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Abstract
For oriented closed surfaces of genera up to 4, we list ptasens of periodic
maps by Dehn twists. As an application of these presentgtiee provide examples
of non-holomorphic Lefschetz fibrations.

1. Introduction

J. Nielsen [29] classified periodic maps on orientable seday using data describ-
ing the homomorphisms from the orbifold fundamental groofpsrbit spaces to the cyclic
groups. On the other hand, M. Dehn [9] showed that any orientgrreserving homeo-
morphism is isotopic to a product of Dehn twists. Since thresalts are classical, finding
presentations of periodic maps by Dehn twists from the datdielsen’s classification
is a natural problem. We call these presentatibehn twist presentationsJ. Birman
and H. Hilden [6] obtained a presentation of the hyperédiptvolution. Y. Matsumoto
[27] obtained a presentation of a certain involution Bp, an oriented closed surface
of genus 2. Using a method similar to [27], T. Ito [22] reobtd the presentation of
the hyperelliptic involution obtained by Birman and HildeM. Korkmaz [23] general-
ized Matsumoto’s presentation to the higher genus. Y. Gurtade further generaliza-
tion [17, 18] and obtained a presentation of certain fixedchpbiee periodic maps [19].
For hyperelliptic periodic maps, M. Ishizaka [21] obtainedgentations by the investiga-
tion on hyperelliptic degenerations and their splittin§s.Takamura [34] will give Dehn
twist decompositions of some automorphisms of Riemanrasas. In this paper, we list
Dehn twist presentations of periodic maps on orientablsercurfaces of genera up to 4.

This paper is organized as follows. In Section 2, we reviewl$éin's classification
of periodic maps. In Section 3, we list periodic maps such #ray periodic maps
on orientable closed surfaces of genera up to 4 are poweresktmaps, and list the
Dehn twist presentation of these periodic maps. In Sectiowel introduce methods
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to find presentations listed in Section 3. In Section 5, as @pliation of the list of
Dehn twist presentations, we show examples of non-holohiorpefschetz fibrations.
In Section 6, we verify the presentations given in Sectionn8 &st the powers of
periodic maps whose presentations are given there.

In order to find and verify presentations, we had to check tt®m of Dehn twists
on simple closed curves very often. The author checked thmseimes by hand and
sometimes by “Teruaki for Mathematica”, implemented by K.afd and T. Sakasai.
Many of results in this paper can not be found without this prog

2. Nielsen’s classification of periodic maps

An orientation preserving homeomorphisinfrom a surfaceXq to itself is peri-
odic mapif there is a positive integera such thatf" = idy . The period of f is
the smallest positive integer satisfying the above coowlitiTwo periodic mapsf and
f’ on X4 are conjugateif there is an orientation preserving homeomorphignfrom
¥4 to itself such thatf’ = go f o g™1. In this section, we will review the classifica-
tion of conjugacy classes of periodic maps on surfaces bys&lie[29]. We follow a
description by Smith [30] and Yokoyama [36].

Let f be a periodic map oiXy, whose period if1. A point p on X4 is a multiple
point of f if there is a positive integek less tham so that fX(p) = p. Let M; be the
set of multiple points off. The orbit spaceZy/f of f is defined by identifyingx in
g with f(x). Letw¢: g — Xg/f be the quotient map, then; is ann-fold branched
covering ramified atr;(M¢). The setr¢(M¢) is denoted byB¢, and each element of
B is called abranch pointof f. We choose a point in Xy/f — B¢, and a pointx
in 771(x). We define a homomorphisif¢ : m1(2g/ f — B, X) = Z, as follows: Let
| be loop inXy/f — B¢, whose base point ig, and [] be an element ofr1(Xg/f —
Bs, x) represented by. Let i be a lift of | over X4 which begins fromX. There is a
positive integer less than or equal ta so that the terminal point df is f"(X). We
defineQ+([I]) =r. SinceZ, is an Abelian group, we naturally define a homomorphism
wf: Hi(2g/f — Bf) = Z, induced fromQ¢. For each point ofBs = {Q1, ..., Qp},
let D; be a disk inXgy/f, which containsQ; in its interior and is sufficiently small so
that no other points oB¢ are in D;. Let Sy, be the boundary oD; with clockwise
orientation.

Theorem 2.1 ([29]). Two periodic maps f and 'fon X4 are conjugate if and
only if the following three conditions are satisfied
(1) the period of f= the period of f,
(2) the number of elements insB= the number of elements in:B
(3) under a proper change of numbering on elements in, B¢ (Sg,) = wt(Sg,) for
each i.
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Let 6, = w(Sg ). By the above theorem, the datg, pr; 64, .. ., 6] determines a
periodic map up to conjugacy. The following proposition whoa necessary and suffi-
cient condition for the datag| n; 04, ..., 6y] corresponding to a periodic map.

Proposition 2.2. There is a periodic map whose data[g, n; 64, ..., 6y] if and
only if the following conditions are satisfied
Q) 61+---+ 6, = 0 modn,
(2) if X4/ f is a spherethengedfs, ..., 6} = 1 modn,
(3) let g be the genus oEg/f and q = gcd{é;, n}, then

29-2=n@¢ -2+ >, (-a)

i: branch points

In the above proposition, (1) means that should be a homomorphism argd, +
«++ 4+ S, should be null-homologous, (2) means that should be a surjection, and
(3) is the Riemann—Hurwitz formula.

In the following, we will use the expressiom,(@1/n + --- + 6,/n) in place of
[g,n; 61,...,6,]. This data 6, 6,/n+---+ 6y/n) is called thetotal valency which is
introduced by Ashikaga and Ishizaka [5]. In the above dat,call 6;/n the valency
of Qj, and often express it as an irreducible fraction.

3. Presentation of periodic maps by Dehn twists

For a simple closed curva in X4, we define theright Dehn twist § abouta as
illustrated in Fig. 1. We call each df andt;! the Dehn twistabouta. The aim of
this paper is to obtain presentations of periodic maps bynD®lists, up to isotopy
and conjugacy, from total valencies. Once if we obtain a Dhist presentation of a
periodic mapf, then we obtain a Dehn twist presentation fof automatically. There-
fore, we make a list of periodic maps dfy (g < 4) so that any periodic map oBg
is a power of maps in this list. This list is made by a kind ofé\& of Eratosthenes”.
The list for the genus 3 case is referred from Ishizaka’'s pf@ Lemma 1.1].

