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Abstract
In this paper, Kra's distancdx and the hyperbolic distanad, are compared on
the unit diskD. It is shown that 8k < dp < (7?/8) expdk on D x D \ {diagona),

where the constants 2 ant?/8 are sharp. As a consequence, this result gives a
negative answer to a question posed by Martin [7] in a strosgese.

1. Introduction

Let D be the unit disk{|z| < 1} in the complex planeC and let p(z)|dz denote
the hyperbolic metric, i.e.,

1
p(2)|dz = 1_—|Z|2|dz|, zeD.

Then the hyperbolic distanady (z;, z2) between two pointg;, z, induced byp(2) is

1 14z - 2)/(1-272)
d]D(Zl, 22) - E |Og 1— |(Zl _ Zz)/(l _ 2122)| '

Let R be a hyperbolic Riemann surface covered by Let w: D — R be the
canonical holomorphic universal covering Bf Thendp induces a quotient hyperbolic
distancedr on R that satisfies

dr(@(a), g) = min{dp(z, a): »(2) = q}

forallaeD andq € R.

A Teichmuiller shift mapping orR is the uniquely extremal quasiconformal map-
ping Tp, p, Which sendsp; to p, and is homotopic to the identity mapping modulo
the ideal boundaryyR. It is a Teichmuller mapping with Beltrami coefficiepty,p,
such that, forpy = p2, wp,p, = 0, while for py # P2, wp,p, = Kpy,palPpy,pal/Ppy, pas
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wherek,, ,, € (0, 1) is a constant and,, ,, is a holomorphic quadratic differential in
R — {p1}, which has a first order pole g, and has unit_-norm.

When studying the self-maps of Riemann surfaces and the gtepiof Teichmiller
spaces, Kra [4] introduced a distandg on every hyperbolic Riemann surfa¢e by
the Teichmdller shift mapping, which is defined as followsr &ny two pointsp; and
p2 in R,
1+ kplv P2

1
dk (P1, p2)=§|091_k .
P1, P2

Kra [4] compareddr with dx for certain Riemann surfaces:

Theorem A. When R is of analytic finite type and is not conformally edeiva
to C\ {0, 1}, there exists a universal constant-cO such that

(1.1) cdr < dk < dr,
on Rx R\ {diagonal.
Earle and Lakic [2] proved

Theorem B. If R is not conformally equivalent t@'\ {0, 1}, then the identity map
id: (R, dr) — (R, dk) is not an isometrymoreoverdx < dgr on Rx R\ {diagona}.

REMARK. Liu [5] proved Theorem B for all hyperbolic Riemann surfacsith
three exceptionsD, D* = D \ {0}, or an annulus.

In this paper, we comparér with d¢x on the unit disk and give sharp inequalities
between them.

Theorem 1. For the unit diskD, the hyperbolic distancepdand Krds distance
satisfy
2

(1.2) Xy <dp < % expdg

onD x D \ {diagonal, where the constant® and 72/8 are sharp.

We now introduce a basic concept. A sense preserving hontpbism f of a
domain 2 C C is called K-quasiconformal (1< K < o0), if f is an L?-solution of
the equation

af =pof,
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where 1 is a measurable function with

-1
< 1.

<
i < =7

There is a classical result of Teichmuiller’s concerning distortion of normalized
guasiconformal mappings [9]. We state Teichmidiller's teeoras follows.

Theorem C. Let p(z, w) denote the hyperbolic metric of constant curvaturé
in the three punctured spher@ \ {0, 1}. We have
(a) if f is a K-quasiconformal mapping of the Riemann sphere dixin 1 and oo,
then for any ze C \ {0, 1},

(1.3) p(z, (2)) <logK,

(b) if z,w e C\ {0, 1} satisfyp(z, w) <logK, then there is a K-quasiconformal map
of the Riemann sphere fixifQy 1 and co such thatw = f(2).

In [7], Martin used holomorphic motions to extend the (b) pafrtTeichmuller's
theorem to any planar domain. He obtained the following o

Theorem D. Let Q be a planar domain with at least three boundary points and
let po(z, w) be the hyperbolic metric a2 with constant curvature-1. Suppose ,zv €
Q and

pa(z, w) < log K.

Then there is a K-quasiconformal self-homeomorphism f2afuch that
1) f(¢)=¢ forall ¢ €9,
2) (2 =w.

Martin also asked if the (a) part of the theorem can be exterittedise. His
question is precisely described as follows.

Let R be a planar domain with at least three boundary points anpgosepthatf
is a K-quasiconformal mapping dR such thatf(¢) = ¢ for all ¢ € 9R. Does it follow
that Ar(z, f(2)) <logK for all ze R? (Notice that the curvature of the hyperbolic
metric determined bylg is —4.)

In [3], Huang and Cho gave a negative answer to this questionafy planar
simply-connected domain. Actually, Martin’s question canrbduced to whetheair <
dk holds onR x R. Evidently it has a negative answer by Theorem B. Wikea D,
our Theorem 1 implies a negative answer in a stronger sense.
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Theorem 2. For any given ¢> 0 and ze D, there exists a K-quasiconformal
mapping f ofD fixing all boundary points oD such that

(1.4) dp(z, f(2)) > clogK,
where K depends only on c.

We note that it might be hard, but would be very interestingdmparedp- and
dx on D*.

