJL) model [1, 2, 6–8] is often used as an effective model of
QCD, schematic approach to strongly interacting matter [9–20], based on chiral symmetry and
its spontaneous breaking. The NJL model is further generalized by introducing the Polyakov
loop to account for important thermodynamical aspects of color confinement [21–23], which is
called Polyakov loop extended Nambu-Jona-Lasinio (PNJL) model. This PNJL model is by now
widely used for the discussion of quark-hadron matter at finite temperature and density [23–41].
The PNJL model results can be compared directly with lattice QCD at finite temperature and
zero baryon density. There is, however, a basic conceptual problem when applying the PNJL
model at finite baryon density: color-singlet baryon formation is not accounted for. While
color-nonsinglet degrees of freedom are suppressed in the “baryonic” phase by the Polyakov
loop, three quarks coupled to a color-singlet are still delocalized and spread over all space
instead of being confined in localized baryonic clusters.

A remarkable method for the derivation of hadrons from the quark model (NJL model) is
discussed by Eguchi and several authors [42–44] who derive an effective meson model (linear
sigma model) from NJL model using the bosonization method. The quark bilinear form such as
q̄q in the Lagrangian in the partition function is replaced by an auxiliary variable σ to integrate
out the quark fields, leading to an effective Lagrangian for σ as a composite of quark fields. The
corresponding bosonic Lagrangian can be constructed by quark loop expansion. The derived
meson Lagrangian properties are described by the original quark dynamics [45–47]. A most
important aspect of Eguchi method is that the derived effective meson (hadron) Lagrangian is
renormalizable, although the NJL model is unrenormalizable and momentum cut-off Λ has to
be introduced to regularize quantum corrections. The quark loop expansion terms for the aux-
iliary fields can be classified into divergent integration terms Udiv and convergent integration
terms Uconv in the limit of the cut-off Λ → ∞. Eguchi found that the divergent terms Udiv ap-
pear up to fourth order of meson fields and correspond to the radiative corrections of the linear
sigma model. The renormalization prescriptions for the linear sigma model can be applied to
the divergent terms Udiv, which are absorbed into renormalization parameters for linear sigma
model although the divergent terms are calculated using quark propagators. Hence, the diver-
gent Udiv are renormalized and the obtained Lagrangian can be identified as the linear sigma
model, which is renormalizable. This method gives us a big advantage because our purpose is
to describe hadron theory from quark level, which should be renormalizable. We thus have a
desire to include not only mesons but also baryons in the prescription. Baryons are described,
however, the three body composite in contrast with mesons. The bosonization technique cannot
be applied directly for baryons yet.

These difficulties lead us to the simpler two color SU(2)c QCD scheme to study finite density
quark-hadron matter. In this theory quarks carry baryon number 1

2
and baryons emerge as

diquarks, i.e. spin singlet or triplet bosons. The resulting physics is qualitatively different from
“real” QCD with Nc = 3. Nonetheless, exploring the Nc = 2 theory and designing (P)NJL
type models in which both mesons (quark-antiquark modes) and baryons (diquarks) emerge
as active hadronic degrees of freedom, can teach important issues about the thermodynamics
of strongly interacting quark-hadron matter at non-zero baryon chemical potential. While the
two color QCD is not real, the corresponding lattice QCD approach is able to avoid the sign
problem and the simulations can be performed at any baryon chemical potential. Several lattice
QCD studies for color SU(2) are available [48–53] and provide equations of state and hadron
masses at both finite temperature and density. It is then an interesting question to what extent
these lattice QCD results can be understood and interpreted in terms of models, such as the
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PNJL approach, in order to identify leading mechanisms and basic symmetry breaking patterns.
Our work is aimed in that direction as the first step of our interest. Theoretical studies based
on symmetries [54–63] and on a color SU(2) NJL model [64–69] have already given insights
concerning the matter properties and hadron masses.

However, most studies are focused on the quark matter and phase diagram in the mean field
approximation. The properties of hadrons, especially baryons in medium, are not discussed
in full length. For example, meson-baryon interaction should be described from quark. We
would like to connect the quarks to hadrons, not only mesons but also (diquark-)baryons, using
the Eguchi method. By using the Eguchi method, we can obtain an effective meson-baryon
Lagrangian, which consists of composite hadrons made of the quarks and is renormalizable.
We are then able to take into account the effect of hadrons by solving a many body problem
with the meson-baryon Lagrangian. At the same time, the two color NJL model may provide
a method to handle the quark-gluon confinement and contribute to the discussion in the color
SU(3) many body physics.

This thesis is organized as follows. In Chap. 2, we briefly review the NJL model in two color
system and introduce the auxiliary fields as spinless hadron fields to integrate out the quark
fields. We compute the NJL model Lagrangian in the mean field approximation and express
the mass-gap equations in terms of divergent integrals including quark propagators, which have
the information of chiral and diquark phase transition. In Chap. 3, the bosonization technique
is manipulated in order to derive an effective hadron Lagrangian. The quark loop propagators
are expanded and decomposed into the divergent and convergent parts. By retaining only the
divergent integrals, we find the hadron Lagrangian, which can be identified as extended linear
sigma model Lagrangian. The final hadron Lagrangian is obtained by performing renormal-
ization following the method of Eguchi. Finally, we obtain the mixed Lagrangian, which can
describe both quarks and hadrons dynamics. In Chap. 4, the quark-hadron Lagrangian is ap-
plied to thermodynamics of quark-hadron matter using the Matsubara formalism. In order to
integrate the hadron fields, we introduce the Gaussian approximation dropping the interaction
terms among hadrons. The Polyakov loop and its effective potential are introduced in the quark
loop integrals. The Polyakov loop effect suppresses the colored particle degree of freedom
and reproduces the entanglement of chiral condensate and deconfinement at finite temperature,
which is well-known in the lattice calculation. We discuss the thermodynamical properties an-
alytically. The massless NG boson appears due to the baryon number symmetry breaking at
finite density and plays an important role in the matter property. Then the numerical results are
compared with the lattice calculation. We reproduce most of the hadron properties at finite tem-
perature and/or density. However, for the matter density as function of the chemical potential
of quark-hadron matter, we find the Gaussian approximation for the hadron Lagrangian is not
enough and the hadron Lagrangian should be treated fully including the interaction terms using
a non-perturbative approach. In Chap. 5, we review the Gaussian functional method. We have
not applied this method numerically to our extended linear sigma model yet, but we report the
features of the Gaussian functional method. Finally, we summarize our present study on the
bosonization of the NJL model in two color scheme, thermodynamical property of the hadron
and the Gaussian functional method in Chap. 6, together with the discussion and the outlook of
the present study.
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Chapter 2

Two Color Quark Model

We construct two color NJL type Lagrangian with an interaction in the scalar diquark chan-
nel [64, 70]. Since we consider SU(2) gauge group, a diquark qq makes color singlet. The
interaction term is generated from the conserved QCD color current, hence NJL model can be
regarded as an effective model of QCD [6–8]. The Lagrangian has the chiral symmetry in the
chiral limit. From the discussion of the symmetry breaking pattern, we will introduce two order
parameters which are the chiral condensate ⟨q̄q⟩ and the diquark condensate ⟨qq⟩ [54, 55, 71].
The auxiliary fields will be introduced and treated as the composite particles for hadrons. The
vacuum energy will be evaluated in the mean field approximation at finite temperature and
density.

2.1 Symmetries in two color QCD
We first review symmetries and its breaking pattern of two color QCD following Refs. [54, 55,
61, 63] to construct an effective model of QCD. A theory of the strong interaction is described
by QCD Lagrangian:

LQCD =

Nf∑
n=1

ψ̄niγµD
µψn −

1

2
tr [F µνFµν ] , (2.1)

with the massless Nf quarks. The field strength is Fµν = ∂µAν − ∂νAµ − igs[Aµ, Aν ] with
the gluon fields Aµ = Aa

µ
ta
2

where ta (a = 1, 2, 3) is the Pauli matrices of color SU(2), sat-
isfying tr[tatb] = 2δab, and the covariant derivative is Dµ = ∂µ − igsA

µ where gs is the
gauge coupling constant. This Lagrangian has the global symmetry U(Nf )L × U(Nf )R →
SU(Nf )L×SU(Nf )R×U(1)L×U(1)R. The U(1)A axial symmetry is broken by axial anomaly.

Our aim is to construct an effective theory of QCD. In this context, we focus on the quark
sector of the QCD Lagrangian. The local color gauge symmetry is replaced by global symmetry.
In two color QCD, it is known that the global symmetry of the theory is SU(2Nf ) rather than the
above SU(Nf )×SU(Nf )×U(1). This can be seen explicitly by using chiral Weyl components
of the Dirac spinor ψT = (qL, qR) (the superscript T denotes the transpose of the matrix):

Lkin = ψ̄iγµD
µψ = q†LiσµD

µqL + q†Riσ̄µD
µqR, (2.2)

where the gamma matrices γµ are decomposed the spin Pauli matrices σµ and σ̄µ in the chi-
ral representation. We have omitted the flavor indices n and its summation. The pseudo-real
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property of the generators of SU(2) (Pauli matrices):

t∗a = tTa = −t2tat2, (a = 1, 2, 3) (2.3)

gives the property of the Dirac operator, Dµ = ∂µ − igsAµ (Aµ is antihermitian SU(2) color
matrices):

DT
0 = D0 = t2D0t2, DT

i = −t2Dit2. (2.4)

We introduce

q̃ = σ2t2q
†
R, q̃† = qTRt2σ2. (2.5)

By using this notation, the second term of Eq. (2.2) becomes

iq†Rσ̄µD
µqR =iq†Rσ0∂

0qR − iq†Rσ0igsA
0qR + iq†Rσi∂

iqR − iq†RσiigsA
iqR

=iq†Rt2σ2σ
T
0 σ2t2∂

0qR + iq†Rt2σ2σ
T
0 igs(A

0)T t2σ2qR

+ iq†Rt2σ2σ
T
i σ2t2∂

iqR − iq†Rσ2σ
T
i σ2igst2(A

i)T t2qR

=i(qTRt2σ2)σ0∂
0(σ2t2q

†
R)− i(qTRt2σ2)σ0igsA

0(σ2t2q
†
R)

− i(qTRt2σ2)σi∂
i(σ2t2q

†
R) + i(qTRt2σ2)σiigsA

i(σ2t2q
†
R)

=iq̃†σµD
µq̃. (2.6)

Here, the property (2.3) of Pauli matrices for both ta of color and σk of spin and the anticom-
mutativity of q̃, q̃† have been used. The Lagrangian is rewritten as

Lkin = q†iσµD
µq + q̃†iσµD

µq̃ = Ψ†iσµD
µΨ, (2.7)

which now has a manifest SU(2Nf ) “flavor” symmetry. The field Ψ denotes a Weyl spinor
which has 2Nf “flavor” components as

Ψ =

(
q
q̃

)
=



q1

...
qNf

q̃1

...
q̃Nf


, (2.8)

where the superscript denotes the flavor indices. The field q̃ can be considered as the charge
conjugated quarks. The iσ2 corresponds to the charge conjugation of Weyl spinor qcL = −iσ2q†R
(see Appendix B.3 with Weyl spinor representation) and the it2 interchange the color and com-
plementary color. Hence q̃ have opposite baryon charge to normal quark. The SU(2Nf ) trans-
formation

Ψ → gΨ, (g ∈ SU(2Nf )), (2.9)

transforms quark and antiquark at the same time. The Lagrangian (2.7) is obviously invariant
under this SU(2Nf ) transformation, which is called Pauli-Gürsey (PG) symmetry, instead of
SU(Nf )× SU(Nf )× U(1).
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We next write down various useful quark bilinears in terms of q, q̃ and determine their trans-
formation properties under SU(2Nf ). We first see the scalar:

ψ̄ψ =q†RqL + q†LqR

=q̃Tσ2t2q + q†σ2t2(q̃
†)T

=
1

2
q̃Tσ2t2q −

1

2
(qTσ2t2q̃)

T +
1

2
q†σ2t2(q̃

†)T − 1

2
(q̃†σ2t2q

∗)T

=− 1

2

(
ΨTσ2t2Σ0Ψ−Ψ†σ2t2Σ0Ψ

∗) , (2.10)

where the symplectic matrix

Σ0 =

(
0 1Nf

−1Nf
0

)
(2.11)

acts in the 2Nf -dimensional extended flavor space where 1Nf
is Nf × Nf unit matrix. An

explicit (or dynamical) quark mass mqψ̄ψ, therefore, explicitly (or spontaneously) breaks the
original SU(2Nf ) down to the compact symplectic group Sp(2Nf ).

The chemical potential term µψ̄γ0ψ is rewritten as

ψ̄γ0ψ =q†LqL + q†RqR

=q†q + q̃T (q̃†)T

=q†q − q̃†q̃

=Ψ†B0Ψ, (2.12)

with

B0 = −γ0Σ0 =

(
1Nf

0
0 −1Nf

)
. (2.13)

It is easy to understand the meaning of +1Nf
and −1Nf

in the matrix B0 are just baryon charges
of quarks and conjugate quarks. Since the matrix B0 is block-diagonal, it is clear that the
chemical potential term Ψ†B0Ψ has SU(Nf ) × SU(Nf ). The U(1)B, which can be thought as
generated by the B0, also preserves. Thus, the existence of the chemical potential µ explicitly
breaks SU(2Nf ) down to SU(Nf )× SU(Nf )× U(1).

2.2 Two Color NJL model
The purpose of this work is to describe the structure of hadrons microscopically from the quarks
and gluons and to understand hadronic phenomena at finite density and temperature. In this
thesis, we use the Nambu-Jona-Lasinio (NJL) model as our starting microscopic theory. The
primary connection of the NJL model with QCD is provided by several assumptions.

• The light quarks (up and down quarks in this thesis, but generally strange quark is also
included) are considered as basic degrees of freedom.

• The gluon degrees of freedom are frozen and absorbed into a local effective interaction
between quarks in the low-energy and long-wavelength limit.
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• The interaction is constructed in accordance with the symmetries of QCD.

Take a current quark fields belonging to SU(2) color and SU(2) flavor. The QCD conserved
color current Jµ

a = ψ̄γµtaψ generates the interaction

Lint =−Gc

3∑
a=1

Jµ
a J

a
µ , (2.14)

where ta is the Pauli matrices of color SU(2), the quark fields are ψ = (u, d)T and Gc is a
coupling constant. This current can be represented with the Weyl spinor ΨT = (q, q̃):

Jµ
a =ψ̄γµtaψ = q†Lσ̄

µtaqL + q†Rσ
µtaqR, (2.15)

and

q†Rσ
0taqR =− q†Rσ2(σ

0)Tσ2t2t
T
a t2qR = q̃†σ0taq̃, (2.16)

q†Rσ
itaqR =− q̃†σitaq̃, (2.17)

where i = 1, 2, 3 and σ̄µ = (σ0,−σi). Then the current can be written as

Jµ
a =q†σ̄µtaq + q̃†σ̄µtaq̃ = Ψ†σ̄µtaΨ, (2.18)

which is invariant under SU(4) (Nf = 2) transformation (PG symmetry). The kinetic term of
the quark is written as

Lkin = ψ̄(i /∂ −m0 + γ0µ)ψ, (2.19)

with the current quark mass m0 = mu = md and the quark chemical potential µ. Our model
Lagrangian is written as

LNJL =ψ̄(i /∂ −m0 + γ0µ)ψ −Gc

3∑
a=1

Jµ
a J

a
µ . (2.20)

In the chiral limit (m0 → 0) and zero chemical potential (µ = 0) the Lagrangian is invariant
under SU(4). The SU(4) symmetry is spontaneously broken by the standard chiral condensate
⟨ψ̄ψ⟩ down to Sp(4). This symmetry breaking pattern generates five Nambu-Goldstone (NG)
bosons (dimSU(N) = N2 − 1 and dimSp(2N) = N(2N + 1)), which corresponds to three
pions, diquark and antidiquark. On the other hand, when the chemical potential is finite µ ̸= 0
in the chiral limit the symmetry is SU(2)L × SU(2)R × U(1)B. We insert the current quark
mass m0, the axial symmetry is explicitly broken then SU(2)V × U(1)B is remained and the
five NG bosons become pseudo-NG boson (their mass will be denote mπ). Since the diquark
is treated as baryon at the same time boson, the diquark-baryon condensation can occur at the
certain chemical potential as the Bose-Einstein condensation (BEC). As we will see later the
critical chemical potential µc is half pion mass. Once the chemical potential exceeds this point,
the baryon number symmetry is spontaneously broken by the diquark condensate ⟨ψψ⟩ down
to Sp(2) and one NG boson is realized.

In the two flavor case there are only two order parameters, the chiral condensate ⟨ψ̄ψ⟩ and
the scalar diquark condensate, symbolically denoted by ⟨ψψ⟩. We focus on the behavior of these
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order parameters at finite temperature and density in this thesis and rewrite the interaction term
by Fierz transformation (see Appendix C) in terms of the color singlet scalar and pseudoscalar
quark-antiquark and scalar diquark channels:

Lint =
G0

2
[(ψ̄ψ)2 + (ψ̄iγ5τ⃗ψ)

2] +
H0

2
(ψ̄iγ5t2τ2Cψ̄

T )(ψTCiγ5t2τ2ψ), (2.21)

with the charge conjugation operator for fermions C = iγ0γ2 (see Appendix B). The coupling
constant for the mesonic channel G0 and for diquark channel H0 are uniquely fixed by Fierz
transformation as

G0 = H0 =
3

2
Gc. (2.22)

Hence mesonic channel and quark channel are transformed under SU(4) transformation at the
same time, which corresponds to PG symmetry in hadronic level. We keep, however, the cou-
pling constants independent so that we are able to study as well cases in which PG symmetry is
not exactly realized. Our starting Lagrangian is now

LNJL =ψ̄(i /∂ −m0 + γ0µ)ψ

+
G0

2
[(ψ̄ψ)2 + (ψ̄iγ5τ⃗ψ)

2] +
H0

2
(ψ̄iγ5t2τ2Cψ̄

T )(ψTCiγ5t2τ2ψ) (2.23)

2.3 Auxiliary Fields
The partition function of the NJL model is

Z = N
∫

DψDψ̄ exp

(
i

∫
d4xLNJL

)
, (2.24)

where N is normalization constant. The bosonization technique is now used to write the
Lagrangian in terms of auxiliary meson fields, σ ∼ ψ̄ψ, π⃗ ∼ ψ̄iγ5τ⃗ψ and diquark fields,
∆ ∼ ψTCiγ5t2τ2ψ, ∆

∗ ∼ ψ̄iγ5t2τ2Cψ̄
T [42, 70, 72, 73]. We introduce

1 = N ′
∫

DσDπ⃗D∆D∆∗ exp

(
i

∫
d4x[−1

2
M2

s (σ
2 + π⃗2)− 1

2
M2

d∆
∗∆]

)
, (2.25)

with the normalization constant N ′. We omit the normalization constants N and N ′ from here
since they do not contribute physics. Obviously, the partition function (2.24) is invariant even
multiplying the above constant (2.25):

Z =

∫
Dψ̄DψDσDπ⃗D∆D∆∗ exp

(
i

∫
d4x

[
LNJL − 1

2
M2

s (σ
2 + π⃗2)− 1

2
M2

d∆
∗∆

])
.

(2.26)

Performing Hubbard-Stranovich transformation [74] as

σ → σ +
g0
M2

s

ψ̄ψ, (2.27)

π⃗ → π⃗ +
g0
M2

s

ψ̄iγ5τ⃗ψ, (2.28)

∆ → ∆+ i
gd
M2

d

ψTCiγ5t2τ2ψ, (2.29)

∆∗ → ∆∗ − i
gd
M2

d

ψ̄iγ5t2τ2Cψ̄
T , (2.30)
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the partition function can be written as

Z =

∫
Dψ̄DψDσDπ⃗D∆D∆∗ exp

(
i

∫
d4xLaux

)
, (2.31)

with the Lagrangian

Laux =
1

2

(
ψ̄ ψTC

)( S−1(µ) gdγ5t2τ2∆(x)
−gd∆∗(x)γ5t2τ2 S−1(−µ)

)(
ψ

Cψ̄T

)
− 1

2
M2

s (σ
2(x) + π⃗2(x))− 1

2
M2

d∆
∗(x)∆(x), (2.32)

with S−1(±µ) = iγµ∂
µ −m0 ± γ0µ − g0 (σ(x)± iγ5π⃗(x) · τ⃗). We have introduced a meson

coupling constant g0 and a diquark coupling constant gd together with bare scalar and diquark
masses, Ms and Md, in preparation of the standard renormalization scheme. The meson and
diquark coupling constants and masses are related as

g20
M2

s

= G0,
g2d
M2

d

= H0. (2.33)

Since the original NJL coupling constants G0 and H0 have the mass dimension −2, the decom-
posed coupling constants g0 and gd are dimensionless and the masses Ms and Md have mass
dimension one.

Introducing a chiral order parameter σ0 (proportional to the quark condensate ⟨ψ̄ψ⟩) as
σ(x) = σ0+ s(x) and the diquark condensates, ∆0 and ∆∗

0, as ∆(x) = ∆0+ d(x) and ∆∗(x) =
∆∗

0 + d∗(x), and integrating out the quark fields, the effective Lagrangian entering the partition
function (2.31) becomes

Leff =− i

2
tr
(
ln Ŝ−1 + ln(1 + ŜK̂)

)
− 1

2
M2

s σ
2
0 −

1

2
M2

s (s
2(x) + π⃗2(x))−M2

s σ0s(x)

− 1

2
M2

d∆
∗
0∆0 −

1

2
M2

d (∆
∗
0d(x) + d∗(x)∆0)−

1

2
M2

dd
∗(x)d(x). (2.34)

The trace is taken over spin, momentum, flavor and color spaces. The matrices Ŝ−1 and K̂ are
defined as,

Ŝ−1 =

(
S−1
0 (µ) ∆−

∆+ S−1
0 (−µ)

)
, (2.35)

K̂ =

(
−g0 (s(x) + iγ5τ⃗ · π⃗(x)) gdγ5t2τ2d(x)

−gdd∗(x)γ5t2τ2 −g0(s(x)− iγ5τ⃗ · π⃗(x))

)
, (2.36)

with ∆− = gdγ5t2τ2∆0,∆
+ = −gd∆∗

0γ5t2τ2 and S−1
0 (±µ) = iγµ∂

µ −m± γ0µ. A dynamical
quark mass is defined as m = m0 + g0σ0. The Nambu-Gorkov quark propagator matrix Ŝ is
determined by solving ŜŜ−1 = 1 and expressed as:

Ŝ =

(
G+ H−

H+ G−

)
, (2.37)
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with the components

G± =
(
S−1
0 (±µ)− Σ±)−1

Σ± =∆∓S0(∓µ)∆± (2.38)
H± =− S0(∓µ)∆±G±.

A simple form for the components of the Nambu-Gorkov propagator is found introducing
the energy projectors onto states of positive and negative energy for free massive spin 1/2 quasi-
particles following Huang et al. [75, 76],

Λ± =
1

2

(
1± γ0(γ⃗ · p⃗+m)

Ep

)
, Λ̃± =

1

2

(
1± γ0(γ⃗ · p⃗−m)

Ep

)
, (2.39)

with Ep =
√
p⃗2 +m2. These operators satisfy the projection properties Λ±Λ± = Λ±, Λ±Λ∓ =

0, Λ+ + Λ− = 1, and similar relations for Λ̃. Furthermore, the two projection operators are
related as γ0Λ±γ0 = Λ̃∓ and γ5Λ±γ5 = Λ̃±.

We calculate these components with the energy projection operators. First, the Dirac prop-
agator in the momentum representation with p̃0 = p0 ± µ is calculated as

S0(±µ) =
1

γ0p̃0 − γ⃗ · p⃗−m

=
γ0p̃0 − γ⃗ · p⃗+m

p̃20 − E2
p

=
γ0p̃0 − γ⃗ · p⃗+m

2Ep

(
1

p̃0 − Ep

− 1

p̃0 + Ep

)
=

1

2Ep

(
γ0Ep − γ⃗ · p⃗+m

p0 − E∓
p

+
γ0Ep + γ⃗ · p⃗−m

p0 + E±
p

)
=

γ0Λ̃−

p0 − E∓
p

+
γ0Λ̃+

p0 + E±
p

, (2.40)

where in the third line

γ0p̃0
p̃0 − Ep

− γ0p̃0
p̃0 + Ep

=
2γ0p̃0Ep

p̃20 − E2
p

=
2γ0p̃0Ep

2p̃0

(
1

p̃0 + Ep

+
1

p̃0 − Ep

)
=

γ0Ep

p̃0 + Ep

+
γ0Ep

p̃0 − Ep

, (2.41)
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where we have defined E±
p = Ep ± µ. Then, its inverse is worked out as

S−1
0 (±µ) =

[
γ0Λ̃−(p0 + E±

p ) + γ0Λ̃+(p0 + E∓
p )

(p0 − E∓
p )(p0 + E±

p )

]−1

=(p0 − E∓
p )(p0 + E±

p )(Λ̃+ + Λ̃−)[γ0Λ̃−(p0 + E±
p ) + γ0Λ̃+(p0 − E∓

p )]
−1

=(p0 − E∓
p )(p0 + E±

p )Λ̃+{γ0Λ̃−(p0 + E±
p ) + γ0Λ̃+(p0 − E∓

p )}−1(Λ̃−1
+ Λ̃+)

+ (p0 − E∓
p )(p0 + E±

p )Λ̃−{γ0Λ̃−(p0 + E±
p ) + γ0Λ̃+(p0 − E∓

p )}−1(Λ̃−1
− Λ̃−)

=(p0 + E±
p )Λ̃+(γ0Λ̃+)

−1Λ̃+(γ
−1
0 γ0) + (p0 − E∓

p )Λ̃−(γ0Λ̃−)
−1Λ̃−(γ

−1
0 γ0)

=(p0 + E±
p )Λ̃+γ0 + (p0 − E∓

p )Λ̃−γ0, (2.42)

using the property Λ̃+ + Λ̃− = 1 and Λ̃±Λ̃∓ = 0. Next, we have

Σ± =∆∓S0(∓µ)∆±

=− |∆|2γ5

(
γ0Λ̃−

p0 − E±
p

+
γ0Λ̃+

p0 + E∓
p

)
γ5

=g2d|∆0|2
(

γ0Λ−

p0 − E±
p

+
γ0Λ+

p0 + E∓
p

)
, (2.43)

with g2d|∆0|2 = |∆|2. Then we obtain

G±(p) =

[
(p0 + E±

p )Λ̃+γ0 + (p0 − E∓
p )Λ̃−γ0 −∆2

(
γ0Λ−

p0 − E±
p

+
γ0Λ+

p0 + E∓
p

)]−1

=

[
p20 − (E±

∆)
2

p0 − E±
p

γ0Λ− +
p20 − (E∓

∆)
2

p0 + E∓
p

γ0Λ+

]−1

=
p0 + E∓

p

p20 − (E∓
∆)

2
Λ+(γ0Λ+)

−1Λ+(γ
−1
0 γ0) +

p0 − E±
p

p20 − (E±
∆)

2
Λ−(γ0Λ−)

−1Λ−(γ
−1
0 γ0)

=
p0 + E∓

p

p20 − (E∓
∆)

2
Λ+γ0 +

p0 − E±
p

p20 − (E±
∆)

2
Λ−γ0, (2.44)

similar with the method used in Eq. (2.41). The quasi-particle energy is E±
∆ =

√
(E±

p )
2 + |∆|2

with the dynamical quark mass m = m0 + g0σ0 and the diquark gap ∆0. Finally, we obtain

H±(p) =− S0(∓µ)∆±G±

=
∆±

p20 − (E±
∆)

2
Λ̃+ +

∆±

p20 − (E±
∆)

2
Λ̃−, (2.45)

noting that ∆± include γ5.

2.4 The Mean Field Approximation
Keeping only the expectation values ⟨σ(x)⟩ = σ0, ⟨∆(x)⟩ = ∆0 and ⟨∆∗(x)⟩ = ∆∗

0, i.e.
dropping the fluctuating meson and diquark fields s(x), π⃗(x), d(x) and d∗(x), one arrives at the



2.4. The Mean Field Approximation 13

mean-field Lagrangian

LMF = − i

2
tr ln Ŝ−1 − 1

2
M2

s σ
2
0 −

1

2
M2

d∆
∗
0∆0. (2.46)

The trace for spin matrices is transformed to the determinant by using the relation tr ln Ŝ−1 =
ln det Ŝ−1 and the others are kept as trace. The determinant is obtained by two ways [75,76] as

det

(
A B
C D

)
=det

{(
0 B
C 0

)(
1 C−1D

B−1A 1

)}
=(−CB)(1−B−1AC−1D) = −CB + CAC−1D ≡ D1, (2.47)

and

det

(
A B
C D

)
=det

(
D C
B A

)
= det

{(
0 C
B 0

)(
1 B−1A

C−1D 1

)}
=−BC +BDB−1A ≡ D2. (2.48)

So, the determinant can be written as

det

(
A B
C D

)
=
√
D1 ·D2. (2.49)

Using this equation and Eq. (2.41),

det Ŝ−1 =
√
(p20 − (E−

∆)
2)(p20 − (E+

∆)
2) . (2.50)

Temperature is now introduced using the Matsubara formalism (see Appendix D),

i

∫
d4p

(2π)4
→ −T

∑
n

∫
d3p

(2π)3
, (2.51)

with the replacement p0 → iωn where ωn = (2n+ 1)πT are the fermionic Matsubara frequen-
cies. Taking the frequency sum, the thermodynamical potential becomes

ΩMF =− T

V
lnZMF

=− tr

∫
d3p

(2π)3
(E+

∆ + E−
∆)− 2tr

∫
d3p

(2π)3
T [ln(1 + e−βE+

∆) + ln(1 + e−βE−
∆)]

+
1

2
M2

s σ
2
0 +

1

2
M2

d |∆0|2. (2.52)

Here we have written the inverse of the temperature T as β = 1/T .
The derivatives of the thermodynamical potential (2.52) with respect to σ0 and |∆0| deter-

mine the chiral condensate and the diquark condensate at the minimum of ΩMF :

∂ΩMF

∂σ0
=− tr

∫
d3p

(2π)3
g0m

Ep

[
E+

p

E+
∆

(
1− 2nF (E

+
∆)
)
+
E−

p

E−
∆

(
1− 2nF (E

−
∆)
)]

+M2
s σ0

=0, (2.53)
∂ΩMF

∂|∆0|
=− |∆0|tr

∫
d3p

(2π)3

[
1

E+
∆

(
1− 2nF (E

+
∆)
)
+

1

E−
∆

(
1− 2nF (E

−
∆)
)]

+M2
d |∆0|

=0, (2.54)

with the Fermi distribution function nF (E) = (1+eβE)−1. The chemical potential µ is included
in the definition of E±

∆.
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Chapter 3

Hadron Lagrangian from the Bosonization

In this chapter we discuss the derivation of the effective hadron Lagrangian by performing the
bosonization technique of Eguchi [42]. The fluctuating meson and diquark fields introduced in
the previous chapter will be considered term by term. Higher order terms of the hadron fields
will be generated from the loop expansion of the logarithmic term. We will find the bosonization
technique leads to an extended linear sigma model incorporating diquark degrees of freedom in
the NJL Lagrangian.

3.1 Hadron Sector of the Lagrangian
The mean field part of the Lagrangian is discussed in the previous chapter. In this chapter let us
focus on the fluctuating part which is

Lhadron =− i

2
tr ln(1 + Ŝ(p)K̂(x))−M2

s σ0s(x)−
1

2
M2

d (∆
∗
0d(x) + d∗(x)∆0)

− 1

2
M2

s (s
2(x) + π⃗2(x))− 1

2
M2

dd
∗(x)d(x), (3.1)

with

Ŝ(p) =

(
G+(p) H−(p)
H+(p) G−(p)

)
, (3.2)

K̂(x) =

(
−g0 (s(x) + iγ5τ⃗ · π⃗(x)) gdγ5t2τ2d(x)

−gdd∗(x)γ5t2τ2 −g0(s(x)− iγ5τ⃗ · π⃗(x))

)
, (3.3)

and its components

G±(p) =
p0 + E∓

p

p20 − (E∓
∆)

2
Λ+γ0 +

p0 − E±
p

p20 − (E±
∆)

2
Λ−γ0, (3.4)

H±(p) =
∆±

p20 − (E±
∆)

2
Λ̃+ +

∆±

p20 − (E±
∆)

2
Λ̃−, (3.5)

with ∆− = gdγ5t2τ2∆0,∆
+ = −gd∆∗

0γ5t2τ2. The trace is taken over spin, momentum, flavor
and color spaces. We would like to extract the properties of mesons and diquark-baryons at
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finite temperature and density. For this purpose, we expand the logarithmic term in Eq. (3.1) as

− i

2
tr ln(1 + ŜK̂) = − i

2
tr

∞∑
k=1

(−1)k+1

k
(ŜK̂)k ≡

∞∑
k=1

U (k) , (3.6)

where

U (k) = −i(−1)k+1

2k
tr(ŜK̂)k . (3.7)

The matrix is defied as

ŜK̂ =

(
A B
C D

)
, (3.8)

with elements

A =−G+(p)g0(s(x) + iγ5τ⃗ · π⃗(x))−H−(p)gdd
∗(x)γ5t2τ2 ,

B =G+(p)gdγ5t2τ2d(x)−H−(p)g0(s(x)− iγ5τ⃗ · π⃗(x)) ,
C =−H+(p)g0(s(x) + iγ5τ⃗ · π⃗(x))−G−(p)gdd

∗(x)γ5t2τ2 ,

D =H+(p)gdγ5t2τ2d(x)−G−(p)g0(s(x)− iγ5τ⃗ · π⃗(x)). (3.9)

With these expressions we are able to derive the Lagrangian involving the meson and diquark-
baryon fields.