Proposition 3.1. For g =1, 2, 3, 4,any periodic map or&y (if g = 1, with mul-
tiple pointg is a power of a periodic map in the following list

g=1,
fli= (&é—i—%—i—%), fi2= (4,%-1-3—-14-%),
g=2,
fo1 (10,110+§+%), f22=(8,§+g+%),
f23—(6,é+é+§). f24—(6,%+%+%+§).
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Fig. 1.

f3,1=(l4,1—];1+§+%). f3,2=(12.1i2+132+%),
f3,3=(8,%+%+§), f3,4=(4,%+%),
fas=(2,), fao= (12, %2 + % + g)
f3,7=(8,%+%+§), f3,8=(9,é+%+g).

1 2 4
f = 7— —_ —_
3,9 (,7+7+7),

6}+}+g+§) f410:(6—+—+1-+1-+1->
'6 3 3 6) '3 '"'3'3"2"2)
3
5

fon= (6,2 +2), fan=(5t+24342
4,11_ 12 2 ) 4,12_ 15 5 5 .

The powers of these periodic maps are listed in 86.2.
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Fig. 2.

Theorem 3.2. Periodic maps if; have Dehn twist presentation expressed as fol-
lows, where k means a right Dehn twist about a simple closed curgizated by the
letter k, and the order of the twists is from left to right.g, for 4-3-2-1, 4is

applied first
g=1

f1’1=1-2, f1'2=1-2-1,
g=2,

fp1=4-3.2.1, f,,=4.4.3.2.1, f;3=5-4.3.2-1,
fp3=1-2-3-4-5.(5-4-3.2-1),
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g=3!
f3,1=654321, f3’2=6654321,
f33=7-6-5-4.3-2.1, f3'4=1.2.3.4.5.6.7.(7,6,5_4,3,2_1)3’
fs5=1-2-3-4.5-6-7-(7-6-5-4-3-2-1)°, f36=6-5-4-3.2.8,
f37=6-5-4.-3-2-5-4-3-8, f33=6-5-4-3-2-1.8,
f30=6-5-4.3.2-1-5.4.8,

g=4,

f,,=8-7-6-5-4.3.2.1, ,,=8-8.7-6-5-4.3.2-1,
f43=9-8.7-6-5-4.3.2.1,
f44=1-2-3-4.5.6-7-8-9-(9-8-7-6-5-4-3.2.1)°,
f45=8-7-6-5-4.3.2.11, f46=6-5-8-7-6-5-4-3-2-11,
f,;,=8-7-6-5-4.3.2.7-6-5-4.11, f43=3-4-5-6-7-8-6-11-14,
fa0=1.2.3.4.10.97t.8 1. 7. 671, 1172,

fag10=1-2-121.41.51.61.1171.8.9, f41,=(2-3-4-5-6-13-7)?-97%,
f410=2-3-4-12-3-4.10-3.8t.7t.61.13t.7 .6t 111 7L,

We will verify these presentations in 84.1 and in 86.1.

4. Methods to find presentations in Theorem 3.2

An involution (periodic map of period 2) of Xq is called ahyperelliptic involu-
tion if there are &+ 1 fixed points ofl, and the isotopy class df is also denoted by
I. An orientation-preserving homeomorphisffrom %4 to itself is said to behyper-
elliptic if ¢ commutes withl. For hyperelliptic periodic maps, there is a method to
find their presentation investigated by Ishizaka [21].

4.1. Hyperelliptic case. By the investigation on hyperelliptic degenerations,
Ishizaka showed:

Theorem 4.1 ([21]). Let¢1 = (49 + 2, 1/(4g + 2) + 29/(29 + 1) + 1/2), ¢ =
(49, 1/49+ (29 —1)/4g+1/2) and ¢3 = (29+ 2, 1/(29 + 2) + 1/(29 + 2) + g/(g + 1)).
Any hyperelliptic periodic map is equal to the one of follogi (A) ¢X, (B) ¢%, (C) #%,
(D) 1g%.

By the maps in this theorem, hyperelliptic periodic mapsetisin Theorem 3.2
are rewritten as follows. When genus 1, f1 1 = ¢1, f12 = ¢2. When genus= 2,
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)28 +1

Fig. 3.

fo1=¢1, fo2=¢2 fo3=¢3 fos=1¢% When genus=3, f31=¢1, f32 = ¢o,
fs3=¢s, faa= 103, fa5=1¢3. When genus=4, f41=¢1, f42= 2 fa3= s,
f4y4 = |¢)§

By using splitting families, Ishizaka showed:

Theorem 4.2 ([21]). Letl,...,29+ 1 be simple closed curves By as shown
in Fig. 3. Then
(1) ¢p=29---2-1,
(2) ¢p2=29-29---2-1,
(3) p3=29+1-2g---2-1.

By the above theorem and the equatios- 1-2-29-2g+1-2g+1-2g- - -2-1 shown
by Birman and Hilden [6], we obtain presentations for hypeatic periodic maps.

In what follows, we explain methods to find presentations fion-hyperelliptic
periodic maps in Theorem 3.2.

4.2. Method to find Dehn twist presentations off;e, fa3g fs5. Let f be a
periodic map onXy whose valency data is(6:1/n + 62/n + - -+ + 6y/n). Let D2 be
the unit disk inC whose center is 0. The homeomorphism Bp x D2 defined by
(x, t) = (f1(x), exp(2ri /n) - t) generates the action &, on T4 x D% The quotient
space Eq x D?)/Z, hasb quotient singular points [branch points éf 0]. Applying
the Hirzebruch—Jung resolution, we obtain a resolution ma@d — 4 x D?/Z,. Now
we take a holomorphic mag: £, x D? — D? given by ¥(x,t) = t". Sincey is
Zn-equivalent,y determines a holomorphic map: (£4 x D?)/Z, — D2. We then
consider the composite map= ¢ or: M — D?. The preimager()~%(0) is a closed
surface and 2-spheres transversely intersect each oth&ak&mura, in the second of
his series of works [31, 32, 33, 34, 34] on degenerations ofiptex curves, explains
the multiplicities of the components of f1(0) associated to this mag. We review
his explanation.

