

Title	Comparing hyperbolic distance with Kra's distance on the unit disk
Author(s)	Yao, Guowu
Citation	Osaka Journal of Mathematics. 2012, 49(2), p. 349-356
Version Type	VoR
URL	https://doi.org/10.18910/4887
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

COMPARING HYPERBOLIC DISTANCE WITH KRA'S DISTANCE ON THE UNIT DISK

GUOWU YAO

(Received June 9, 2009, revised October 27, 2010)

Abstract

In this paper, Kra's distance d_K and the hyperbolic distance $d_{\mathbb{D}}$ are compared on the unit disk \mathbb{D} . It is shown that $2d_K < d_{\mathbb{D}} < (\pi^2/8) \exp d_K$ on $\mathbb{D} \times \mathbb{D} \setminus \{\text{diagonal}\}$, where the constants 2 and $\pi^2/8$ are sharp. As a consequence, this result gives a negative answer to a question posed by Martin [7] in a stronger sense.

1. Introduction

Let \mathbb{D} be the unit disk $\{|z| < 1\}$ in the complex plane \mathbb{C} and let $\rho(z)|dz|$ denote the hyperbolic metric, i.e.,

$$\rho(z)|dz| = \frac{1}{1 - |z|^2}|dz|, \quad z \in \mathbb{D}.$$

Then the hyperbolic distance $d_{\mathbb{D}}(z_1, z_2)$ between two points z_1, z_2 induced by $\rho(z)$ is

$$d_{\mathbb{D}}(z_1, z_2) = \frac{1}{2} \log \frac{1 + |(z_1 - z_2)/(1 - \bar{z}_1 z_2)|}{1 - |(z_1 - z_2)/(1 - \bar{z}_1 z_2)|}.$$

Let R be a hyperbolic Riemann surface covered by \mathbb{D} . Let $\omega: \mathbb{D} \rightarrow R$ be the canonical holomorphic universal covering of R . Then $d_{\mathbb{D}}$ induces a quotient hyperbolic distance d_R on R that satisfies

$$d_R(\omega(a), q) = \min\{d_{\mathbb{D}}(z, a): \omega(z) = q\}$$

for all $a \in \mathbb{D}$ and $q \in R$.

A Teichmüller shift mapping on R is the uniquely extremal quasiconformal mapping T_{p_1, p_2} which sends p_1 to p_2 and is homotopic to the identity mapping modulo the ideal boundary ∂R . It is a Teichmüller mapping with Beltrami coefficient μ_{p_1, p_2} such that, for $p_1 = p_2$, $\mu_{p_1, p_2} = 0$, while for $p_1 \neq p_2$, $\mu_{p_1, p_2} = k_{p_1, p_2}|\phi_{p_1, p_2}|/\phi_{p_1, p_2}$,

2010 Mathematics Subject Classification. 30C62, 30F60, 32G15.

The author was supported by a Foundation for the Author of National Excellent Doctoral Dissertation (Grant No. 200518) and the National Natural Science Foundation of PR China.

where $k_{p_1, p_2} \in (0, 1)$ is a constant and ϕ_{p_1, p_2} is a holomorphic quadratic differential in $R - \{p_1\}$, which has a first order pole at p_1 and has unit L^1 -norm.

When studying the self-maps of Riemann surfaces and the geometry of Teichmüller spaces, Kra [4] introduced a distance d_K on every hyperbolic Riemann surface R by the Teichmüller shift mapping, which is defined as follows: for any two points p_1 and p_2 in R ,

$$d_K(p_1, p_2) = \frac{1}{2} \log \frac{1 + k_{p_1, p_2}}{1 - k_{p_1, p_2}}.$$

Kra [4] compared d_R with d_K for certain Riemann surfaces:

Theorem A. *When R is of analytic finite type and is not conformally equivalent to $\mathbb{C} \setminus \{0, 1\}$, there exists a universal constant $c > 0$ such that*

$$(1.1) \quad cd_R < d_K < d_R,$$

on $R \times R \setminus \{\text{diagonal}\}$.