Since the first four therms in U (k) provide divergent integrals in the limit of cut-off Λ → ∞,
we classify the terms as

Udiv + Uconv, (3.10)

where Udiv indicates divergent integration terms and Uconv convergent terms in U (k) (k =
1, 2, 3, 4) and all other

∑∞
k=5 U

(k). According to Ref. [42], the divergent terms can be absorbed
into renormalization parameters, which will be introduced later, and eventually we can obtain
a renormalizable hadronic Lagrangian since the coupling constants g0 and gd are dimensionless
and the order of the auxiliary fields are up to four. We follow this prescription because we re-
quire a renormalizable hadron Lagrangian as the composite of quarks. Further, the fourth order
fields Lagrangian can be used to consider the spontaneously breaking of symmetry. We will
introduce the finite NJL cut-off when computing numerical results.

A diagrammatic expression of the seriesU (k) up to fourth order is shown in Fig. 3.1. The first
order term is called the dangerous term which vanish for the stability. The second order term
corresponds the kinetic and mass terms. The third and fourth order terms are the interaction.
The evaluation of each term will be discussed in detail from next section.

3.2 The Gap Equations (k=1)

We first work out the case of k = 1, that is U (1) = − i
2
trŜK̂, to derive the mass gap equations,

which correspond to the minimization condition (2.53) and (2.54) of the thermodynamical po-
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n=1 n=2 n=3 n=4The dangerous therm

K K K K

K

K

K

K

K

K

S S

S

Figure 3.1: Diagrammatic expression of the series Eq. (3.7). The solid lines represent the quark
propagators, and the external double lines mean auxiliary fields K and internal lines are the
loop integral S.

tential in the mean-field approximation described in the previous section,

U (1) =− i

2
tr

∫
d4p

(2π)4
[
g0(−G+(p)−G−(p))s(x) + g0(−G+(p)iγ5 +G−(p)iγ5)τ⃗ · π⃗(x)

−gdH−(p)γ5t2τ2d
∗(x) + gdH

+(p)γ5t2τ2d(x)
]

=

∫
d4x (Γss(x) + Γdd(x) + Γd∗d

∗(x)) . (3.11)

The trace of the Dirac matrix in the pion term gives zero and we have dropped this term here.
The first order of the effective Lagrangian can be written as

L(1) =
(
Γs −M2

s σ0
)
s(x) +

(
Γd −

1

2
M2

d∆
∗
0

)
d(x) +

(
Γd∗ −

1

2
M2

d∆0

)
d∗(x). (3.12)

The result for Γs is

Γs =
i

2
g0tr

∫
d4p

(2π)4
(G+(p) +G−(p))

=2img0trfc

∫
d4p

(2π)4

[
1

p20 − (E+
∆)

2
+

1

p20 − (E−
∆)

2
+

µ

Ep

(
1

p20 − (E+
∆)

2
− 1

p20 − (E−
∆)

2

)]
.

(3.13)

The trace tr is taken over spin, flavor and color spaces and trfc is over flavor and color only.
The momentum space integrals (3.13) are divergent and must be treated accordingly. For

the second term under the integral we write:

µ

Ep

(
1

p20 − (E+
∆)

2
− 1

p20 − (E−
∆)

2

)
=
µ

Ep

(
1

p20 − (E−
∆)

2 − 4µEp

− 1

p20 − (E+
∆)

2 + 4µEp

)
∼ µ

Ep

[
1

p20 − (E−
∆)

2

(
1 +

4µEp

p20 − (E−
∆)

2

)
− 1

p20 − (E+
∆)

2

(
1− 4µEp

p20 − (E+
∆)

2

)]
2
µ

Ep

(
1

p20 − (E+
∆)

2
− 1

p20 − (E−
∆)

2

)
=4µ2

(
1

(p20 − (E+
∆)

2)2
+

1

(p20 − (E−
∆)

2)2

)
µ

Ep

(
1

p20 − (E+
∆)

2
− 1

p20 − (E−
∆)

2

)
=2µ2

(
1

(p20 − (E+
∆)

2)2
+

1

(p20 − (E−
∆)

2)2

)
, (3.14)
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where in the third line only those terms have been kept that are divergent when taking the
momentum integral. Using this expression Γs can be written as

Γs = 2mg0(I2 − 2µ2I0), (3.15)

with the divergent integrals I2 and I0 defined as follows:

I2 =itrfc

∫
d4p

(2π)4

(
1

p20 − (E+
∆)

2
+

1

p20 − (E−
∆)

2

)
, (3.16)

I0 =− itrfc

∫
d4p

(2π)4

(
1

(p20 − (E+
∆)

2)2
+

1

(p20 − (E−
∆)

2)2

)
. (3.17)

The result for Γd is

Γd = − i

2
gdtr

∫
d4p

(2π)4
H+(p)γ5t2τ2

= ig2d∆
∗
0trfc

∫
d4p

(2π)4

(
1

p20 − E+2
∆

+
1

p20 − E−2
∆

)
= g2d∆

∗
0I2 (3.18)

while

Γd∗ = g2d ∆0I2 . (3.19)

The first order of the Lagrangian is required to be zero due to stability as

−M2
s σ0 + 2g0m(I2 − 2µ2I0) = 0., (3.20)

and the diquark and anti-diquark terms become

−M2
d∆0 + 2g2d∆0I2 = 0. (3.21)

We recall that the relation between m and σ0 is m = g0σ0 +m0.
For later use, we write I2 and I0 as functions of temperature and chemical potential using

the Matsubara formalism (see Appendix D.5):

I2 =− trfcT
∑
n

∫
d3p

(2π)3

(
1

(iωn)2 − (E+
∆)

2
+

1

(iωn)2 − (E−
∆)

2

)
=− trfcT

∑
n

∫
d3p

(2π)3

(
1

2E+
∆

(
1

iωn − E+
∆

− 1

iωn + E+
∆

)
+

1

2E−
∆

(
1

iωn − E−
∆

− 1

iωn + E−
∆

))
=− trfc

∫
d3p

(2π)3

(
1

2E+
∆

(nF (E
+
∆)− nF (−E+

∆)) +
1

2E−
∆

(nF (E
−
∆)− nF (−E−

∆))

)
=trfc

∫
d3p

(2π)3

(
1

2E+
∆

(1− 2nF (E
+
∆)) +

1

2E−
∆

(1− 2nF (E
−
∆))

)
, (3.22)

where the Fermi distribution nF (E) = (eβE+1)−1 and the relation nF (−E) = 1−nF (E) have
been used. To see Eqs. (3.20) and (3.21) are equivalent to the mean field equations, we further
manipulate Eq. (3.13) as

Γs =2ig0trfc

∫
d4p

(2π)4
m

Ep

[
E+

p

p20 − (E+
∆)

2
+

E−
p

p20 − (E−
∆)

2

]
. (3.23)
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In the Matsubara formulation of Γs, then one can find that this expression agrees with the mean
field equations (2.53) and (2.54).

Next, we work out I0 in the Matsubara formalism:

I0 =trfcT
∑
n

∫
d3p

(2π)3

(
1

((iωn)2 − (E+
∆)

2)2
+

1

((iωn)2 − (E−
∆)

2)2

)
=tr

∫
d3p

(2π)3
T
∑
n

[
1

4(E+
∆)

2

(
1

(iωn − E+
∆)

2
− 2

2E+
∆

(
1

iωn − E+
∆

− 1

iωn + E+
∆

)
+

1

(iωn + E+
∆)

2

)
+

1

4(E−
∆)

2

(
1

(iωn − E−
∆)

2
− 2

2E−
∆

(
1

iωn − E−
∆

− 1

iωn + E−
∆

)
+

1

(iωn + E−
∆)

2

)]
=trfc

∫
d3p

(2π)3

[
1

4(E+
∆)

3

(
−E+

∆βe
βE+

∆n2
F (E

+
∆)− (nF (E

+
∆)− nF (−E+

∆))− E+
∆βe

−βE+
∆n2

F (−E+
∆)
)

+
1

4(E−
∆)

3

(
−E−

∆βe
βE−

∆n2
F (E

−
∆)− (nF (E

−
∆)− nF (−E−

∆))− E+
∆βe

−βE−
∆n2

F (−E−
∆)
)]

=tr

∫
d3p

(2π)3

[
1

4(E+
∆)

3

(
1− 2nF (E

+
∆)− 2E+

∆βe
βE+

∆n2
F (E

+
∆)
)

+
1

4(E−
∆)

3

(
1− 2nF (E

−
∆)− 2E−

∆βe
βE−

∆n2
F (E

−
∆)
)]

, (3.24)

where n2
F (−E) = (e−βE + 1)−2 = e2βEn2

F (E) has been used. The divergent integrals I0 and
I2 are calculated introducing a momentum cut-off Λ.

3.3 Mass and Kinetic Energy Terms (k=2)

The kinetic energies and the mass terms of mesons and diquark-baryons emerge from Eq. (3.7)
at the order of k = 2:

U (2) =
i

4
tr(ŜK̂)2 =

∫
d4y

∑
ij

Γij(x− y)ϕi(x)ϕj(y), (3.25)

where ϕi = σ, π⃗, d, d∗. As we will see later, the sigma meson and the diquark-baryons make
the mixing due to the scalar property while the pion does not. The second order of the effective
Lagrangian can be written as

L(2) =

∫
d4y

([
Γs(x− y)− 1

2
M2

s δ(x− y)

]
s(x)s(y) +

[
Γπ(x− y)− 1

2
M2

s δ(x− y)

]
π⃗(x)π⃗(y)

+

[
Γdd∗(x− y)− 1

2
M2

d δ(x− y)

]
d(x)d∗(y) + Γdd(x− y)d(x)d(x)

+ Γd∗d∗(x− y)d∗(x)d∗(y) + Γsd(x− y)s(x)d(y) + Γsd∗(x− y)s(x)d∗(y)

)
. (3.26)
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The non-local propagator terms Γij are expanded as

Γ(x− y) =

∫
d4q

(2π)4
eiq(x−y)Γ(q)

∼δ(x− y)Γ(0)− i∂µδ(x− y)∂µΓ(q) |q=0 −
1

2
∂µ∂νδ(x− y)∂µ∂νΓ(q) |q=0 . (3.27)

The integration variable momentum pµ appear as p20−(E±
∆)

2 in the integrand. The quasi-particle

energies E±
∆ =

√
(E±

p )
2 + |∆|2(E±

p =
√
p⃗2 +m2 ± µ) seem to break the Lorentz covariance

and hence we have to calculate the derivative with respect to q0 and q⃗ in the U (2) separately.
We first note useful formulas in the limit of the cut-off Λ → ∞ below:

(E+
∆)

2 + (E−
∆)

2 =2(E2
p + µ2 + |∆|2) (3.28)

4p20 →p20 − p⃗2 = p20 − E2
p +m2 ∼ p20 − E2

p − µ2 − |∆|2

=

{
p20 − (E±

∆)
2 ± 2µEp

1
2
[(p20 − E+

∆)
2 + (p20 − E−

∆)
2]

(3.29)

p⃗2 →− 3

4
(p20 − p⃗2) (3.30)

E2
p =p⃗2 +m2 → −3

4
(p20 − E2

p) = −3

4
(p20 − (E±

∆)
2) (3.31)

pipj

E2
p

i=j
=1− m2

E2
p

(3.32)

pipj

E4
p

− δij

E2
p

i=j
= − m2

E4
p

(3.33)

−4pipj
i=j
= p20 − p⃗2 → p20 − E2

p − µ2 − |∆|2, (3.34)

where i, j = 1, 2, 3.

3.3.1 Pion
The result of the Fourier transformed propagator for the pion in Eq. (3.25) is:

Γπ(q) =
i

4
tr

∫
d4p

(2π)4
g20
(
H−(p+ q)γ5H

+(p)γ5 +H+(p+ q)γ5H
−(p)γ5

−G+(p+ q)γ5G
+(p)γ5 −G−(p+ q)γ5G

−(p)γ5
)
, (3.35)

where the arguments p and p + q denote the four momentum in the G± and H± with the
internal quark momentum p and the external momentum q. To proceed the calculation, we
define compact expressions

p′ = p+ q = pµ + qµ =p′0 − p⃗′ = (p0 + q0)− (p⃗+ q⃗), (3.36)

E ′
p =
√
(p⃗+ q⃗)2 +m2, (3.37)

E±
p′ =E

′
p ± µ, (3.38)

(E±
∆′)

2 =(E±
p′)

2 + |∆|2. (3.39)
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In this notation

Γπ(q) =
i

4
tr

∫
d4p

(2π)4
g20(H

−(p′)γ5H
+(p)γ5 +H+(p′)γ5H

−(p)γ5

−G+(p′)γ5G
+(p)γ5 −G−(p′)γ5G

−(p)γ5)

=
i

4
g20trfc

∫
d4p

(2π)4

[(
(p′0 + E−

p′)(p0 − E+
p ) + (p′0 − E−

p′)(p0 + E+
p )− 2|∆|2

((p′0)
2 − (E−

∆′)2)(p20 − (E+
∆)

2)

+
(p′0 + E+

p′)(p0 − E−
p ) + (p′0 − E+

p′)(p0 + E−
p )− 2|∆|2

(p′20 − (E+
∆′)2)(p20 − (E−

∆)
2)

)(
1 +

p⃗ ′ · p⃗+m2

Ep′Ep

)

+

(
(p′0 + E−

p′)(p0 + E−
p ) + (p′0 − E−

p′)(p0 − E−
p )− 2|∆|2

(p′20 − (E−
∆′)2)(p20 − (E−

∆)
2)

+
(p′0 + E+

p′)(p0 + E+
p ) + (p′0 − E+

p′)(p0 − E+
p )− 2|∆|2

(p′20 − (E+
∆′)2)(p20 − (E+

∆)
2)

)(
1− p⃗ ′ · p⃗+m2

Ep′Ep

)]

≡ i

4
g20trfc

∫
d4p

(2π)4
(AπBπ + CπDπ). (3.40)

The propagator is expended around q = 0 as Eq. (3.27). We consider Γπ(0) first

Γπ(0) =ig
2
0trfc

∫
d4p

(2π)4
(p0 + E−

p )(p0 − E+
p ) + (p0 − E−

p )(p0 + E+
p )− 2|∆|2

(p20 − (E−
∆)

2)(p20 − (E+
∆)

2)

=2ig20trfc

∫
d4p

(2π)4
p20 − E−

p E
+
p − |∆|2

(p20 − (E−
∆)

2)(p20 − (E+
∆)

2)

=2ig20tr

∫
d4p

(2π)4

(
p20 − E2

p + µ2 − |∆|2

(p20 − (E−
∆)

2)(p20 − (E+
∆)

2)

)
=2ig20tr

∫
d4p

(2π)4

(
1

2

(p20 − (E+
∆)

2) + (p20 − (E−
∆)

2)

(p20 − (E−
∆)

2)(p20 − (E+
∆)

2)
+

2µ2

(p20 − (E−
∆)

2)(p20 − (E+
∆)

2)

)
=ig20tr

∫
d4p

(2π)4

(
1

p20 − (E−
∆)

2
+

1

p20 − (E+
∆)

2

)
+ 2ig20µ

2tr

∫
d4p

(2π)4

(
1

(p20 − (E−
∆)

2)2
+

1

(p20 − (E+
∆)

2)2

)
=g20I2 − 2g20µ

2I0. (3.41)

Note that all the integrands are given by the divergent integral I2 and I0 by using Eqs. (3.28) -
(3.34).

As we mentioned, the derivatives are evaluated for the temporal ∂0 and the spatial ∂i parts
separately. We evaluate

∂0Γπ(q) =
i

4
g20trfc

∫
d4p

(2π)4
(∂0(AπBπ) + ∂0(CπDπ))

=
i

4
g20trfc

∫
d4p

(2π)4
(ȦπBπ + AπḂπ + ĊπDπ + CπḊπ)

=
i

4
g20trfc

∫
d4p

(2π)4
(Ȧπ + Ċπ). (3.42)
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Since the second therm of Bπ and Dπ obviously make convergent integrals (higher order of the
denominator), we have dropped these therms in the last line. We calculate each terms

Ȧπ =
p0 − E+

p + p0 + E+
p

(p′20 − (E−
∆′)2)(p20 − (E+

∆)
2)

− 2p′0
(p′0 + E−

p′)(p0 − E+
p ) + (p′0 − E−

p′)(p0 + E+
p )− 2|∆|2

(p′20 − (E−
∆′)2)2(p20 − (E+

∆)
2)

, (3.43)

Ḋπ =
p0 + E+

p + p0 − E+
p

(p′20 − (E+
∆′)2)(p20 − (E+

∆)
2)

− 2p′0
(p′0 + E+

p′)(p0 + E+
p ) + (p′0 − E+

p′)(p0 − E+
p )− 2|∆|2

(p′20 − (E+
∆′)2)2(p20 − (E+

∆)
2)

. (3.44)

The integral over p0 is zero due to the odd function of p0. We further calculate the second order
derivatives by dropping the odd p0

Äπ =− 2
(p′0 + E−

p′)(p0 − E+
p ) + (p′0 − E−

p′)(p0 + E+
p )− 2|∆|2

(p′20 − (E−
∆′)2)2(p20 − (E+

∆)
2)

− 2p′0
p0 − E+

p + p0 + E+
p

(p′20 − (E−
∆′)2)2(p20 − (E+

∆)
2)

+ 8(p′0)
2
(p′0 + E−

p′)(p0 − E+
p ) + (p′0 − E−

p′)(p0 + E+
p )− 2|∆|2

(p′20 − (E−
∆′)2)3(p20 − (E+

∆)
2)

, (3.45)

D̈π =− 2
(p′0 + E+

p′)(p0 + E+
p ) + (p′0 − E+

p′)(p0 − E+
p )− 2|∆|2

(p′20 − (E+
∆′)2)2(p20 − (E+

∆)
2)

− 2p′0
p0 + E+

p + p0 − E+
p

(p′20 − (E+
∆′)2)2(p20 − (E−

∆)
2)

+ 8(p′0)
2
(p′0 + E+

p′)(p0 + E+
p ) + (p′0 − E+

p′)(p0 − E+
p )− 2|∆|2

(p′20 − (E+
∆′)2)3(p20 − (E+

∆)
2)

. (3.46)

Taking q = 0,

(∂0)
2Γπ(q)

∣∣
q=0

=− 2ig20trfc

∫
d4p

(2π)4

(
1

(p20 − (E−
∆)

2)(p20 − (E+
∆)

2)

)
=− ig20trfc

∫
d4p

(2π)4

(
1

(p20 − (E+
∆)

2)2
+

1

(p20 − (E−
∆)

2)2

)
=g20I0. (3.47)

The first order space derivative is

∂iΓπ(q)|q=0 =2ig20tr

∫
d4p

(2π)4

(
−pi

(p20 − (E−
∆)

2)(p20 − (E+
∆)

2)

+
pi(1− µ(Ep)

−1)(p20 − E2
p − µ2 − |∆|2)

(p20 − (E−
∆)

2)2(p20 − (E+
∆)

2)

+
pi(1 + µ(Ep)

−1)(p20 − E2
p − µ2 − |∆|2)

(p20 − (E+
∆)

2)2(p20 − (E−
∆)

2)

)
→0 (odd) (3.48)
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The second order derivative is written as A′′
πBπ + 2A′

πB
′
π + AπB

′′
π + C ′′

πD + 2C ′
πD

′
π + CπD

′′
π.

Then B′
π = D′

π = Dπ = 0, Bπ = 2 and B′′
π = −D′′

π = pipj/E4
p − δij/E2

p . Hence,

∂i∂jΓπ(q)|q=0 =
i

4
g20tr

∫
d4p

(2π)4

(
2A′′

π + (Aπ − Cπ)

(
pipj

E4
p

− δij

E2
p

))
. (3.49)

We evaluate
pipj

E4
p

− δij

E2
p

i=j
=

1

E2
p

− m2

E4
p

− 1

E2
p

= −m
2

E4
p

, (3.50)

so the second term of ∂i∂jΓπ(q)|q=0 converges. Thus, we have to work out only A′′ term as

A′′
π =

−4δij

(p20 − (E−
∆)

2)(p20 − (E+
∆)

2)
+

4pipj

E2
p(p

2
0 − (E−

∆)
2)(p20 − (E+

∆)
2)

+ 4δij(p20 − E2
p − µ2 − |∆|2)

×
(

1

(p20 − (E−
∆)

2)2(p20 − (E+
∆)

2)
+

1

(p20 − (E+
∆)

2)2(p20 − (E−
∆)

2)

)
− 8pipj

(
1

(p20 − (E−
∆)

2)2(p20 − (E+
∆)

2)
+

1

(p20 − (E+
∆)

2)2(p20 − (E−
∆)

2)

)
+ 16pipj(p20 − E2

p − µ2 − |∆|2)

×
(

1

(p20 − (E−
∆)

2)3(p20 − (E+
∆)

2)
+

1

(p20 − (E+
∆)

2)3(p20 − (E−
∆)

2)

)
i=j
=

2

(p20 − (E−
∆)

2)2
+

2

(p20 − (E+
∆)

2)2
+

4

(p20 − (E−
∆)

2)(p20 − (E+
∆)

2)

+
1

(p20 − (E−
∆)

2)2
+

1

(p20 − (E+
∆)

2)2
+

2

(p20 − (E−
∆)

2)(p20 − (E+
∆)

2)

+
−3

(p20 − (E−
∆)

2)2
+

−3

(p20 − (E+
∆)

2)2
+

−2

(p20 − (E−
∆)

2)(p20 − (E+
∆)

2)

=
4

(p20 − (E−
∆)

2)(p20 − (E+
∆)

2)
= 2

(
1

(p20 − (E+
∆)

2)2
+

1

(p20 − (E−
∆)

2)2

)
. (3.51)

Hence, the second order derivative is written as

∂i∂jΓπ(q)|q=0 = −g20I0δij. (3.52)

Since the spatial components have minus sign in the Minkowski metric, the final result of the
second order derivative of Γπ can be written as

∂µ∂νΓπ(q)|q=0 = g20I0gµν . (3.53)

The pion part in the second order is written as

L(2)
π =

1

2
g20I0∂

µπ⃗(x)∂µπ⃗(x)−
1

2

[
M2

s − 2g20(I2 − 2µ2I0)
]
π⃗2(x), (3.54)

which can be identified with the Klein-Gordon type Lagrangian if the mass term is given as

m2
π =M2

s − 2g20I2 + 4g20µ
2I0. (3.55)

The mass term is described by the quark propagator and hence reflect the quark property and
the kinetic term include the divergent integral I0. It is notable that this pion mass form is similar
to the quark mass gap equation.
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3.3.2 Sigma Meson

We consider the sigma meson term:

Γs(q) =
i

4
tr

∫
d4p

(2π)4
g20
(
G+(p′)G+(p) +G−(p′)G−(p) +H−(p′)H+(p) +H+(p′)H−(p)

)
=
i

4
g20trfc

∫
d4p

(2π)4

[(
(p′0 + E−

p′)(p0 − E+
p ) + (p′0 − E−

p′)(p0 + E+
p )− 2|∆|2

(p′20 − (E−
∆′)2)(p20 − (E+

∆)
2)

+
(p′0 + E+

p′)(p0 − E−
p ) + (p′0 − E+

p′)(p0 + E−
p )− 2|∆|2

(p′20 − (E+
∆′)2)(p20 − (E−

∆)
2)

)(
1 +

p⃗′ · p⃗−m2

Ep′Ep

)

+

(
(p′0 + E−

p′)(p0 + E−
p ) + (p′0 − E−

p′)(p0 − E−
p )− 2|∆|2

(p′20 − (E−
∆′)2)(p20 − (E−

∆)
2)

+
(p′0 + E+

p′)(p0 + E+
p ) + (p′0 − E+

p′)(p0 − E+
p )− 2|∆|2

(p′20 − (E+
∆′)2)(p20 − (E+

∆)
2)

)(
1− p⃗ ′ · p⃗−m2

Ep′Ep

)]

≡ i

4
g20trfc

∫
d4p

(2π)4
(AsBs + CsDs). (3.56)

We work out q = 0 case in which Bs = 2− 2m2

E2
p

and Ds =
2m2

E2
p

:

Γs(0) =ig
2
0tr

∫
d4p

(2π)4

[
2(p20 − E2

p − µ2 − |∆|2 + 2µ)

(p20 − E−2
∆ )(p20 − (E+

∆)
2)

+
m2

E2
p

(
p20 − (E−

p )
2 − |∆|2 + 2(E−

p )
2

(p20 − (E−
∆)

2)2
+
p20 − (E+

p )
2 − |∆|2 + 2(E+

p )
2

(p20 − (E+
∆)

2)2

−
2(p20 − E2

p − µ2 − |∆|2 + 2µ2)

(p20 − (E−
∆)

2)(p20 − (E+
∆)

2)

)]
=ig20tr

∫
d4p

(2π)4

[(
1

p20 − (E+
∆)

2
+

1

p20 − (E−
∆)

2

)
+ 2µ2

(
1

(p20 − (E−
∆)

2)2
+

1

(p20 − (E+
∆)

2)2

)
+2m2

(
1

(p20 − (E−
∆)

2)2
+

1

(p20 − (E+
∆)

2)2

)]
=g20I2 − 2g20µ

2I0 − 2g20m
2I0. (3.57)
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The first order time derivative is given as (ȦsBs + ĊsDs)|q=0 = 2Ȧs + (Ċs − Ȧs)
2m2

E2
p

.

Ȧs =
2p0

(p2′0 − (E−
∆′)2)(p20 − (E+

∆)
2)

− 2p′0
(p′0 + E−

p′)(p0 − E+
p ) + (p′0 − E−

p′)(p0 + E+
p )− 2|∆|2

(p2′0 − (E−
∆′)2)2(p20 − (E+

∆)
2)

+
2p0

(p2′0 − (E+
∆′)2)(p20 − (E−

∆)
2)

− 2p′0
(p′0 + E+

p′)(p0 − E−
p ) + (p′0 − E+

p′)(p0 + E−
p )− 2|∆|2

(p2′0 − (E+
∆′)2)2(p20 − (E−

∆)
2)

=
4p0

(p20 − (E−
∆)

2)(p20 − (E+
∆)

2)

− 4p0
p20 − E2

p + µ2 − |∆|2

(p20 − (E−
∆)

2)2(p20 − (E+
∆)

2)
− 4p0

p20 − E2
p + µ2 − |∆|2

(p20 − (E+
∆)

2)2(p20 − (E−
∆)

2)

=− 2p0

(
1

(p20 − (E−
∆)

2)2
+

1

(p20 − (E+
∆)

2)2

)
, (3.58)

and

Ċs =
2p0

(p2′0 − (E−
∆′)2)(p20 − (E−

∆)
2)

− 2p′0
(p′0 + E−

p′)(p0 + E−
p ) + (p′0 − E−

p′)(p0 − E−
p )− 2|∆|2

(p2′0 − (E−
∆′)2)2(p20 − (E−

∆)
2)

+
2p0

(p2′0 − (E+
∆′)2)(p20 − (E+

∆)
2)

− 2p′0
(p′0 + E+

p′)(p0 + E+
p ) + (p′0 − E+

p′)(p0 − E+
p )− 2|∆|2

(p2′0 − (E+
∆′)2)2(p20 − (E+

∆)
2)

=
2p0

(p20 − (E−
∆)

2)2
+

2p0
(p20 − (E+

∆)
2)2

− 4p0
p20 + (E−

p )
2 − |∆|2

(p20 − (E−
∆)

2)3
− 4p0

p20 + (E+
p )

2 − |∆|2

(p20 − (E+
∆)

2)3

=− 2p0

(
1

(p20 − (E−
∆)

2)2
+

1

(p20 − (E+
∆)

2)2

)
− 8p0

(
(E−

p )
2

(p20 − (E−
∆)

2)3
+

(E+
p )

2

(p20 − (E+
∆)

2)3

)
. (3.59)

The result is written as

∂0Γs(q)|q=0 =− itr

∫
d4p

(2π)4
p0

(
1

(p20 − (E−
∆)

2)2
+

1

(p20 − (E+
∆)

2)2

)
→ 0. (3.60)

The second order derivative is given as (ÄsBs+ C̈sDs)|q=0 = 2Äs+(C̈s− Äs)
2m2

E2
p

. The second
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term (C̈s − Äs)
2m2

E2
p

gives finite:

Äs =(−8p20 − 4(p20 − E2
p − µ2 − |∆|2 + 2µ2))

×
(

1

(p20 − (E−
∆)

2)2(p20 − (E+
∆)

2)
+

1

(p20 − (E+
∆)

2)2(p20 − (E−
∆)

2)

)
+ 16p20(p

2
0 − E2

p − µ2 − |∆|2 + 2µ2)

×
(

1

(p20 − (E−
∆)

2)3(p20 − (E+
∆)

2)
+

1

(p20 − (E+
∆)

2)3(p20 − (E−
∆)

2)

)
=− 2

(
1

(p20 − (E+
∆)

2)2
+

1

(p20 − (E−
∆)

2)

)
. (3.61)

Then

∂0∂0Γss(q)|q=0 =g
2
0I0. (3.62)

The first order space derivative is given as (A′
sBs + AsB

′
s + C ′

sDs + CsD
′
s)|q=0. Then

B′
s(0) = 2m2pi

E4
p
, D′

s(0) = −2m2pi

E4
p

, hence AsB
′
s and CsD

′
s give finite. The A′

s and C ′
s are

written as

A′
s =2p′i

( −E+
p

Ep′(p′20 − (E−
∆′)2)(p20 − (E+

∆)
2)

+
−E−

p

Ep′(p′20 − (E+
∆′)2)(p20 − (E−

∆)
2)

+(1− µ(Ep′)
−1)

(p′0 + E−
p′)(p0 − E+

p ) + (p′0 − E−
p′)(p0 + E+

p )− 2|∆|2

(p′20 − (E−
∆′)2)2(p20 − (E+

∆)
2)

+(1 + µ(Ep′)
−1)

(p′0 + E+
p′)(p0 − E−

p ) + (p′0 − E+
p′)(p0 + E−

p )− 2|∆|2

(p′20 − (E+
∆′)2)2(p20 − (E−

∆)
2)

)
, (3.63)

C ′
s =2p′i

(
E+

p

Ep′(p′20 − (E+
∆′)2)(p20 − (E+

∆)
2)

+
E−

p

Ep′(p′20 − (E−
∆′)2)(p20 − (E−

∆)
2)

+(1− µ(Ep′)
−1)

(p′0 + E−
p′)(p0 + E−

p ) + (p′0 − E−
p′)(p0 − E−

p )− 2|∆|2

(p′20 − (E−
∆′)2)2(p20 − (E−

∆)
2)

+(1 + µ(Ep′)
−1)

(p′0 + E+
p′)(p0 + E+

p ) + (p′0 − E+
p′)(p0 − E+

p )− 2|∆|2

(p′20 − (E+
∆′)2)2(p20 − (E+

∆)
2)

)
. (3.64)

Of course, the first order derivative goes to zero by the integration over pi because the each
terms are an odd function of pi. The second derivative is given as A′′

sBs + 2A′
sB

′
s + AsB

′′
s +

C ′′
sDs +2C ′

sD
′
s +CsD

′′
s = 2A′′

s + (C ′′
s −A′′

s)
2m2

E2
p
+2(A′

s −C ′
s)

2m2pi

E4
p

+ (As −Cs)B
′′. We work

out B′′
s and D′′

s as

B′′
s =− δij

E2
p

+
pipj

E4
p

+
2m2δij

E4
p

− 6pipjm2

E6
p

i=j
= −5m2

E4
p

+
6m4

E6
p

, (3.65)

D′′
s

i=j
=

5m2

E4
p

− 6m4

E6
p

= −B′′
s . (3.66)
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A′′
s and C ′′

s are written as

A′′
s

i=j
=

−6

(p20 − (E−
∆)

2)(p20 − (E+
∆)

2)
+

3

(p20 − (E−
∆)

2)2
+

3

(p20 − (E+
∆)

2)2

+
10

(p20 − (E−
∆)

2)(p20 − (E+
∆)

2)
+

−3

(p20 − (E−
∆)

2)2
+

−3

(p20 − (E+
∆)

2)2

=2

(
1

(p20 − (E+
∆)

2)
+

1

(p20 − (E−
∆)

2)

)
, (3.67)

C ′′
s

i=j
= − 2

(
1

(p20 − (E−
∆)

2)2
+

1

(p20 − (E+
∆)

2)2

)
+ 8

(
(E−

p )
2

(p20 − (E−
∆)

2)3
+

(E+
p )

2

(p20 − (E+
∆)

2)3

)
. (3.68)

Hence the terms (A′
s −C ′

s)
2m2pi

E4
p

, (As −Cs)B
′′
s and (C ′′

s −A′′
s)

2m2

E2
p

converge. The second order
space derivative is written as

∂i∂jΓs(q)|q=0 =− g20I0δij. (3.69)

The result of the second order derivative of Γss is

∂µ∂νΓs(q)|q=0 = g20I0gµν . (3.70)

The sigma meson part in the second order is given as

L(2)
s =

1

2
g20I0∂

µs(x)∂µs(x)−
1

2

[
M2

s − 2g20(I2 − 2µ2I0 − 2m2I0)
]
s2(x). (3.71)

The mass term can be identified

m2
s =M

2
s − 2g20I2 + 4g20µ

2I0 + 4g20m
2I0 = m2

π + 4g20m
2I0. (3.72)

3.3.3 Diquark-Baryon
The diquark-baryons are the complex scalar fields. The term U (2) generates the dd∗ term and
d∗d term separately. The difference of these terms are only the chemical potential dependency
which will be derived from the first order derivative with temporal part in contrast with mesons.
The mesons constructed from q̄q have no antiparticle (or self-conjugate) and have no chem-
ical potential dependence. The diquark-baryons are, however, constructed from qq and their
antiparticles are described by q̄q̄. The conserved baryon charge is written as

Q =

∫
d3xJ0 =

∫
d3xi(∆∗(x)Π∆(x)−∆(x)Π∆∗(x)), (3.73)

with the canonical conjugate momenta

Π∆(x) =∂0∆(x)

Π∆∗(x) =∂0∆
∗(x). (3.74)
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The first order derivatives represent the conserved charge and the difference between dd∗ and
d∗d is opposites sign. We can identify the dd∗ and d∗d without the first order derivative.