Let Q be a branch point of whose valency i#/n. First, we define a sequence of
positive integersng > m; > --- > m;s by settingmg =n, my =6, andmy, mg,...,m; =
gcd({o, my) by the division algorithm:

Mi_y =rim —mj;; (Of miy1 < mi), i=1,2,...,8—1.



392 S. HROSE

12

Fig. 4. The line with multiplicity 12 originates from the otb
spaceXs/ f3 6, and other lines from branch points 6% e.

Next, we takes copies of®q,..., ®; of 2-spheres£ P?). Fori =1,...,4, we take a
D2-bundle N; over the 2-spher®; such that the Chern number df is —r;, and take

a D2-bundle Ny over a 2-disk. We patchN; andN; 1 (i =0, 1,...,5—1) by plumbing.
Then we get a 4-manifold with a boundary which is homeomarghi the boundary

of the regular neighborhood ofY, 0] in (£ x D?)/Z,. We remove a neighborhood of
[Q,0] in (£¢x D?)/Z, and glue the above 4-manifold. We apply this process for each
singular points in €4 x D?)/Zy, then we get the smooth 4-manifol. Let © be the
surface inM, which originates fromxy/f x {0}. Then, the regular neighborhood of
Op is a D?-bundle whose Euler number is(6; + 6, + - - - + 6p)/n, and

(r')~4(0) = me® + Z m®1 + - - - 4+ m;B;.
Q: branch point off

For example, we apply the above processte: f3 5= (12,1/12+2/3+1/4), then
(X3/f36) %0 is replaced by spheres intersecting transversely as srshoFig. 4. We
blow-down 2-spheres whose self-intersection numbers—dreand continue to blow-
down until there is no 2-sphere with self-intersectieft. For our example, Fig. 5 il-
lustrate how this blow-down process is going on. At the endhi$ process, there
remains a plane curve* = y® with an isolated singular point (0, 0).

Let W be a map fromC? to C defined byW(x, y) = x*—y5. If € is a sufficiently
small positive number an&® = {(x, y) € C2 | |x|2+]y|? = €2}, thenL. = S£ N ¥w~}(0)
is a knot (in general, link) inS®. Let ¥ be a map fromS® — L, to S' defined by
Y, y) = WX, y)/|¥(x, Y)|, theny is a surface bundle map ov& whose fiber is a
Seifert surface oL.. This fibrationy: $$— L. — St is called aMilnor-fibration [28]
of x*—y® = 0. The monodromy of/ is an orientation preserving diffeomorphism on
the fiber surface with a boundary. If we cap the boundary of thirface with a disk
and extend this monodromy by the identity map on this diskntthe conjugacy class
of this diffeomorphism isf; . Therefore, what we should do is finding a Dehn twist
presentation of the topological monodromy of the Milnor4ifion of x* — y3 = 0. It
is well-known that the knot around the singular pointxdf— y® = 0 is the (3, 4)-torus
knot [28] and it is easy to find the Dehn twist presentation k&f thonodromy from
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Fig. 5. 2-spheres with self-intersectionl are surrounded by
dotted circles.

this fact. Still, as a practical method to find presentatiohseriodic maps not only
f3,6 but also other cases which will appear later, we explain teory of divide link
invented by ACampo [2, 3, 4]. This type of singularities atiekir monodromies are
also investigated in the context cfal morsification for example, by Gusein—Zade [1].

First, we perturbx* — y3 = 0. By a method introduced by H. Goda, M. Hirasawa,
and Y. Yamada [15], we draw the picture of perturbetd— y2 = 0 in a plane. We
draw a rectangle whose horizontal length is equal to the pdarex (in our example,
this is 4) and vertical length is equal to the power foin our example, this is 3),
and divide this rectangle into unit squares. We draw a lioenfthe right upper corner
along the diagonals of squares. If we arrive at an edge of ébtamgle, we continue
to draw this line along the trajectory of light which is goiog the line drawn before
and reflected by the mirror on the edge (see the left hand af@jiglf we arrive at
a corner of the rectangle, we stop to draw. We smoothen corofthe line picture
already drawn, then we get a curve which is the perturked y3 = 0 (see the right
hand of Fig. 6). We can embed this curve properly in the urgk.dirhis is an example
of a divide

The divide P is a relative, generic immersion of a compact 1-manifold ionat
disk D in R?. The link L(P) of divide P is defined by

L(P)={(u,v) e TD|ueP, ve TP, U+ ?=1cS.

Let P be a divide shown in the right hand of Fig. 6, thegP) is isotopic toL.. In
Fig. 6, we regard the horizontal coordinate as height. Thiglel P can be deformed
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______

Fig. 6. The divide ofx* —y® = 0.

into a position whose height function has only one local mmativalue and only one
local minimal value. A divide which satisfies this conditi@nan ordered Morsedivide.
For an ordered Morse divide, there is a method, introduced .iyaDture, B. Perron [8],
H. Goda, M. Hirasawa and Y. Yamada [15], to visualize its libiP) and a fiber sur-
face of L(P). We deform the divide superposed on parallel lines as showihe left
hand of the top of Fig. 7, where dotted lines mean a positiothefparallel lines. As
shown on the right hand of the top of Fig. 7, we put a disk in pla¢ each dotted
line, we attach a pair of twisted bands to the boundary of tisksdin place of each
crossing, one of these bands is on the front and the other themack, and we at-
tach a twisted band to the boundary of disks in place of eackimah or minimal arc.
Let F(P) be the surface obtained from the above process. The bouofidihe surface
F(P) is isotopic toL(P), and F(P) is a fiber surface oL (P). In order to make the
later explanation simpler, we deform the surface as ilaistt in the bottom of Fig. 7.
This surface is a genus 3 surface with one boundary. We capbthindary by a disk.
We fix the identification of this closed surface with the soefdllustrated as genus 3
case in Fig. 2, which identifies each curve with the curve ef same number.