Earle and Lakic [2] proved

Theorem B. *If R is not conformally equivalent to $\mathbb{C} \setminus \{0, 1\}$, then the identity map $\text{id}: (R, d_R) \rightarrow (R, d_K)$ is not an isometry, moreover, $d_K < d_R$ on $R \times R \setminus \{\text{diagonal}\}$.*

REMARK. Liu [5] proved Theorem B for all hyperbolic Riemann surfaces with three exceptions: \mathbb{D} , $\mathbb{D}^* = \mathbb{D} \setminus \{0\}$, or an annulus.

In this paper, we compare d_R with d_K on the unit disk and give sharp inequalities between them.

Theorem 1. *For the unit disk \mathbb{D} , the hyperbolic distance $d_{\mathbb{D}}$ and Kra's distance satisfy*

$$(1.2) \quad 2d_K < d_{\mathbb{D}} < \frac{\pi^2}{8} \exp d_K$$

on $\mathbb{D} \times \mathbb{D} \setminus \{\text{diagonal}\}$, where the constants 2 and $\pi^2/8$ are sharp.

We now introduce a basic concept. A sense preserving homeomorphism f of a domain $\Omega \subset \mathbb{C}$ is called K -quasiconformal ($1 \leq K < \infty$), if f is an L^2 -solution of the equation

$$\bar{\partial} f = \mu \partial f,$$

where μ is a measurable function with

$$\|\mu\|_\infty \leq \frac{K-1}{K+1} < 1.$$

There is a classical result of Teichmüller's concerning the distortion of normalized quasiconformal mappings [9]. We state Teichmüller's theorem as follows.

Theorem C. *Let $\rho(z, w)$ denote the hyperbolic metric of constant curvature -4 in the three punctured sphere $\mathbb{C} \setminus \{0, 1\}$. We have*

(a) *if f is a K -quasiconformal mapping of the Riemann sphere fixing $0, 1$ and ∞ , then for any $z \in \mathbb{C} \setminus \{0, 1\}$,*

$$(1.3) \quad \rho(z, f(z)) \leq \log K,$$

(b) *if $z, w \in \mathbb{C} \setminus \{0, 1\}$ satisfy $\rho(z, w) \leq \log K$, then there is a K -quasiconformal map of the Riemann sphere fixing $0, 1$ and ∞ such that $w = f(z)$.*

In [7], Martin used holomorphic motions to extend the (b) part of Teichmüller's theorem to any planar domain. He obtained the following theorem.

Theorem D. *Let Ω be a planar domain with at least three boundary points and let $\rho_\Omega(z, w)$ be the hyperbolic metric of Ω with constant curvature -1 . Suppose $z, w \in \Omega$ and*

$$\rho_\Omega(z, w) \leq \log K.$$

Then there is a K -quasiconformal self-homeomorphism f of Ω such that

- (1) $f(\zeta) = \zeta$ for all $\zeta \in \partial\Omega$,
- (2) $f(z) = w$.

Martin also asked if the (a) part of the theorem can be extended likewise. His question is precisely described as follows.

Let R be a planar domain with at least three boundary points and suppose that f is a K -quasiconformal mapping of R such that $f(\zeta) = \zeta$ for all $\zeta \in \partial R$. Does it follow that $2d_R(z, f(z)) \leq \log K$ for all $z \in R$? (Notice that the curvature of the hyperbolic metric determined by d_R is -4 .)

In [3], Huang and Cho gave a negative answer to this question for any planar simply-connected domain. Actually, Martin's question can be reduced to whether $d_R \leq d_K$ holds on $R \times R$. Evidently it has a negative answer by Theorem B. When $R = \mathbb{D}$, our Theorem 1 implies a negative answer in a stronger sense.