2. 2d|( <d]])

In fact, on the unit disk, we have the following exact formula

2.1) expdc +1 _ (M)

expdk —1 " \exp(@p) +1

where u(r) is the conformal module of the Grétzsch ring domain whosenbary
components are the unit circle and the line segment0 < x <r}. Sincedx and
dp are invariant under Moébius transformations, we only needrtwve that

2dk (0,1) < dp(0, )

for r € (0, 1).
By the result in [6],u(r) satisfies
14+ +/1-r2)? 4
2.2) |og¥ < u(r) <log .
Therefore,u(r) has the asymptotic behavior: as— 0,
4

(2.3) u(r) = log -t s(r),
where

14+ +/1-r2)? 4 2
(2.4) 0> s(r) > log % —log - > —% + o(r3).

Thus, we obtain the asymptotic behavior dy(0, r):

expu(r) +1 | (4/r)exps(r) +1
expu(r)—1  ° (4/r)exps(r) —1
exps(r) +r/4 o 1+r/4+5s(r)+o(rd
exps(r)—r/4 T 1—r/4+s(r)+o(rd)

dk (0,r) = log
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1 2 1 3
(G +50) =55 +50)" + 55 +50)" + )]
1 1
- [(—rz + s(r)) - 5(—% + s(r))2 + 5(—% + S(r))3 + 0(r3)]

' rs(r)+r3+0(r3) as r—»0
2 2 96 ' '

Using (2.4), we obtain
dk(0,r) = ré +0(r®, as r —0.
On the other hand, it is easy to check that

1 1+r r3
(2.5) dp(0,r) = E|og T =r+§+o(r3), as r — 0.

Thus, we have

de(0,r) 1

(2.6) A G0y 2

So, for any givenc > 1/2, there exists some(c) € (0, 1) such that
(2.7) dk (0,1) < cdp(0, 1)

holds whenever € (0,r(c)). Now, we show that (2.7) holds for alle (0,1). LetOA
denote the line segmerk: 0 < x <r} in D, where O is the originz=0 and A is
the endpointz = r. Choose orderlyn 4+ 1 (sufficiently large) pointsAg, Az, ..., Ay in
OA from O to A such thatO = Ay, A= A, and

(2.8) I (A, Axt1) < dn(0, 1 (c))

for k =0,1,...,n—1. By the invariance oflx anddp under Mobius transformations
and inequality (2.7), we have

dk (A, Ak+1) < cop(Ak, Ak41).

Thus,

n-1
dc(0,1) = dx (O, A) = ) dic (Ax, Acra)
k=0
n-1
<c) dp(Aq A1) = €t(O, A) = ¢t (0, ).

k=0
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Sincec is arbitrarily chosen in (12, co), we conclude that
(2.9) A (0, 1) = dp(O, 1).
Observe that

2dy (0,r) < 2dk (0, r") + 2dk (r', 1)
<dp(0,r') + dp(r’,r) = dp(O,r).

If the equality in (2.9) holds for some € (0, 1), then
(2.10) Ak (0, x) = dp(0, x)

for all x € (0,r]. This gives

VT x+V1-x
u(x)_logm_m, x € (0,r]

in terms of (2.1). However, it is impossible because the esgmtation ofu(r) is not
an elementary function in (0,). Thus, we obtain 2 < dp on D x D \ {diagona}.
Finally, it follows that the constant 2 is sharp from (2.6).

Examining the argument above carefully, we actually prdna the hyperbolic dis-
tance has the maximal property in the following sense.

Theorem 3. Let d(-, -) be a distance function defined dx D. If d(-, -) is
invariant under Mdbius transformations @ and satisfies

) d(o,r)

2.11 limsup—————= =1 >0,
(2.11) r»o+ Op(0,r) -
then
(2.12) d(z, w) < 1dp(z, w),
for all (z, w) e D xD.

3. dp < (7?/8) expdk

It suffices to show that

72

(3.1 dp(0,r) < 5 expdg (0,r)

for r € (0, 1).
We need two lemmas.
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Lemma 1. g(r) = wu(r)dp(0, r) is an increasing function from(O, 1) onto
(0, w%/4).

Proof. Observey(r) = u(r)log((1+r)/(1—r))/2. Theorem 11.21 in [1] indicates
that g(r) satisfies the desired condition. []

Lemma 2. h(r) = 1/(u(r)expdg (0,r)) is an increasing function fronf0, 1) onto
(0, 1/2).

Proof. Observe
1 expu(r)—1
h(r) = .
)= ) expu) + 1

Consider two auxiliary functiong = pn(r) and

~ lexpx—1

h(X) = ;expx—-}-l’ X € (0, OO)
We have

Fx) = 1+ 2xexpx — exp(2<).

(X + x expx)?
It is not difficult to verify that
14+ 2xexpx —exp(X) <0, x e (0,00),

and henceh(x) is a decreasing function in (89). On the other hand, it is well-known
that x = u(r) is a decreasing function from (0, 1) onto (). Thus, h(r) is an in-
creasing function in (0, 1). In addition,

Irl?g h(r) = >|<I¢To h(x)=0
and

lim h(r) = lim h(x) = 1

ril T Xl0 T2
This completes the proof of this lemma. []

Combining Lemmas 1 and 2, we get

Theorem 4. F(r) = g(r)h(r) = dp(0, r)/expdk (0,r) is an increasing function
from (0, 1) onto (0, 72/8).
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Now, we obtaindp < (72/8) expdk on D x D \ {diagona), wherex?/8 is sharp.

Moreover, Theorem 2 is naturally derived from Theorem 4 ane definition of
Teichmuller shift mapping.
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