A surface R in S* is a Murasugi sumof two surfacesR; and R, in S° if the
following conditions are satisfied (see [13]):
(1) R=RyUx Ry, whereA is a 2-disk such thad A = u, Uvy U+ -Upu, Uv,, Where
ui (resp.y;) is a proper arc inR; (resp.Ry).
(2) There exist 3-ball8;, B, in S such that

° B]_LJ52283, B]_ﬂBZZE)Bj_ZaBz:SZ, and

° RiCB, RRCBy,,andRiNdB; = R, NdB, = A.
If (S%, 0R) is a fibered link whose fiber i®R and monodromy isp;, then for the
Murasugi sumR of R; and Ry, the link (S, dR) is a fibered link whose fiber iR
and whose monodromy ;1 - ¢, (see [13, 14]). Apositive Hopf bands an annulus
embedded inS® as in Fig. 8. In this paper, we treat only positive Hopf bargts we
call theseHopf bandsfor short. The boundary of a Hopf band is callecdHapf link
The Hopf link is a fibered link whose fiber is the Hopf band andogén monodromy
is a right handed Dehn twist about the core circle of the Hapidb In the bottom of
Fig. 7, let B; be a Hopf band whose core is the cirdle Then F(P) is a Murasugi
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Fig. 7.

Fig. 8.

sum of Bj’'s. Therefore, the monodromy fdr(P) is the product of monodromies of
Hopf bandsB;, that is 6-5-4-3-2-8.

We apply the above method, then we see thafis the monodromy of the Milnor-
fibration of x3y — y® = 0 capped by disks and, s is that ofx°> — y* = 0 capped by a
disk. The divide forx®y —y® = 0 and the fiber of the divide link for this divide is illus-
trated in the upper part of Fig. 9, and those %8r— y3 = 0 is shown in the lower part
of the same figure. From this figure, we obtain presentatidrthese periodic maps.

4.3. Digression: A family of periodic maps and their preserdations by right
Dehn twists. In this subsection, we introduce Dehn twist presentatidns family of
periodic maps listed in the following. These presentatiare obtained by the method
explained in 4.2.
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| — —
\
3 3

xy—y =0

7 N

/
2 3 4 5 6 7 8

xi_yf%:()
Fig. 9.
Phase 0:
_ 1 1 1 3 3 _ _
g=1, (3,§+§+§), X y>=0, for k=0,
k 1 1 1
=3k+1, (3k+3 ,
g =K+ ( + k+1+3k+3+3k+3+3k+3)
x¥+ _y3 =0, for k>1.
Phase [:
2 k+1 1
=3k+3, (3(k+4),= , x¥T_yd=o0.
g = 3K+ (( + )3+3k+4+3(3k+4)) y
Phase II:

K+5  k+1 1 wis
, —y*=o0.
3(2<+3)+2k+3+3(2<+3)) Y-y

g=3k+3, (3(Z<+3),
Phase llI:

_ %k+3 1 1 *+5 (3 _
g=3k+4, (3(3k+5),3k—+5+§+m), X —-y>=0.

On each line of the above lisg is a genus, the second one is a total valency
data, and the third equation defines a plane curve with a lsinuwhose monodromy
capped by disk(s) is the periodic map defined by the totalnegledata. An integer
k > 0 in the above list is called kevel

In Fig. 11, we illustrate Milnor fibers for plane curve singiti@s listed above.

In this figure, a long horizontal line indicates a 2-disk, andhort vertical line indi-
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Fig. 10
Phase 0:
k=0 k>1
| |
L1 11
24k k—1
Phase I:
[ — ~— I
3+k k
Phase II: I I I I
A S — I
4+ k k
Phase III: I I I I
[— ~— I
54k k
Fig. 11.

cates a twisted band connecting two 2-disks (see, for exgnip. 10). We decom-
pose these fibers into Murasugi sum of Hopf bands, then weroliehn twist pres-
entations of the periodic maps. In this subsection, we egpBehn twist presentations
by figures. In each figure, there are two types of simple clasegles drawn on sur-
faces, thicker curves and thinner curves. We take a produtheoright Dehn twists
about thinner simple closed curves from right to left andetak product of the right
Dehn twists about thicker simple closed curves from righkefé The product of Dehn
twists obtained as a result is a Dehn twist presentation efpiriodic map. In Fig. 12,
the presentations of the level 0O case is given. We remarkttigeste are monodromies
of well-known singularities (see for example [1, Chaptey. lamely, | is the mono-
dromy of the Eg singularity: x* — y® = 0, Il is the monodromy of theéE; singularity:
x3y —y3 =0, and Il is the monodromy of th&g singularity: x> — y® = 0.
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Fig. 12.

As we can observe in the presentations of level 0 case, thletbei following
relationships among four phases. For a presentation ofepbasve attach handles to
both sides and append one thinner circle in each handle,weeget a presentation of
phase | of the same level. For a presentation of phase I, wendppne more thin-
ner circle to the left handle, then we get a presentation asehl of the same level.
For a presentation of phase Il, we attach a handle to left aidk append one thin-
ner circle in the attached handle, then we get a presentafigghase Il of the same
level. Therefore, if we obtain presentations of all periodiaps of phase 0, then we
obtain Dehn twist presentations of all listed periodic mapsr example, we illustrate
the presentation of periodic maps of phase 0 of level 1 to &ign 13.

For the levelk > 2, we draw figures expressing Dehn twist presentations abgier
maps of phase 0 as follows. First of all, we prepare seveetdesi listed in Fig. 14.
When the levek is even, we prepare one piece of type B—~2)/2 pieces of type A,
(k—2)/2 pieces of type B, and one piece of type T. When the lkvslodd, we prepare
one piece of type 0,k(— 3)/2 pieces of type A,K— 1)/2 pieces of type B, and one
piece of type T. Next, we put these pieces on a line from thetéethe right. When
the levelk is even, the piece of type 0 comes the first, and type A, type.Btype B,
and the piece of type T comes the last. When the l&visl even, the piece of type 0
comes the first, and type B, type A,..., type B, and the piecymé T comes the last.
Finally, we glue these pieces along the parts indicated g1 5, such that the arcs
drawn on these parts are glued properly. Then we obtain aefigypressing the Dehn
twist presentation.
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Fig. 13.
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k: even k: odd
k + 2 circles k + 2 circles
Type 0

> < = |
FO-O%

Type A Type B

Type T

Fig. 14.