We consider dd∗ term:

Γdd∗(q) =
i

4
tr

∫
d4p

(2π)4
g2d(−G+(p′)γ5t2τ2G

−(p)γ5t2τ2)

=
i

4
g2dtrfc

∫
d4p

(2π)4

[(
(p′0 + E−

p′)(p0 − E−
p )

(p′20 − (E−
∆′)2)(p20 − (E−

∆)
2)

+
(p′0 − E+

p′)(p0 + E+
p )

(p′20 − (E+
∆′)2)(p20 − (E+

∆)
2)

)(
1 +

p⃗ ′ · p⃗+m2

Ep′Ep

)

+

(
(p′0 + E−

p′)(p0 + E+
p )

(p′20 − (E−
∆′)2)(p20 − (E+

∆)
2)

+
(p′0 − E+

p′)(p0 − E−
p )

(p′20 − (E+
∆′)2)(p20 − (E−

∆)
2)

)(
1− p⃗ ′ · p⃗+m2

Ep′Ep

)]

≡ i

4
g2dtrfc

∫
d4p

(2π)4
(Add∗Bdd∗ + Cdd∗Ddd∗) . (3.75)

We work out the case q = 0

Γdd∗(0) =
i

2
g2dtr

∫
d4p

(2π)4

(
p20 − (E−

p )
2

(p20 − (E−
∆)

2)2
+

p20 − (E+
p )

2

(p20 − (E+
∆)

2)2

)
=
i

2
g2dtr

∫
d4p

(2π)4

(
1

p20 − (E−
∆)

2
+

1

p20 − (E+
∆)

2

+
|∆|2

(p20 − (E+
∆)

2)2
+

|∆|2

(p20 − (E−
∆)

2)2

)
=
1

2
g2dI2 −

1

2
g2d|∆|2I0. (3.76)

The first order time derivative is written as

∂0Γdd∗|q=0 =
i

2
g2dtr

∫
d4p

(2π)4

[(
Ep

(p20 − (E+
∆)

2)2
− Ep

(p20 − (E−
∆)

2)2

)
+

(
µ

(p20 − (E+
∆)

2)2
+

µ

(p20 − (E−
∆)

2)2

)]
, (3.77)
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where the first term is evaluated as

Ep

(p20 − (E+
∆)

2)2
− Ep

(p20 − (E−
∆)

2)2
=

Ep

(p20 − (E−
∆)

2 − 4µEp)2
− Ep

(p20 − (E+
∆)

2 + 4µEp)2

=
Ep

(p20 − (E−
∆)

2)2

(
1 + 2

4µEp

p20 − (E−
∆)

2

)
− Ep

(p20 − (E+
∆)

2)2

(
1− 2

4µEp

p20 − (E+
∆)

2

)
2

(
Ep

(p20 − (E+
∆)

2)2
− Ep

(p20 − (E−
∆)

2)2

)
=8µE2

p

(
1

(p20 − (E+
∆)

2)3
+

1

(p20 − (E+
∆)

2)3

)
Ep

(p20 − (E+
∆)

2)2
− Ep

(p20 − (E−
∆)

2)2
=− 3µ

(
1

(p20 − (E+
∆)

2)2
+

1

(p20 − (E−
∆)

2)2

)
. (3.78)

Thus,

∂0Γdd∗ |q=0 = g2dµI0. (3.79)

The second order derivative is written as

∂0∂0Γdd∗(q)|q=0 =ig
2
dtr

∫
d4p

(2π)4

(−2p0(p0 − (E−
p ))− (p20 − (E−

p )
2)

(p20 − (E−
∆)

2)3

+
−2p0(p0 + (E+

p ))− (p20 − (E+
p )

2)

(p20 − (E+
∆)

2)3

+
4p20(p

2
0 − (E−

p )
2)

(p20 − (E−
∆)

2)4
+

4p20(p
2
0 − (E+

p )
2)

(p20 − (E+
∆)

2)4

)
=− i

2
g2dtr

∫
d4p

(2π)4

(
1

(p20 − (E+
∆)

2)2
+

1

(p20 − (E−
∆)

2)2

)
=
1

2
g2dI0. (3.80)

The first order space derivative is given by 2A′
dd∗ and the second order derivative is 2A′′

dd∗ .
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We work out the space derivatives of Add∗:

A′
dd∗ =p

′i
(

p0 − E−
p

Ep′(p
′2
0 − (E−

∆′)2)(p20 − (E+
∆)

2)
+

−(p0 + E+
p )

Ep′(p
′2
0 − (E+

∆′)2)(p20 − (E−
∆)

2)

+
2(1− µ(Ep′)

−1)(p′0 + E−
p′)(p0 − E−

p )

(p
′2
0 − (E−

∆′)2)2(p20 − (E−
∆)

2)
+

2(1 + µ(Ep′)
−1)(p′0 − E+

p′)(p0 + E+
p )

(p
′2
0 − (E+

∆′)2)2(p20 − (E+
∆)

2)

)
,

(3.81)

A′′
dd∗ =δ

ij

(
p0 − E−

p

Ep(p20 − (E−
∆)

2)2
−

p0 + E−
p

Ep(p20 − (E+
∆)

2)2
+

2(p20 − (E−
p )

2)

(p20 − (E−
∆)

2)3
+

2(p20 − (E+
p )

2)

(p20 − (E+
∆)

2)3

)
+ pipj

(
−(p0 − E−

p )

E3
p(p

2
0 − (E−

∆)
2)2

+
p0 + E+

p

E3
p(p

2
0 − (E+

∆)
2)2

+
4(p0 − E−

p )

Ep(p20 − (E−
∆)

2)3

+
4(p0 + E+

p )

Ep(p20 − (E+
∆)

2)3
+

8(p20 − (E−
p )

2)

(p20 − (E−
∆)

2)4
+

8(p20 − (E+
p )

2)

(p20 − (E+
∆)

2)4

)
i=j
=

p0 − E−
p

Ep(p20 − (E−
∆)

2)2
−

p0 + E−
p

Ep(p20 − (E+
∆)

2)2
+

2

(p20 − (E−
∆)

2)2
+

2

(p20 − (E+
∆)

2)2

−
p0 − E−

p

Ep(p20 − (E−
∆)

2)2
+

p0 + E+
p

Ep(p20 − (E+
∆)

2)2
−

p0 − E−
p

Ep(p20 − (E−
∆)

2)2

+
p0 + E+

p

Ep(p20 − (E+
∆)

2)2
− 2

(p20 − (E−
∆)

2)2
− 2

(p20 − (E+
∆)

2)2

=
1

(p20 − (E−
∆)

2)2
+

1

(p20 − (E+
∆)

2)2
. (3.82)

Since A′
dd∗ is odd function of p, the first derivative vanishes. The second order derivative is

written as

∂i∂jΓdd∗ |q=0 = −1

2
g2dI0δij. (3.83)

The result of the second order derivative of Γdd∗ is

∂µ∂νΓdd∗(q)|q=0 =
1

2
g2dI0gµν . (3.84)

We consider d∗d term:

Γd∗d(q) =
i

4
g2dtr

∫
d4p

(2π)4
(−G−(p′)γ5t2τ2G

+(p)γ5t2τ2)

=
i

4
g2dtrfc

∫
d4p

(2π)4

[(
(p′0 − E−

p′)(p0 + E−
p )

(p′20 − (E−
∆′)2)(p20 + (E−

∆)
2)

+
(p′0 + E+

p′)(p0 − E+
p )

(p′20 − (E+
∆′)2)(p20 − (E+

∆)
2)

)(
1 +

p⃗′ · p⃗+m2

Ep′Ep

)

+

(
(p′0 − E−

p′)(p0 − E+
p )

(p′20 − (E−
∆′)2)(p20 − (E+

∆)
2)

+
(p′0 + E+

p′)(p0 + E−
p )

(p′20 − (E+
∆′)2)(p20 − (E−

∆)
2)

)(
1− p⃗ ′ · p⃗+m2

Ep′Ep

)]
, (3.85)
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and its time derivative

∂0Γd∗d(q)|q=0 =
i

2
g2dtr

∫
d4p

(2π)4

[(
Ep

(p20 − (E−
∆)

2)2
− Ep

(p20 − (E+
∆)

2)2

)
−
(

µ

(p20 − (E−
∆)

2)2
+

µ

(p20 − (E+
∆)

2)2

)]
. (3.86)

Thus,

∂0Γd∗d(q)|q=0 = −g2dµI0 (3.87)

in the same way as dd∗. Note that Γd∗d(q) gives the same result as Γdd∗(q) except for ∂0Γd∗d(q)|q=0.
Since the diquarks are baryons, the diquark condensation break the baryon charge symmetry.

The existence of the condensation arise the mixing terms dd and d∗d∗. We work out the diquark
mixing terms dd and d∗d∗. The dd term is

Γdd(q) =
i

4
tr

∫
d4p

(2π)4
g2dH

+(p′)γ5t2τ2H
+(p)γ5t2τ2

=
i

4
g4d(∆

∗
0)

2trfc

∫
d4p

(2π)4

[(
1

(p′20 − (E+
∆′)2)(p20 − (E+

∆)
2)

+
1

(p′20 − (E−
∆′)2)(p20 − (E−

∆)
2)

)(
1 +

p⃗ ′ · p⃗+m2

Ep′Ep

)
+

(
1

(p′20 − E+2
∆′ )(p20 − (E−

∆)
2)

+
1

(p′20 − (E−
∆′)2)(p20 − (E+

∆)
2)

)(
1− p⃗ ′ · p⃗+m2

Ep′Ep

)]
. (3.88)

We work out the q = 0 case:

Γdd(0) =
i

2
g4d(∆

∗
0)

2tr

∫
d4p

(2π)4

(
1

(p20 − (E+
∆)

2)2
+

1

(p20 − (E−
∆)

2)2

)
=− 1

2
g4d(∆

∗
0)

2I0. (3.89)

Similarly,

Γd∗d∗(q) =
i

4
tr

∫
d4p

(2π)4
g2dH

−(p′)γ5t2τ2H
−(p)γ5t2τ2, (3.90)

Γd∗d∗(0) =− 1

2
g4d(∆0)

2I0. (3.91)

All the derivative terms are convergence. While we have defined a notation g2d|∆0|2 = |∆|2, the
g2d(∆0)

2 and g2d(∆
∗
0)

2 are not expressed by |∆|2.
The diquark-baryon part in the second order is given as

L(2)
diq =

1

2
g2dI0 (∂

µd(x)) (∂µd
∗(x))− 1

2
(M2

d − 2g2d(I2 − |∆|2I0))d(x)d∗(x)

− ig2dI0µ(d
∗(x)∂0d(x)− d(x)∂0d

∗(x))− 1

2
g4dI0(∆

∗
0)

2(d(x))2 − 1

2
g4dI0(∆0)

2(d∗(x))2,

(3.92)

with the mass

m2
d =M2

d − 2g2d(I2 − |∆|2I0). (3.93)
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3.3.4 Mixing Terms

Since the sigma meson and diquark-baryons are the scalar and due to the PG symmetry, they
mix each other through the condensation. This property appears in the Lagrangian as mixing
terms proportional to the condensation.

We work out the ds term:

Γds(q) =
i

4
tr

∫
d4p

(2π)4
(−g0gd) (G+(p′)γ5t2τ2H

+(p) +H+(p′)γ5t2τ2G
−(p))

=
i

4
g0g

2
d∆

∗
0trfc

∫
d4p

(2π)4

[(
(p′0 + E−

p′)− (p0 − E−
p )

(p′20 − (E−
∆′)2)(p20 − (E−

∆)
2)

+
(p0 + E+

p )− (p′0 − E+
p′)

(p′20 − (E+
∆′)2)(p20 − (E+

∆)
2)

)(
m

Ep′
+
m

Ep

)

+

(
(p′0 + E−

p′)− (p0 + E+
p )

(p′20 − (E−
∆′)2)(p20 − (E+

∆)
2)

+
(p0 − E−

p )− (p′0 − E+
p′)

(p′20 − (E+
∆′)2)(p20 − (E−

∆)
2)

)(
m

Ep′
− m

Ep

)]
, (3.94)

in the q = 0 case

Γds(0) = ig0g
2
d∆

∗
0tr

∫
d4p

(2π)4
m

Ep

(
E−

p

(p20 − (E−
∆)

2)2
+

E+
p

(p20 − (E+
∆)

2)2

)
= ig0g

2
d∆

∗
0mtr

∫
d4p

(2π)4

(
1

(p20 − (E−
∆)

2)2
+

1

(p20 − (E+
∆)

2)2

)
= −g0g2d∆∗

0mI0. (3.95)

We work out the sd term:

Γsd(q) =
i

4
tr

∫
d4p

(2π)4
(−g0gd)

(
H+(p′)G+(p)γ5t2τ2 +G−(p′)H+(p)γ5t2τ2

)
=
i

4
g0g

2
d∆

∗
0trfc

∫
d4p

(2π)4

[(
(p0 + E−

p )− (p′0 − E−
p′)

(p′20 − (E−
∆′)2)(p20 − (E−

∆)
2)

+
(p′0 + E+

p′)− (p0 − E+
p )

(p′20 − (E+
∆′)2)(p20 − (E+

∆)
2)

)(
m

Ep′
+
m

Ep

)

+

(
(p0 − E+

p )− (p′0 − E−
p′)

(p′20 − (E−
∆′)2)(p20 − (E+

∆)
2)

+
(p′0 + E+

p′)− (p0 + E−
p )

(p′20 − (E+
∆′)2)(p20 − (E−

∆)
2)

)(
m

Ep′
− m

Ep

)]
, (3.96)
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in the q = 0 case

Γsd(0) =ig0g
2
d∆

∗
0tr

∫
d4p

(2π)4
m

Ep

(
E−

p

(p20 − (E−
∆)

2)2
+

E+
p

(p20 − (E+
∆)

2)2

)
=ig0g

2
d∆

∗
0mtr

∫
d4p

(2π)4

(
1

(p20 − (E−
∆)

2)2
+

1

(p20 − (E+
∆)

2)2

)
=− g0g

2
d∆

∗
0mI0. (3.97)

We work out the d∗s term:

Γd∗s(q) =
i

4
tr

∫
d4p

(2π)4
g0gd

(
G−(p′)γ5t2τ2H

−(p) +H−(p′)γ5t2τ2G
+(p)

)
=
i

4
g0g

2
d∆0trfc

∫
d4p

(2π)4

[(
(p′0 + E+

p′)− (p0 − E+
p )

(p′20 − (E+
∆′)2)(p20 − (E+

∆)
2)

+
(p0 + E−

p )− (p′0 − E−
p′)

(p′20 − (E−
∆′)2)(p20 − (E−

∆)
2)

)(
m

Ep′
+
m

Ep

)

+

(
(p′0 + E+

p′)− (p0 + E−
p )

(p′20 − (E+
∆′)2)(p20 − (E−

∆)
2)

+
(p0 − E+

p )− (p′0 − E−
p′)

(p′20 − (E−
∆′)2)(p20 − (E+

∆)
2)

)(
m

Ep′
− m

Ep

)]
, (3.98)

in the q = 0 case

Γd∗s(0) =ig0g
2
d∆0tr

∫
d4p

(2π)4
m

Ep

(
E+

p

(p20 − (E+
∆)

2)2
+

E−
p

(p20 − (E−
∆)

2)2

)
=ig0g

2
d∆0mtr

∫
d4p

(2π)4

(
1

(p20 − (E+
∆)

2)2
+

1

(p20 − (E−
∆)

2)2

)
=− g0g

2
d∆0mI0. (3.99)

We work out the sd∗ term:

Γsd∗(q) =
i

4
tr

∫
d4p

(2π)4
g0gd

(
H−(p′)G−(p)γ5t2τ2 +G+(p′)H−(p)γ5t2τ2

)
=
i

4
g0g

2
d∆0trfc

∫
d4p

(2π)4

[(
(p0 + E+

p )− (p′0 − E+
p′)

(p′20 − (E+
∆′)2)(p20 − (E+

∆)
2)

+
(p′0 + E−

p′)− (p0 − E−
p )

(p′20 − (E−
∆′)2)(p20 − (E−

∆)
2)

)(
m

Ep′
+
m

Ep

)

+

(
(p0 − E−

p )− (p′0 − E+
p′)

(p′20 − (E+
∆′)2)(p20 − (E−

∆)
2)

+
(p′0 + E−

p′) + (p0 + E+
p )

(p′20 − (E−
∆′)2)(p20 − (E+

∆)
2)

)(
m

Ep′
− m

Ep

)]
, (3.100)
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in the q = 0 case

Γsd∗(0) =ig0g
2
d∆0tr

∫
d4p

(2π)4
m

Ep

(
E+

p

(p20 − (E+
∆)

2)2
+

E−
p

(p20 − (E−
∆)

2)2

)
=ig0g

2
d∆0mtr

∫
d4p

(2π)4

(
1

(p20 − (E+
∆)

2)2
+

1

(p20 − (E−
∆)

2)2

)
=− g0g

2
d∆0mI0. (3.101)

All the derivative terms converge.
The effective Lagrangian at order k = 2 can be written as

L(2) =
1

2
g20I0(∂µπ⃗(x))

2 − 1

2
m2

ππ⃗
2(x)

+
1

2
g20I0(∂µs(x))

2 − 1

2
m2

ss
2(x)

+
1

2
g2dI0(∂

µd∗(x))(∂µd(x))−
1

2
m2

dd
∗(x)d(x)

− ig2dI0µ(d
∗(x)∂0d(x)− d(x)∂0d

∗(x))− 1

2
g4dI0(∆

∗2
0 d

2(x) + ∆2
0d

∗2(x))

− 2g0g
2
dI0ms(x)(∆∗

0d(x) + ∆0d
∗(x)). (3.102)

The Lagrangian density has mass dimension 4, and I0 and I2 have mass dimensions 0 and 2,
respectively. Hence when I0 appears in the coefficients there are factors of mass dimension 2
such as squares of the derivative ∂µ, the chemical potential µ, the quark mass m and the gap
energy ∆0 and ∆∗

0. The pion term has a simple form due to the pseudo-scalar nature of the
pion field, while the scalar boson s(x) couples to the diquark-baryon fields through the diquark
condensates.

3.4 The Coupling Terms (k=3)
The coupling vertices involving combinations of three mesons or diquark fields are obtained
from the third-order term:

U (3) = − i

6
tr(ŜK̂)3 =− i

6
tr(A3 + ABC +BCA+ CAB

+ CBD +BDC +DCB +D3). (3.103)

Non-local terms with derivatives of hadron fields converge, and U (3) is constructed with only
local terms. This term generates leading combinations of G± and H± with γ5. With the prin-
ciple of taking only the divergent integrals, the possible combinations are GGG or GGH with
γ5. From dimensional analysis, the coupling constant should have mass dimension one. Thus
for baryon-number conserving channels, the relevant factor is m. For baryon-number non-
conserving channels the factors are ∆0 or ∆∗

0. Hence, the terms for baryon-number conserving
channels are generated from GGG and the terms for baryon-number non-conserving channels
are generated from GGH . We drop the π⃗2 therms since that terms will generate same coeffi-
cients as the s2 and the first order π⃗ has to vanish due to the odd γ5. Even they are dropped, we
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find 32 terms as:

(SK)3 =− g30(G
+G+G+ +G−G−G−)s3

− g0g
2
d(G

+G+H
′−γ5 +G+H

′−γ5G
+ +H

′−γ5G
+G+

+G+H
′−G−γ5 +H

′−G−γ5G
+ +G−γ5G

+H
′− +G−γ5H

′−G−

+H
′−G−G−γ5 +G−G−γ5H

′−)s2d∗

+ g20gd(G
+G+γ5H

′+ +G+γ5H
′+G+ +H

′+G+G+γ5

+H
′+G+γ5G

− +G+γ5G
−H

′+ +G−H
′+G+γ5

+H
′+γ5G

−G− +G−H
′+γ5G

− +G−G−H
′+γ5)s

2d

+ g0g
2
d(G

+G+γ5G
−γ5 +G−γ5G

+G+γ5 +G−γ5G
+G+γ5

+G−γ5G
+γ5G

− +G+γ5G
−G−γ5 +G−G−γ5G

+γ5)sdd
∗

+ g3d(H
′−γ5G

+γ5G
−γ5 +G+γ5G

−γ5H
′−γ5 +G−γ5H

′−γ5G
+γ5)dd

∗2

− g3d(G
+γ5H

′+γ5G
−γ5 +H

′+γ5G
−γ5G

+γ5 +G−γ5G
+γ5H

′+γ5)d
2d∗. (3.104)

where we have used

H
′+ = − gd∆

∗
0

p20 − (E±
∆)

2
γ5Λ̃+ − gd∆

∗
0

p20 − (E∓
∆)

2
γ5Λ̃− . (3.105)

Taking trace

− i

6
tr(ŜK̂)3 =− 2g30I0ms

3 − g0g
2
dI0∆0s

2d∗ − g0g
2
dI0∆

∗s2d

− 2g0g
2
dI0msdd

∗ − g4dI0∆0dd
∗2 − g4dI0∆

∗
0d

2d∗, (3.106)

The final result for the k = 3 part of the effective Lagrangian is:

L(3) =− 2g0I0m
[
g20s

3(x) + g20s(x)π⃗
2(x) + g2dd

∗(x)d(x)s(x)
]

− g2dI0
[
g20(s

2(x) + π⃗2(x))(∆0d
∗(x) + ∆∗

0d(x)) + g2dd
∗(x)d(x)(∆0d

∗(x) + ∆∗
0d(x))

]
.

(3.107)

Since the constituent quark mass is defined m = m0 + g0σ0, the coupling constants for each
terms have the condensations g0σ0, gd∆0 and gd∆∗

0 and dimension one together with the dimen-
sionless integral I0. Obviously, the vacuum transition s3 and sdd∗ channels conserve the baryon
number and the others do not conserve.

3.5 The Interaction Terms (k=4)
Four-point interaction terms involving mesons and diquarks derive from the fourth-order term,

U (4) =
i

8
tr(ŜK̂)4 . (3.108)

The non-local pieces converge. By examination it turns out that only the possible combination
is GGGG with γ5 and the coupling constants are dimensionless. The non-zero combinations
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are s4, π⃗4, (dd∗)2, s2π⃗2, s2dd∗ and π⃗dd∗ due to the number of γ5. Out of many terms that appear
we give here a generic example:

U (4)
π =

i

8
g40trfcs

∫
d4p

(2π)4
(G+γ5G

+γ5G
+γ5G

+γ5 ++G−γ5G
−γ5G

−γ5G
−γ5)π⃗

4 . (3.109)

The first and second terms generate many terms. The point of calculation is to take trace for
spinor. The products of gamma matrices and propagators are worked out by the trace formulas
for instance as follows:

trsΛ−γ0γ5Λ+γ0γ5Λ−γ0γ5Λ+γ0γ5 =trsΛ− = 2,

trsΛ+γ0γ5Λ−γ0γ5Λ+γ0γ5Λ−γ0γ5 =trsΛ+ = 2, (3.110)

and all the other terms vanish. From the first term one finds:

trsG
+γ5G

+γ5G
+γ5G

+γ5 =2
(p0 + E−

p )
2(p0 − E+

p )
2

(p20 − (E−
∆)

2)2(p20 − (E+
∆)

2)2
× 2

=2

(
1

(p20 − (E−
∆)

2)2
+

1

(p20 − (E+
∆)

2)2

)
. (3.111)

The same result is obtained from the second term of Eq. (3.109), hence the result of the complete
π⃗4 term is

U (4)
π =

i

2
g40trfc

∫
d4p

(2π)4

(
1

(p20 − (E−
∆)

2)2
+

1

(p20 − (E+
∆)

2)2

)
π⃗4

=− 1

2
g40I0π⃗

4. (3.112)

Consider another example, the combination involving π⃗2dd∗, which has 12 terms of the form
GGGG as

U
(4)

π⃗2dd∗ =
i

8
g0g

2
dtrfcs

∫
d4p

(2π)4
[
G+γ5G

+γ5G
+γ5G

+γ5 +G+γ5G
−γ5G

+γ5G
+γ5

+G+γ5G
+γ5G

−γ5G
+γ5 −G+γ5G

+γ5G
−γ5G

−γ5 −G+γ5G
−γ5G

−γ5G
+γ5

+G+γ5G
−γ5G

−γ5G
−γ5 +G−γ5G

+γ5G
+γ5G

+γ5 −G−γ5G
+γ5G

+γ5G
−γ5

−G−γ5G
−γ5G

+γ5G
+γ5 +G−γ5G

−γ5G
+γ5G

+γ5 +G−γ5G
+γ5G

−γ5G
−γ5

+G−γ5G
−γ5G

+γ5G
+γ5
]
π⃗2dd∗. (3.113)

As we found, the non-zero terms come from only the two products as Eq. (3.110) and the result
is Eq. (3.111). In the 12 terms, the 4 terms have minus sign and the 8 terms have plus sign,
hence the 4 terms are remained. Thus we obtain

U
(4)

π⃗2dd∗ =
i

8
g0g

2
dtrfc

∫
d4p

(2π)4
4× 2

(
1

(p20 − (E−
∆)

2)2
+

1

(p20 − (E+
∆)

2)2

)
π⃗2dd∗

=− g20g
2
dI0π⃗

2dd∗. (3.114)
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Thus, the 4th order of the fields s4, π⃗4 and (dd∗)2 generate −1
2
I0 and s2π⃗2, s2dd∗ and π⃗dd∗

generate −I0. The final expression for the k = 4 part of the effective Lagrangian is:

L(4) =− g40I0s
2(x)π⃗2(x)− g20g

2
dI0(s

2(x) + π⃗2(x))d∗(x)d(x)

− 1

2
g40I0(s

4(x) + π⃗4(x))− 1

2
g4dI0d

∗2(x)d2(x)

=− 1

2
I0
[
g20(s

2(x) + π⃗2(x)) + g2dd
∗(x)d(x)

]2
. (3.115)

It generates interactions between diquarks, scalar mesons and pions in all possible combina-
tions.

3.6 Identification with a Generalized Linear Sigma Model
The limiting case of exact Pauli-Gürsey symmetry in color SU(2) is realized with g0 = gd and
Ms =Md. The fourth order Lagrangian density is written as

L(4) = −1

2
g40I0(s

2(x) + π⃗2(x) + d∗(x)d(x))2 . (3.116)

This form and the structure of the other terms suggest, not surprisingly, that the hadron La-
grangian is related to a generalized linear σ model. To demonstrate this, we introduce a fourth-
order extended σ model Lagrangian density with σ, π⃗, ∆ and ∆∗ fields:

L(4)
σ = −1

2
g40I0(σ

2(x) + π⃗2(x) + ∆∗(x)∆(x))2 . (3.117)

Separating again mean fields and fluctuations by the relations σ = σ0+s(x) and ∆ = ∆0+d(x)
together with its complex conjugate, one finds

σ2(x) + π⃗2(x) + ∆∗(x)∆(x) =(σ0 + s(x))2 + π⃗2(x) + (∆0 + d(x))(∆∗
0 + d∗(x))

=σ2
0 +∆0∆

∗
0 + 2σ0s(x) + ∆0d

∗(x) + ∆∗
0d(x)

+ s2(x) + π⃗2(x) + d∗(x)d(x) , (3.118)

and the 4-th order Lagrangian (3.117) is rewritten as:

L(4)
σ =− 1

2
g40I0[v

4
0 + 2v20(2σ0s(x) + ∆0d

∗(x) + ∆∗
0d(x))

+ 2v20(s
2(x) + π⃗2(x) + d∗(x)d(x)) + 4σ2

0s
2(x) + 2|∆0|2d∗(x)d(x)

+ ∆2
0d

∗2(x) + ∆∗2
0 d

2(x) + 4σ0∆0s(x)d
∗(x) + 4σ0∆

∗
0s(x)d(x)

+ 4σ0(s
3(x) + s(x)d∗(x)d(x) + s(x)π⃗2(x))

+ 2∆0(d
∗2(x)d(x) + s2(x)d∗(x) + π⃗2(x)d∗(x))

+ 2∆∗
0(d

∗(x)d2(x) + s2(x)d(x) + π⃗2(x)d(x))

+ (s2(x) + π⃗2(x) + d∗(x)d(x))2], (3.119)

where we have defined σ2
0 + |∆0|2 = v20 .
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Hence one can write the hadron Lagrangian in the compact form of a generalized linear σ
model with inclusion of diquark fields:

LEσ =
1

2
g20I0

[
(∂ν π⃗(x))

2 + (∂νσ(x))
2 + |(∂ν − 2iµδν0)∆(x)|2

]
− 1

2
(M2

s − 2g20I2 + 4g20I0µ
2)(σ2(x) + π⃗2(x) + ∆∗(x)∆(x))

− 1

2
g40I0

[
(σ2(x) + π⃗2(x) + ∆∗(x)∆(x))− v20

]2
. (3.120)

In order to write the Lagrangian in this form, we have added −2g20I0µ
2∆∗∆ to the mass term

and combine with the σ2 + π⃗2 terms to arrive at the compact symmetric mass term shown
in the second line. We then add the counter part, +2g20I0µ

2∆∗∆, to the kinetic energy term
proportional to (∂ν∆

∗)(∂ν∆) and arrive at the compact form 1
2
g20I0|(∂ν − 2iµδν0)∆|2. Since

the diquark-baryon is constructed by two quarks (qq) and the antidiquark-baryon is by two
antiquarks (q̄q̄), the baryon chemical potential can be written µB = 2µ which appears in the
kinetic term of the diquarks.

Consider next the explicit chiral symmetry breaking term. Obviously, we have a term linear
in the scalar field, 2g0m0(I2 − 2µ2I0)s, which is proportional to the bare quark mass. This
suggests the explicit chiral symmetry breaking term of the form

LSB = 2g0m0(I2 − 2µ2I0)σ(x). (3.121)

This term provides a new mean-field mass equation including explicit chiral symmetry breaking,

−M2
s σ0 + 2g0(m0 + g0σ0)(I2 − 2µ2I0) = 0 . (3.122)

Self-consistent solution of this gap equation determines the dynamical quark mass, m = m0 +
g0σ0, that appears also in the integrals I2 and I0.

3.7 Renormalization
The hadron Lagrangian (3.120) extracted from the NJL model involves the divergent quark loop
integrals I2 and I0. The NJL approach is valid for quark momenta below a characteristic scale,
Λ ∼ 0.6 [GeV], at which the integrals are cut off in practice. Nonetheless, when written in the
form (3.120) as a generalized linear sigma model, renormalization has to be performed. We
follow the Eguchi method [42]. The kinetic term implies the wave function renormalization,

g20I0 =Z
−1
M

σ =Z
1
2
MσR π⃗ = Z

1
2
M π⃗R

∆ =Z
1
2
M∆R ∆∗ = Z

1
2
M∆∗

R . (3.123)

The mass renormalization condition is

M2
s − 2g20I2 + 4g20I0µ

2 = 0 . (3.124)
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The coupling constant renormalization is written as

2g40I0 =Z
−1
λ λ0 ,

λ =Z2
MZ

−1
λ λ0 . (3.125)

The mean field is renormalized as

v = Z
1
2
Mv0 , (3.126)

and the explicit chiral symmetry breaking term is renormalized as

2g0m0(I2 − 2µ2I0) =Z
−1
SBε0

ε =Z
1
2
MZ

−1
SBε0 . (3.127)

When expressed in terms of renormalized fields and couplings, the effective Lagrangian
(3.120) reads:

LEσSB =
1

2

[
(∂ν π⃗R(x))

2 + (∂νσR(x))
2 + |(∂ν − iµBδν0)∆R(x)|2

]
− λ

4

[
σ2
R(x) + π⃗2

R(x) + ∆∗
R(x)∆R(x)− v2

]2
+ εσR(x). (3.128)

Together with the quark term, we have now a consistent Lagrangian to derive the thermodynam-
ical potential for the interacting quark-hadron system. The hadron dynamics itself is governed
by the generalized linear σ model Lagrangian (3.128). The explicit chiral symmetry breaking
term, εσR, is related to the bare quark mass m0. When the PG symmetry is not satisfied, the
meson part and the diquark-baryon part are renormalized independently.
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Chapter 4

Thermodynamics of Quark-Hadron
Matter

We derived the quark mean field thermodynamical potential (the partition function) in Chapter 2
and the meson-diquark Lagrangian (extended linear sigma model) in Chapter 3. In this chapter
we discuss properties of quark-hadron matter and compare with the lattice QCD result. First, we
will discuss the phase structure at finite temperature and density in the mean field level by using
the thermodynamical potential. At finite temperature, we include the Polyakov loop effect.
Next, we discuss the hadron mass spectrum at finite temperature and density. The behavior
of the mass at finite density can be found by analysis of the coupled mass matrix. We find
the existence of the NG boson due to the spontaneous breaking of baryon number symmetry.
Finally, the equation of state (EOS) for quark-hadron matter in various chemical potentials
are discussed. The excitation of the NG boson called the Bogoliubov excitation may give the
important contribution to matter property. The baryon density in the vacuum is also discussed.
We will find our framework cannot reproduce the lattice calculation for the baryon density.