Theorem 2. *For any given $c > 0$ and $z \in \mathbb{D}$, there exists a K -quasiconformal mapping f of \mathbb{D} fixing all boundary points of \mathbb{D} such that*

$$(1.4) \quad d_{\mathbb{D}}(z, f(z)) > c \log K,$$

where K depends only on c .

We note that it might be hard, but would be very interesting to compare $d_{\mathbb{D}^*}$ and d_K on \mathbb{D}^* .

2. $2d_K < d_{\mathbb{D}}$

In fact, on the unit disk, we have the following exact formula:

$$(2.1) \quad \log \frac{\exp d_K + 1}{\exp d_K - 1} = \mu \left(\frac{\exp(2d_{\mathbb{D}}) - 1}{\exp(2d_{\mathbb{D}}) + 1} \right),$$

where $\mu(r)$ is the conformal module of the Grötzsch ring domain whose boundary components are the unit circle and the line segment $\{x: 0 \leq x \leq r\}$. Since d_K and $d_{\mathbb{D}}$ are invariant under Möbius transformations, we only need to prove that

$$2d_K(0, r) < d_{\mathbb{D}}(0, r)$$

for $r \in (0, 1)$.

By the result in [6], $\mu(r)$ satisfies

$$(2.2) \quad \log \frac{(1 + \sqrt{1 - r^2})^2}{r} < \mu(r) < \log \frac{4}{r}.$$

Therefore, $\mu(r)$ has the asymptotic behavior: as $r \rightarrow 0$,

$$(2.3) \quad \mu(r) = \log \frac{4}{r} + s(r),$$

where

$$(2.4) \quad 0 > s(r) > \log \frac{(1 + \sqrt{1 - r^2})^2}{r} - \log \frac{4}{r} > -\frac{r^2}{2} + o(r^3).$$

Thus, we obtain the asymptotic behavior of $d_K(0, r)$:

$$\begin{aligned} d_K(0, r) &= \log \frac{\exp \mu(r) + 1}{\exp \mu(r) - 1} = \log \frac{(4/r) \exp s(r) + 1}{(4/r) \exp s(r) - 1} \\ &= \log \frac{\exp s(r) + r/4}{\exp s(r) - r/4} = \log \frac{1 + r/4 + s(r) + o(r^3)}{1 - r/4 + s(r) + o(r^3)} \end{aligned}$$

$$\begin{aligned}
&= \left[\left(\frac{r}{4} + s(r) \right) - \frac{1}{2} \left(\frac{r}{4} + s(r) \right)^2 + \frac{1}{3} \left(\frac{r}{4} + s(r) \right)^3 + o(r^3) \right] \\
&\quad - \left[\left(-\frac{r}{4} + s(r) \right) - \frac{1}{2} \left(-\frac{r}{4} + s(r) \right)^2 + \frac{1}{3} \left(-\frac{r}{4} + s(r) \right)^3 + o(r^3) \right] \\
&= \frac{r}{2} - \frac{r}{2} s(r) + \frac{r^3}{96} + o(r^3), \quad \text{as } r \rightarrow 0.
\end{aligned}$$

Using (2.4), we obtain

$$d_K(0, r) = \frac{r}{2} + O(r^3), \quad \text{as } r \rightarrow 0.$$

On the other hand, it is easy to check that

$$(2.5) \quad d_{\mathbb{D}}(0, r) = \frac{1}{2} \log \frac{1+r}{1-r} = r + \frac{r^3}{3} + o(r^3), \quad \text{as } r \rightarrow 0.$$

Thus, we have

$$(2.6) \quad \lim_{r \rightarrow 0^+} \frac{d_K(0, r)}{d_{\mathbb{D}}(0, r)} = \frac{1}{2}.$$