Glue here

Fig. 15.
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Fig. 16.

4.4, Method to find Dehn twist presentations offs 7, f3 9, fa 6, fa7. Here we
explain a method to find a presentation féy;. We find presentation for other three
periodic maps by the same method.

Following the explanation in 4.2, we apply Hirzebruch—Juegolution to 23 x
D?/Zg of f37= (8, 1/8+ 1/4+ 5/8), then we get a configuration of lines on the left
hand of Fig. 16. After we blow-down-1-curves for this diagram then we get the right
hand of Fig. 16. Although the curve illustrated in this pretthas a non-isolated singu-
larity, we can not blow-down anymore. Therefore, we can mplathe method intro-
duced in 4.2 to this case. If the singular curve is splitte ihefschetz type singular
fibers, then the number of singular fibers should{a singular curve}- x(X3) = 9.
Hence, we tried to find a presentation &f ; by 9 right handed Dehn twists. Fortu-
nately, we can find a product of right Dehn twists about 1 to &tew in genus 3
case of Theorem 3.2, whose length is 9 and whose actioi@®s; Z) is period 8.
We check the action of this product to simple closed curvesgrby using “Teruaki
for Mathematica”, implemented by K. Ahara and T. Sakasai.

4.5. Method to find Dehn twist presentations offs o, 410, f4,11, f2,22. An es-
sential 1-submanifoldof Xg is a disjoint union of simple closed curves By such
that (1) each component does not bound a diskZjpand (2) no two components
are homotopic. An orientation preserving self-homeomismphof 4 is reducibleif it
leaves some essential 1-submanifoldXyf invariant. Four homeomorphismi, g, f4, 10,
fa11, fa,12 Of X4 are reducible. Letf be a reducible periodic map dfg, and| be
a simple closed curve on X4/ f so thatz () is an essential 1-submanifold afy.
Let N be a thin regular neighborhood bfin 24/ f, and let]][ Ni = =;(N) be the
decomposition into connected components. We defidte= 4 — [[ Ni, then f|gc is
a periodic map. The restriction ofgc to 9 fre bounds a rotatiorg on disks D;, Dj,
so thatdD; L1 dD; = dN;. Let F = F°J,r(([] Di) LI ([] D})), then we can define a
periodic mapf on F so that | = f|ee, f~|(LI p)u(i o)) = 9- We say this mapf is
obtained fromf by an equivariant2-surgeryalongl. The genus of each components
of F is smaller thang.
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Fig. 17.

For example, we explain how we find the presentationfof; = (6, 1/2 + 1/2).
We make an equivariant 2-surgery along the cielas in the top of Fig. 17. Then the
resulting periodic magf, 11 is equal to (6, 16+5/6+1/2+1/2) = f§2 =(12,1/12+
5/12 + 1/2)> on 3. The middle of Fig. 17 illustrate the graph B3 which is the
inverse image of the arc ixs/ f3 2 connecting the branch points whose valencies are
1/12 and 12. In this picture, the left (resp. right) vertex is the prage of the branch
point whose valency is/IL2 (resp. 312). Up to isotopy fixing these vertices, the prod-
uct of twists 1. 2-3-4.5.6-7, where each number means a right handed Dehn twist
about the circle shown in the bottom of Fig. 17, fixes the graptwisely, and trans-
forms the each edge to the edge clock-wisely adjacent atethevdrtex. We dig small
holes around vertices and glue these boundaries, then waegefaceF homeomorphic
to 4. Namely, there is a homeomorphism frdfmto the surface illustrated in genus 4
case in Fig. 2, which maps 1to 2, 2to 3, 3to 4,4to5, 5to 6, 6 to71® 7 and
the circle obtained from the boundary to 9. Therefore,324-5-6-13. 7). f4 11
is isotopic to some powers of Dehn twist about 9. By checkhgdction of the above
map into simple closed curves Ay, we find the Dehn twist presentation fd§ 11.
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4.6. Method to find a Dehn twist presentation offs g. For this periodic map,
we can not use the above methods to find a presentation. We avpicture of the cell
decomposition ofX, as in the top of Fig. 26, from this figure we observe the action
of this map on the simple closed curves, and apply Lickasishéthod [26] to find the
presentation expressed in Theorem 3.2.

5. Application: examples of non-holomorphic Lefschetz fibations

The remarkable works by Donaldson [10] and Gompf [16] shoat thefschetz
fibrations are one of the most interesting objects for thelyston 4-dimensional top-
ology. We recall the definition:

DEerINITION 5.1. A Lefschetz fibratiomn an oriented compact smooth 4-manifold
M over an oriented smooth surfaBds a smooth magf: M — Swhich is a submersion
everywhere except at finitely many non-degenerate cripoatts ps, ..., pr, hear which
f identifies in orientation-preserving complex coordinatéth the model mapZ;, z,) —
zZ+2Z

The smooth fibers of are compact oriented surfaces and diffeomorphic each.other
If the genus of the fiber ig, we call M a genus glLefschetz fibration. In this paper,
we always assume that the imag®gs. . ., gx of critical points py, ..., px are distinct.
Under this assumption, each singular fiber is obtained bilagsihg a simple closed
curve (which we call avanishing cyclg in the smooth fiber. The monodromy of a
Lefschetz fibrationf over S is characterized by the homomorphism from the funda-
mental group ofS? \ {ds, ..., Gk} to the mapping class groupy. We choose a base
point ty of %\ {0, ..., 0}, andk embedded arc#y (i = 1,..., k) beginning att,
and ending afy; so that intA; NintAj = @ if i # j and the arcs sit on the order
A1, Az, ..., A counter-clockwisely arounty. Letl; be the simple loop beginning &,
going besideA;, going aroundy counter-clockwisely, and going besidg back tot,.
Thenl;-1,-- -1 is homotopic to the trivial loop. The image bfby the monodromy is
the right Dehn twist; about an essential simple closed curve Xy Then the mono-
dromy is characterized by the relationt,- - -ty = ids, of the right Dehn twists, which
we call apositive relation On the other hand, any positive relation defines a Lefschetz
fibration overS?. From here, we writgp, in place of - ¢ - v, and¢ in place of
¢~1, for abbreviation.