4.1 Thermodynamics of Mesons and Diquark-Baryons in the
Gaussian Approximation

We now discuss the contributions of mesons and diquark-baryon fields to the thermodynamical
potential, using the Gaussian approximation. The starting point is the extended linear σ model
Lagrangian derived in the previous section. The whole Lagrangian is written as

L = LMF + Lhadron . (4.1)

The mean field part has been worked out previously to provide the thermodynamical potential
ΩMF . The extended linear σ model includes hadron fields up to fourth order. The complete
integrations over the hadron fields cannot be performed to this order. In the present work we
restrict ourselves to the Gaussian approximation [77], taking only the second order (mass) terms
into account and perform the hadron integrals for the partition function as

Z = Zq

∫
DsDπ⃗DdDd∗ exp

(
i

∫
d4xL(2)

hadron

)
, (4.2)
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with

Zq =exp

(
−V
T
ΩMF

)
,

L(2)
hadron =

1

2
(∂µπ⃗)

2 − 1

2
m2

ππ⃗
2 +

1

2
(∂µs)

2 − 1

2
m2

ss
2

+
1

2
(∂µd∗)(∂µd)−

1

2
m2

dd
∗d− iµ(d∗∂0d− d∂0d

∗)

− 1

2
∆∗2d2 − 1

2
∆2d∗2 − 2m∆∗sd− 2m∆sd∗ . (4.3)

Here we have used the renormalized fields but omitted the index R for simplicity. For further
convenience, we have introduced ∆ = gd∆0 and ∆∗ = gd∆

∗
0 in the above equation. The

renormalized masses are defined as

m2
π =

[
M2

s − 2g20(I2 − 2I0µ
2)
]
/(g20I0) ,

m2
s =

[
M2

s − 2g20(I2 − 2I0(µ
2 +m2)

]
/(g20I0) ,

m2
d =

[
M2

d − 2g2d(I2 − I0|∆|2)
]
/(g20I0) . (4.4)

The meson and diquark-baryon masses (4.4) found by bosonization and renormalization are
identical to the masses obtained by solving the corresponding Bethe-Salpeter equations taking
only the divergent integrals I0 and I2 in the quark-loop integrals. Of course, the use of the
Gaussian approximation means ignoring important interaction terms generated by L(3) and L(4).

The hadronic partition function is

Zhadron =

∫
DΦDπ⃗ exp

(
−S(2)

)
,

S(2) =
1

2

∑
Q

∫
d3x

[
Φ†(x)Mn(Q)Φ(x) + π⃗†(x)Nn(Q)π⃗(x)

]
, (4.5)

where Q = (iωn, q⃗), with ωn = 2πnT being the boson Matsubara frequency and
∑

Q =

T
∑

n

∫
d3q
(2π)3

. The fields Φ are defined as ΦT = (s, d, d∗) and π⃗T = (π+, π0, π−). The matrix
Mn(Q) is the mass matrix in Euclidean space with Q2 = q⃗2 + ω2

n and Q0 = iωn:

Mn(Q) =

Q2 +m2
s 2m∆∗ 2m∆

2m∆ 1
2
(Q2 +m2

d)− 2µQ0 ∆2

2m∆∗ ∆∗2 1
2
(Q2 +m2

d) + 2µQ0

 . (4.6)

On the other hand, the matrixNn(Q) of the pion term is diagonal and proportional to the identity
matrix as

N ij
n (Q) = δij(Q2 +m2

π) . (4.7)

A related study of the thermodynamical potential beyond the mean field approximation, in-
cluding hadron contributions in the two-color NJL model by using the Gaussian approximation,
has been performed by He [67]. The effect of the pair mode in condensed matter has been
investigated by Diener et al. [77]. This method is applied to the NJL model and the effect of the
hadrons is estimated by a perturbation method for the quark density [67]. An expansion of the
Nc = 3 two-flavor PNJL model beyond mean field approximation has been reported in ref. [25].
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4.2 Parameters

Our NJL model has three parameters the current quark mass m0, a quark loop momentum cut-
off Λ and the coupling strength G0 = H0. The parameters are fixed at zero temperature and
density. In the three color NJL model parameters are fixed from the experimental data which
are the physical pion massmπ and the pion decay constant fπ, and the chiral condensate ⟨ψ̄uψu⟩
from the lattice QCD or QCD sum rule calculation. Following standard NJL relation [6–8, 64,
78]: The pion decay constant

f 2
π = m2IΛ0 (4.8)

and the chiral condensate

⟨ψ̄uψu⟩ = −mIΛ2 , (4.9)

where ⟨ψ̄uψu⟩1/3 ∼ ⟨ψ̄dψd⟩1/3. The current quark mass is fixed from the Gell-Mann, Oakes,
Renner relation

m2
π = −m0⟨ψ̄ψ⟩

f 2
π

. (4.10)

We have used the regularized divergent integrals IΛ2 and IΛ0 as the defined divergent integrals I2
and I0 at zero temperature and density with the cut-off Λ as

IΛ2 =itrfc

∫
d4p

(2π)4
θ(Λ2 − p⃗2)

(
1

p2 −m2 + iϵ
+

1

p2 −m2 + iϵ

)
=2NfNci

∫
d4p

(2π)4
θ(Λ2 − p⃗2)

p2 −m2 + iϵ
, (4.11)

IΛ0 =− 2NfNci

∫
d4p

(2π)4
θ(Λ2 − p⃗2)

(p2 −m2 + iϵ)2
. (4.12)

They depend on the color Nc, hence the pion decay constant and the chiral condensate depend
on the color Nc and the pion mass does not depend on Nc. We use the parameters following
Ref. [65], which shown in Table 4.1.

fπ −⟨ψ̄ψ⟩1/3 mπ

inputs 75.4 [MeV] 218 [MeV] 140 [MeV]

m0 Λ G0 = H0

parameters 5.4 [MeV] 657 [MeV] 7.23 [GeV−2]

Table 4.1: The first line is physical quantities as inputs and the second line is fitted parameters
of the model.
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4.3 Polyakov Loop and Its Effective Poitential
For the discussion of the equation of state of quark-hadron matter, it is important to take into
account the quark confinement effect. Some but not all aspects of confinement are treated by
introducing the Polyakov loop as the order parameter of the deconfinement transition. The cou-
pling of this Polyakov loop to the quark sector suppresses color non-singlet degree of freedom in
the thermodynamics of the hadronic phase. However, this minimally necessary conditions does
not yet account for the dynamical generation of localized color-singlet clusters as compact wave
packets. This is a limitation that (so far) excludes a proper description of the hadron-to-quarks
crossover at high density.

We adopt here the Fukushima method and add the Polyakov loop potentialU(Φ[A],Φ∗[A];T )
to the two-color NJL Lagrangian [22]. The derivative ∂µ acting on the quark field is replaced
by the covariant derivative Dµ = ∂µ − iAµ. The temporal background color gauge field is
introduced A4 = iA0 with A0 = gA0

a
ta
2

and the SU(2) Pauli matrices ta(a = 1, 2, 3) in color
space. In the Polyakov gauge this temporal gauge field is diagonal in the color space. For the
SU(2) color group it is represented as t3θ where θ is real.

The Polyakov loop potential U is written as [65]

U(Φ, T ) = −bT (24Φ2e−βa + ln(1− Φ2)) , (4.13)

in terms of the trace of the Polyakov loop

Φ =
1

Nc

treiβA4 = cos(βθ) . (4.14)

The logarithmic term comes from the Haar measure in the SU(2) color space. The two pa-
rameters are taken from the discussion of Brauner et al. [65]. The critical temperature of the
Polykov loop is set at T0(Nc = 3) = 270 [MeV] for the pure gauge case without coupling to
quarks. The parameter a is related to the critical temperature as a = Tc ln 24 = 858.1 [MeV].
The parameter b is estimated by strong-coupling expansion of lattice QCD b = (σs/a)

1/3 where
σs = (425MeV)2 is the physical string tension, then we adopt b1/3 =210.5[MeV]. According to
Ref. [79], theNc-dependence of T0 goes approximately as T0/

√
σ ≃ 0.6+0.45/N2

c , suggesting
roughly a 10% difference between T0(Nc = 2) and T0(Nc = 3) that we can ignore.

The effect of the Polyakov loop implies the replacement

ln(1 + e−βE+
∆) → 1

2
ln(1 + 2Φe−βE+

∆ + e−2βE+
∆) , (4.15)

in the thermodynamical potential. Hence, the Fermi function nF (E) in the mean field equation
is replaced by

ñF (E) =
1 + ΦeβE

1 + 2ΦeβE + e2βE
. (4.16)

When the Polyakov loop Φ → 0, the function ñF obviously corresponds to the distribution
function of two-particles, which means the two quarks survive as a composite colorless object
and a single quark (colored particle) degree of freedom is suppressed. Hence, the Φ → 0 phase
can be identified with the hadronic phase. On the other hand, when Φ → 1, a single quark
degree of freedom is active, which can be considered as the deconfined phase. We note that, by
construction, the effect of the Polyakov loop does not influence the physics at zero temperature
but has a major impact on the order parameters for the chiral and deconfinement transitions, as
demonstrated in the next section.
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4.4 Phase Diagram and Order Parameters
The thermodynamical potential in the mean field approximation has the information of the
phase structure and phase transition. The thermodynamical potential including the Polyakov
loop effect is

ΩMF =− 4

∫
d3p

(2π)3

[
E+

∆ + E−
∆ + T ln(1 + 2Φe−βE+

∆ + e−2βE+
∆) + T ln(1 + 2Φe−βE−

∆ + e−2βE−
∆)
]

+
(m−m0)

2

2G0

+
|∆|2

2H0

− bT (24Φ2e−βa + ln(1− Φ2)), (4.17)

where the dycamical quark mass m = m0 + g0σ0 and the diquark condensate gd|∆0| = |∆|
have been introduced. The dynamical quark mass m is determined selfconsistently

∂ΩMF

∂m
= 0. (4.18)

Since the current quark mass is small, we can identify the chiral condensate as quark mass
g0σ0 ≃ m. The order parameters are determind by solving the gap equations

∂ΩMF

∂m
=
∂ΩMF

∂|∆|
=
∂ΩMF

∂Φ
= 0, (4.19)

namaly for chiral condensate:

4

∫
d3p

(2π)3
m

Ep

[
E+

∆

E+
p

(1− 2ñF (E
+
∆)) +

E−
∆

E−
p

(1− 2ñF (E
−
∆))

]
=
m−m0

G0

, (4.20)

for diquark condensate:

4|∆|
∫

d3p

(2π)3

[
1

E+
∆

(1− 2ñF (E
+
∆)) +

1

E−
∆

(1− 2ñF (E
−
∆))

]
=

|∆|
H0

, (4.21)

and for Polyakov loop:

2

∫
d3p

(2π)3

[
1

Φ + cosh(E+
∆)

+
1

Φ + cosh(E−
∆)

]
= bΦ

(
1

1− Φ2
− 24e−βa

)
. (4.22)

The behavior of their order parameters at several situations are investigated.

Finite temperature (T ̸= 0) and zero chemical potential (µ = 0)

It is known that the chiral and deconfinement transition are strongly correlated [22, 39]. To see
this behavior in two color system, we show the numerical result of the chiral condensate and
the Polyakov loop at finite temperature and zero chemical potential (µ = 0) in comparison
with the PNJL model and the NJL model in Fig. 4.1. The quark-Polyakov loop coupling is
introduced in the PNJL model (Fig. 4.1(a)), while the NJL model, the quark and Polyakov loop
behave independently (Fig. 4.1(b)). The Polyakov loop reproduces the pure gauge case in the
NJL model case. Since the chiral condensate σ0 does not go to zero exactly due to the small
current quark mass m0, the chiral transition temperature is defined at σc = 1

2
σ0 in the NJL

model case. The critical temperature of the Polyakov loop is set at T0 = 270 [MeV] for the
pure gauge case without coupling to quarks as we mentioned. In the PNJL model case, the
crossover temperatures of both order parameters defined at half of their full values are now
Tχ ≃ Tdec ≃ 225 [MeV].
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Figure 4.1: The behaviors of the chiral condensate (solid line) and the Polyakov loop (dashed
line) as functions of temperature at zero chemical potential, for the cases of the PNJL model
and the NJL model in unit of σ0(T = 0).
(a): The PNJL model includes the quark-Polyakov loop coupling, in which the chiral and de-
confinement transition are strongly correlated.
(b): The NJL model dose not have correlation, in which the behavior of the Polyakov loop
corresponds the pure gauge case.

Zero temperature (T = 0) and finite chemical potential (µ ̸= 0)

The order parameters of our model are the chiral condensate σ0, the Polyakov loop Φ and the
diquark condensate |∆0|. The diquark condensate arises from the critical chemical potential
µc (diquark transition). From the discussion of the symmetry [55] (or we will see in Sec.
4.7), the diquark transition occurs at the half pion mass, µc = mπ/2, and the chiral transition
occurs at the same time due to the PG symmetry. These condensations are calculated by lattice
QCD [48, 49]. Our numerical result of the chiral and diquark condensations as functions of the
chemical potential at the zero temperature (T = 0) are shown in Fig. 4.2(a) and comparison
with the lattice QCD result is made in Fig. 4.2(b) [64].

Chiral and diquark condensation

The phase boundary of the de-confinement transition (Φ ∼ 0.5) is insensitive to the chemical
potential as discussed by Brauner et al. [65]. Hence, we plot in Fig. 4.3 only σ0 and |∆0| for
various chemical potentials as functions of temperature. The chiral condensate σ0 shown by
the top smooth curve (µ = 0) in Fig. 4.3(a) stay unchanged until diquark condensate sets in at
µc = mπ/2 = 70 [MeV]. The chiral condensate σ0 at µ = 75 [MeV] is depleted in the small
temperature region, where the diquark condensate |∆0| is finite as shown in the right hand figure
4.3(b). This behavior continues as the chemical potential increases as shown for σ0 and |∆0| at
µ = 100 and 200 [MeV] [55, 64]. These behaviors agree with the results shown in Fig. 3 of
Ref. [65].
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Figure 4.2: The chiral (solid line) and diquark (dashed line) condensation as a function of
chemical potential in unit of σ0(T = 0). The left figure (a) is our calculation solving the gap
equations. The right figure (b) quoted from Ref. [64] is lattice simulation by Ref. [49].
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Figure 4.3: The chiral and diquark condensate for various chemical potentials as functions of
temperature in units of σ0(T = 0). The solid line corresponds to µ = 0 [MeV], the dashed line
to µ = 75 [MeV], the dotted line to µ = 100 [MeV] and the dash-dotted line to µ = 200 [MeV]
in both. The chiral condensate decreases with the chemical potential µ increasing in contrast to
the diquark condensate increases with µ.
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Phase structure at finite chemical potential µ = 100 [MeV]

We then explore the behavior of all order parameters as a function of temperature at finite chem-
ical potential µ = 100 [MeV] in Fig. 4.4. We observe the Polyakov loop is rather insensitive
to the chemical potential by comparing the result in Fig. 4.4 (µ ̸= 0) with those in Fig. 4.1
(µ = 0). The correlation of the diquark condensation and the Polyakov loop arise through the
chiral condensation. Since in the NJL model the chiral condensation and the Polyakov loop are
independent, the diquark condensation and the Polyakov loop are also independent.
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Figure 4.4: The behavior of the chiral condensation (solid line), the Polyakov loop (dashed
line) and the diquark condensation (dash-dotted line) as a function of temperature and finite
chemical potential µ = 100 [MeV] in comparison with PNJL model and the NJL model in
unit of σ0(T = 0). The diquark condensation correlates the Polyakov loop through the chiral
condensation in the PNJL model case.

4.5 BEC-BCS Crossover
Since the diquark-baryons are bosonic particles, and the diquark condensation, Bose-Einstein
condensation (BEC), arise above the critical chemical potential µc = mπ/2 as we mentioned.
Further, the diquark-baryons are constructed from two-quarks (fermions) and hence they can
form a Cooper pair for higher chemical potential (µ ≫ µc). The transition from BEC state to
BCS state is called BEC-BCS crossover.

It is known from the condensed matter physics that in the non-relativistic system the BEC
and BCS states are distinguished by µ < 0 and µ > 0, respectively, where µ is the fermion
chemical potential. In relativistic system (our system) their condensates are characterized by the
fermionic excitation gap ∆ex, defined as the minimum of the fermionic excitation energy ∆ex =
min{E−

∆, E
+
∆}. In the BCS state, the fermionic excitation energy has the gap |∆| which is the

solution of the diquark gap equation (4.21) and thus ∆ex = |∆|, which means the minimum of
the quasi-particle excitation energy is located at finite momentum |p⃗| ̸= 0. The Coorper paired
fermions have a finite momentum |p⃗| ̸= 0 with the opposite direction. On the other hand, in the
BEC state, all the condensed particles (bosons) are located at the ground state. In this point of
view, the fermionic excitation gap ∆ex may be located at |p⃗| = 0.
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In our framework, the dynamical quark mass m = m0 + gdσ0 and the diquark gap |∆| =
gd|∆0| in the fermionic excitation spectra E±

∆ =
√
(Ep ± µ)2 + |∆|2 (Ep =

√
p⃗2 +m2) are

functions of the chemical potential. As µ increases from µc = mπ/2, the diquark gap |∆|
increases, and conversely the dynamical quark mass m decreases as shown in Fig. 4.2. Hence
the location of the minimum of the quark excitation E−

∆ can be determined by a comparison
between the dynamical quark mass and the chemical potential. On the other hand, the minimum
of the antiquark excitation E+

∆ may be always larger than the quark excitation E−
∆ and can be

neglected. Thus, The fermionic exitation gap ∆ex can be defined by the minimum of the quark
excitation min{E−

∆}. The fermionic excitation energy gap can be evaluated as

∆ex = min{E−
∆, E

+
∆} =

{√
(m− µ)2 + |∆|2 µ < µ0

|∆| µ > µ0

, (4.23)

where µ0 is so-called the crossover point. When the chemical potential near the diquark transi-
tion point µc, the minimum of the quark excitation spectrum E−

∆ is located at |p⃗| = 0. For very
large chemical potential µ > µ0 the minimum of E−

∆ occurs at a finite |p⃗| ≃ µ since m → m0.
This behavior is demonstrated in Fig. 4.5 showing the quasi-particle energy of quarks, E−

∆(p⃗)
at µ = 100 [MeV] and at µ = 200 [MeV]. At the chemical potential µ = 100 [MeV], the
minimum of the quasi-particle energy is at zero momentum. The quasi-particle energy E−

∆ at
µ = 200 [MeV] has a minimum at finite momentum. The crossover point is insensitive to the
temperature (see Fig. 4.3) as long as the diquark condensation is finite.
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Figure 4.5: The quasi-particle energies of quark as functions of momentum |p⃗| in unit MeV.
The quasi-particle energy of quarks at µ = 100 [MeV] (solid line) and at µ = 200 [MeV]
(dashed line) as functions of momentum p. The minimum is located at |p⃗| = 0 in BEC state
(µ = 100[MeV]) and at |p⃗| ≃ µ in BCS state (µ = 200[MeV]).

We then show the comparison of the dynamical quark mass and the chemical potential in
Fig. 4.6. The quark mass m starts to decrease from µc = mπ/2, at this point the diquark
condensation occurs, with m > µ. Then the chemical potential exceeds the quark mass from
µ ≃ 120 [MeV], which is the crossover point µ0. Once the chemical potential µ exceeds the
dynamical quark mass, µ ≥ m, the system undergoes the BEC-BCS crossover and turns into
the BCS phase as µ increases further.
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Figure 4.6: The dynamical quark mass m (solid line) vs. the chemical potential µ (dashed line).
The diquark transition point is µc = mπ/2 and the BEC-BCS crossover point corresponds to
the crossing point, µ0 ≃ 120 [MeV].

4.6 The Behavior of Hadron Masses at Finite Temperature
The hadron mass spectrum can be described by analyzing the hadronic partition functionZhadron

in Eq. (4.5). We start with the mesons of the sigma and pion at finite temperature and zero
chemical potential (µ = 0). In this case, the diquark condensate is zero and there is no sigma-
diquark mixing. The Lagrangian for each fields at this state can be written as

L(2)
s =

1

2
(∂µs(x))− 1

2
m2

ss
2(x), (4.24)

L(2)
π =

1

2
(∂µπ⃗(x))

2 − 1

2
m2

ππ⃗
2(x), (4.25)

L(2)
diq =

1

2
(∂µd∗(x))(∂µd(x))−

1

2
m2

dd
∗d, (4.26)

with the masses

m2
s =

[
M2

s − 2g20I2 + 4I0m
2
]
/(g20I0), (4.27)

m2
π =

[
M2

s − 2g20I2
]
/(g20I0), (4.28)

m2
d =

[
M2

d − 2g2dI2
]
/(g20I0). (4.29)

Obviously, the pion mass and the diquark mass coincide due to the PG symmetry, so we discuss
the dispersion relation for the sigma and pion. The behavior of these masses is similar to that
found in the SU(3) color NJL model. The only difference is the role of the Polyakov loop for
two colors here as compared to the standard color SU(3). The effect of the Polyakov loop is
included through the integrals I2 and I0.

We show the sigma and pion masses as functions of temperature with and without the quark-
Polyakov-loop coupling at zero chemical potential (µ = 0) in Fig. 4.7. The explicit chiral
symmetry breaking by the small quark mass, m0 = 5.4 [MeV], gives the Nambu-Goldstone
pion a small mass, mπ = 140 [MeV] at zero temperature, while the sigma mass, ms = 610
[MeV] stays around twice the dynamical quark mass m = m0 + g0σ0. As the temperature
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increases, the pion mass starts to increase, while the sigma mass decreases until the temper-
ature approaches the crossover temperature of about 180 [MeV]. The two masses meet at the
crossover temperature and increase jointly as shown in Fig. 4.7(b).

When the quark-Polyakov-loop coupling is introduced, the pion mass increases earlier with
temperature as shown in Fig. 4.7(a). The reason is that the chiral condensate σ0 (or the quark
mass m) drops more slowly with increasing temperature as shown in Fig. 4.1(a). The sigma
mass stays almost constant up to the crossover temperature and then both the pion and sigma
masses increase rapidly with increasing temperature.
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Figure 4.7: The sigma (dashed line) and pion masses (solid line) in MeV as functions of tem-
perature in MeV at zero chemical potential (µ=0).
(a): For the case of the PNJL model with coupling of the quarks and Polyakov loop.
(b): For the case of the NJL model with decoupled Polyakov loop.

4.7 The Behavior of Hadron Masses at Finite Chemical Po-
tential

We analyze the behavior of the masses at finite chemical potential and zero temperature (T =
0). In the diquark condensed phase µ > mπ/2, the mass matrix for the scalar fields has non-
diagonal components. On the other hand, the pion does not depend on the other fields due to
the its pseudo-scalar nature.

4.7.1 Pion

We first discuss the behavior of the pion mass at finite chemical potential. The renormalized
pion mass is written as

m2
π = (M2

s − 2g20I2 + 4g20I0µ
2)/(g20I0) =

ε

σ0
. (4.30)
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Consider the case of |∆| = 0 and define divergent integrals for µ = 0 as:

I02 = 2itrfc

∫
d4p

(2π)4
1

p20 − E2
p

I00 = −2itrfc

∫
d4p

(2π)4
1

(p20 − E2
p)

2
. (4.31)

I2 for finite µ with |∆| = 0 is written in terms of I02 and I00

I2 =itrfc

∫
d4p

(2π)4

(
1

p20 − (E+
p )

2
+

1

p20 − (E−
p )

2

)
=I02 + 2µ2I00 . (4.32)

In the region of interest, I0 = I00 and m2
π becomes

m2
π = (M2

s − 2g20I
0
2 )/(g

2
0I

0
0 ) ≡ m2

π0 . (4.33)

Hence, the pion mass does not depend on µ for |∆0| = 0. The pion mass stays constant at 140
[MeV] and proportional to the square root of the bare quark mass until the onset of diquark
condensation.

The gap equation for the diquark with the Pauli-Gürsey symmetry G0 = H0 provides g0 =
gd and Ms =Md and therefore M2

s − 2g20I2 = 0 for the finite |∆0|. The pion mass becomes

m2
π = (M2

s − 2g20I2 + 4g20I0µ
2)/(g20I0) = (2µ)2. (4.34)

This shows that the pion mass in the diquark condensed phase increases linearly with µ.

4.7.2 Diagonalization of Sigma and Diquark-Baryon Mass Matrix
The sigma meson mixes with diquark-baryons, and furthermore diquarks mix with each other,
since the sigma and diquark Lagrangian density with kinetic and mass terms is written in a
matrix form:

LM
sd =− 1

2
Φ†

∂2 +m2
s 2∆∗m 2∆m

2∆m 1
2
(∂2 +m2

d) + 2iµ∂0 ∆2

2∆∗m ∆∗2 1
2
(∂2 +m2

d)− 2iµ∂0

Φ , (4.35)

with the scalar fields representation Φt = (s, d, d∗). The (bare) diquark-baryon mass is given
by:

m2
d =(M2

d − 2g2dI2 + 2g2dI0|∆|2)/(g20I0)

=

{
m2

π − 4µ2 |∆| = 0

2|∆|2 |∆| ≠ 0
, (4.36)

with the diquark gap equation M2
d −2g2dI2 = 0 and gd = g0 for |∆| ̸= 0. The (bare) sigma mass

is larger than the pion mass, m2
s = m2

π + 4m2, with m the dynamical quark mass:

m2
s = (M2

s − 2g20I2 + 4g20I0µ
2 + 4g20I0m

2)/(g20I0) = m2
π + 4m2 . (4.37)

We write the mass matrix in the momentum representation (Minkowski space) as

M(ω, q⃗) =

q2 −m2
s −2∆∗m −2∆m

−2∆m 1
2
(q2 −m2

d) + 2µω −∆2

−2∆∗m −∆∗2 1
2
(q2 −m2

d)− 2µω

 , (4.38)

where q2 = ω2− q⃗2. The physical mass spectra for sigma, diquark and antidiquark are obtained
solving the dispersion relation detM(ω, 0) = 0 with respect to ω2.
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Low chemical potential µ < µc (|∆| = 0)

Before sloving the complete solution of Eq. (4.38), we first analyze the case of |∆| = 0, in
which there are no mixing terms. Hence, the sigma meson and the diquark (antidiquark) masses
are determined independently. The sigma mass m2

s = m2
π+4m2 is obviously constant since the

both of the pion mass and the dynamical quark mass are constant in this region. The physical
diquark and anti-diquark dispersion in the case of |∆| = 0 are

ω2 −m2
d ± 4µω = 0, (4.39)

where the bare mass is m2
d = m2

π − 4µ2 and upper plus sign is for the diquark and lower minus
sign for the anti-diquark. The solutions of Eq. (4.39) are

ω = mπ ± 2µ, (4.40)

where the diquark-baryon corresponds to mπ − 2µ and the antidiquark to mπ + 2µ since the
baryon number is 1 and −1, respectively. As anticipated the diquark masses equal to the pion
mass mπ at µ = 0 due to the Pauli-Gürsey symmetry. The diquark and antidiquark masses
vary linearly as functions of the baryon chemical potential µB = 2µ. This behavior can be
understood by a simple picture. When µB = 0, the bare diquark and antidiquark masses may
be located at ±140 [MeV] as measured from the vacuum as shown in Fig. 4.8. When µB ̸= 0,
their excitation energies (ω∆ and ω∆∗) change linearly by µB for the diquark and by −µB for
the antidiquark. When the baryon chemical potential µB reaches the bare diquark mass md,
the physical diquark mass ω∆ becomes zero (NG boson) and the diquark condensation appears
(BEC).

md*(-140MeV)

md(+140MeV)

Vacuum(μB=0)

μB

ωΔ*

ωΔ

Figure 4.8: A schematic picture of the dispersions for the diquark and antidiquark. The bare
diquark and antidiquark masses exist at ±140 [MeV]. Their dispersions are measured from the
fermi surface µB.

Without the mixing term

Now we consider the case of finite |∆|. In the absence of the sigma-diquark mixing term,
−2m∆(∗), the sigma meson indipendent with the diquarks. The sigma mass approaches the
pion mass as the dynamical quark mass tends to zero due to the chiral symmetry restoration. In
this case the diquark-antidiquark mass matrix become

D(ω, q⃗) =

(
1
2
(q2 −m2

d) + 2µω −∆2

−∆∗2 1
2
(q2 −m2

d)− 2µω

)
. (4.41)
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The dispersion relation detD(ω, 0) = 0 generates

ω∆∗ =
√

16µ2 + 4|∆|2, (4.42)
ω∆ =0 . (4.43)

The physical diquark-baryon mass ω∆ is zero. These behaviors are shown in Fig. 4.9(b).

With the mixing term

Finally, we investigate the dispersion for all scalar particles with the full mass matrix M in the
diquark condensate phase. The sigma and diquarks masses are given by solving the dispersion
relation detM(ω, 0) = 0 as

ω2
[
ω4 − 2ω2(2|∆|2 + 10µ2 + 2m2) + 16µ2(|∆|2 + 4µ2 + 4m2)

]
= 0, (4.44)

with substituting m2
d = 2|∆|2 and m2

s = mπ + 4m2 = 4µ2 + 4m2 in the diquark condensate
phase. One trivial solution ω2 = 0 is the NG boson and the other solutions are

ω2 = 2|∆|2 + 10µ2 + 2m2 ±
√
(6µ2 + 2|∆|2 + 2m2)2 − 48µ2m2. (4.45)

In the limit of |∆| → 0 at the onset of diquark condensation (µ = mπ/2) the dispersion Eq.
(4.45) becomes

ω2 =

{
4µ2 + 4m2 = m2

s

16µ2 = 4m2
π

. (4.46)

The upper solution corresponds to the squared sigma mass m2
s (without mixing effect) and the

lower one is the squared antidiquark mass at µ = mπ/2. In the limit m → 0 for large µ the
dispersion Eq. (4.45) leads to the solutions

ω2 =

{
4µ2 = m2

π

16µ2 + 4|∆|2
. (4.47)

One solution represents the linearly increasing pion mass. The other one agrees with the squared
antidiquark-baryon mass Eq. (4.42). Thus, the effect of the mixing terms disappears at very
large µ.

4.7.3 Numerical Plot
We show in Fig. 4.9(a) the results of the diagonalized masses. The effect of the coupling of the
sigma meson and the diquark-baryon is very large. When the coupling is neglected, the sigma
mass drops slightly as µ approaches the crossover chemical potential µ ∼ 150 [MeV] and then
increases together with the pion mass as shown in Fig. 4.9(b). At the same time, the antidiquark
mass increases rapidly with the chemical potential after diquark condensation. On the other
hand, in the case of strong scalar-diquark coupling, the quantum-mechanical “non-crossing”
rule is at work. The sigma mass increases continuously and the antidiquark mass joins the
slowly increasing pion mass.
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Figure 4.9: The sigma (dotted line), pion (solid line), diquark (dash-dotted line) and anti-
diquark (dashed line) masses in MeV as functions of the chemical potential in MeV at zero
temperature (T = 0).
(a): For the case of full dispersion.
(b): For the case of dispersion neglecting mixing term.

We show the lattice calculation result in Fig. 4.10 to compare with our result. Our diquark
and antidiquark correspond to 0+. The authors [50] calculate the hadron mass spectrum in
baryon-rich medium with the diquark source term. The pion mass behaves constant in the phase
where the diquark condensate vanishes and linearly increasing in diquark condensed phase. The
diquark and antidiquark behave linearly increasing and decreasing respectively with the chem-
ical potential at low density. The antidiquark becomes massless NG boson in the “physical”
limit at high density.

Thus, our analysis of the mass spectra agree with the lattice simulation and further we
worked out the sigma meson and the diquark mass in the diquark condensed phase. These
sigma and diquark mass behavior is interesting to check the lattice simulation because the “non-
crossing” rule may arise in this region.

4.8 Equation of State of Quark-Hadron Matter

Next, consider the equation of state (EOS) of quark-hadron matter at various chemical potentials
µ as functions of the temperature T . The pressure is given by the thermodynamical potential,
p = −Ω. For the case of only quarks, Ω = ΩMF (4.17), the pressure is essentially zero as shown
by the thin solid line in Fig. 4.11(a) in the confined region (small temperature), and gradually
increases with temperature as deconfinement sets in featuring the entanglement of chiral sym-
metry and Polyakov loop effects. Finally the pressure becomes large at high temperature above
the crossover transition.

In the confined region, the essential active degrees of freedom are hadrons. Their dynamics
is governed by the hadron Lagrangian derived previously, in which mesons and diquark-baryons
interact. We calculate thermodynamical potential, taking only the mass terms and integrating
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(a) The pion mass in lattice (b) The diquark mass in lattice

Figure 4.10: (a): The lattice simulation of the pion mass quoted from Ref. [64] in lattice simu-
lation by Ref. [49].
(b): The lattice simulation of the diquark for several JP from Ref. [50]. Our diquark and anti-
diquark correspond to 0+.

out the hadron fields by the Gaussian approximation as explained in Sect. 4.1 as

Ωhadron =
1

2

∑
Q

(ln detMn(Q) + ln detNn(Q)), (4.48)

where

Mn(Q) =

Q2 +m2
s 2m∆∗ 2m∆

2m∆ 1
2
(Q2 +m2

d)− 2µQ0 ∆2

2m∆∗ ∆∗2 1
2
(Q2 +m2

d) + 2µQ0

 , (4.49)

N ij
n (Q) =δij(Q2 +m2

π), (4.50)

in Euclidean space Q2 = q⃗2 + ω2
n with the Matsubara frequencies for boson Q0 = iωn and∑

Q = T
∑

n

∫
d3q
(2π)3

. The pion thermodynamical potential can be worked out simply

Ωπ = 3

∫
d3q

(2π)3

[
1

2
ωπ(q⃗) + T ln(1− e−βωπ(q⃗))

]
, (4.51)

where the zero point energy is ωπ(q⃗) =
√
q⃗2 +m2

π. The behavior of the pion mass mπ at finite
chemical potential and zero temperature has been discussed. The behavior of thermodynamical
potential for the scalar particles are different between |∆| = 0 and |∆| ̸= 0. In the case of |∆| =
0 where the non-diagonal components in the matrix Mn(Q) disappear, the thermodynamical
potential for the sigma meson is

Ωs =

∫
d3q

(2π)3

[
1

2
ωs(q⃗) + T ln(1− e−βωs(q⃗))

]
, (4.52)
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with the zero point energy ωs(q⃗) =
√
q⃗2 +m2

s =
√
q⃗2 +m2

π + 4m2 and for the diquarks is

Ω∆ =

∫
d3q

(2π)3

[
1

2
ω∆(q⃗) +

1

2
ω∆∗(q⃗) + T ln(1− e−βω∆(q⃗)) + T ln(1− e−βω∆∗ (q⃗))

]
=

∫
d3q

(2π)3
[
ωπ(q⃗) + T ln(1− e−β(ωπ(q⃗)−2µ)) + T ln(1− e−β(ωπ(q⃗)+2µ))

]
, (4.53)

where the zero point energy is the solution of the dispersion relation

ω2 − q⃗2 −m2
d ± 4µω = 0 (4.54)

as

ω∆(q⃗) =
√
q⃗2 +m2

π − 2µ = ωπ(q⃗)− 2µ, (4.55)

ω∆∗(q⃗) =
√
q⃗2 +m2

π + 2µ = ωπ(q⃗) + 2µ. (4.56)

In the diquark condensed phase |∆| ̸= 0, all the scalar excitation energies are described by the
solution of the dispersion relation as

detM(ω, q⃗) =ω6 − [(q⃗2 +m2
s) + 2(q⃗2 +m2

d + 8µ2)]ω4

+ [q⃗2(q⃗2 + 2m2
d) + 2(q⃗2 +m2

s)(q⃗
2 +m2

d + 8µ2)− 16m2|∆|2]ω2

− q⃗2[(q⃗2 +m2
s)(q⃗

2 + 2m2
d) + 16m2|∆|2] = 0, (4.57)

with respect to ω. We write the solutions as ωi(q⃗) (i = s, d, d∗). Thermodynamical potential is
written as

Ωscalar =

∫
d3q

(2π)3

∑
i

[
ωi(q⃗) + T ln(1− e−βωi(q⃗))

]
. (4.58)

The momentum integrals in zero point energies of these bosons are divergent. As the standard
treatment we introduce the momentum cut-off to regularize the integrals. However, this cut-off
is a free parameter since the bosonic momenta are external variables. We employ the NJL cut-
off Λ = 657 [MeV] because our starting point NJL model is an effective model below the cut-off
Λ. The zero point energy at T = 0 and µ = 0 is then subtracted from the thermodynamical
potential. For the case ∆ = 0, this procedure makes the contribution of the zero-point energy
terms vanish. Hence, the whole contribution to the pressure from the hadrons comes from the
temperature dependent terms for ∆ = 0.