So, for any given $c > 1/2$, there exists some $r(c) \in (0, 1)$ such that

$$(2.7) \quad d_K(0, r) < c d_{\mathbb{D}}(0, r)$$

holds whenever $r \in (0, r(c))$. Now, we show that (2.7) holds for all $r \in (0, 1)$. Let OA denote the line segment $\{x: 0 \leq x \leq r\}$ in \mathbb{D} , where O is the origin $z = 0$ and A is the endpoint $z = r$. Choose orderly $n + 1$ (sufficiently large) points A_0, A_1, \dots, A_n in OA from O to A such that $O = A_0$, $A = A_n$ and

$$(2.8) \quad d_{\mathbb{D}}(A_k, A_{k+1}) < d_{\mathbb{D}}(0, r(c))$$

for $k = 0, 1, \dots, n - 1$. By the invariance of d_K and $d_{\mathbb{D}}$ under Möbius transformations and inequality (2.7), we have

$$d_K(A_K, A_{K+1}) < c d_{\mathbb{D}}(A_K, A_{K+1}).$$

Thus,

$$\begin{aligned}
d_K(0, r) &= d_K(O, A) \leq \sum_{k=0}^{n-1} d_K(A_k, A_{k+1}) \\
&< c \sum_{k=0}^{n-1} d_{\mathbb{D}}(A_k, A_{k+1}) = c d_{\mathbb{D}}(O, A) = c d_{\mathbb{D}}(0, r).
\end{aligned}$$

Since c is arbitrarily chosen in $(1/2, \infty)$, we conclude that

$$(2.9) \quad 2d_K(0, r) \leq d_{\mathbb{D}}(0, r).$$

Observe that

$$\begin{aligned} 2d_K(0, r) &\leq 2d_K(0, r') + 2d_K(r', r) \\ &\leq d_{\mathbb{D}}(0, r') + d_{\mathbb{D}}(r', r) = d_{\mathbb{D}}(0, r). \end{aligned}$$

If the equality in (2.9) holds for some $r \in (0, 1)$, then

$$(2.10) \quad 2d_K(0, x) = d_{\mathbb{D}}(0, x)$$

for all $x \in (0, r]$. This gives

$$\mu(x) = \log \frac{\sqrt[4]{1+x} + \sqrt[4]{1-x}}{\sqrt[4]{1+x} - \sqrt[4]{1-x}}, \quad x \in (0, r]$$

in terms of (2.1). However, it is impossible because the representation of $\mu(r)$ is not an elementary function in $(0, r)$. Thus, we obtain $2d_K < d_{\mathbb{D}}$ on $\mathbb{D} \times \mathbb{D} \setminus \{\text{diagonal}\}$. Finally, it follows that the constant 2 is sharp from (2.6).

Examining the argument above carefully, we actually prove that the hyperbolic distance has the maximal property in the following sense.

Theorem 3. *Let $d(\cdot, \cdot)$ be a distance function defined on $\mathbb{D} \times \mathbb{D}$. If $d(\cdot, \cdot)$ is invariant under Möbius transformations of \mathbb{D} and satisfies*

$$(2.11) \quad \limsup_{r \rightarrow 0^+} \frac{d(0, r)}{d_{\mathbb{D}}(0, r)} = \lambda > 0,$$

then

$$(2.12) \quad d(z, w) \leq \lambda d_{\mathbb{D}}(z, w),$$

for all $(z, w) \in \mathbb{D} \times \mathbb{D}$.

3. $d_{\mathbb{D}} < (\pi^2/8) \exp d_K$

It suffices to show that

$$(3.1) \quad d_{\mathbb{D}}(0, r) < \frac{\pi^2}{8} \exp d_K(0, r)$$

for $r \in (0, 1)$.

We need two lemmas.

Lemma 1. $g(r) = \mu(r) d_{\mathbb{D}}(0, r)$ is an increasing function from $(0, 1)$ onto $(0, \pi^2/4)$.

Proof. Observe $g(r) = \mu(r) \log((1+r)/(1-r))/2$. Theorem 11.21 in [1] indicates that $g(r)$ satisfies the desired condition. \square

Lemma 2. $h(r) = 1/(\mu(r) \exp d_K(0, r))$ is an increasing function from $(0, 1)$ onto $(0, 1/2)$.