We explain a sort of “fiber sum” of Lefschetz fibrations. A Lefetz fibration over
S defined by the positive relatiow = idx, is denoted byLf(W). A Lefschetz fibra-
tion over D? defined by the product of right Dehn twissositive word W is denoted by
Lfp2(W). Letids, =V = Vi-V; andidy, = W = W;-W, be the positive relations so that
Vy is conjugate tdMN; in My, i.e. there is an element of M, so thatg=1-Vy-¢ = W;.
Thenidy, = Vi, - Wi, whereVy, is a positive word whose letters are conjugates of
each letter ofVy by ¢, i.e.if Vi =1-2-3-4 thenVy, = 1424 - 3, - 45,. We define
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V1§ W2 = Vi - Wo. The positive relatiorVy § W, = idy, defines a Lefschetz fibration
Lf(V1 £ W2). We can construct this Lefschetz fibration frdrfy.(Vy,) and Lfp.(Ws) by
glueing along their boundaries. By the Novikov additivitye signature of-f(\V; £ Wh)
is o (Lf(V1 f Wa)) = o(Lfp2(Vay)) + o(Lfp2(W2)) = o (Lfp2(V1)) + o (LEp2(We)). The
last equation follows from the equivalenceldt,.(Vy,) andLfp.(V4). For the Lefschetz
fibration Lf(W) (resp.Lfp2(W)), the number of singular fiber is denoted h{f(W))
(resp.n(Lfp2(W))), which is equal to the word length &F. The slope A(Lf(W)) is de-
fined by

4
1+ o (LF(W))/n(LF(W))

A(LF(W)) = 12

By using a sort of “fiber sum” explained above, we construcnegles of non-
holomorphic Lefschetz fibrations from our presentation efigdic maps. Letf; and f;
be periodic maps oty with periodsn; andn; respectively, and; be a presentation
of f; by right hand Dehn twists. We assume that there are intdgeesd k, so that
f{ is conjugate tof,® and O< k < (i = 1,2). ThenX{ ¢ X = ids, is a
positive relation and we define a Lefschetz fibraticflﬁx'{1 f ng"‘z). We show that
the following examples are not holomorphic by the methodouhtced by Endo and
Nagami [12].

EXAMPLE 1. On X3, ff,=(2,1/24+1/2+1/2+1/2) = {2, up to conjugacy.
Let X; be a Dehn twist presentation dg s shown in Theorem 3.2, anX, be that
of fs From the above construction, we get a genus 3 Lefschetztifibraf(X7 ¢
xg) over . By calculating the Meyer’s signature cocycles, we gétf(X? XS)) =
o (Lfp2(XT)) + 0 (Lfp2(X8)) = (—16)+(—20) = —36. Easily, we sea(Lf(X71X$)) = 64.
We assume thatf(X{1X3) is hyperelliptic. Since the vanishing cycle of each siagul
fiber Lf(X$4 XS) is non-separating, by the result of Endo [11], we obtain egeation
o (LF(XF £ X8)) = n(Lf(X$ ¢ X38)) x —(g + 1)/(2g + 1). But this contradictsr (Lf(X{ ¢
X8)) = —36. ThereforeLf(X] # X3) is not hyperelliptic. K. Konno [24] showed that
if a non-hyperelliptic Lefschetz fibratiohf(W) is isotopic to a holomorphic fibration
of genus 3 them(Lf(W)) > 3. But in our case(Lf(X] & X8)) = 20/7 < 3, hence
Lf(X$ ¢ X3) is non-holomorphic.

REMARK 5.2. Although we do not need to fing such thatp=1Xfp = X$ in
order to calculate the signature bf(X7 # X3), we find the explicit form ofg for its
own interest.

The product of Dehn twistX{ = (7-6-5-4-3-2-1)* transforms the simple closed
curves 1, .., 8, which are as shown in genus 3 case of Fig. 2, to the simplsed|
curves shown in Fig. 18. The product of Dehn twixtg: (8-7-6-5-4-3.2)° transforms
the same simple closed curves to the simple closed curvesnsimoFig. 19. Since7-6-
5.1.2-3 transforms Fig. 19 to Fig. 18, (8-5-4-3-2-1)* = (8.7-6-5-4.3-2)%7.6.5.1.2.3,
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Fig. 19.

where¢ denotesp. On the other hand7-6-5-4-3-2. 1)* transforms 1 to 5 2to
6, and 3 to 7. Therefore, (6-5-4-3-2-1*=5.6-7(8-7-6-5-4-3.2)%7.6-5=
(8765 * 7765 675 * 5765 * 415 375 * 2765)"

EXAMPLE 2. On X, ffs =(3,1/3+1/3+1/3) = ffl up to conjugacy. Let
X1 be a Dehn twist presentation df g shown in Theorem 3.2, anX, be that of
fa1. Theno(Lf(X] £ X3?) = o (Lfp(X?)) + o (Lfp2(X3?)) = (—18) + (—54) = —72,
and n(Lf(X? ¢ X%Z)) = 132. By the same argument as we gave in the above example,
we seeLf(X7 ¢ X3?) is not hyperelliptic. Z.J. Chen [7] and K. Konno [25] showet
if a non-hyperelliptic Lefschetz fibratiohf(W) is isotopic to a holomorphic fibration
of genus 4, ther(Lf(W)) > 24/7. But in our case)r(Lf(X{ £ X3?) = 16/5, hence
Lf(X7 ¢ X3?) is non-holomorphic.

REMARK 5.3. We see\(Lf(Wg W) = 24/7, so we can not determine whether
Lf(WE ¢ W) is holomorphic or not by our method.