Shown in Fig. 4.11(a) is the pressure at µ = 0, 30, 60 and 66 [MeV]. Given the small pion
and diquark-baryon masses, the contributions of these degrees of freedom make the pressure
significantly different from that with quark degrees of freedom only. This result is qualitatively
similar to the one of the color SU(3) PNJL model [25], but here, due to the additional pres-
sure of the diquark-baryon fields, the effect of the hadron contributions is much larger. The
pressure increases rapidly as the chemical potential approaches the critical chemical potential
µc = mπ/2. This rapid increase of the pressure is caused by the diquark-baryon mode whose
energy drops as ω∆ = ωπ−2µwith increasing µ. When the temperature becomes small (T ∼ 10
[MeV]), we can expand the logarithm and the pressure can be written approximately as

p ≃ T

∫
d3q

(2π)3
e−(ωπ(q⃗)−2µ)/T ∼ T

∫ qmax

0

q2dq

2π2
e−(ωπ(q⃗)−2µ)/T , (4.59)
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Figure 4.11: (a): The pressure divided by the Stefan-Boltzmann pressure for various chemical
potentials µ = 0 (solid line), 30 (dashed line), 60 (dashed-dotted line) and 66 (dotted line)
[MeV] below diquark condensation as functions of temperature. Shown also is the one with
only the quark degree of freedom (thin solid line).
(b): The logarithm of the pressure ln(P ) for various chemical potentials for µ = 0 (solid line),
60 (dashed line) [MeV] below µc = 70 [MeV] and for µ = 80 (dotted line), 100 (dashed-dotted
line) and 200 (dashed double-dotted line) [MeV] above µc as functions of temperature. The unit
of pressure is GeV4.

where qmax is appreciable only for the diquark-baryon mode (would be zero mode) as µ → µc.
Since the pressure is divided by the Stefan-Boltzmann pressure, the pressure ratio close to the
critical temperature shows rapid growth when µ approaches the critical chemical potential.

Consider now the pressure over a wide range of chemical potentials µ, in particular above
the critical µc for diquark condensation. The pressure is then dominated by quarks through
their zero point motion renormalized by the vacuum value, with additional contributions from
the zero point motion of mesons and diquark-baryons. Given that these zero point motion
effects do not vanish at zero temperature, it is more appropriate to present the pressure as such,
not divided by the Stefan-Boltzmann pressure, on a logarithmic scale. Results are shown in Fig.
4.11(b). The zero point motion is largely influenced by the presence of the Bogoliubov spectrum
of the diquark zero mode which will be discussed in Sec. 4.9 [19, 67, 77, 80, 81]. The pressure
curves in Fig. 4.11(b) are displayed in the whole µ range as functions of temperature. Shown
in Fig. 4.11(b) are the pressures at µ = 0, 60 [MeV] below µc = mπ/2 and µ = 80, 100 and
200 [MeV] above µc. The pressure below the critical chemical potential drops to zero at T = 0,
while the pressure at µ > µc stays finite at zero temperature. The pressure at low temperature
increases rapidly across the critical chemical potential. The pressure at high temperature is
dominated by the de-confined quark contribution and insensitive to the chemical potential.

4.9 The Bogoliubov Excitation
The hadronic contributions to the pressure and the quark density involve spectra of hadrons. It
is important to know how the zero mode behaves at finite momentum in the diquark-condensed
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phase. The Bogoliubov excitation [19,67,77,80,81] for the zero mode results from the solution
ω(q⃗) of the dispersion Eq. (4.57). The gapless Bogoliubov mode is a linear dispersion in the low
energy limit. In our system, the Bogoliubov mode is realized not only the diquark-antidiquark
pairing but also the sigma-diquark mixing. The solution of the dispersion Eq. (4.57) is computed
numerically in Fig. 4.12 at µ = 80 [MeV]. To see the existence of the Bogoliubov mode, we
drop the sigma-diquark mixing terms in the full mass matrix (4.38) and arrive at an analytic
expression for ω(q⃗) of the Bogoliubov mode. Consider the reduced mass matrix

D(ω, q⃗) =

(
ω2 − q⃗2 −m2

d + 4µω −2∆2

−2∆∗2 ω2 − q⃗2 −m2
d − 4µω

)
, (4.60)

and solve the dispersion relation detD(ω, q⃗) = 0 with respect to ω(q⃗) for the lowest mode:

ω2 =q⃗2 + 2|∆|2 + 8µ2

−
√

(q⃗2 + 2|∆|2 + 8µ2)2 − q⃗2(q⃗2 + 4|∆|2)

∼ q⃗2(q⃗2 + 4|∆|2)
2(q⃗2 + 2|∆|2 + 8µ2)

. (4.61)

In the BEC limit, the pion mass mπ = 2µ is much larger than |∆|. The Bogoliubov excitation
is then written as

ω(q⃗) ∼

√
q⃗2

2mπ

(
q⃗2

2mπ

+
2|∆|2
mπ

)
. (4.62)

The zero mode varies linearly with |q⃗| at small momentum. With inclusion of the sigma-diquark
coupling, the dispersion equation for ω(q⃗) with the full mass matrix is solved numerically.
For mπ ≫ |∆| one confirms that the zero mode has the Bogoliubov excitation spectrum as
expressed in Eq. (4.62). As we show in Fig. 4.12, the Bogoliubov excitation in our system is
linearly increasing.
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Figure 4.12: The Bogoliubov excitation at µ = 80 [MeV] (solid line) as a function of momen-
tum. The dashed line denotes a line in momentum. In the low momentum region, the excitation
energy increases linearly with momentum.
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The Bogoliubov excitation gives large contribution to thermodynamics in the BEC state
70 < µ ≲ 120 [MeV]. On the other hand, in the BCS state µ ≳ 120 [MeV] the excitation
contribution might be small as discussed in Ref. [77]. As an example, this property will be
shown in the discussion of the baryon density in the next section 4.10.

4.10 Baryon Density

An interesting point of comparison with color SU(2) lattice simulations concerns the quark
density as a function of chemical potential µ at zero temperature. When the baryon number
symmetry is broken, the diquark condensate becomes finite and the diquark-baryon becomes a
Nambu-Goldstone boson. From the onset of diquark condensation, the quark number becomes
finite. The quark density derived from the thermodynamical potential at mean field level is:

ρMF = −∂ΩMF

∂µ
= tr

∫
d3p

(2π)3

[
E+

p

E+
∆

−
E−

p

E−
∆

]
. (4.63)

Here, we write only the zero point oscillation terms, dropping the temperature dependent terms.
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Figure 4.13: The quark density in unit of fm−3 as a function of the chemical potential µ in MeV.
Shown by various points are the results of SU(2) lattice simulations [49]. The dashed curve
denotes the result of the mean field approximation and the solid curve the results of the mean
field and Gaussian approximation of the hadron contributions.

In Fig. 4.13 the quark density is presented as a function of the chemical potential µ. As
compared with lattice simulations [49] the mean field quark density comes out to be smaller
than the lattice results by about a factor of two. The quark density becomes non-zero when
the diquark condensate develops, starting at µ = mπ/2. The quark density increases with the
chemical potential.

Going beyond mean field level implies adding hadronic contributions to the quark density.
In a first step we use the Gaussian approximation, dropping higher order terms of the hadron
Lagrangian, and integrate out the meson and diquark-baryon fields. The hadronic part of the
density is found by taking the derivative of Ωhadron, Eqs. (4.51) and (4.58), with respect to the
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chemical potential µ:

ρhadron = −∂Ωhadron

∂µ
= − ∂

∂µ

∫
d3q

(2π)3

[
3∑
i

ωi(µ)

2
+

3

2
ωπ(µ)

]
, (4.64)

where ωi (i = σ, d, d∗) and ωπ are again the sigma meson, diquark, antidiquark and pion en-
ergies, respectively. Only the temperature independent terms are written. Note that ρhadron
vanishes for ∆ = 0, while it becomes finite in the diquark condensed phase. The zero point
energies are calculated numerically and the momentum integrals are performed introducing the
NJL cut-off Λ = 657 [MeV]. The result is shown in Fig. 4.13 by the solid curve. As we
mentioned, the main contribution of the correction of the baryon density ρhadron comes from
the Bogoliubov excitation. The contribution is appreciable in the BEC state near the diquark
transition. When the chemical potential is increasing and going in the BCS state, it does not
grow much. Evidently, using the Gaussian approximation, the effect of the hadron fields on the
quark density is very small. This was anticipated by He [67] in their analysis of the hadron
contributions.
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Chapter 5

Non-perturbative Treatment of Hadron
Interaction

In this chapter we review the Gaussian variational approach and the Gaussian effective action.
This approach is expected to be important to explore high density hadron matter. Although we
do not apply the method to our hadron Lagrangian yet, we would like to discuss the framework
for the future extension of the present work.

5.1 Introduction to a Non-perturbative Method

The thermodynamics in the Gaussian approximation cannot reproduce the baryon density of
the lattice QCD calculation. Obviously, the Gaussian approximation misses important hadronic
interaction terms generated by the higher order pieces, L(3) and L(4), of the hadron effective
Lagrangian. These interactions include, for example, scalar boson exchange between diquarks
and mesons in various possible combinations. The strength of these couplings is controlled by
the constant λ in Eq. (3.125). We find λ = 33 in the present parameter set. Altogether, the
net attraction provided by such mechanisms is expected to decreace the vacuum energy and
increase the density significantly as a function of µ.

An interesting idea for a systematic treatment of non-perturbative interaction terms were
introduced by Kuti who, however, did not publish the idea and his idea was reviewed by Corn-
wall et al. in the appendix of Ref. [82]. The idea is to adopt the Schrödinger representation in
the quantum field theory and solve the Schrödinger equation. The systematic discussion was
done by Barnes and Ghandour [83]. They introduced a trial Gaussian wave function based
on the variational problem and described the renormalized energy expectation value in the ϕ4

theory with non-perturbative interaction. This approach is called the Gaussian variational ap-
proach or Gaussian functional approximation. The ground state energy (density) is obtained
by solving the Schrödinger equation with the trial Gaussian wave functional in an variational
method. The obtained ground state energy is equivalent to that obtained by Gaussian effective
potential [84, 85].

The ground state at the mean filed approximation level, it seems that there is no Nambu-
Goldstone (NG) particle. The massless NG particle will appear as a collective state [86]. Hence,
the Gaussian functional method requires so-called “mean field approximation (MFA) + random
phase approximation (RPA)” in the many-body literature. This framework is unsatisfactory
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since we require the ground state energy which is equivalent to the thermodyanamical potential
at zero temperature and finite density with NG particle (Bogoliubov excitation). The effective
action with the optimized expansion [87] is one of powerful non-perturbative approach which
fully respects the NG theorem [88]. The effective action with the optimazed expansion is related
to the Gaussian effective potential and the Gaussian functional method. The effective action is
based on the path integral quantization approach and the Gaussian functional approximation is
the Schrödinger quantization. Hence it is not surprising that the optimized expansion method
and the Gaussian functional are related.

5.2 Functional Formulation in the Canonical Quantization
The canonical quantization is one of standard quantization prescription. The classical canonical
variables q and p are replaced by operators which satisfy the canonical commutation relation
[q̂, p̂] = iℏ. The classical field ϕ(t, x⃗) is quantized by replacing it as the operator ϕ̂(t, x⃗) and
taking the canonical commutation relation [ϕ̂(t, x⃗), π̂(t, y⃗)] = iℏδ(x⃗ − y⃗) with its canonical
conjugate momentum operator π̂(t, y⃗).

In Schrödinger wave dynamical treatment, a quantum mechanical state is realized by a wave
function ψ(t, x⃗). The quantization can be done by considering the correspondence relation
x̂ψ(t, x⃗) → xψ(t, x⃗) and p̂ψ(t, x⃗) → −iℏ d

dx
ψ(t, x⃗). The Gaussian functional approach is

constructed based on this correspondence. For a field theory involving the field operator ϕ̂(x),
the wave function is a functional of a c-number ϕ(x⃗):

|ψ⟩ → Ψ[ϕ]. (5.1)

The action of the operator ϕ̂(x) on |ψ⟩ is realized by multiplying Ψ[ϕ] by ϕ(x⃗):

ϕ̂|ψ⟩ → ϕ(x⃗)Ψ[ϕ]. (5.2)

The action of the canonical conjugate momentum operator π̂(x) on |ψ⟩ is realized by functional
differentation

π̂(x)|ψ⟩ → −iℏ δ

δϕ(x⃗)
Ψ[ϕ]. (5.3)

Note that we have suppressed the time variable t.
Introducing eigenstates at a fixed time of the field ϕ(x⃗), denoted as |ϕ⟩, the wave function

Ψ[ϕ] is expressed

⟨ϕ|ψ⟩ = Ψ[ϕ]. (5.4)

The inner product is defined by the functional integration:

⟨ψ1|ψ2⟩ →
∫

DϕΨ∗
1[ϕ]Ψ2[ϕ]. (5.5)

The analogy with ordinary quantum mechanics is clear.
Energy eigenstates statisfy the Schrödinger equation∫

dx⃗H
[
−iℏ δ

δϕ(x⃗)
, ϕ(x⃗)

]
Ψ[ϕ] = EΨ[ϕ], (5.6)
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where H[π(x⃗), ϕ(x⃗)] is the Hamiltonian density. The time development of an energy eigenstate
can be written as

Ψ[ϕ; t] = e−iEt/ℏΨ[ϕ]. (5.7)

The Gaussian functional approach is based on this functional treatment of the quantum field
theory.

5.3 Gaussian Trial Wave Function in Quantum Mechanics
In this section we illustrate the Gaussian variational approach by considering a simple quantum
mechanical model following [83]. We consider one dimensional harmonic oscillator with a
quartic term in the potential (taking ℏ = 1). The model Hamiltonian

H = −1

2

d2

dx2
+
µ

2
x2 + λ0x

4 (5.8)

gives the Schrödinger equation

H|ψ(x)⟩ = E|ψ(x)⟩. (5.9)

In the case of λ0 = 0, the ground state wave function and the ground state energy can be written
as

|ψ0(x)⟩ =
(µ
π

)1/4
e−µx2/2 (5.10)

E0 =
1

2
µ. (5.11)

For λ0 > 0, we introduce a simple trial vacuum wave fucion as

|ψ(x)⟩ =
(α
π

)1/4
e−αx2/2, (5.12)

which gives the expectation value of the energy

E(α) =
1

4
α+

µ2

4α
+

3λ0
4α2

. (5.13)

The parameter α satisfies the minimization condition for the energy, dE(α)
dα

= 0, to give the
vacuum energy

α2 = µ2 +
6λ0
α
, (5.14)

which approaches µ2 as λ0 → 0.
Now we consider the effective potential for this model. The effective potential V (x0) is

defined as the minimum value of the energy in the set of all normalized state vectors in which
x has the expectation value x0:

V (x0) = min{⟨x0|H|x0⟩}, (5.15)
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with

⟨x0|x|x0⟩ =x0, (5.16)
⟨x0|x0⟩ =1. (5.17)

We extend the Gaussian trian wave function to evaluate the effective potential for our model as

|α, x0⟩ = N e−α(x−x0)2/2, (5.18)

where N is the normalization constant satisfying normalization condition (5.17). The expecta-
tion value depending on x0 and α is evaluated as (see Appendix E):

V (α, x0) =⟨α, x0|H|α, x0⟩

=N 2

∫
dxHe−α(x−x0)2

=
1

4
α +

1

4

µ2

α
+

3λ0
4α2

+
1

2
µ2x20 + λ0x

4
0 +

3λ0
α
x20. (5.19)

The parameters satisfy the minimum condition

dV

dα
=
1

4
− µ2

4α2
− 6λ0

4α3
− 3λ0

α2
x20 = 0, (5.20)

dV

dx0
=x0

(
µ2 + 4λ0x

2
0 −

6λ0
α2

)
= 0, (5.21)

which lead to

x0 =0, α2 = µ2 + 12λ0x
2
0 +

6λ0
α
. (5.22)

Note that the second order derivative d2V/dx20 and d2V/dα2 are positive values. We obtain
the effective potential V (x0) by substituting the minimum conditions (5.22) in (5.19). The
renormalized mass m and coupling λ are obtained from the effective potential,

m2 =
d2V

dx20

∣∣∣∣
min

, λ =
1

4!

d4V

dx40

∣∣∣∣
min

. (5.23)

The parameter α also is a function of x0, so we calculate the derivative of α with respect to x0
to evaluate these values:

2α
dα

dx0
=24λ0x0 −

6λ0
α2

dα

dx0
dα

dx0
=
12λ0x0α

2

α3 + 3λ0
(5.24)

We evaluate the minimum of the second order derivative

d2V

dx20

∣∣∣∣
min

=

(
µ2 + 12λ0x

2
0 +

6λ0
α

− 6λ0x0
α2

dα

dx0

)∣∣∣∣
x0=0

= µ2 +
6λ0
α

= m2. (5.25)
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We further work out

d3V

dx30

∣∣∣∣
min

=

(
24λ0x0 −

72λ20
α3 + 3λ0

x0 −
144λ20
α3 + 3λ0

x0 +
216λ20α

2x20
(α3 + 3λ0)2

dα

dx0

)∣∣∣∣
x0=0

=0. (5.26)

Hence the coupling is

1

4!

d4V

dx40

∣∣∣∣
min

=
1

4!

(
24λ0 −

72λ20
α3 + 3λ0

− 144λ20
α3 + 3λ0

)
=λ0 −

9λ0
α3 + 3λ0

= λ0

(
α3 − 6λ0
α3 + 3λ0

)
= λ. (5.27)

We would like to skip the disccution of the interpretation of the renormalized values m and
λ because our interest is focused on the Gaussian trial function formulation. In the next sec-
tion, we will discuss the application of the Gaussian trial function to the field theory and the
spontaneous symmetry breaking of the system.

5.4 The Gaussian Functional Method for the O(4) Symmetric
Linear Sigma Model

We attempt to apply the Gaussian trial function to the field theory. Our main interest is the
treatment of the spontaneously symmetry breaking in the field theory. As an example, we
consider the O(4) symmetric linear sigma model and verify the method includes the existence
of NG boson as the two particle bound state [86, 89, 90].

5.4.1 The Gaussian Functional
The O(4) symmetric linear sigma model Lagrangian is

L =
1

2
(∂µϕ)

2 − V (ϕ2), (5.28)

with the potential

V (ϕ2) = −1

2
µ2
0ϕ

2 +
λ0
4
(ϕ2)2 (5.29)

and a column vector

ϕ = (ϕ0, ϕ1, ϕ2, ϕ3) = (σ, π⃗). (5.30)

This Lagrangian can be derived from the NJL model by the standard bosonization technique [42].
Hence we assume that the spontaneously chiral symmetry breaking is realized by the vacuum
expectation value of the σ field as ⟨σ⟩ in the mean field approximation and the π⃗ field can
be interpreted as NG boson. Actually, the chiral symmetry breaking parttern in two flavor
SU(2) × SU(2) → SU(2) (dimSU(N) = N2 − 1) generates 3 NG particles and our model
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Lagrangian breaking pattern O(4) → O(3) (dimO(N) = N(N − 1)/2) generates also 3 NG
particles. The explicit chiral symmetry breaking term is introduced

LSB = −HSB = εσ, (5.31)

which generates the finite pion mass, as suggested by the NJL model .
The canonical conjugate momentum is defined by πi = ∂L

∂(∂0ϕi)
= ∂0ϕi (i = 0, 1, 2, 3) and

the Hamiltonian density is obtained by Legendre transformation as

H =

∫
dy⃗δ(y⃗ − x⃗)

∑
i

(
−ℏ2

2

δ2

δϕi(x⃗)ϕi(y⃗)
+

1

2
∇xϕi(x⃗)∇yϕi(y⃗) + V (ϕ2)−HSB

)
, (5.32)

where

V
(
ϕ2
)
= −1

2
µ2
0ϕi(x⃗)ϕi(y⃗) +

λ0
4
(ϕi(x⃗)ϕi(y⃗))

2 . (5.33)

We introduce the Gaussian ground state functional Ansatz with the vacuum expectation values
⟨ϕi⟩

Ψ0[ϕ] = N exp

(
− 1

4ℏ

∫
dx⃗dy⃗[ϕi(x⃗)− ⟨ϕi(x⃗)⟩]G−1

ij (x⃗, y⃗)[ϕj(y⃗)− ⟨ϕj(y⃗)⟩]
)
, (5.34)

where N is the normalization constant. While the vacuum expectation value for pion will be
chosen as the vanishing value, which is treated as finite in the evalutation of the ground state
energy expectation value. The form G−1

ij have been defined as

Gij(x⃗, y⃗) =
1

2
δij

∫
dk⃗

(2π)3
1√

k⃗2 +m2
i

eik⃗·(x⃗−y⃗), (5.35)

where mi is called the “dressed mass” which is determined self-consistently [83, 90]. Since the
inverse satisfies ∫

dz⃗Gij(x⃗, z⃗)G
−1
ij (z⃗, y⃗) = δ(x⃗− y⃗)δij, (5.36)

it can be written as

G−1
ij (x⃗, y⃗) = 2δij

∫
dk⃗

(2π)3

√
k⃗2 +m2

i e
ik⃗·(x⃗−y⃗). (5.37)

We have explicitly kept ℏ to keep track of quantum corrections and count the number of loops
in our calculation. The quantum corrections may come from the functional integrals in the cal-
culation of the energy density. We work out the energy (density) expectation value ⟨Φ0|H|Φ0⟩
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therm by term below (see Appendix E). The kinetic term:

(kinetic) =− ℏ2

2
⟨Ψ0|

δ2

δϕi(x⃗)ϕi(y⃗)
|Ψ0⟩

=− ℏ2

2
⟨Ψ0|

∫
dy⃗δ(x⃗− y⃗)

∑
i

∫
dx⃗1[−

1

2ℏ
δ(x⃗1 − x⃗)G−1

ii (x⃗1, y⃗)]|Ψ0⟩

− ℏ2

2
⟨Ψ0|

∫
dy⃗δ(x⃗− y⃗)

∑
i

[∫
dx⃗1

(
− 1

2ℏ
[ϕi(x⃗1)− ⟨ϕi(x⃗)⟩]G−1

ii (x⃗1, y⃗)

)]
×
[∫

dx⃗2

(
− 1

2ℏ
[ϕi(x⃗2)− ⟨ϕi(x⃗2)⟩]G−1(x⃗, x⃗2)

)]
|Ψ0⟩

=
ℏ
4

∑
i

G−1
ii (x⃗, y⃗)−

ℏ
8
⟨Ψ0|

∫
dy⃗δ(x⃗− y⃗)

∑
i

∫
dx⃗1dx⃗2G

−1
ii (x⃗1, y⃗)G

−1(x⃗, x⃗2)

× [ϕi(x⃗1)ϕi(x⃗2)− ⟨ϕi(x⃗1)⟩ϕi(x⃗2)− ϕi(x⃗2)⟨ϕi(x⃗1)⟩+ ⟨ϕi(x⃗1)⟩⟨ϕi(x⃗2)⟩]|Ψ0⟩

=
ℏ
4

∑
i

G−1
ii (x⃗, x⃗)−

ℏ
8

∫
dy⃗dx⃗1dx⃗2

∑
i

δ(x⃗− y⃗)G−1
ii (x⃗1, y⃗)G

−1
ii (x⃗, x⃗2)Gii(x⃗1, x⃗2)

=
ℏ
8

∑
i

G−1
ii (x⃗, x⃗) =

ℏ
4

∑
i

1

2

∫
dk⃗

(2π)3
1√

k⃗2 +m2
i

. (5.38)

The shift term:

(shift) =
1

2
⟨Ψ0|

∫
dy⃗
∑
i

δ(x⃗− y⃗)∇xϕi(x⃗)∇yϕi(y⃗)|Ψ0⟩

=− 1

2

∑
i

∇2
x

(
⟨ϕi⟩2 + ℏ Gii(x⃗, y⃗)|x⃗=y⃗

)

=− ℏ
4

∑
i

∫
dk⃗

(2π)3
−k⃗2√
k⃗2 +m2

i

eik⃗·(x⃗−y⃗)

∣∣∣∣∣∣
x⃗=y⃗

=
ℏ
4

∑
i

∫
dk⃗

(2π)3
k⃗2 +m2

i −m2
i√

k⃗2 +m2
i

=
ℏ
4

∑
i

∫
dk⃗

(2π)3

√
k⃗2 +m2

i −
ℏ
4

∑
i

m2
i

∫
dk⃗

(2π)3
1√

k⃗2 +m2
i

, (5.39)

where the vacuum expectation value have been assumed to be translationally invariant ⟨ϕi(x⃗)⟩ =
⟨ϕi(0)⟩ = ⟨ϕi⟩. The second order term in the potential:

(second) =− 1

2
µ2
0⟨Ψ0|

∫
dy⃗δ(x⃗− y⃗)

∑
i

ϕi(x⃗)ϕi(y⃗)|Ψ0⟩

=− 1

2
µ2
0

∑
i

(
⟨ϕi⟩2 + ℏGii(x⃗, x⃗)

)
=− 1

2
µ2
0

∑
i

⟨ϕi⟩2 −
ℏ
2
µ2
0

∑
i

1

2

∫
dk⃗

(2π)3
1√

k⃗2 +m2
i

. (5.40)
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We write the fourth order of the fields as

(ϕ2)2 = (σ2 + π⃗2)2 = σ4 + π⃗4 + 2σ2π⃗2 =
∑
i

ϕ4
i + 2ϕ2

iϕ
2
j . (5.41)

The fourth order term in the potential:

(fourth) =
λ0
4
⟨Ψ0|

∫
dy⃗δ(x⃗− y⃗)

∑
i

ϕ4
i + 2ϕ2

iϕ
2
j |Ψ0⟩

=
λ0
4

∑
i

(
3(ℏGii(x⃗, x⃗))

2 + 6ℏ⟨ϕi⟩2Gii(x⃗) + ⟨ϕi⟩4

+2(ℏGii(x⃗, x⃗) + ⟨ϕi⟩2)(ℏGjj(x⃗, x⃗) + ⟨ϕj⟩2)
)

=
λ0
4
(⟨ϕ⟩2)2 + 3ℏ2

4
λ0
∑
i

1

2

∫
dk⃗

(2π)3
1√

k⃗2 +m2
i

2

+
3ℏ
2
λ0
∑
i

⟨ϕi⟩2
1

2

∫
dk⃗

(2π)3
1√

k⃗2 +m2
i


+
λ0
2
ℏ2
∑
i<j

1

2

∫
dk⃗

(2π)3
1√

k⃗2 +m2
i

1

2

∫
dk⃗

(2π)3
1√

k⃗2 +m2
j


+
λ0
2
ℏ
∑
i̸=j

⟨ϕi⟩2
1

2

∫
dk⃗

(2π)3
1√

k⃗2 +m2
j

 , (5.42)

where we have written as

2Gii(x⃗, x⃗)Gjj(x⃗, x⃗) =2
∑
i<j

1

2

∫
dk⃗

(2π)3
1√

k⃗2 +m2
i

1

2

∫
dk⃗

(2π)3
1√

k⃗2 +m2
j

 ,

2[⟨ϕi⟩2Gjj(x⃗, x⃗) + ⟨ϕj⟩2Gii(x⃗, x⃗)] = 2
∑
i̸=j

⟨ϕi⟩2
1

2

∫
dk⃗

(2π)3
1√

k⃗2 +m2
j

 , (5.43)

which are understood by the representation of (ϕ2)2. The explicit symmetry breaking term:

−⟨Ψ0|HSB|Ψ0⟩ =− ε⟨ϕ0⟩. (5.44)

We obtain the energy density as

E(mi, ⟨ϕi⟩) =− ε⟨ϕ0⟩ −
1

2
µ2
0⟨ϕ⟩2 +

λ0
4

[
⟨ϕ⟩2

]2
+
∑
i

ℏI1(mi)−
1

2
µ2
0ℏ
∑
i

I0(mi)−
1

2
ℏ
∑
i

m2
i I0(mi)

+
3λ0
2

ℏ
∑
i

⟨ϕi⟩2I0(mi) +
λ0
2
ℏ
∑
i ̸=j

⟨ϕi⟩2I0(mj)

+
3λ0
4

ℏ2
∑
i

I20 (mi) +
λ0
2
ℏ2
∑
i<j

I0(mi)I0(mj), (5.45)
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where we have defined

I0(mi) =
1

2

∫
dk⃗

(2π)3
1√

k⃗2 +m2
i

= Gii(x⃗, x⃗) = i

∫
d4k

(2π)4
1

k2 −m2
i + iϵ

, (5.46)

I1(mi) =
1

2

∫
dk⃗

(2π)3

√
k⃗2 +m2

i =
1

4
G−1

ii (x⃗, x⃗) = − i

2

∫
d4k

(2π)4
ln(k2 −m2

i + iϵ). (5.47)

We identigy ℏI1(mi) with the familiar “zero-point” energy of a free scalar filed of massmi. The
coupling λ0 dependence terms are non-perturbative correction terms including one-loop O(ℏ)
and two-loop O(ℏ2).

5.4.2 The Gap Equations
The fields are difined as ϕ(x⃗) = (σ(x⃗), π⃗(x⃗)), and hence the variational parameters are rewritten
as ⟨ϕi⟩ = (⟨σ⟩, ⟨π⃗⟩) and mi = (M,µ) to fit the field representation, where M and µ are the
masses of σ and π⃗, respectively. We also rewrite the energy density in this notation as

E(M,µ,⟨σ⟩, ⟨π⃗⟩) = −ε⟨σ⟩ − 1

2
µ2
0[⟨σ⟩2 + ⟨π⃗⟩2] + λ0

4
[⟨σ⟩2 + ⟨π⃗⟩2]2 + ℏI1(M) + 3ℏI1(µ)

− 1

2
ℏ[µ2

0 +M2]I0(M)− 3

2
ℏ[µ2

0 + µ2]I0(µ) +
3

2
ℏλ0⟨σ⟩2[I0(M) + I0(µ)]

+
1

2
ℏλ0⟨π⃗⟩2[I0(M) + 5I0(µ)] +

3

4
ℏ2λ0I20 (M) +

15

4
ℏ2λ0I20 (µ) +

3

2
ℏ2λ0I0(M)I0(µ).