Proof. Observe

$$h(r) = \frac{1}{\mu(r)} \frac{\exp \mu(r) - 1}{\exp \mu(r) + 1}.$$

Consider two auxiliary functions $x = \mu(r)$ and

$$\tilde{h}(x) = \frac{1}{x} \frac{\exp x - 1}{\exp x + 1}, \quad x \in (0, \infty).$$

We have

$$\tilde{h}'(x) = \frac{1 + 2x \exp x - \exp(2x)}{(x + x \exp x)^2}.$$

It is not difficult to verify that

$$1 + 2x \exp x - \exp(2x) < 0, \quad x \in (0, \infty),$$

and hence $\tilde{h}(x)$ is a decreasing function in $(0, \infty)$. On the other hand, it is well-known that $x = \mu(r)$ is a decreasing function from $(0, 1)$ onto $(0, \infty)$. Thus, $h(r)$ is an increasing function in $(0, 1)$. In addition,

$$\lim_{r \downarrow 0} h(r) = \lim_{x \uparrow \infty} \tilde{h}(x) = 0$$

and

$$\lim_{r \uparrow 1} h(r) = \lim_{x \downarrow 0} \tilde{h}(x) = \frac{1}{2}.$$

This completes the proof of this lemma. \square

Combining Lemmas 1 and 2, we get

Theorem 4. $F(r) = g(r)h(r) = d_{\mathbb{D}}(0, r)/\exp d_K(0, r)$ is an increasing function from $(0, 1)$ onto $(0, \pi^2/8)$.

Now, we obtain $d_{\mathbb{D}} < (\pi^2/8) \exp d_K$ on $\mathbb{D} \times \mathbb{D} \setminus \{\text{diagonal}\}$, where $\pi^2/8$ is sharp. Moreover, Theorem 2 is naturally derived from Theorem 4 and the definition of Teichmüller shift mapping.

ACKNOWLEDGEMENTS. The author wishes to thank the referee for his/her helpful comments. The referee also noticed that Martin's result has been generalized to the setting of mappings of finite distortion on the unit disk [8].

References

- [1] G.D. Anderson, M.K. Vamanamurthy and M.K. Vuorinen: Conformal Invariants, Inequalities, and Quasiconformal Maps, Wiley, New York, 1997.
- [2] C.J. Earle and N. Lakic: *Variability sets on Riemann surfaces and forgetful maps between Teichmüller spaces*, Ann. Acad. Sci. Fenn. Math. **27** (2002), 307–324.
- [3] H. Xinzhong and N.E. Cho: *On the distortion theorem for quasiconformal mappings with fixed boundary values*, J. Math. Anal. Appl. **256** (2001), 694–697.
- [4] I. Kra: *On the Nielsen–Thurston–Bers type of some self-maps of Riemann surfaces*, Acta Math. **146** (1981), 231–270.
- [5] L.X. Liu: *Invariant metrics in infinite-dimensional Teichmüller space*, Complex Variables Theory Appl. **25** (1994), 337–349.
- [6] O. Lehto and K.I. Virtanen: Quasiconformal Mappings in the Plane, second edition, Springer, New York, 1973.
- [7] G.J. Martin: *The distortion theorem for quasiconformal mappings*, Schottky's theorem and holomorphic motions, Proc. Amer. Math. Soc. **125** (1997), 1095–1103.
- [8] G.J. Martin: *The Teichmüller problem for mean distortion*, Ann. Acad. Sci. Fenn. Math. **34** (2009), 233–247.
- [9] O. Teichmüller: *Untersuchungen über konforme und quasiconforme Abbildung*, Deutsche Math. **3** (1938), 621–678.

Department of Mathematical Sciences
 Tsinghua University
 Beijing, 100084
 P.R. China
 e-mail: gwyao@math.tsinghua.edu.cn