EXAMPLE 3. OnXy, flg=(2,1/2+ 1/2)= ;5 up to conjugacy. Le; be a
Dehn twist presentation of, g shown in Theorem 3.2, an, be that of f; 3. Then
o (LE(XS 2 X5)) = o (Lipa(XD)) + o (Lpa(X5)) = (—82)+ (—25) = =57, n(Li(XS £ X3)) =
105 andA(Lf(X?ﬁ xg)) = 13/4. By the same argument as we explained in the above
example, we see thatf(X% ¢ X3) is non-holomorphic.
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6. \Verification of presentations and powers of periodic maps

6.1. Verification of presentations in Theorem 3.2. As we explained before, the
presentations for the hyperelliptic periodic maps are iobth by Ishizaka [21]. The
periodic mapsfae, f37, fas fao fas fas fa7 fas fa0 fa10 f411, f4,12 are non-
hyperelliptic periodic maps. For these periodic maps, wé werify the presentation by
investigating the action of Dehn twist on simple closed esrand arcs irky. These
are three cases to consider
(1) not reducible with at least two fixed point$s(z, fas, fs9, fa6 fa.7),

(2) not reducible with only one fixed pointf{s, fss fa ), and
(3) reducible (4,9, fa,10, fa,11, fa,12).
We verify the presentations case by case.

(1) not reducible with at least two fixed points:

fs,7 = (8, 1/8 + 1/4 4+ 5/8): The orbit spaceXs/f3; is a 2-sphere with three
branch points, whose valencies arg88,11/4 and 8. In the top of Fig. 20, the vertex
p: is the preimage of the branch point with valency81by ¢, ,, the vertexp, is the
preimage of the branch point with valency& and edges are the preimages of arc
connecting these branch points. Up to isotopy fixing thestices, a product of Dehn
twists 6-5-4-3-2-5-4.3-8 (these loops are shown in the bottom of Fig. 20) fixes
the graph set-wisely, and transforms each edge to the edgk-wlisely adjacent at the
vertex p;. If we forget p,, then 5= 5, so we conclude 6-4-3-2-5-4-3-8= f3.

f3,8=(9,1/9+1/345/9): In the top of Fig. 21, the vertep; is the preimage of the
branch point with valency /B by 7¢, ,, the vertexp, is the preimage of the branch point
with valency 59, and edges are the preimages of arc connecting these lpaimtb. We
number the thick edge by 0, and other edges by |, Il,..., Vidckwise aroundp;. A
product of Dehn twists 65-4-3-2-1-8 (these loops are shown in the bottom Fig. 21)
transforms O to I, 1 to Il,..., VIIl to O, so we conclude-6-4-3-2-1-8 = f3g.

f3,0=(7,1/7+2/7+4/7): We delete edges | and VI from Fig. 21, then we get a
graph onXs which is the preimage of a edge connecting branch points vatancies
1/7 and 47 by m¢,,. A product of Dehn twists 65-4-3-2-1-5-4-8 (these loops
are shown in the bottom of Fig. 21) transforms edges cloakwisp;, so we conclude
6-5-4.3-2-1-5-4-8= f3,.

fae=(12,1/124+1/3+ 7/12): In the top of Fig. 22, the vertep; is the preimage
of the branch point with valency/12 by ¢, ,, the other vertex is the preimage of the
branch point with valency /12, and edges are preimages of arc connecting these branch
points. We observe the action of the product of Dehn twists§ 68-7-6-5-4.3.2.11
(these loops are shown in the bottom of Fig. 22). If we forget wertex which is nop,
then 5= 5, so we conclude 65-8-7-6-5-4-3-2-11= fs.

fa,7 = (10, 1/10+ 3/10+ 3/5): In the top of Fig. 23, the vertep, is the preimage of
the branch point with valency/10 byx, ., the other vertex is the preimage of the branch
point with valency 310, and edges are the preimages of arc connecting thesehbranc
points. We observe the action of a product of Dehn twis-8.5-4-3-2.7'.6-5-4.11
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Fig. 22.

(these loops are shown in the bottom of Fig. 23). If we forgetwertex which is nopy,
then 7= 7, so we conclude 87-6-5-4-3-2-7-6-5-4-11= f; 7.

(2) not reducible with only one fixed point:

f3.6 = (12, 112 + 1/4 4+ 2/3): The orbit spacexs/ f3 ¢ is a 2-sphere with three
branch points, whose valencies argl2, 1/4 and 23. In Fig. 24, the vertexp is the
preimage of the branch point with valency1®R by 7t ,, three other vertices are the
preimages of the branch point with valency4]l and edges are the preimages of the
arc connecting these branch points. We number the thick bglge, and other edges
by I, Il,..., XI clockwise aroundp. Let Ay be the loop constructed from two edges O
and IX connecting afp and the other end point, thefy, is a loop with a base point
p. This loop is denoted by 6> IX, and we use the same style of notations from here.
Let A; be the loop I— X, A, be Il - XI, Az be lll - 0,..., andA;; be Xl —
VIIl. We perturb these loops so that these are intersect ahly and we use the same
symbol for these loops got as a result. Ldve the loop inX3/ f3 ¢ whose base point
is the branch point with valency/12, and which bounds two 2-disks i3/ f3 6, One
of which contains the branch point with valency4land the other of which contains
the branch point with valency/3. Then ”Ele(l) =AUAUAU---UA;;;. Upto
isotopy fixing p, 6-5-4-3-2-8 transformsAo to A, Ap to Ay, ..., Aqp to Ag, SO we
conclude 65-4-3-2-8 = fs.

fas = (15, /154 1/3 + 3/5): In Fig. 25, the vertexp is the preimage of the
branch point with valency /A5 by =, ., five other vertices are the preimages of the
branch point with valency /B, and edges are the preimages of arc connecting these
branch points. We number the thick edge by 0, and other edgels b,..., XIV
clockwise aroundp. Let Ay be the loop 0— X whose base point ip, A; be | — X,
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Fig. 24.
A, be Il = XIlI,..., and Ay be XIV — IX. Since 8-7-6-5-4-3-2-11 transforms
Ao to Ag, Az to Ay, -+, A1sto Ag, we conclude 87-6-5-4-3-2-11= fu5.