(5.48)

This value satisfies the minimum condition

∂E
∂⟨ϕi⟩

= 0,
∂E
∂mi

= 0, (5.49)

with i = 0, 1, 2, 3. The derivatives with respect to ⟨ϕi⟩ are

∂E
∂⟨σ⟩

=− ε+ ⟨σ⟩
[
−µ2

0 + λ0⟨σ⟩2 + λ0⟨π⃗⟩2 + 3ℏλ0I0(M) + 3ℏλ0I0(µ)
]
= 0, (5.50)

∂E
∂⟨π⃗⟩

=⟨π⃗⟩
[
−µ2

0 + λ0⟨σ⟩2 + λ0⟨π⃗⟩2 + ℏλ0I0(M) + 5ℏλ0I0(µ)
]
= 0. (5.51)

We choose ⟨π⃗⟩ = 0 from the second equation and ⟨σ⟩ = v. From the first equation, we obtain
a relation

µ2
0 = −ε/v + λ0v

2 + 3ℏλ0I0(M) + 3ℏλ0I0(µ). (5.52)

The divergent integrals I0 and I1 are functions of M and µ. On the other hand, the derivative of
I1(mi) with respect to mi can be represented as

∂I1(mi)

∂mi

=miI0(mi). (5.53)
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The derivative with respect to M is

∂E
∂M

=ℏMI0(M)− 1

2
ℏµ2

0

∂I0(M)

∂M
− ℏMI0(M)− 1

2
ℏM2∂I0(M)

∂M
+

3

2
ℏλ0v2

∂I0(M)

∂M

+
3

2
ℏ2λ0I0(M)

∂I0(M)

∂M
+

3

2
ℏ2λ0MI0(µ)

∂I0(M)

∂M
= 0, (5.54)

and hence the sigma mass is

M2 = −µ2
0 + 3λ0v

2 + 3ℏλ0I0(M) + 3ℏλ0I0(µ). (5.55)

The derivative with µ is

∂E
∂µ

=3ℏµI0(µ)−
3

2
ℏµ2

0

∂I0(µ)

∂µ
− 3ℏµI0(µ)−

3

2
ℏµ2∂I0(µ)

∂µ
+

3

2
ℏλ0v2

∂I0(µ)

∂µ

+
15

2
ℏ2λ0I0(µ)

∂I0(µ)

∂µ
+

3

2
ℏ2λ0I0(M)

∂I0(µ)

∂µ
= 0, (5.56)

and hence the pion mass is

µ2 = −µ2
0 + λ0v

2 + ℏλ0I0(M) + 5ℏλ0I0(µ). (5.57)

Inserting Eq. (5.52), we obtain two coupled equation

M2 =ε/v + 2λ0v
2, (5.58)

µ2 =ε/v + 2ℏλ0I0(µ)− 2ℏλ0I0(M). (5.59)

We evaluate the “dressed masses” M and µ at this stage. From the discussion of the chiral
symmetry, we find ε = fπm

2
π and v ∼ fπ. Hence the coupling constant is identfied with

2λ0 = (M2 −m2
π)/f

2
π , the gap equation can be written as

f 2
π =

(
M2 −m2

π

µ2 −m2
π

)
ℏ [I0(µ)− I0(M)] . (5.60)

We fix the parameters fπ = 93 [MeV] and mπ = 140 [MeV]. The integrals I0 and I1 are
understood to be regularized via a UV momentu cut-off Λ. This new parameter Λ, however, is
a free parameter as well as we have seen in the previous chapter. One choice of the value is
the NJL model cut-off because the sigma model can be derived from the NJL model with the
bosonization technique [42] as we derived in two color case. We investigate the behavior of
the gap equation (5.60) using the several cut-off as shown in Fig. 5.1. It is known that the pion
mass mπ = 140 [MeV] and the “sigma mass” mσ ∼ 600 [MeV] in the NJL model result. Note
that the “sigma meson mass” is not well-defined since its decay width is too wide. We adopt
the result of the NJL model calculation for the sigma meson mass. According to Fig. 5.1, if we
identify µ = 140 [MeV] with the pion mass, M = 0 [MeV] cannot be identified with sigma
mass. On the other hand, if we identify M ∼ 600 [MeV] with the sigma mass, µ cannot be
identified with pion mass even if we choose any cut-off.

In the chiral limit (ε = 0), the pion mass should vanish due to the Nambu-Goldstone (NG)
theorem. However, the two mass equations (5.55) and (5.57) admit only massive solutions
M > µ > 0 for positive values of λ0 and µ2

0 and any real ultraviolet cut-off Λ in the momentum
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integrals I0(mi) and I1(mi) as shown in Fig. 5.2. The pion mass equation (5.57) is massless in
the tree level O(ℏ0), but the non-perturbative one-loop corrections O(ℏ) give it a finite mass.
The pion (ϕ1, ϕ2, ϕ3) excitations ℏI1(µ) in the energy density (5.45) are massive, with µ ̸= 0 in
the mean field approximation even in the chiral limit. While the Gaussian functional approach
can contain the information of non-perturbative interaction term, it apparently does not satisfy
the NG theorem [91].

0

400

800

1200

0 140 280 420 560

M
 [M

eV
]

µ [MeV]

Figure 5.1: The behavior of the gap equation (5.60) using the several cut-off in (M,µ) plane.
The cut-off Λ is chosen as 400 [MeV] (dashed line), 657 [MeV] (solid line), 1.0 [GeV] (dotted
line) and 2.0 [GeV] (dashed-dotted line). Λ = 657 [MeV] is the NJL cut-off used previous
chapter.

5.4.3 The Bethe-Salpeter Equation

It is known from the quantum many body literature that the mean field approximation (MFA)
does not respect internal symmetries. Actually, Nambu’s proof of the existence of massless
particle is realized by considering the collective mode [1]. The NG particles apper as poles
in the two-particle propagator, hence they are considered as a bound states of the two massive
elementary excitations [86]. In the quantum many-body thoery language, it corresponds to
considering the random pahse approximation (RPA). The MFA is one of framework to define
the single particle state in the many-body system. Implementing the RPA into MFA state, it
corresponds to consider the scattering sate. The state can be obtained by solving the Bethe-
Salpeter equation (or equivalently, four-point Green function Schwinger-Dyson equation).

The σ − π scattering

We specify the two body dynamics in terms of the Bethe-Salpeter (BS) equation, or equivalently
four-point Schwinger-Dyson equation. We focus on the s-channel part of the total scattering
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Figure 5.2: The solution to the gap equation in the chiral limit (ε = 0) using the NJL cut-off
Λ = 657 [MeV] in (M,µ) plane. Obviously, it is not satisfy the NG therorem: M > µ > 0.

amplitude. The Feynmann diagram Fig. 5.3 gives the BS equation as

Dπ(s) =Vπ(s) + Vπ(s)Ππ(s)Dπ(s), (5.61)

Ππ(s) =iℏ
∫

d4k

(2π)4
1

[k2 −M2 + iϵ][(k − P )2 − µ2 + iϵ]
= IMµ(s), (5.62)

Vπ(s) =2λ0

[
1 +

(
2λ0v

2

s− µ2

)]
= 2λ0

[
1 +

M2 − ε/v

s− µ2

]
, (5.63)

where s = (p1 + p2)
2 ≡ P 2 is the center-of-mass (CM) energy. The solution is written as

Dπ(s) =
Vπ(s)

1− Vπ(s)Ππ(s)
. (5.64)

We consider the system of zero CM energy
√
s = 0 for the study of pion property. The polar-

ization function Vπ(0)Ππ(0) is calculated using Eqs. (5.58) and (5.59) as

Vπ(0)Ππ(0) =
2λ0ℏ

M2 − µ2
[I0(M)− I0(µ)]

[
1− M2 − ε/v

µ2

]
=
ε/v − µ2

M2 − µ2

[
1− M2 − ε/v

µ2

]
=1 +

ε/v −M2

M2 − µ2
− ε/v(M2 − ε/v)

µ2(M2 − µ2)
− ε/v −M2

M2 − µ2

=1− ε

v

M2

µ2(M2 − µ2)
+O(ε2), (5.65)

where we have used the integral I0 defined in Eq. (5.46) in the four-dimensonal integral from

I0(mi) = i

∫
d4k

(2π)4
1

k2 −m2
i + iϵ

. (5.66)

Thus, we verify the existence of the massless particle in the chiral limit and certainly the explicit
chiral symmetry breaking term HSB = −εσ might give the finite mass for the pion.
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(a) The square box represents the potential and the round blob is the BS amplitude itself. The double solid
line denotes the dreesed meson.

(b) The potential entering the BS equation. The shaded blob together
with the bouble line leading to it (the tadpole) denotes the vacuum ex-
pectation value of the field and the solid dot in the intersection of the four
lines denotes the bare four-point coupling.

Figure 5.3: The diagramatic representation of the Bethe-Salpeter equation referred from
Ref. [89].

The π − π scattering

We found the existence of the massless particle as a pole of the BS equation in σ − π channel.
On the other hand the sigma mass would appear as a pole in π − π channel. This channel has
two distinct intermediate states, one with two “elementary” sigma field ϕ0 and the other with
two “elementary” pion fields ϕ1, ϕ2, ϕ3. The SD equations couple these two channels:

DMM(s) =VMM(s) +
1

2
VMM(s)IMM(s)DMM(s) +

3

2
VMµ(s)Iµµ(s)DµM(s), (5.67)

DMµ(s) =VMµ(s) +
1

2
VMµ(s)Iµµ(s)Dµµ(s) +

1

2
VMM(s)IMM(s)DMµ(s), (5.68)

DµM(s) =VµM(s) +
1

2
VµM(s)IMM(s)DMM(s) +

1

2
Vµµ(s)Iµµ(s)DµM(s), (5.69)

Dµµ(s) =Vµµ(s) +
1

2
Vµµ(s)Iµµ(s)Dµµ(s) +

3

2
VµM(s)IMM(s)DMµ(s). (5.70)

This can be cast into matrix form as

Dσ = V +
1

2
V ΠDσ, (5.71)
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where

Dσ =

(
DMM DMµ

DµM
1
3
Dµµ

)
, (5.72)

V =

(
VMM VMµ

VµM
1
3
Vµµ

)

=2λ0


3
[
1 + 3M2−ε/v

s−M2

] [
1 + 3M2−ε/v

s−M2

]
[
1 + 3M2−ε/v

s−M2

] [
5 + 3M2−ε/v

s−M2

]
 , (5.73)

and

Π =

(
IMM 0
0 3Iµµ

)
. (5.74)

The invariant function Iii(s) is given by

Iii(s) = i

∫
d4k

(2π)4
1

[k2 −m2
i + iε][(k − P )2 −m2

i + iε]
, (5.75)

where s = P 2. We define

χ =1 + 3
M2 − ε/v

s−M2
, (5.76)

VMµ(s) =VµM(s) = 2λ0χ, (5.77)
VMM(s) =2λ0 · 3χ, (5.78)
Vµµ(s) =2λ0(4 + χ), (5.79)

for simply. We find that the Eq. (5.67) and Eq. (5.69) are coupled and Eq. (5.70) and Eq.
(5.68) are coupled. It turns out that the coupled equations are splited into two systems with two
unknown. The solution can be written as

Dσ =

(
1− 1

2
V Π

)−1

V . (5.80)
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The discriminant of the Eq. (5.80) is

D(s) =det

[
1− 1

2
V Π

]
=

(
1− 1

2
VMM(s)IMM(s)

)(
1− 1

2
Vµµ(s)Iµµ(s)

)
−
(
1

2
VµM(s)IMM(s)

)(
3

2
VMµ(s)Iµµ(s)

)
=1− 1

2
(VMM(s)IMM(s) + Vµµ(s)Iµµ(s))

+
1

4
VMM(s)IMM(s)Vµµ(s)Iµµ(s)−

3

4
VµM(s)IMM(s)VMµ(s)Iµµ(s)

=1− 1

2
(VMM(s)IMM(s) + Vµµ(s)Iµµ(s))

λ20
[
3χ(4 + χ)− 3χ2

]
IMM(s)Iµµ(s)

=1− 1

2
(VMM(s)IMM(s) + Vµµ(s)Iµµ(s)) + 6λ0IMM(s)Iµµ(s)VMµ(s), (5.81)

which is requaired non-zero to have its inverse matrix. The inverse matrix is(
1− 1

2
V Π

)−1

=
1

D(s)

(
1− 1

2
Vµµ(s)Iµµ(s)

3
2
VMµ(s)Iµµ(s)

1
2
VµM(s)IMM(s) 1− 1

2
VMM(s)IMM(s)

)
. (5.82)

Thus, the solution is represented with the discriminant D

DMM(s) =
1

D(s)
(VMM(s)− 12λ0Iµµ(s)VMµ(s)), (5.83)

Dµµ(s) =
1

D(s)
(Vµµ(s)− 12λ0IMM(s)VMµ(s)), (5.84)

DµM(s) =DMµ =
1

D(s)
VMµ =

1

D(s)
VMµ. (5.85)

Elementary and composite states in the s-channel manifest themselves as poles in the Dσ(s)
matrix, or equivalently as roots of

(s−M2)D(s) = 0. (5.86)

In the chiral limit (ε = 0), we work out

(s−M2)VMM =6λ0[s+ 2M2], (5.87)
(s−M2)Vµµ =2λ0(5s− 2M2), (5.88)
(s−M2)VMµ =2λ0(s+ 2M2). (5.89)

The physical sigma mass can be obtained by substituting above relations into (5.86) and repla-
ceing s = m2

σ (CM system) as

m2
σ =M2

(
1 + 2λ0[3IMM(mσ)− Iµµ(mσ)]− 24λ20IMM(mσ)Iµµ(mσ)

1− λ0[3IMM(mσ) + 5Iµµ(mσ)] + 12λ20IMM(mσ)Iµµ(mσ)

)
. (5.90)

We show the numerical plot Eq. (5.90) in Fig. 5.4 with the NJL cut-off. We can only identify
the variational parameter M with the physical sigma meson mass mσ at the beginning.
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Figure 5.4: The solution mσ to the Bethe-Salpeter equation (solid line) as a function of the
variational parameter M with a cut-off Λ = 657 [MeV] in the chiral limit in comparision with
mσ =M (dashed line).

5.5 The Gaussian Effective Action with the Optimized Ex-
pansion

We find the “masses”M and µ have to be considered only as variational parameters; they do not
correspond to physical masses. The physical masses have to be determined as poles of the full
propagator in the discussed approximation. The optimaized expansion (OE) method [87, 92]
based on the effective action approach (see Appendix G) is one of other approach as inspired
by the spontaneously symmetry breaking and the NG theorem [88]. An advantage of the OE is
the physical mass can be found as poles of the full propagator in the discussed approximation.
We would like to review the OE method and see the proof of NG theorem. We also see the
effective potential defined from the effective action is equivalent to the Gaussian functional
approach [93].

5.5.1 The Optimized Expansion
We discuss the scalar ϕ4 theory. The classical action in (4-dimensional) Euclidean space is
given as

S[Φ] =

∫
d4x

[
1

2
Φ(x)(−∂2 +m2)Φ(x) + λΦ4(x)

]
. (5.91)

In this section we write the four dimensional notation d4x as dx for simply. The generating
functional is defined by

Z[J ] =

∫
DΦexp

[
−S[Φ] +

∫
dxJ(x)Φ(x)

]
, (5.92)

and the effective action is

Γ[ϕ] = W [J ]−
∫
dxJ(x)ϕ(x) (5.93)
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with one-particle-irreducibe (1PI) Green function W [J ] = lnZ[J ]. The background field

ϕ(x) =
δW

δJ

=

∫
DΦΦexp

[
−S[Φ] +

∫
dxJ(x)Φ(x)

]
(5.94)

is the vacuum expactation value of the scalor field. The effective action satisfies

δΓ

δϕ(x)
= −J(x), (5.95)

and is stationary in the physical theory when the sources are absent. When the background
fields are constant, the true vacuum is given. The true vacuum expectation value (VEV) can be
found as the stationary point of the effective potential as

V (ϕ) = −Γ[ϕ]|ϕ=const.∫
dx

. (5.96)

We write the classical action as

Sϵ[Φ] =S
(0) + ϵS(1)

=
1

2
Φ(−∂2 + Ω2)Φ + ϵ

[
1

2
Φ(m2 − Ω2)Φ + λΦ4

]
, (5.97)

where the parameter ϵ has been introduced to identify the order of the perturbation and is set
equal to one at the end. The coordinate index x and the integrations over it have been sup-
pressed for notational simplicity. We choose ϕ0 to satisfy the classical equation of motion for
the modified action

δSϵ

δϕ0

= −J. (5.98)

The auxiliary field Ω(x) has been introduced in such a way that Z[J ] dose not depend on them.
However, in the truncated series the dependence on Ω(x) apprears. We require the kth-order
approximant of the physical quantity W [J ] to be as insensitive as possible to the small variation
of Ω, by choosing Ω to satisfy

δWk

δΩ
= 0 (5.99)

and the effective action, as a Legendre transform, satisfies

δΓk

δΩ
= 0. (5.100)

We expand Sϵ around ϕ0:

Sϵ[Φ] =Sϵ[ϕ0] +
δSϵ

δΦ

∣∣∣∣
ϕ0

(Φ− ϕ0) +
1

2

δ2Sϵ

δΦ2

∣∣∣∣
ϕ0

(Φ− ϕ0)
2

+
1

6

δ3Sϵ

δΦ3

∣∣∣∣
ϕ0

(Φ− ϕ0)
3 +

1

24

δ4Sϵ

δΦ4

∣∣∣∣
ϕ0

(Φ− ϕ0)
4 + · · · . (5.101)
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The derivatives are written as

δ2Sϵ

δΦ2

∣∣∣∣
ϕ0

=− ∂2 − Ω2 + ϵ
δ2S(1)

δΦ2

∣∣∣∣
ϕ0

,

δ3,4Sϵ

δΦ3,4

∣∣∣∣
ϕ0

=ϵ
δ3,4S(1)

δΦ3,4

∣∣∣∣
ϕ0

.

(5.102)

Thus, the expansion becomes

Sϵ[Φ] =Sϵ[ϕ0] + J(Φ− ϕ0) +
1

2

[
−∂2 − Ω2 + ϵ

δ2S(1)

δΦ2

∣∣∣∣
ϕ0

]
(Φ− ϕ0)

2

+
1

6
ϵ
δ3S(1)

δΦ3

∣∣∣∣
ϕ0

(Φ− ϕ0)
3 +

1

24
ϵ
δ4S(1)

δΦ4

∣∣∣∣
ϕ0

(Φ− ϕ0)
4 + · · · . (5.103)

Relabeling Φ− ϕ0 → Φ′ → Φ then the partition function can be written as

Z[J ] = exp

(
−1

2
ϕ0(−∂2 + Ω2)ϕ0 − ϵ

[
1

2
(m2 − Ω2)ϕ2

0 + λϕ4
0

]
+ Jϕ0

)
×
∫

DΦexp

((
−1

2
Φ(−∂2 + Ω2)Φ

))
× exp

(
−ϵ
[
1

2

δ2S(1)

δϕ2
0

Φ2 +
1

6

δ3S(1)

δϕ3
0

Φ3 +
1

24

δ4S(1)

δϕ4
0

Φ4

])
, (5.104)

up to fourth order of the field Φ. The notation of the derivatives have been replaced such as
δ2S(1)

δΦ2

∣∣∣
ϕ0

→ δ2S(1)

δϕ2
0

for simply. The integration is evaluated as∫
DΦexp

(
−1

2
Φ(−∂2 + Ω2)Φ

)
exp

(
−ϵ
[
1

2

δ2S(1)

δϕ2
0

Φ2 +
1

6

δ3S(1)

δϕ3
0

Φ3 +
1

24

δ4S(1)

δϕ4
0

Φ4

])
=

∫
DΦexp

(
−1

2
Φ(−∂2 + Ω2)Φ

)
×
(
1− ϵ

[
1

2

δ2S(1)

δϕ2
0

Φ2 +
1

6

δ3S(1)

δϕ3
0

Φ3 +
1

24

δ4S(1)

δϕ4
0

Φ4

]
+O(ϵ2)

)
∼
∫

DΦe−
1
2
Φ(−∂2+Ω2)Φ

− ϵ

[
1

2

δ2S(1)

δϕ2
0

e−
1
2
(−∂2+Ω2)Φ2

Φ2 +
1

6

δ3S(1)

δϕ3
0

e−
1
2
(−∂2+Ω2)Φ2

Φ3 +
1

24

δ4S(1)

δϕ4
0

e−
1
2
(−∂2+Ω2)Φ2

Φ4

]
=
(
det[−∂2 + Ω2]

)−1/2
(
1− ϵ

[
1

2

δ2S(1)

δϕ2
0

(−∂2 + Ω2)−1 +
1

8

δ4S(1)

δϕ4
0

(−∂2 + Ω2)−2

])
=exp

[
−1

2
tr ln(−∂2 + Ω2) + ln

[
1− ϵ

(
1

2

δ2S(1)

δϕ2
0

(−∂2 + Ω2)−1 +
1

8

δ4S(1)

δϕ4
0

(−∂2 + Ω2)−2

)]]
=exp

[
−1

2
tr ln(−∂2 + Ω2)− ϵ

(
1

2

δ2S(1)

δϕ2
0

(−∂2 + Ω2)−1 +
1

8

δ4S(1)

δϕ4
0

(−∂2 + Ω2)−2

)
+O(ϵ2)

]
,

(5.105)
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in the first order of ϵ. We calculate the derivatives:

δ2S(1)

δϕ2
0

=m2 − Ω2 + 12λϕ2
0, (5.106)

δ4S(1)

δϕ4
0

=24λ. (5.107)

After taking ϵ = 1, the effective action is obtain as

Γ[ϕ0] =

∫
dx

(
−1

2
ϕ0(x)(−∂2 +m2)ϕ0(x)− λϕ4

0(x)

)
− 1

2
tr ln(−∂2 + Ω2)

+
1

2

∫
dx(Ω2 −m2 − 12λϕ2

0(x))(−∂2 + Ω2)−1 − 3λ

∫
dx(−∂2 + Ω2)−2, (5.108)

with recovering the space arguments and the integrations over them and the trace is understood
including the integration over the space.

If we limit ourselves to the constant Ω, the effective potential V (ϕ) (5.96) can be expressed
as

V (ϕ0) =
1

2
m2ϕ2

0 + λϕ4
0 + I1(Ω)−

1

2
Ω2I0(Ω) +

1

2
m2I0(Ω) + 6λϕ2

0I0(Ω) + 3λI20 (Ω), (5.109)

with denoting the constant classical field ϕ0(x) = ϕ0. We have introduced the momentum
integrals

I1(Ω) =
1

2

∫
d4p

(2π)4
ln(p2 + Ω2), (5.110)

I0(Ω) =

∫
d4p

(2π)4
1

p2 + Ω2
. (5.111)

It is notable that the effective potential is similar to the energy density (5.45). The auxiliary
field Ω can be found as a root of the euqation ∂V (ϕ)

∂Ω
= 0 as

Ω2 = m2 + 12λ0ϕ
2
0 + 12λ0I0(Ω). (5.112)

5.5.2 Nambu-Goldstone Boson
We would like to see the existence of the NG boson in the OE method. We consider N com-
ponent scalar field Φ = (Φ1, · · · ,ΦN) theory following the previous subseciton. The classical
action in OE method is given by

Sϵ[Φ, G] =

∫
dxdy

1

2
Φ(x)G−1(x, y)Φ(y)

+ ϵ

[∫
dxdy

1

2
Φ(x)[(−∂2 +m2)δ(x− y)−G−1(x, y)]Φ(y) +

∫
dxλ(Φ2(x))2

]
,

(5.113)

with an arbitrary free propagator G(x, y). The effective action, as a series in an artificial param-
eter ϵ, can be obtained as a sum of vacuum 1PI diagram with Feynman rules of the modified
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theory. The given order expression for the effective action is optimized, choosingG(x, y) which
fulfills the gap equation

δΓn

δG−1(x, y)
= 0, (5.114)

to make the dependence on the unphysical field as weak as possible. The action has the O(N)
symmetry and we assume the symmetry is sponteneously broken to O(N − 1) with N − 1 NG
boson. The trial propagators for massive field is difined as

G−1(x, y) =(−∂2 + Ω2(x))δ(x− y), (5.115)

and for massless fields are

g−1(x, y) =(−∂2 + ω2(x))δ(x− y). (5.116)

The effective action in the first order of the OE is obtained

Γ[φ] =−
∫
dx

[
1

2
φ(x)(−∂2 +m2)φ(x) + λ(φ2(x))2

]
− 1

2
tr lnG−1 − N − 1

2
tr ln g−1

+
1

2

∫
dx(Ω2(x)−m2 − 12λφ2(x))G(x, x) +

N − 1

2

∫
dx(ω2(x)−m2 − 4λφ2(x))g(x, x)

− 3λ

∫
dxG2(x, x)− (N2 − 1)λ

∫
dxg2(x, x)− 2(N − 1)λ

∫
dxG(x, x)g(x, x),

(5.117)

with the classcal field φ(x) The effective action is required to satisfy the stability with respect
to small changes of variational parameters

δΓ

δΩ2
=

δΓ

δω2
= 0, (5.118)

which lead to the gap equations

Ω2(x)−m2 − 12λφ2(x)− 12λG(x, x)− 4(N − 1)λg(x, x) =0, (5.119)
ω2(x)−m2 − 4λφ2(x)− 4λG(x, x)− 4(N + 1)λg(x, x) =0, (5.120)

which determine the functionals Ω[φ] and ω[φ].
Considering a constant background ϕ = (ϕ1, · · · , ϕN), the action gives the effective poten-

tial

V (ϕ) =
1

2
m2ϕ2 + λ(ϕ2)2 + I1(Ω) + (N − 1)I1(ω)

1

2
(Ω2 −m2 − 12λϕ2)I0(Ω) +

N − 1

2
(ω2 −m2 − 4λϕ2)I0(ω)

− 3λI20 (Ω)− (N2 − 1)λI20 (ω)− 2(N − 1)λI0(Ω)I0(ω), (5.121)

with the functions Ω(ϕ) and ω(ϕ) determined by

Ω2 −m2 − 12λϕ2 − 12λI0(Ω)− 4(N − 1)λI0(ω) =0, (5.122)
ω2 −m2 − 4λϕ2 − 4λI0(Ω)− 4(N + 1)λI0(ω) =0, (5.123)
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where

I1(Ω) =
1

2

∫
d4p

(2π)4
ln(p2 + Ω2), (5.124)

I0(Ω) =

∫
d4p

(2π)4
1

p2 + Ω2
. (5.125)

The effective potential agrees with the energy density in the Gaussian functional approach tak-
ing N = 4. In the OE approach, by generalising the Gaussian effective potential (GEP) to
space-time dependent fields, the Gaussian effective action (GEA) can be obtained. It enables
us to derive not only the effective potential, but also 1PI Green function with arbitrary external
momenta in the Gaussian approximation.

The minimum of the GEP is at stationary point ϕ0 fulfilling

∂V

∂ϕi

= (m2 + 4λϕ2 + 12λI0(Ω) + 4(N − 1)λI0(ω))ϕi = 0, (5.126)

where the index i runs over 1 to N . In the unsymmetric minimum we have

B = m2 + 4λϕ2 + 12λI0(Ω) + 4(N − 1)λI0(ω) = 0. (5.127)

The parameters Ω and ω are only variational parameters in the free propagator, and do not
correspond to physcal masses of scalar particles. The physical masses have to be determined as
poles of the full propagator in the discussed approximation. The inverse of that propagator can
be obtained as a second derivative of the GEA. Performing the Fourier tranform, the two-point
vertex is calculated as

Γi(p) =
δ2Γ

δφ2
i

∣∣∣∣
φ(x)=ϕ

=

[
p2 +B + 8λφ2

i + 12λφiΩI−1(p,Ω)
δΩ

δφi

+ 4(N − 1)λφiωI−1(p, ω)
δω

δφi

]∣∣∣∣
φi(x)=ϕ

,

(5.128)

with

I−1(p,Ω) = 2

∫
d4q

(2π)4
1

(q2 + Ω2)((p+ q)2 + Ω2)
. (5.129)

The variationals with respect to Ω and ω are evaluated from (5.119) and (5.120):

2Ω
δΩ

δφi

− 24λφi − 12λΩI−1(p,Ω)
δΩ

δφi

− 4(N − 1)λωI−1(p, ω)
δω

δφi

= 0

δΩ

δφi

=
12λφi + 2(N − 1)λωI−1(p, ω)

δω
δφi

Ω(1− 6λI−1(p,Ω))
, (5.130)

and

2ω
δω

δφi

− 8λφi − 4λΩI−1(p,Ω)
δΩ

δφi

− 4(N + 1)λωI−1(p, ω)
δω

δφi

= 0

δω

δφi

=
4λφi + 2λΩI−1(p,Ω)

δΩ
δφi

ω(1− 2(N + 1)λI−1(p, ω))
. (5.131)
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These two coupled equation are solved as

δΩ

δφi

=
12λφi − 16(N + 2)λ2φiI−1(p, ω)

Ω(1− 6λI−1(p,Ω)− 2(N + 1)λI−1(p, ω) + 8(N + 2)λ2I−1(p,Ω)I−1(p, ω))
, (5.132)

δω

δφi

=
4λφi

ω(1− 6λI−1(p,Ω)− 2(N + 1)λI−1(p, ω) + 8(N + 2)λ2I−1(p,Ω)I−1(p, ω))
. (5.133)

Then the two-point vertex is given as

Γi =p
2 +B + 8λϕ2A, (5.134)

where

A =1 +
18λI−1(p,Ω) + 2(N − 1)λI−1(p, ω)− 24(N + 2)λ2I−1(p,Ω)I−1(p, ω)

1− 6λI−1(p,Ω)− 2(N + 1)λI−1(p, ω) + 8(N + 2)λ2I−1(p,Ω)I−1(p, ω)
. (5.135)

In the asymmetric state ϕ1 = ϕ0 and ϕi = 0 (i = 2, · · · , N ) with B = 0, an inverse propagator
Γ1(p) = p2+8λA(p)ϕ2

0 corresponds to a massive particle andN−1 inverse propagator Γi(p) =
p2 of NG bosons. The mass for massive particle is given as Γ1(m) = 0, which agrees with the
sigma mass Eq. (5.90) in N = 4 case.

5.6 Discussions
We have found that the Gaussian functional or Gaussian effective action approaches fully re-
spect to the NG theorem and correspond to MPA + RPA framework. We need the thermo-
dynamical potential including the effect of non-perturbative interaction. The thermodynamical
potintial is generated from the partition function with Euclidean action. In this sense, it may
be better to accept the Gaussian effective action approach. The fields in the Euclidean action
should be integrated out to generate the thermodynamical potential. Hence we desire a Gaussian
form action or higher order terms can be treated perturbatively.

The physical mass and coupling constant are derived from two- and four-point vertex in
the effective action. We have discussed the physical masses at unrenormalized level. Some of
masses in effective action correspond to NG boson and others include the interaction effect. If
the physical coupling constant would be small, the partition function for new classical fields
(which are φ in previous section) up to second order can be integrated out and higher order
terms are treated perturbatively. We expect that our mesons and diquark-baryons are replaced
by the new classical fields and eventually reproduce the lattice QCD result.
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Chapter 6

Summary

6.1 Summary
We have investigated two-color quark-hadron matter at finite temperature and chemical poten-
tial using a Nambu-Jona-Lasinio model supplemented by Polyakov loop dynamics. Ultimately
all the quark-hadron matter properties will have to be derived from the QCD Lagrangian. As
a first step, we treat the chiral properties of the strong interaction using the NJL model accom-
panied by Polyakov loop terms for confinement effects in the sense that color non-singlets are
suppressed in the hadron phase. Our primary aim of the present study is to investigate the emer-
gence and dynamics of baryonic degrees of freedom in addition to mesonic modes. Baryons are
realized as diquarks in Nc = 2 QCD. Their role as bosons is fundamentally different from the
Nc = 3 case in which baryons are fermions subject to the Pauli exclusion principle. Nonethe-
less, the Nc = 2 case is of conceptual interest because corresponding lattice simulations are not
limited by the sign problem at non-zero, real chemical potential µ.

A full bosonization leads to an extended linear sigma model incorporating diquark degrees
of freedom in the effective Lagrangian which establishes a connection between the hadron La-
grangian and an underlying quark dynamical approach including diquark degrees of freedom.
Connecting the NJL approach to standard linear sigma model is not a new issue. However, we
find it useful to draw such a connection incorporating in addition the diquark (baryon) sector
in a consistent way. It turns out that even at this stage, the derived meson-diquark Lagrangian
must be treated non-perturbatively in order to reproduce the two-color lattice result.

The thermodynamical properties have been discussed and compared with the lattice QCD
calculation. The derived effective Lagrangian include the both of quark and hadron proper-
ties. The phase structure is examined in the mean field approximation approach. The behavior
of chiral and diquark condensates and their intertwining at finite µ, reflecting the underlying
Pauli-Gürsey symmetry, are discussed. The Polyakov loop plays an important role at finite
temperature. The deconfinement transition is now correlated with the chiral condensate. The
characteristic temperatures for the chiral (Tχ) and deconfinement (Tdec) cross-overs become
about equal ( Tχ ≃ Tdec ≃ 225 [MeV]) once the quarks are coupled to the Polyakov loop. At
finite chemical potential and low temperature, T < Tdec, the diquark condensate plays an im-
portant role. A non-zero diquark condensate emerges at µ = 1

2
mπ, the onset of Bose-Einstein

condensation in this model. As µ increases the diquark condensate grows quickly and stays
finite at large chemical potential. With increasing diquark condensate, the chiral condensate
decreases subject to the condition σ2

0 + |∆0|2 ≃ const.
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The meson and diquark masses behave naturally in accordance with the symmetry breaking
pattern associated with chiral and diquark condensation. The pion mass first stays constant and
then grows linearly with the chemical potential once diquark condensation starts. The sigma
meson mass is about twice the dynamical quark mass until the onset of diquark condensation.
Due to the strong coupling of the sigma with diquark-baryons, the mixed sigma-diquark modes
behave quite differently from the case without coupling.

The equation-of-state (EOS) of the quark-hadron system has interesting properties as a func-
tion of increasing chemical potential. When µ approaches its critical value µc = mπ/2 from
below, the pressure divided by its Stefan-Boltzmann limit increase rapidly at low temperature.
This reflects the fact that the energy of the lowest diquark mode drops as mπ − 2µ and hence
contributes prominently to the pressure. It becomes a zero mode at µ = µc, the onset of diquark
condensation, at which point the system develops a Bose-Einstein condensation (BEC) phase.
As the chemical potential increases beyond µ ≃ mπ, the dynamical mass of quark quasiparti-
cles drops below µ and the system undergoes a BEC-BCS crossover. With µ further increasing,
the quark quasiparticle energy develops a minimum at finite momentum p. Above the decon-
finement transition, the EOS is governed by quark degrees of freedom, but the hadronic modes
still have a significant influence up to the crossover temperature range.

The quark density ρ as function of the chemical potential is a quantity of interest that is
readily accessible in two-color lattice QCD. It turns out that the mean field approximation of
the (P)NJL model underestimates this density by about a factor of two. Corrections treated
in Gaussian approximation do not change this result significantly. This is not surprising since
the Gaussian approximation misses important correlations between diquarks and scalar bosons
generated by the higher order terms (L(3) and L(4)) of the hadronic effective Lagrangian. The
net attractive interactions produced by strong couplings in L(3) and L(4) are expected to raise
the density considerably.

We have reviewed the Gaussian functional approach as a non-perturbative treatment. The
Schrödinger quantization prescription is constructed in the field theory. The ground state en-
ergy including a non-perturbative interaction have been worked out in a simple model. The
sponteneous symmetry breaking and the Nambu-Goldstone theorem is fully supported in the
Gaussian functional approximation. This framework is expected to apply our effective hadron
Lagrangian and reproduce the lattice QCD result.

6.2 Outlook
We have derived an effective hadron Lagrangian from two color NJL type Lagrangian and
many thermodynamical properties especially the emergence and dynamics of baryonic degree
of freedom have been investigated. We would like to see the outlook briefly.

6.2.1 Non-perturbative Treatment in Hadron Lagrangian

We have investigated the thermodynamical property in the Gaussian approximation in addition
to the mean field approximation (MPA). The approximation gives the hadronic contribution in
quark-hadron matter. We find that the baryonic contribution is important in medium. How-
ever, the Gaussian approximation misses the hadron-hadron correlation. We treat only the non-
interactive hadron Lagrangian based on the MPA approach quark model. In this sense, it can
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be identified as the mean field approximation in the hadron level. To include the correlation
between hadrons, we have to treat the non-perturbative interaction term, which corresponds the
random phase approximation (RPA) in the many body theory language. The Gaussian func-
tional approximation can be expected to correspond the RPA. The Nambu-Goldstone theorem
is guaranteed in the Gaussian functional or Gaussian effective action approximation. Hence,
the Gaussian functional or Gaussian effective action approximation can be expected to a non-
perturbative treatment in our hadron Lagrangian. As we discussed in previous chapter, the new
physical mass and coupling constant are described by the original mass and coupling constant
which we derived from the NJL model by a full bosonization. We expect that a new effective
action is described by these new physical mass and coupling constant and the interaction can be
treated perturbatively.

6.2.2 Confinement Effect from the QCD Lagrangian
Ultimately all the quark-hadron matter properties will have to be derived from the QCD La-
grangian. To describe hadron, the quark confinement is a most important property of QCD as
well as chiral symmetry. The NJL model is lack of confinement and the Polyakov loop terms
play a role of confinement kinematics in the sense of suppressing a color non-singlet degree of
freedom in hadron phase at finite temperature. Recently, remarkable studies have been devel-
oped. The first one is so-called non-local PNJL model [94, 95]. The four-fermion interaction is
described by non-local distribution instead of the local delta function. The original local NJL
model interaction is strong at quark momenta |p⃗| < Λ and turned off at |p⃗| > Λ in terms of
the NJL cut-off Λ. The non-local interaction is expected to be closer to QCD and its running
coupling strength. It implies that the gluon fields provide a Wilson line between the non-local
fermionic bilinears. The second is a reformulation of QCD in terms of the Cho-Faddeev-Niemi-
Shabanov (CFNS) decomposition of the Yang-Mills field [96, 97]. The non-local NJL type in-
teraction is derived from the reformulation of QCD by CFNS separation. Hence, it is expected
that a full treatment of the confinement effect based on the gluon fields and chiral symmetry
from first principle. We will attempt to using the non-local PNJL model as our new starting
Lagrangian and manipulate bosonization.

6.2.3 Construction of Real Baryons
Our interest is aimed at investigating the property of baryonic matter. In Nc = 2 QCD, baryons
are realized as diquark and its role is fundamentally different form the real fermionic baryon
in Nc = 3 case. We have successfully applied the bosonization technique for baryons in two
color system. However, for the three color system we have not worked out the hadronisation
program yet. We have to expand our bosonization (hadronisation) technique to include three
body fermion system. We just mention several studies for describing baryons from quark level
model based on auxiliary field method. Baryons as quark-diquark model picture is discussed in
the auxiliary fields framework [73,98–102]. However, the diquark field in this picture is treated
as a fundamental field and has a finite size. Another study of baryon using auxiliary fields is
discussed in strong coupling limit [103].
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Appendix A

Notations and Conventions

A.1 System of Measurement
We accept the so-called ‘Natural unit’ as c = ℏ = kB = 1, where c is the speed of light, ℏ is the
reduced Planck constant (or simply called Planck constant) and kB is the Boltzmann constant.
We note the comparison:

1[eV] =1.16× 104[K] (A.1)
1[MeV] =1.78× 10−30[kg] (A.2)

197[MeV] =1[fm−1]. (A.3)

A useful relation used above is ℏc = 197 [MeV· fm].

A.2 Relativistic Notation
Greek indices µ, ν, etc. generally run over the four space-time coordinate labeling 0, 1, 2, 3 and
Latin indices i, j, k, etc. run over the three spatial coordinate labeling 1, 2, 3. We define

xµ = (ct, x⃗), xµ = (ct,−x⃗). (A.4)

We adopt the summation convention (Einstein notation):

3∑
µ=0

aµbµ = aµbµ = aµb
µ = a0b0 − a1b1 − a2b2 − a3b3. (A.5)

The Minkowski space-time metric is gµν = gµν = diag(1,−1,−1,−1). In the Euclidean space,
Greek indices run over 1, 2, 3, 4 and x4 = ix0 and the metric is gµν = −δµν . Using the metric
tensor we define

xµ = gµνxν . (A.6)

Derivatives with respect to coordinates are written as

∂µ =
∂

∂xµ
=

(
1

c

∂

∂t
,∇
)
, ∂µ =

∂

∂xµ
=

(
1

c

∂

∂t
,−∇

)
. (A.7)
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The energy-momentum vector

pµ = (E/c, p⃗), pµ = (E/c,−p⃗) (A.8)

satisfies

p2 = pµpµ = E2 − p⃗2 = m2. (A.9)

We shall also use

px = p · x = pµxµ = Et− p⃗ · x⃗. (A.10)

We sometimes write ct = x0 = x0 and E/c = p0 = p0.

A.3 The Pauli matrix
The Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(A.11)

have the property

tr[σi] =0, det[σ] = −1, (A.12)

(σi)2 = I, (A.13)

[σi, σj] =2εijkσk, (A.14)
σiσj =δijI + iεijkσk. (A.15)

We sometimes write

σ0 =

(
1 0
0 1

)
= I, (A.16)

and

σµ =(σ0, σi), σ̄µ = (σ0,−σi), (A.17)
σµ =(σ0,−σi), σ̄µ = (σ0, σi). (A.18)

The symmetric matrices are σ0, σ1 and σ3 and the antisymmetric one is σ2. In the text, we write
the Pauli matrices for two color space as ti and for two flavor space as τi.
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Appendix B

Dirac Algebra

B.1 The Gamma Matrix
We note some useful properties of Dirac algebra following some textbooks [104–107].

The Dirac gamma matrices satisfy the anti-commutation relation:

{γµ, γν} = 2gµν , (B.1)

and

(γ0)2 = 1, (γi)2 = −1, γµγν = −γνγµ, (B.2)

(γ0)† = γ0, (γi)† = −γi, (γµ)† = γ0γµγ0. (B.3)

The notation

γ5 = γ5 = iγ0γ1γ2γ3 (B.4)

satisfies

{γ5, γµ} = 0, (γ5)2 = 1. (B.5)

The gamma matrices are expressed in the chiral representation :

γ0 = γ0 =

(
0 I
I 0

)
, γi = −γi =

(
0 σi

−σi 0

)
, γ5 =

(
I 0
0 −I

)
, (B.6)

with the 2× 2 identity matrix I . It can be further written as

γµ =

(
0 σµ

σ̄µ 0

)
, γµ =

(
0 σ̄µ
σµ 0

)
, γ5 =

(
σ0 0
0 −σ0

)
. (B.7)

Products of gamma matrices:

γµγ
µ =4, (B.8)

γµγαγ
µ =− 2γα, (B.9)

γµγαγβγ
µ = 4gαβ. (B.10)
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Trace formula of gamma matrices:

tr[1] =4, (B.11)
tr[γµ] =0, (B.12)

tr[γµγν ] =4gµν , (B.13)
tr[γµγνγργσ] =4(gµνgρσ + gµσgνρ − gµρgνσ), (B.14)

tr[γ5] =0, (B.15)
tr[γ5 /a/b] =0, (B.16)

tr[ /a1 /a2 · · · /an] =0, for n odd (B.17)

with the slash notation aµγµ = /a.

B.2 Dirac Bilinear Form
The Lorentz spinor bilinear expressions like ψ̄ψ, ψ̄γµψ, etc. are represented as ψ̄Γαψ with α
denoting the Lorentz transformation property. The 16 independent 4× 4 Dirac matrices Γα are

ΓS = 1, ΓV
µ = γµ, ΓT

µν = σµν =
i

2
[γµ, γν ], ΓA

µ = γµγ5, ΓP = iγ5, . (B.18)

They satisfy (Γα)2 = ΓαΓα = ±1,Γα = (Γα)−1 and γ0(Γα)†γ0 = Γα, hence the forms ψ̄Γαψ
are hermitian.

B.3 Charge Conjugation
The charge conjugation matrix interchanges particle and anti-particle:

C = iγ2γ0 = −C−1 = −C† = −CT , (B.19)

ψc =Cψ̄T , (B.20)
[C, γ5] =0, (B.21)

C−1ΓαC =ηαΓ
αT , (B.22)

with the values ηα are summarized in the following table:

α S V T A P
ηα 1 −1 −1 1 1

B.4 Euclidean Dirac Matrices
The Euclidean time space coordinate, instead of the Minkowski space, is introduced as

xµ = (x0, x⃗) → xµ = xµ = (x⃗, x4), (B.23)

with x4 = ix0 and the index µ runs over 1 to 4.
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In thermal field theory, a system is described in Euclidean space with minus sign. Since the
Dirac field is applied to thermodynamics, we have to define the Euclidean Dirac matrices:

γEµ = γµE = (γ⃗, γ4), with γ4 = iγ0. (B.24)

The commutation relation in Euclidean space is defined as

{γµ, γν} = −2δµν . (B.25)

The scalar product of two Euclidean four-vectors aµ, bν is described as

aµb
ν = aµbνδµν =

4∑
i=1

aibi. (B.26)

We introduce the slash notation

/a = aµγ
µ
E = a4γ4 + a⃗ · γ⃗. (B.27)

In particular, we use

/∂ = γ4∂4 + γ⃗ · ∇. (B.28)

B.5 The Scalar Diquark
The Dirac bilinear form in the diquark form will be written as ψTΓψ. Our diquark should satisfy
the Lorentz scalar, parity plus, flavor singlet and color singlet in the two flavor and two color
space. The infinitesimal Lorentz transformation is given as

ψTΓψ →ψT ′
Γψ′ = ψTSTΓSψ, (B.29)

S =1− i

4
εµνσ

µν . (B.30)

Using the charge conjugation C

(σµν)T = −C−1σµνC, (B.31)

thus we obtain

STΓS = Γ− i

4
Γεµνσ

µν +
i

4
C−1εµνσ

µνCΓ. (B.32)

The Lorentz scalar bilinear satisfies

Γεµνσ
µν = C−1εµνσ

µνCΓ, (B.33)

which leads

[σµν , CΓ] = 0. (B.34)
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The γ5 satisfies [σµν , γ5] = 0, hence the Lorentz scalar matrix is Γ = C−1γ5 and the Lorentz
scalar bilinear is ψTC−1iγ5ψ. The parity transformation is:

ψ →ψ′ = γ0ψ, (B.35)

ψTC−1iγ5 →ψT ′
C−1iγ5 = ψTC−1iγ5γ0. (B.36)

Hence, ψTC−1iγ5ψ is parity plus. From the condition of the flavor and color singlet, we intro-
duce the anti-symmetric operators (iτ2)ij = εij (flavor space) and (it2)ij = εij (color space).
Finally, our desired diquark is obtained using Eq. (B.19) as

ψTCiγ5t2τ2ψ. (B.37)
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Appendix C

Fierz Transformations

The NJL-type interaction is derived from a local coupling between color currents Ja
µ = ψ̄γµt

aψ
involving the quark fields ψ and the generators for the color group ta. Taking four spinor fields
ψ1,2,3,4. Its four-point interaction Lagrangian can be written as G(ψ̄1Γ

αψ2)(ψ̄3Γαψ4) with the
product of the Dirac bilinears using a specific Dirac matrix Γα and the coupling constant G.
There exists the equivalent form G′(ψ̄1Γ

βψ4)(ψ̄3Γβψ2), if there are any relation between the
coefficients G and G′ which is known as the Fierz identities [108].

The Fierz identities can be discussed using general mathematics theory. We do not discuss
general Fierz identities (see [109–112]) but see the case of the Lorentz group (Dirac algebra)
and SU(N) algebra to derive two color and two flavor NJL model interaction [78].

C.1 Dirac Algebra

C.1.1 Fierz Identity

The set of the Dirac matrices

{Γα} = {1, γµ, σµν , γµγ5, iγ5} (µ, ν = 0, 1, 2, 3) (C.1)

gives the basis for the Dirac matrix space where the Greek index α is taken from 1 to 5 corre-
sponding scalar, vector, tensor and so on. The orthogonality relation is

tr(ΓαΓβ) = 4δαβ . (C.2)

Any 4× 4 matrix X is expanded in terms of the basis as

X = xαΓ
α =

1

4
tr(XΓα)Γ

α =
1

4
tr(XΓα)Γα. (C.3)

The summation over the Greek indices are taken implicitly likewise the Einstein notation. From
these relation we find the identity in writing the component explicitly as

δijδkl =
1

4
Γα
ilΓα,kj, (C.4)
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where the Latin indices represent the components and run from 1 to 4. This is the basic Fierz
identity. Multiplying matrices Γα and Γβ , this leads the usual Fierz identities

Γα
ijΓ

β
kl =

1

4
(ΓαΓρ)il(Γ

βΓσ)kj

=
1

16
tr(ΓαΓρΓ

βΓσ)Γ
ρ
ilΓ

σ
kj. (C.5)

When we consider a interaction Lagrangian, the Greek indices are chosen to form Lorentz scalar
quantities such as γµγµ. The resulting Fierz identities are summarized below:

(1)(1)
(γµ)(γ

µ)
(σµν)(σ

µν)
(γµγ5)(γ

µγ5)
(iγ5)(iγ5)

 (ij : kl) =
1

4


1 1 1 −1 −1
4 −2 0 −2 4
6 0 −2 0 −6
−4 −2 0 −2 −4
−1 1 −1 −1 1




(1)(1)
(γµ)(γ

µ)
(σµν)(σ

µν)
(γµγ5)(γ

µγ5)
(iγ5)(iγ5)

 (il : kj) (C.6)

with corresponding to Eq. (C.5).

C.1.2 Diquark Channel
The Fierz rearrangement is considered as the interchange (ij : kl) → (il : kj) usually. In
other words, a particle ψ remains a particle and the same applies for antiparticle ψ̄. In the text,
however, we discuss another transformation such as (ij : kl) → (ik : lj) which corresponds
particle-particle (diquark) channel. This means that we have to change a particle to antiparticle
and vice verse. In the Dirac algebra, the transformation for a particle to antiparticle is the charge
conjugation matrix C (see Appendix B.3). By using the charge conjugation property, we find

ψ̄1Γ
αψ2 = ηαψ̄

c
2Γ

αψc
1. (C.7)

If we denote the usual Fierz transformation as (1234) → (1432), the desired form can be written
as

(1234) →(124c3c) → (13c4c2). (C.8)

Hence, we find the Fierz matrix for diquark channel in contrast with Eq. (C.6) as
(1)(1)
(γµ)(γ

µ)
(σµν)(σ

µν)
(γµγ5)(γ

µγ5)
(iγ5)(iγ5)

 (ij : kl) =
1

4


−1 −1 −1 1 1
4 −2 0 −2 4
6 0 −2 0 −6
4 2 0 2 4
1 −1 1 1 −1




(C∗)(C)
(γµC

∗)(Cγµ)
(σµνC

∗)(Cσµν)
(γµγ5C

∗)(Cγµγ5)
(iγ5C

∗)(Ciγ5)

 (ik : lj).

(C.9)

Before closing this section, we discuss the Fierz transformation in particle-particle channel
in terms of the previous section. To obtain the Fierz transformation in particle-particle chan-
nel, we need new basis, denoting Λα, for the matrix space. In the Dirac algebra, it is given
for particle-particle pair Λα = ΓαC and for antiparticle-antiparticle pair Λ̄α = C̄Γα. They
obviously satisfy the orthogonality relation

tr[ΛαΛ̄β] → 4δαβ . (C.10)
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Repeating same discussion, we may find

5∑
α=1

Γα
ijΓ

α
kl =ηα

1

16

∑
α,β

tr(ΓαΛα(Γα)T Λ̄α)Λα
ikΛ̄

α
lj

=ηα
1

16

∑
α,β

tr(ΓαΓβCC−1ΓαCC̄Γβ)Λβ
ikΛ̄

β
lj

=− ηα
1

16

∑
α,β

tr(ΓαΓβΓαΓβ)Λβ
ikΛ̄

β
lj, (C.11)

which is Eq. (C.9).

C.2 SU(N) Algebra

C.2.1 Fierz Identity
We consider SU(N) algebra in the fundamental representation. The SU(N) is constructed by
theN×N special unitary matrix U which is described as U = exp(iX) whereX is a Hermitian
matrix and satisfies trX = 0. The Hermitian matrix X is expanded by the N2 − 1 generators
of SU(N), especially the SU(2) generators are σa/2 (σa are the Pauli matrices with a = 1, 2, 3)
and the SU(3) are λa/2 (λa are the Gell-Mann matrices with a = 1, · · · , 8). They form matrix
spaces and satisfy the orthogonality relations

tr[σaσb] =2δab, (C.12)
tr[λaλb] =2δab. (C.13)

In the case of any fundamental representation of SU(N) algebra {Ta} (a = 1, · · · , N2 − 1)
satisfies tr[TaTb] = Cδab. Since these matrices are traceless, the basis need identity matrix to
expand any N ×N matrix like Eq. (C.14). Then the set {1, Ta} gives the basis for SU(N) and
any N ×N complex matrix X can be expanded in terms of

X = X01+
N2−1∑
a=1

XaTa, (C.14)

with

X0 =
1

N
tr(X), Xa =

1

C
tr(XTa). (C.15)

We substitute Eq. (C.15) into Eq. (C.14) and take the general elements

(X)ij =
1

N
(X)kkδij +

1

C

N2−1∑
a=1

(X)lk(Ta)kl(Ta)ij, (C.16)

and obtain from the coefficients of (X)lk the completeness relation

δilδkj =
1

N
δijδkl +

1

C

N2−1∑
a=1

(Ta)ij(Ta)kl. (C.17)
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From this relation, we find the square of the generators is proportional to identity matrix as∑
a

TaTa = C2(R)1, (C.18)

where C2(R) is the conventional quadratic Casimir invariant depending on the representation.
In the fundamental representation denoting f

C2(f) = C
N2 − 1

N2
. (C.19)

From Eq. (C.17) and Eq. (C.18), we obtain the Fierz identity for SU(N)

δijδkl =
1

N
δilδkj +

1

C

N2−1∑
a=1

(Ta)il(Ta)kj, (C.20)

N2−1∑
a=1

(Ta)ij(Ta)kl =C
N2 − 1

N2
δilδkj −

1

N

N2−1∑
b=1

(Tb)il(Tb)kj. (C.21)

We note the SU(2) case

δijδkl =
1

2
δilδkj +

1

2

3∑
a=1

(σa)il(σa)kj, (C.22)

3∑
a=1

(σa)ij(σa)kl =
3

2
δilδkj −

1

2

3∑
b=1

(σb)il(σb)kj. (C.23)

C.2.2 Diquark Channel
In general, the Fierz transformation in particle-particle channel is constructed by new basis Λa

which may be related with the original basis by using transpose operator like discussed in C.1.2.
We denote the original basis as Γα

a with the representation α. The basis matrices Λα
a with the

representation α is assumed to be normalized as

tr(Λα
a Λ̄

β
b ) = δαβgab, (C.24)

with the metric gab. The Fierz transformation is defined similarly with Eq. (C.11) as∑
a

(Γα
a )ij(Γ

α
a )kl =

∑
β

Cαβ

∑
b

(Λβ
b )ik(Λ̄

β
b )lj, (C.25)

with the coefficient

Cαβ =
∑
a

tr(Γα
aΛ

β
b (Γ

α
a )

T Λ̄β
b ). (C.26)

The matrix space in particle-particle channel of SU(N) in the fundamental representation
decomposes into two irreducible representation, the symmetric and antisymmetric tensors. We
denote the corresponding basis matrices respectively as Sa and Aa. The symmetric matrices Sa
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are simply the symmetric matrices Ta with the identity matrix, while the antisymmetric Aa are
the antisymmetric Ta to have the same norm C. We identify Γα

a = Ta with the fundamental
representation, the symmetric case Λα

a = Sa and the antisymmetric case Λα
a = Aa and denoting

the representation index α as T as the fundamental representation, S as the symmetric case and
A as the antisymmetric case in the above discussion. We find

CT S =
N − 1

N
, CT A = −N + 1

N
. (C.27)

Then we obtain the identity

δijδkl =
1

C

∑
a

(Sa)ik(Sa)lj +
1

C

∑
a

(Aa)ik(Aa)lj, (C.28)

∑
a

(Ta)ij(Ta)kl =
N − 1

N

∑
a

(Sa)ik(Sa)lj −
N + 1

N

∑
a

(Aa)ik(Aa)lj. (C.29)

We note the SU(2) case

δijδkl =
1

2
(δikδlj + (σ1)ik(σ1)lj + (σ3)ik(σ3)lj + (σ2)ik(σ2)lj) , (C.30)∑

a

(σa)ij(σa)kl =
1

2
(δikδlj + (σ1)ik(σ1)lj + (σ3)ik(σ3)lj)−

3

2
(σ2)ik(σ2)lj. (C.31)

C.3 NJL model interaction
We consider two color and two flavor NJL model interaction following [64]. We start from
the color current interaction (2.14) and show that performing a Fierz transformation we obtain
the interaction term (2.21) with the coupling coefficients related by (2.22). We first consider
mesonic channel q̄q and next diquark channel qq.

We rewrite the interaction term and keep track explicitly of all color, flavor and Dirac in-
dices:

Lint =−Gc

3∑
a=1

(ψ̄γµtaψ)(ψ̄γµt
aψ)

=−Gc

3∑
a=1

[
ψ̄i,p,µψj,q,νψ̄k,r,ρψl,s,σ(γα)µν(γ

α)ρσ(ta)ij(ta)klδpqδrs
]
, (C.32)

with color indices i, j, k, l, flavor indices p, q, r, s and Dirac indes µ, ν.ρ, σ.
Fierz transformation for flavor indices in q̄q channel is performed using the relatoin:

δpqδrs =
1

2

3∑
b=0

(τb)ps(τb)rq, (C.33)

where τb are Pauli matrices with τ0 = 1. For color indices:

3∑
a=1

(ta)ij(ta)kl =
3

2
δilδkj −

1

2

3∑
c=1

(tc)il(tc)kj. (C.34)
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For Dirac indices:

(γα)µν(γ
α)ρσ = δµσδρν −

1

2
(γα)µσ(γ

α)ρν −
1

2
(γαγ5)µσ(γ

αγ5)ρν + (iγ5)µσ(iγ5)ρν . (C.35)

Fierz transformation for q̄q channel is performed by substituting above relations as

Lint =
3

4
Gc

3∑
b=0

[
(ψ̄τbψ)

2 + (ψ̄iγ5τbψ)
2 − 1

2
(ψ̄γατbψ)

2 − 1

2
(ψ̄γαγ5τ5ψ)

2

]

− 1

4
Gc

3∑
b=0

3∑
a=1

[
(ψ̄taτbψ)

2 + (ψ̄iγ5taτbψ)
2 − 1

2
(ψ̄γαtaτbψ)

2 − 1

2
(ψ̄γαγ5taτbψ)

2

]
.

(C.36)

The first term is color singlet and second term is color triplet. The color singlet scalar and
pseudoscalar part is written as

Lq̄q =
G0

2

[
(ψ̄ψ)2 + (ψ̄iγ5τ⃗ψ)

2
]
, (C.37)

from which we can easily read

G0 =
3

2
Gc. (C.38)

We next perform diquark channel qq as below. For flavor indices:

δpqδrs =
1

2

3∑
b=0

(τb)pr(τb)sq. (C.39)

For color indices:
3∑

a=1

(ta)ij(ta)kl =
1

2
[δikδlj + (t1)ik(ta)lj + (t3)ik(ta)lj]−

3

2
(t2)ik(t2)lj. (C.40)

For Dirac indices:

(γα)µν(γ
α)ρσ = (C∗)µρ(C)σν −

1

2
(γαC∗)µσ(Cγ

α)σν −
1

2
(γαγ5C

∗)µρ(Cγ
αγ5)σν + (iγ5C

∗)µρ(iγ5C)σρ.

(C.41)

We find

Lint =
3

4
Gc

3∑
b=0

[
(ψ̄τbt2Cψ̄

T )(ψTCτbt2ψ) + (ψ̄iγ5τbt2Cψ̄
T )(ψTCiγ5τbt2ψ)

− 1

2
(ψ̄γατbt2Cψ̄

T )(ψTCγατbt2Cψ)−
1

2
(ψ̄γαγ5τbt2Cψ̄

T )(ψTCγαγ5τbt2ψ)
]

− 1

4
Gc

3∑
b=0

∑
S=0,1,3

[
(ψ̄τbtSCψ̄)(ψ

TCτbtSψ) + (ψ̄iγ5τbtSψ̄
T )(ψTCiγ5τbtSψ)

− 1

2
(ψ̄γατbtSCψ̄

T )(ψTCγατbtSψ)−
1

2
(ψ̄Γαγ5τbtSCψ̄

T )(ψTCΓαγ5τbtSψ)
]
.

(C.42)
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The color singlet scalar diquark part is written as

Lqq =
H0

2
Gc(ψ̄iγ5τ2t2Cψ̄

T )(ψTCiγ5τ2t2ψ), (C.43)

from which we can easily read

H0 =
3

2
Gc. (C.44)
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Appendix D

Thermal Field Theory

In this appendix, we review the formulation for thermal field theory following [113–115]. Es-
pecially, we formulate to construction of Bose and Fermi statistics. First, we discuss the con-
struction of a partition function described by fields using path integral formalism. To introduce
the temperature, we go to the Euclidean metric with minus sign instead of the Minkowski:

(t2 − x⃗2) → −(τ 2 + x⃗2), (D.1)

taking it → τ , which is called the imaginary time formalism. Due to the periodicity or anti-
periodicity of the thermal field, we introduce so-called the Matsubara frequencies in the mo-
mentum representation. We work out the partition function and the thermodynamical potential
density for the complex scalar field and the Dirac field using the Matsubara formalism. Finally,
we discuss a technique of the summation of the frequencies.

D.1 The Partition Function
We take a Schrödinger picture field ϕ̂(x⃗, 0) and the conjugate momentum π̂(x⃗, 0) at t = 0. The
field operator eigenstate |ϕ⟩ satisfy

ϕ̂(x⃗, 0)|ϕ⟩ = ϕ(x⃗)|ϕ⟩, (D.2)

where ϕ(x⃗) is the eigenvalue. We have the usual completeness and orthogonality conditions∫
dϕ(x⃗)|ϕ⟩⟨ϕ| = 1, (D.3)

⟨ϕa|ϕb⟩ =δ(ϕa(x⃗)− ϕb(x⃗)). (D.4)

Similarly, the conjugate momentum operator eigenstate |π⟩ satisfy

π̂(x⃗, 0)|π⟩ = π(x⃗)|π⟩, (D.5)

with the eigenvalue π(x⃗). The completeness and orthogonality conditions are∫
dπ(x⃗)

2π
|π⟩⟨π| = 1, (D.6)

⟨πa|πb⟩ =δ(πa(x⃗)− πb(x⃗)). (D.7)
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We take a eigenstate for this system |ϕa⟩ at t = 0, then the time evolution of the system is
described e−iHt|ϕa⟩ where H is Hamiltonian of the system. Taking the state |ϕb⟩ realized after
the time development, the transition amplitude between these states is ⟨ϕb|e−iHt|ϕa⟩. By the
path integral method, the transition amplitude is expressed

⟨ϕb|e−iHt|ϕa⟩ =
∫

Dπ
∫ ϕ(x⃗,t)=ϕb(x⃗)

ϕ(x⃗,0)=ϕa(x⃗)

Dϕ exp
[
i

∫ t

0

dt′
∫
d3x(πϕ̇−H(ϕ, π))

]
(D.8)

where H is Hamiltonian density.
On the other hand, a partition function for statistical mechanics is assigned as

Z(β) =
∑
n

e−βEn = tre−βĤ =

∫
dϕa⟨ϕa|e−βĤ |ϕa⟩, (D.9)

where β is the inverse of temperature and the Boltzmann constant is taken kB = 1. The trace is
evaluated by using a complete set of eigenvectors of H as

H|n⟩ = En|n⟩. (D.10)

From the last line in Eq. (D.9), the partition function could be interpreted as expression for time
transition amplitude from 0 to β, if we adopt imaginary time formulation τ = it. Thus, the
partition function is expressed

Z(β) =

∫
Dπ
∫
periodic

Dϕ exp
[∫ β

0

dτ

∫
d3x(π

∂ϕ

∂τ
−H(ϕ, π))

]
(D.11)

by applying the path integral method. Where “periodic” means periodicity of ϕa(x⃗) = ϕ(x⃗, 0) =
ϕ(x⃗, β) and this notation is omitted afterward. If we suppose the system is described by Klein-
Gordon Lagrangian

L =
1

2
(∂µϕ)(∂

µϕ)− 1

2
m2ϕ2, (D.12)

the conjugate momentum is defined as π = ∂L
∂(∂0ϕ)

. The momentum is integrated out immedi-
ately and the numerical factor independent of β is suppressed. Then the partition function can
be written as

Z(β) =

∫
Dϕ exp (−SE(β)) , (D.13)

with the Euclidean action

SE(β) =

∫ β

0

dτ

∫
d3x

1

2

(
(∂τϕ)

2 + (∇ϕ)2 +m2ϕ2
)
. (D.14)

D.2 The Matsubara Propagator
We consider Klein-Gordon Lagrangian as an example and introduce the symbol∫ β

0

d4x =

∫ β

0

dτ

∫
d3x, (D.15)
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and x = (x⃗, τ). Klein-Gordon Lagrangian is a Gaussian type for the fields, hence the functional
integral is evaluated as

Z(β) =

∫
Dϕ exp

(
−1

2

∫ β

0

d4xϕ(x)G−1ϕ(x)

)
=(detG)1/2 = exp

(
1

2
ln detG

)
= exp

(
1

2
tr lnG

)
, (D.16)

where

G−1 = −∂2τ −∇2 +m2 (D.17)

is the inverse of the Green function.
In the field theory, a generation functional Z(β; j) with Z(β) = Z(β; j = 0) is given as

Z(β; j) =

∫
Dϕ exp

[
−SE(β) +

∫ β

0

d4xj(x⃗, τ)ϕ(x⃗, τ)

]
=Z(β) exp

[
1

2

∫ β

0

d4xd4x′j(x)G(x, x′)j(x′)

]
, (D.18)

with x = (x⃗, τ), x′ = (x⃗′, τ ′). The Green function G(x, x′) satisfies

(−∂2τ −∇2 +m2)G(x, x′) = δ(x− x′). (D.19)

The functional differentiation gives the propagator with imaginary time as

1

Z(β)

δ2Z(β; j)

δj(x⃗, τ1)δj(x⃗, τ2)

∣∣∣∣
j=0

=
1

Z(β)

∫
Dϕ ϕ(x⃗, τ1)ϕ(x⃗, τ2) exp (−SE(β)) . (D.20)

From the discussion of appendix E, we obtain the propagator as

⟨ϕ|ϕ(x′)ϕ(x)|ϕ⟩ = G(x, x′) = ∆(x− x′). (D.21)

The right hand side of Eq. (D.20) may be regarded as the thermal average of T-product of
field operator. We omit the space index x⃗ henceforth. We recall that the thermal average of an
operator A is defined as

⟨A⟩β =
1

Z(β)
tr(Ae−βH) (D.22)

and T-product is

T (ϕ(−iτ1)ϕ(−iτ2)) =

{
ϕ(−iτ1)ϕ(−iτ2) if τ1 > τ2

ϕ(−iτ2)ϕ(−iτ1) if τ2 > τ1
. (D.23)

Hence, the thermal average of T-product of field operator is described as

⟨T (ϕ(−iτ1)ϕ(−iτ2))⟩β =
1

Z(β)
tr
[
e−βHT (ϕ(−iτ1)ϕ(−iτ2))

]
=

1

Z(β)

∫
dϕ⟨ϕ|e−(β−τ1)Hϕe−(τ1−τ2)Hϕe−τ2H |ϕ⟩, (D.24)
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where τ1 > τ2 have been assumed for simply. The field operator is defined as ϕ(−iτ) =
eHτϕe−Hτ in Heisenberg picture have been used. Then one inserts a complete set of states of
the field operator at ‘times’ τ1 and τ2 and repeats the procedure leading to the path integral
formalism. It is also that Z(β; j) can be written as

Z(β; j) =tr
[
e−βHT

(
e
∫ β
0 d4xj(x⃗,τ)ϕ(−iτ)

)]
. (D.25)

From the periodicity of the paths in path integral formalism, the thermal average has a property

⟨T (ϕ(−iβ)ϕ(−iτ))⟩β = ⟨T (ϕ(0)ϕ(−iτ))⟩β. (D.26)

Because of periodicity of the trace, the imaginary time propagator ∆(τ) has a property

∆(τ) = ⟨T (ϕ(−iτ)ϕ(0))⟩β = ∆(τ − β) (D.27)

in any time interval [0, β]. The Fourier transform of this propagator is given as

∆(iωn) =

∫ β

0

dτeiωnτ∆(τ), (D.28)

and its inverse is

∆(τ) = T
∞∑

n=−∞

e−iωnτ∆(iωn). (D.29)

Since ∆(τ) is periodic, the Fourier transform is taken over a finite interval [0, β], so that fre-
quencies ωn is taken discrete values as

ωn = 2πnT, (D.30)

which are called Matsubara frequencies. Form above discussion, the way of treating field theory
as statistical mechanics is

it→ τ∫
d4x→

∫ β

0

dτ

∫
d3x (D.31)

i

∫
d4p

(2π)4
→ −T

∞∑
n=−∞

∫
d3p

(2π)3

(D.32)

are replaced, then
p0 → iωn = i2πnT (D.33)

is used. Thus, Eq. (D.16) is now represented as

Z(β) = exp

(
−1

2

∫
d3x

d3p

(2π)3

∑
n

ln(ω2
n + ω2)

)
, (D.34)
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where we have used the definition of the Klein-Gordon propagator in the momentum space
(with Minkowski metric) as

G =

∫
d4p

(2π)4
1

p20 − ω2
, (D.35)

with ω2 = p⃗2 +m2.
The discussion up to here is obtained supposing that a symmetry for particle exchange is that

of boson. We have another quantum statistics, namely fermion. The fermion has anti-symmetric
property for particle exchange as

⟨ψ|ψ(x′)ψ(x)|ψ⟩ = −⟨ψ|ψ(x)ψ(x′)|ψ⟩. (D.36)

This means that

ψ(x⃗, 0) = −ψ(x⃗, β), (D.37)

hence,

∆(0) = −∆(β). (D.38)

Therefore, The Matsubara frequencies for fermion is assigned as

ωn =
(2n− 1)π

β
or ωn =

(2n+ 1)π

β
. (D.39)

The remaining problem is how to take the summation over the Matsubara frequencies, which
will be discussed later.