fas = (12, 1/12+ 1/6 + 3/4): In the top of Fig. 26, the vertep is the preimage
of the branch point with valency/12 by n¢,,, three other vertices are the preimages
of the branch point with valency/&, and edges are the preimages of arc connecting
these branch points. We number the thick edge by 0, and ottgmseby |, II,..., Xl
clockwise aroundp. Let Ay be the loop G- Il whose base point i, A; be |- VI,
A; be Il - V,..., and A;; be XI — Il. Since 3-4-5-6-7-8-6-11-14 (these loops
are shown in the bottom of Fig. 26) transformdg to A;, A; to Ay, ..., Ayl to Ay,
we conclude 34-5-6-7-8-6-11-14= f3g

(3) reducible:

fa0 = (6,1/6 + 1/3 + 2/3 + 5/6): The bottom left hand of Fig. 27 illustrate
the orbit spaceXx,/fsqo. In Fig. 27, p1 and p; is the inverse image of the branch
points with valencies 16 and 56 respectively byf, o, the graph is the inverse image
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Fig. 26.

of the arc in the bottom left hand of Fig. 27, and the circlehs tnverse image of
the circle in the bottom left hand of Fig. 27. From the obstovaof the action of
1.-2-3-4.10-971.81.71.671. 1171 (these loops are shown in the bottom right
hand of Fig. 27), we conclude-2-3-4-10-971-81.71.671. 1171 = f4.

fa,00=(6,1/3+1/3+1/34+1/2+1/2): The orbit spac&,/ f4 10is as shown in the
bottom left hand of Fig. 28. In the top of Fig. 28, the oriengéahple closed curve is the
preimage ofa by f4 10, the other separating simple closed curves is the preimadge o
and three other simple closed curves are the preimage ofrtheoanecting two branch
points with valencies 22 and ¥2. We number the component of these three curves
drawn with thick line by 0, and other components by |, Il feliag the orientation of
the curve which is a preimage af A product of twists 12-1271.4-1.571.6-1.11-1.8.9
(these loops are as shown in a figure in genus 4 case of TheoP3fix@s the preimages
of a andb, and transforms O to I, | to Il, Il to O with opposite orientati Therefore,
we conclude 12-1271.471.571.671.1171.8.9 = 41,
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fa,11 = (6, 1/2 + 1/2): The orbit spacez,/ f4,11 is as shown in the bottom right
hand side of Fig. 28. In the top of Fig. 29, the oriented simgtesed curve is the
preimage ofa by my,,,, and the six other simple closed curves are the preimage of
We number the component of the preimagebadrawn with thick line by 0, and other
components by |, 1l,..., V following the orientation of therge which is a preimage
of a. The product of twists (23-4-5-6-13-7)?-971 (these loops are shown in a figure
of genus 4 surface in Fig. 2) transforms 0 to I, 1 to Il,..., VQo In the bottom of
Fig. 29, the oriented simple closed curve is the preimaga by =¢,,,, and the three
other simple closed curves are the preimage of the arc ctingelbranch points on
the orbit space shown in the bottom right hand of Fig. 28. Wenloer the component
of the preimage of the arc connecting branch points drawh thick line by 0, and
other component by [, Il following the orientation of the earwhich is a preimage of
a. The product of twists (23:4-5-6-13-7)2-971 transforms 0 to I, | to II, Il to O with
opposite orientation. The simple closed curves withoubvesrin Fig. 29 are disjoint
each other and these circles and the preimage d¥ide 2, into disks. Therefore, we
conclude (23-4-:5-6-13-7)2.971 = fg 41,

fa,12=(5,1/5+2/5+3/5+4/5): The bottom left hand of Fig. 30 illustrate the orbit
spaceXy/ fa12. In Fig. 30, p1 and p, is the inverse images of the branch points with
valencies 15 and 45 respectively byry, ,,, the graph is the inverse image of the arc in
the bottom left hand of Fig. 30, and the circle is the inversade of the circle in the
bottom left hand of Fig. 30. From the observation of the actf2-3-4-12-3-4-10-3-
8 1.771.671.1371.771.671.1171.7-1 (these loops are as shown in the bottom right hand
of Fig. 30), we conclude -3-4-12-3-4.10-3-871.771.67%.131.771.671.1171.771 = f, 0.
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6.2. Tables of powers of periodic maps in Proposition 3.1.We can get the
following table by using very simple program, for examplepiemented for GAP.

(1) Genus 1 with multiple points:

414

—~
—IN
+
—~ —~ —~
oISt N oI N
N[ 4 AN 4 ~o 4 o -+
N + | 4 N 4 i ANIM [ NI =N NIM NIM
—~ —~
N 4 ;s mio [ 4 ™o 4 wio 4 wio = + 4+ + + +
+ [~ 4 + [N 4+ =N N T N [ NI N NI AN
It 4 o = 1o | 4 i 4 =N 4 AN + |4+ + + + =
N = 00 |—IY o CIN g —IY o AN [ M AN O AN
SN—" - S SN—" - S
O el < + T + + + +
- - SN—" SN—"
< | N IO | I N M M
SN—" - S - - - - -
o QY ©o|lm + o ©
SN—" SN—" SN—" SN—" S—"
—N
o~ N NN o~ N N N N NN N N
o | N O T AN P T PN Oy ~af O
Y— Y Y= Y Y— Y Y= Y Y= Y Y Y
< LA T
AN P T PN ©ad
—_ J— Y— e Ye— Y Y Y
I N
do + Sio bio +
— —
+ i~ 4+ 4+ —~ —~ —IN —~ — NI NI
AN | /S <D/~ ~— N —~ 9_0 ~—~~ —~
—Hm 4 NI Nim = + I + mw + <o + <o Dl e | 4 + wio
—~
NI + + i~ 4 + + 4+ | e AN s
[t} ~IS =
i 4 NI =N a Tl EHw 4 o Pl o i - —io| + 4+ + wio -
o N S Tl + o+ + 4+ + 2 + o i o 4=
o |3 IO HIN o oo I o —IN ol + « + o
Ol © 19 9N g © 19 © QS | —m B Ne)
— ~— = ~ = ~—~ ~— - - —
N O Y4 0 O —IeN
Y Y= Y= Y Y -
N ) m M ™o o m
AN P Yo P Ol
Y— Y Y Y Y Y
- - - - - — - — - o«
AN O T PN Cai i P Qi Do
Y— Y— Y= Y= Y= Y= Y= Y= Y= Y

(2) Genus 2:
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(3) Genus 3:
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