Before closing this section, we discuss a grand canonical ensemble. The grand canonical
partition function is defined as

Z(β, µ) = tre−β(H−µ·N) =

∫
DπDϕ exp

[∫ β

0

d4x

(
π
∂ϕ

∂τ
−H + µN

)]
, (D.40)

where µ · N =
∑

α µαNα, Nα is a particle number operator and µα is the chemical poten-
tial corresponding the particle. N is the conserved particle number density which is the 0-th
component of the conserved current. Namely, it is the quantity relating density ρ:

N = Q =

∫
d3xρ =

∫
d3xJ0 =

∫
d3xN . (D.41)

The conserved particle number N in case of fermion corresponds the baryon number and/or
the lepton number, which depends on the field, while the conjugate momentum does not. Hence,
the partition function would be described as the form of (D.13). In boson case, however, it also
depends on momentum so we have to go through the Hamiltonian form of (D.40).
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D.3 The Complex Scalar Field
We discuss several example in this and next section. First, we consider the complex scalar field.
The complex scalar field Lagrangian is

L = ∂µΦ
∗∂µΦ−m2Φ∗Φ. (D.42)

The conserved particle number is obtained from the Noether current as

N = i(Φ∗∂0Φ− Φ∂0Φ
∗) = i(Φ∗Π− ΦΠ∗), (D.43)

where Π = ∂0Φ is the canonical conjugate momentum. The complex field is decomposed into
real and imaginary part as

Φ =
1√
2
(ϕ1 + iϕ2) (D.44)

Φ∗ =
1√
2
(ϕ1 − iϕ2). (D.45)

By using these real scalar field, Hamiltonian and particle number are written as

H =
1

2
[(π1)

2 + (π2)
2 + (∇ϕ1)

2 + (∇ϕ2)
2 +m2(ϕ2

1 + ϕ2
2)] (D.46)

N = ϕ2π1 − ϕ1π2. (D.47)

Thus, the partition function of scalar field is given as

Z =

∫
Dπ1Dπ2Dϕ1Dϕ2 exp

[∫ β

0

d4x
(
iπ1ϕ̇1 + iπ2ϕ̇2

−1

2
[(π1)

2 + (π2)
2 + (∇ϕ1)

2 + (∇ϕ2)
2 +m2(ϕ2

1 + ϕ2
2)] + µ[ϕ2π1 − ϕ1π2]

)]
=

∫
Dϕ1Dϕ2 exp

[
−1

2

∫ β

0

d4x

((
∂ϕ1

∂τ

)2

+

(
∂ϕ2

∂τ

)2

+ (∇ϕ1)
2 + (∇ϕ2)

2

+m2ϕ2
1 +m2ϕ2

2 + 2iµ

(
ϕ1
∂ϕ2

∂τ
− ϕ2

∂ϕ1

∂τ

)
− µ2ϕ2

1 − µ2ϕ2
2

)]
(D.48)

from Eq. (D.40). The second line means performing completing square with conjugate mo-
mentum, it is integrated out, then the numerical constant is dropped. The derivative terms of the
fields ϕ1 and ϕ2 are performed by partial integration. Its Fourier transformation is replaced by
(D.31) and (D.33). The Euclidean action is described in the matrix form:

SE =

∫
d3x

∫
d3p

(2π)3
1

2

∞∑
n=−∞

(
ϕ1 ϕ2

)(ω2
n + ω2 − µ2 −2µωn

2µωn ω2
n + ω2 − µ2

)(
ϕ1

ϕ2

)
, (D.49)

where ω2 = p⃗2 +m2. The functional integration is done by Eq. (E.13) and described as

Z = exp

(
−
∫
d3x

∫
d3p

(2π)3

∑
n

1

2
ln[(ω2

n + ω2 − µ2)2 + 4µ2ω2
n]

)
. (D.50)
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We compute further

ln[(ω2
n + ω2 − µ2)2 + 4µ2ω2

n] = ln[(ω2
n + ω2 − µ2 + 2iµωn)(ω

2
n + ω2 − µ2 − 2iµωn)]

= ln[((ωn + iµ)2 + ω2)((ωn − iµ)2 + ω2)]

= ln[(ωn + i(ω + µ))(ωn − i(ω − µ))(ωn + i(ω − µ))(ωn − i(ω + µ))]

= ln[(ω2
n + (ω + µ)2)(ω2

n + (ω − µ)2)]

= ln(ω2
n + (ω + µ)2) + ln(ω2

n + (ω − µ)2). (D.51)

We consider the summation over ωn. First of all, we take derivative of ln term with α = ω ± µ

∂

∂α

∑
n

ln(ω2
n + α2) =

∑
n

2α

ω2
n + α2

=
∑
n

2α/(2πT )2

n2 + α2/(2πT )2
=

1

T
coth

( α
2T

)
, (D.52)

the sum formula:
∞∑

n=−∞

1

x2 + n2
=
π

x
coth(πx), (D.53)

has been used. Then, we integrate the result with α:∫
dα coth

( α
2T

)
= 2T ln | sinh(α/2T )| = 2T

[
α

2T
+ ln(1− e−α/T ) + ln

1

2

]
. (D.54)

Ignoring the constant term ln(1/2) independent of T and ω, which does not affect the thermo-
dynamics, the sum of the frequency of logarithmic function for bosons is described as∑

n

1

2
ln(ω2

n + α2) =
α

2T
+ ln(1− e−α/T ). (D.55)

Thus, the partition function for bosons is given as

Z = exp

(
−
∫
d3x

∫
d3p

(2π)3
[βω + ln(1− e−β(ω+µ)) + ln(1− e−β(ω−µ))]

)
. (D.56)

Thermodynamical potential (density) is obtained from this partition function:

Ω =
F

V
= − 1

V
T lnZ

=

∫
d3p

(2π)3
(
ω + T ln(1− e−(ω+µ)/T ) + T ln(1− e−(ω−µ)/T )

)
. (D.57)

D.4 The Dirac Field
Lagrangian of Dirac field is

L = ψ̄(i /∂ −m)ψ, (D.58)

and the conserved particle number is

N = ψ̄γ0ψ, (D.59)



D.4. The Dirac Field 105

which does not depend on the conjugate momentum. Thus, the exponential part of the partition
function (D.40) can be described only field by taking Legendre transformation. Then, momen-
tum integral is performed soon and the numerical constant is dropped. The partition function
for fermions is written as

Z =

∫
DψDψ̄ exp

(
−
∫ β

0

d4xψ̄(i(∂τ + µ)γ4 + i∇ · γ⃗ +m)ψ

)
, (D.60)

with the Euclidean Dirac matrices discussed in Appendix B.4 as t→ −iτ, γ0 → −iγ4 and p0 →
−ip4 = iωn with the frequency for fermion. The fields ψ, ψ̄ are integrated out as Grassmann
variable and the partition function in momentum representation is

Z =exp (ln det[(ωn + iµ)γ4 − p⃗ · γ⃗ +m]) , (D.61)

where determinant is taken over (Euclidean) Dirac matrices, coordinate space, momentum space
and the Matsubara frequencies. We use the identity

ln detA = tr lnA, (D.62)

except the Dirac matrices. We consider the determinant of Dirac matrices in the chiral repre-
sentation (see Appendix B.4) as

det

(
mI i(ωn + iµ)I − σ⃗ · p⃗

i(ωn + iµ)I + σ⃗ · p⃗ mI

)
=
(
(ωn + iµ)2 + ω2

)2
, (D.63)

with ω2 = p⃗2 + m2 and I being 2 × 2 unit matrix. Since the summation is taken over both
positive and negative frequencies, we can write

∞∑
n=−∞

ln
(
(ωn + iµ)2 + ω2

)2
=2

∞∑
n=1

[
ln((ωn + iµ)2 + ω2) + ln((−ωn + iµ)2 + ω2)

]
=2

∞∑
n=1

ln[((ωn + iµ)2 + ω2)((ωn − iµ)2 + ω2)]

=2
∞∑
n=1

[
ln(ω2

n + (ω + µ)2) + ln(ω2
n + (ω − µ)2)

]
, (D.64)

from Eq. (D.51). The partition function is now

Z =exp

(∫
d3x

∫
d3p

(2π)3

∞∑
n=1

2
[
ln(ω2

n + (ω + µ)2) + ln(ω2
n + (ω − µ)2)

])
. (D.65)

The factor 2 corresponds to the degree of spin degeneracy and the summation is taken over only
positive integer dealing with particle and anti-particle, which are the difference between the
scalar field and the Dirac field.

The summation of frequencies for fermions ωn = (2n − 1)πT is performed as below. The
derivative of ln term is

∂

∂α

∞∑
n=1

ln(ω2
n + α2) =

∞∑
n=1

2α

ω2
n + α2

=
∞∑
n=1

2α/(πT )2

(2n− 1)2 + α2/(πT )2
=

1

2T
tanh

( α
2T

)
,

(D.66)
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where the sum formula has been used following:

∞∑
n=1

1

x2 + (2n− 1)2
=

π

4x
tanh

(πx
2

)
. (D.67)

The integration over α is written as∫
dα tanh

( α
2T

)
= 2T ln | cosh(α/2T )| = 2T [

α

2T
+ ln(1 + e−α/T ) + ln

1

2
]. (D.68)

Hence, the sum of frequency of logarithmic function for fermions is∑
n

ln(ω2
n + α2) =

α

2T
+ ln(1 + e−α/T ). (D.69)

The partition function is given as

Z = exp

[
2

∫
d3x

∫
d3p

(2π)3

{ω
T

+ ln(1 + e−(ω−µ)/T ) + ln(1 + e−(ω+µ)/T )
}]

. (D.70)

The thermodynamical potential is

Ω = −2

∫
d3p

(2π)3
(
ω + T ln(1 + e−(ω−µ)/T ) + T ln(1 + e−(ω+µ)/T )

)
. (D.71)

D.5 Frequency Sum
We discuss a technique of the summation of the frequencies. We take a summation of the
Matsubara frequency as follows

S =
∑
n

h(ωn), (D.72)

where h(ωn) is a single variable function and frequencies ωn is 2nπT in boson case or (2n +
1)πT in fermion case. The idea for taking the summation of frequencies is to replace summation
to complex integration by introducing a virtual function of complex variable g(z) which has
simple pole at z = iωn. The product of function gh is integrated along a suitable path in the
complex plane, and the whole summation S is treated as summation of residue. The typical
choice of g are

g(z) =

{
β

exp(βz)−1
β

exp(βz)+1

or g(z) =

{
β
2
coth(βz/2)

β
2
tanh(βz/2).

(D.73)

The upper one is used for bosons and the lower one for fermion in both choices. We adopt the
first one. Note that the first choices are similar to the Bose or Fermi distribution. The integration
is manipulated along the imaginary axis as

− ζ

2πi

∮
dzg(z)h(−iz) = −ζ

∑
n

Res(g(z)h(−iz))|z=iωn =
∑
n

h(ωn) = S. (D.74)



D.5. Frequency Sum 107

(a) (b)
w w

Figure D.1: The integration path is deformed from (a) to (b). The cross marks along the vertical
axis are singularities for the function g and the isolate cross marks are for the function h.

For proof of the second equality, the residues of “the counting function” g are chosen as ζ
and assuming integration path is closed at z = ±i∞1. The integration path can be modified to
satisfy the condition that the singularity for g and h(−iz) are avoided. In the case of the product
gh is damped in the limit of |z| → ∞. The original integration path can be modified to infinitely
large circle as shown in Fig. D.1 (b). Then, the contribution for integration along outmost circle
vanishes and the integration around singularities for h are calculated. If we assume that h(−iz)
has some isolated singularity {zk}, we obtain

S = − ζ

2πi

∮
h(−iz)g(z) = −ζ

∑
k

Resh(−iz)g(z)|z=zk . (D.75)

Thus, the infinite summation S is simplified to a feasible operation to evaluate a finite number
residue.

Examples
We calculate the frequency sum in some simple cases as examples. For simplicity, we consider
fermion a case which is ωn = (2n+1)πT . Same discussion holds in boson case. In general, the
function h needs the factor, which does not contribute thermodynamics, to vanish the contribu-
tion from the large outmost circle which appears in the modified integration path in the limit of
|z| → ∞. This non-essential factor is omitted usually, since the function h decays faster than
z−1 in many physical case. We shall discuss the case where the introduction of such a factor is
necessary.

Linear Fractional Function

We take a function h(ωn) as

h(ωn) = − T

iωne−iωnδ − ξ
, (D.76)

1The difference between the first and the second choices in Eq. (D.73) is the residue. The residue of the first
functions are ζ = ±1, +1 for boson and −1 for fermion and that of the second functions is ζ = 1 for both cases.
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where ξ = ω − µ and δ is a positive infinitesimal value which is taken δ → 0 finally. The
integrand h(−iz)g(z) converges at z → −∞ by the factor ezδ and z → ∞ by the Fermi factor
(eβz + 1)−1. We work it out as

S =
∑
n

h(ωn)

= −
∑
n

Res
β

ezβ + 1

−T
zezδ − ξ

∣∣∣∣
z=iωn

= lim
z→ξ

(z − ξ)
1

ezβ + 1

1

z − ξ

=
1

eξβ + 1
= f(ω − µ). (D.77)

We get the well known formula

−T
∑
n

1

iωn − (ω − µ)
= f(ω − µ), (D.78)

where f(ω) = (exp(βω) + 1)−1 is well-known Fermi distribution.

Second Order Fractional Function

We take a function as

h(ωn) = − T

(iωn − ξ)2
. (D.79)

We omit the convergence factor here and next. This function has pole of order two at z = ξ.
The frequency sum is

S =
∑
n

Res
1

ezβ + 1

1

(z − ξ)2

∣∣∣∣
z=iωn

= lim
z→ξ

d

dz

[
(z − ξ)2

1

ezβ + 1

1

(z − ξ)2

]
= lim

z→ξ

[
2(z − ξ)

1

ezβ + 1

1

(z − ξ)2
− (z − ξ)2

βezβ

(ezβ + 1)2
1

(z − ξ)2
− (z − ξ)2

1

ezβ + 1

2

(z − ξ)3

]
= − βeξβ

(eξβ + 1)2
=

d

dξ
f(ξ). (D.80)

Logarithmic Function

We take

h(ωn) = −T ln(β(−iωn + ξ)). (D.81)

In generally, ξ is a function such as ω(p⃗) − µ, we fix it a certain value ξa firstly. The function
h(z) has branch cut along the real axis z ∈ (−∞, ξa]. We choose the integration path as Fig.
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w

xa

Figure D.2: Choice of the integration path for the logarithmic function Eq. (D.81).

D.2. The path around the branch cut on the real axis is enclosed by ϵ± = ϵ ± iη with positive
infinitesimal value η. Since the contribution of the integration is only around ϵ±, the complex
integration is manipulated as

S =

∮
dz

2πi
T ln(β(z − ξa))

β

eβz + 1

=

∫ ∞

−∞

dϵ

2πi

[
ln(ϵ+ − ξa)− ln(ϵ− − ξa)

] β

eϵβ + 1
, (D.82)

where we have used (eϵ
±
+ 1)−1 ∼ (eϵ + 1)−1 and the path have been expanded as (−∞,∞).

We have

g(ϵ) =
β

eϵβ + 1
= − ∂

∂ϵ
ln(1 + e−ϵβ), (D.83)

and the integrated function goes zero at the limit of ϵ → ±∞, then we compute the partial
integration and obtain

S =
T

2πi

∫ ∞

−∞
dϵ

(
1

ϵ+ − ξa
− 1

ϵ− − ξa

)
ln(1 + eϵβ)

=− T

∫ ∞

−∞
dϵδ(ϵ− ξa) ln(1 + e−ϵβ)

=− T ln(1 + e−ξaβ) = −T ln(1 + e−ξβ). (D.84)

In the second line, we have used the identity

lim
η→0

1

x+ iη
= −iπδ(x) + P

(
1

x

)
, (D.85)

where P means the principal value and in the last equal means the fixed value ξa is replaced by
a function ξ.

The convergence factor
We see a case where the summation over the Matsubara frequencies diverges. This situation
appears for example in the work of Diener et. al. [77]. Taking the function

h(ωn) = −T iωn + ξ

(iωn)2 − E2
, (D.86)



110 Chapter D. Thermal Field Theory

where ξ =
√
p⃗2 +m2 and E =

√
ξ2 + |∆0|2 with BCS gap ∆0 following [77]. The Matsubara

sum is formally divergent and we explicitly write the convergence factor

h(ωn) = −T iωn + ξ

(iωn)2 − E2
eiωnδ, (D.87)

with a positive infinitesimal value δ which is taken δ → 0 finally. Hence,

S =−
∮
c

dz

2πi

z + ξ

z2 − E2

1

eβz + 1
ezδ

=

∮
c′

dz

2πi

z + ξ

(z − E)(z + E)

1

eβz + 1
ezδ

= lim
z→−E

(z + E)
z + ξ

(z − E)(z + E)

1

eβz + 1
ezδ

=
E − ξ

2E

1

eβz + 1
. (D.88)

The integral path c and c′ is shown in Fig. D.3.

(a) (b)
w w

c

c'

Figure D.3: The integration path is deformed from (a) to (b). The path c′ is counterclockwise
for the path c.
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Appendix E

The Gaussian Integral

We write several Gaussian integral formulas (α > 0)∫
dxe−αx2

=
(π
α

)1/2
, (E.1)∫

dxe−αx2+βx+γ =exp

(
β2

4α
+ γ

)(π
α

)1/2
, (E.2)∫

dxxne−αx2

=

{
(n−1)!!

(2α)n/2

(
π
α

)1/2 for n even

0 for n odd,
(E.3)∫

dxxe−α(x−F )2 =

∫
dx′(x′ + F )e−αx′2

= F
(π
α

)1/2
, (E.4)∫

dxx2e−α(x−F )2 =

∫
dx(x+ F )2e−αx2

=

(
1

2α
+ F 2

)(π
α

)1/2
, (E.5)∫

dxx4e−α(x−F )2 =

∫
dx(x4 + 6F 2x2 + F 4)e−αx2

=

(
3

4α2
+

3

α
F 2 + F 4

)(π
α

)1/2
. (E.6)

We take the product of n Gaussian integrals with ai > 0 following [107],∫
dx1 . . . dxn exp

(
−1

2

∑
n

anx
2
n

)
=

(2π)n/2∏n
i=1 a

1/2
i

. (E.7)

Let A be a diagonal matrix with elements a1, . . . , an and x be an n-vector (x1, . . . , xn), the
integral becomes ∫

dnxe−(x,Ax)/2 = (2π)n/2(detA)−1/2, (E.8)

with the inner product ∑
n

anx
2
n = (x,Ax). (E.9)

Since this holds for any diagonal matrix, it also holds for any real symmetric, positive, non-
singular matrix. Defining the measure (dx) = dnx(2π)−n/2, we obtain∫

(dx)e−(x,Ax)/2 = (detA)−1/2. (E.10)
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In the same way, we obtain for Hermitian matrix A and the measure (dz) = dnz(2πi)−n/2,∫
(dz∗)(dz)e−(z∗,Az) = (detA)−1. (E.11)

We now assume that we can generalise the above formulas to an infinite-dimensional function
space without mathematical proof. The inner product for a function ϕ(x) is

(ϕ, ϕ) =

∫
dx[ϕ(x)]2. (E.12)

The Gaussian integral is generalized in the functional form as∫
Dϕ exp

(
−1

2

∫
dxϕ(x)Aϕ(x)

)
=(detA)−1/2. (E.13)

If ϕ is a complex field, we obtain∫
Dϕ∗Dϕ exp

(
−
∫
dxϕ∗(x)Aϕ(x)

)
= (detA)−1. (E.14)

Finally, we write the Gaussian integral with the Grassmann number η, η̄,∫
dη̄dηe−η̄Aη = detA. (E.15)

In the functional form it is∫
Dψ̄Dψ exp

(
−
∫
dxψ̄(x)Aψ(x)

)
= detA. (E.16)

Suppose the Gaussian functional [83, 90]

ψ[ϕ] = N exp

(
−1

2

∫
dxdy[ϕ(x)− f(x)]G(x, y)[ϕ(y)− f(y)]

)
, (E.17)

with the weight function G(x, y) and the fluctuation function f(x). The scalar product

⟨ψ|ψ⟩ = N2

∫
Dϕ exp

(
−
∫
dxdy[ϕ(x)− f(x)]G(x, y)[ϕ(y)− f(y)]

)
(E.18)

is defined as 1 by the normalization constant N which is obviously (detG−1)1/4. We want to
calculate ⟨ψ|ϕ(x)|ψ⟩, ⟨ψ|ϕ(x)ϕ(y)|ψ⟩ and ⟨ψ|(ϕ(x)ϕ(y))2)|ψ⟩. To calcualte these values, we
introduce a source term in the Gaussian functional as

ψJ [ϕ] = N exp

(
−1

2

∫
dxdy[ϕ(x)− f(x)]G(x, y)[ϕ(y)− f(y)] +

∫
dxϕ(x)J(x)

)
.

(E.19)
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With a new variable ϕ′ = ϕ− f , the scalar product is

⟨ψJ |ψJ⟩ =N2

∫
Dϕ′ exp

(
−
∫
dxdyϕ′(x)G(x, y)ϕ′(y) +

∫
dx[ϕ′(x) + f(x)]J(x)

)
=N2

∫
Dϕ′ exp

(
−
∫
dxdy[ϕ′(x)− 1

2

∫
dx1J(x1)G

−1(x, x1)]G(x, y)

×[ϕ′(y)− 1

2

∫
dx2J(x2)G

−1(x2, y)] +

∫
dxJ(x)f(x) +

1

4

∫
dxdyJ(x)G−1(x, y)J(y)

)
=exp

(∫
dxJ(x)f(x) +

1

4

∫
dxdyJ(x)G−1(x, y)J(y)

)
, (E.20)

where we have used the relation∫
dzG(x, z)G−1(z, y) = δ(x− y). (E.21)

Then we calculate

⟨ψ|ϕ(x)|ψ⟩ = δ

δJ(x)
⟨ψJ |ψJ⟩|J=0

=

(
f(x) +

1

2

∫
dx1J(x1)G

−1(x, x1)

)
exp (. . . )

∣∣∣∣
J=0

=f(x), (E.22)

⟨ψ|ϕ(x)ϕ(y)|ψ⟩ = δ2

δJ(x)δJ(y)
⟨ψJ |ψJ⟩|J=0

=
1

2
G−1(x, y) + f(x)f(y). (E.23)

Further,

⟨ψ|(ϕ(x)ϕ(y))2|ψ⟩ =⟨ψ′|(ϕ′(x) + f(x))2(ϕ′(y) + f(y))2|ψ′⟩

=
3

4
G−1(x, y)G−1(x, y) +

1

2
f 2(x)G−1(x, x)

+ 2f(x)f(y)G−1(x, y) +
1

2
f 2(y)G−1(y, y) + (f(x)f(y))2, (E.24)

with

ψ′ = N ′ exp

(
−1

2

∫
dxdyϕ′(x)G(x, y)ϕ′(y)

)
, (E.25)

and defining normalization ⟨ψ′|ψ′⟩ = 1. If we take x = y,

⟨ψ|ϕ4(x)|ψ⟩ =3

4
G−1(x, x)G−1(x, x) + 3f 2(x)G−1(x, x) + f 4(x). (E.26)

Hence, the Gaussian integrals in functional form (E.22), (E.23), (E.26) correspond usual inte-
grals (E.4), (E.5), (E.6).
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Appendix F

Mott Transition
The NJL model or PNJL model lack of the confinement at zero temperature. The hadrons
(mesons and diquark-baryons) can decay to the two quark state q̄q and qq at finite momentum
q⃗. This can happen at the point where the meson or diquark energy becomes larger than the
two-particle continuum ωq̄q or ωqq for the decay process at zero momentum. This transition is
called Mott transition [116]. This property in two color NJL model is discussed in Ref. [67].
According to Ref. [67] the two-particle continua ωq̄q and ωqq are different at the BEC and the
BCS sides as

ωq̄q =

{√
(m− µ)2 + |∆|2 +

√
(m+ µ)2 + |∆|2 µB < µ0

|∆|+
√
(m+ µ)2 + |∆|2 µB > µ0

, (F.1)

ωqq =

{
2
√
(m− µ)2 + |∆|2 µB < µ0

2|∆| µB > µ0

, (F.2)

where the baryon chemical potential is defined as µB = 2µ with the quark chemical potential
µ and the BEC-BCS crossover point is µ0 ∼ 120 [MeV]. We refer the left upper figure in Fig.9
in Ref. [67] as shown in Fig. F.1. According to the figure, the effective range of the baryon
chemical potential is less than five times of the pion mass µB/mπ < 5. All of our calculations
should be restricted in this range.

Figure F.1: The two-particle continua in units of m as functions of the baryon chemical potential
µB in units of mπ [67]. Note that the author uses different parameter set from ours.
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Appendix G

The Loop Expansion of the Effective
Action and the Effective Potential

We discuss the derivation of the effective action following the text book [107]. We consider the
real scalar field

S[ϕ] =

∫
dxL(ϕ(x))

L(ϕ(x)) =1

2
(∂ϕ(x))2 − V (ϕ),

V (ϕ) =
1

2
m2ϕ2(x)− λϕ4(x), (G.1)

where dx stands for d4x for simply. The Lagrangian is invariant under ϕ → −ϕ, but this
symmetry is not shared by the solution

dV

dϕ

∣∣∣∣
ϕ=ϕ0

= 0 (G.2)

where ϕ0 ̸= 0. The symmetry has been spontaneously broken. These statements are classical.
Quantum consideration enter with loops. The generating functional is written as

Z[J ] =

∫
ϕ exp

(
i

ℏ
S[ϕ] + iℏ

∫
dxJ(x)ϕ(x)

)
, (G.3)

which is assumed normalized. We explicitly write the Plank constant. The connected Green’s
function is

W [J ] = −i lnZ[J ], (G.4)

or

e
i
ℏW [J ] = Z[J ]. (G.5)

Since the generation functional is related to the vacuume expectation value with the source J

Z[J ] ∝⟨0,∞|0,−∞⟩ = ⟨0+|0−⟩J , (G.6)
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the connected generation functional can be written as

eiW [J ] =⟨0+|0−⟩J . (G.7)

The classical field ϕc(x) is defined by

ϕc(x) =
δW [J ]

δJ(x)
=
δZ[J ]

δJ(x)

δW [J ]

δZ
=

⟨0+|ϕ|0−⟩J
⟨0+|0−⟩J

, (G.8)

and is seen to depend on the source. The vacuum expectation value is defined as

ϕ0(x) = lim
J→0

ϕc(x). (G.9)

The effective action is defined by the Legendre transformation on W [J ] as

Γ[ϕc] =W [J ]−
∫
dxJ(x)ϕ(x), (G.10)

and obeys

δΓ[ϕc]

δϕc(x)
=− ℏJ(x). (G.11)

Hence, we obtain the gap equation in the limit of J to zero as

dΓ[ϕc]

dϕc

∣∣∣∣
ϕc=ϕ0

= 0. (G.12)

We would like to calculate W [J ] by the saddle-point method of the path integral. Taking an
itegral

I =

∫
dxe−f(x) (G.13)

and f(x) is stationary at some point x0 and then f(x) is expaned about x0

f(x) = f(x0) +
1

2

d2f(x)

dx2

∣∣∣∣
x=x0

(x− x0)
2 + · · · , (G.14)

thus the integral is seen to be

I ∼ e−f(x0)

∫
dxe−

1
2
f ′′(x0)(x−x0)2 . (G.15)
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The integral becomes a Gaussian. We expand the action around ϕ0

S[ϕ, J ] =S[ϕ] + ℏ
∫
dxJ(x)ϕ(x)

=S[ϕ0, J ] +

∫
dx

δS[ϕ, J ]

δϕ(x)

∣∣∣∣
ϕ0

[ϕ(x)− ϕ0]

+
1

2

∫
dx1dx2[ϕ(x1)− ϕ0]

δ2S[ϕ, J ]

δϕ(x1)δϕ(x2)

∣∣∣∣
ϕ0

[ϕ(x2)− ϕ0] + · · ·

=S[ϕ0, J ] + ℏ
∫
dxJ(x)[ϕ(x)− ϕ0]

+
1

2

∫
dx1dx2[ϕ(x1)− ϕ0]

(
−

[
∂2 +

d2V (ϕ)

dϕ2

∣∣∣∣
ϕ0

]
δ(x1 − x2)

)
[ϕ(x2)− ϕ0] + · · ·

=S[ϕ0, J ] + ℏ
∫
dxJ(x)ϕ′(x) +

1

2

∫
dxϕ′(x)

(
−
[
∂2 + V ′′(ϕ0)

])
ϕ′(x) + · · · ,

(G.16)

where we have put ϕ′ = ϕ− ϕ0 in the last line. Substituting this into Eq. (G.5) and applying to
saddle-point integration Eq. (G.15) gives (relabelling ϕ′ as ϕ)

exp

(
i

ℏ
W [J ]

)
=exp

(
i

ℏ
S[ϕ0, J ]

)∫
Dϕ exp

(
− i

ℏ
1

2

∫
dxϕ[∂2 + V ′′(ϕ0)]ϕ

)
=exp

(
i

ℏ
S[ϕ0, J ]

)(
det(∂2 + V ′′(ϕ0))

)−1/2
, (G.17)

where we have rescaled the field ϕ into ℏ1/2ϕ and gone to Euclidean space to eliminate the
imaginary unit i. Hence, we obtain

W [J ] =S[ϕ0] + ℏ
∫
dxϕ0(x)J(x) + i

ℏ
2
tr ln[∂2 + V ′′(ϕ0)], (G.18)

which is the loop expansion of W [J ] ignoring the higer order of ℏ.
To find the loop expansion of Γ[ϕc] we need S[ϕc]. Putting ϕ0 = ϕc − ϕ(ϕ′ = ϕc)

S[ϕ0] =S[ϕc − ϕ] = S[ϕc]−
∫
dx

δS

δϕ(x)

∣∣∣∣
ϕ0

ϕ0(x) +O(ℏ2)

=S[ϕc]− ℏ
∫
dxJ(x)ϕ0(x) +O(ℏ2). (G.19)

Then

Γ[ϕc] = S[ϕc] + i
ℏ
2
tr ln[∂2 + V ′′(ϕ0)]. (G.20)

The trace tr is taken over the coordinate space. We define the n-point vertex function as

Γ(n)(x1, · · · , xn) =
δnΓ[ϕ]

δϕ(x1) . . . δϕ(xn)
(G.21)
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in the coodinatespace, and in the momentum space

Γ(n)(p1, · · · , pn) =
δnΓ[ϕ̃]

δϕ̃(p1) . . . δϕ̃(pn)
, (G.22)

where ϕ̃ is the Fourier transformed field.
We next expand the effective action Γ[ϕc] in powers of ϕc as

Γ[ϕc] =
∞∑
n=0

1

n!

∫
dx1 · · · dxnΓ(n)(x1, · · · , xn)ϕc(x1) · · ·ϕc(xn), (G.23)

and in the momentum representation as

Γ[ϕc] =
∞∑
n=0

1

n!

∫
dp1 · · · dpnδ(p1 + · · ·+ pn)Γ

(n)(p1, · · · , pn)ϕ̃c(x1) · · · ϕ̃c(xn). (G.24)

We further have another expansion which is in terms of ϕc and its derivatives as

Γ[ϕc] =

∫
dx

[
−U(ϕc(x)) +

1

2
(∂ϕc(x))

2 + . . .

]
. (G.25)

The function U(ϕc) is called the effective potential. In the case of ϕc = ⟨ϕ⟩ = a, a constant, all
derivative term in the above expansion vanish:

Γ[a] = −ΩU(a), (G.26)

where Ω is the total volume of space-time. Comparing the expansion of Γ[ϕ] in momentum
space and the above one, we have

U(a) = −
∞∑
n=0

1

n!
Γ(n)an(pi = 0). (G.27)

Renormalisation conditions are stated in terms of U as

Γ(2)(pi = 0) =
d2U(ϕc)

dϕ2
c

∣∣∣∣
⟨ϕ⟩

= m2,

Γ(4)(pi = 0) =
d4U(ϕc)

dϕ4
c

∣∣∣∣
⟨ϕ⟩

= λ. (G.28)

In addition, the vacuum expectation value can be written as

dU(ϕc)

dϕc

∣∣∣∣
⟨ϕ⟩

= 0. (G.29)
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