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CHAPTER 1

INTRODUCTION

1.1. Quasilinear Ordinary Differential Systems and Fixed Point

Theorems.

Many important classes of engineering and scientific problems
related to linear or nonlinear phenomena are often described by
ordinary differential systems. For instance, automatic control,
optimal control, adaptive control, and electrical networks have
been investigated by the qualitative methods of ordinary
differential systems.

In the case of linear systems, the fundamental theory has Dbeen
already established ( e.g., Arimoto [69], Brockett [64], Cesari [65],
Kalman [66], Kimura [71], Kodama-Suda [72], Narendra-Taylor [67],
Zubov [68] ). Van der Pol's equation, Duffing's equation, and
Lienard's equation appear in nonlinear problems of electric
engineering and they have been studied for a long time. General
nonlinear systems have been partly discussed by Liapunov's direct
method ( Lefschetz [73], Narendra-Taylor [67], and Zubov [68] ).
However, 1t seems that systematic analyses have not been
established yet in the case of general nonlinear systems.

The purpose of this thesis is to extend several criteria for the
existence and asymptotic behavior of solutions for nonlinear systems
as well as to use a unified method via fixed point theorems.

Especially, conditions obtained in this thesis are explicit and



quantitative. Moreover, they can be easily applied to engineering
and scientific problems.

It is often that weakly nonlinear problems‘are considered as
linear systems and quaiitative theory for linear systems are
applied in order to deal with the above problems. However, the
weakly nonlinear phenomena should be described by the following
quasilinear ordinary differential system
(N) x” = A(t,x)x + F(t,x)
associated with the following linear syétem
(L) x” = B{¢t)x.

Here 4(t,x) and F(t,x) are both continuous on RxR"”, R = (-, +x),
and B(t) is a real nxn matrix continuous on R.

The above quasilinear system constitutes quite a large class.
When the following system
(E) x” = f(t,x), f(t,0) =0
is considered and f(t,x) is differentiable in x and the Jacobian

matrix fX(t,x) is continuous on RxR", then
1
f(t,x) = jfx(t,sx)ds X o
0

The above system (E) becomes

1
(Q) X = 4lt,x)x, where 4(t,x) = [£ (r,sx)ds.
0
Recently the above system (Q) has been investigated in order to

discuss nonlinear control systems (Hirai-Ikeda[70], Kartsatos[27]

Landau-Tomizuka [74] ).



In this thesis we shall give quantitative conditions how the
gquasilinear system (N) is close to the linear system (L) and give
extended criteria obtained before. It seems that the explicit
conditions which cbtained by using a systematic method via fixed
point theorems are easily applicable to engineering and scientific
problems.

Let S be a set and V : S - S a mapping. An x € S is called to be
a fixed point of V, if V(x) = x. A great number of theorems
concérning the existence of a fixed point of a mapping are obtained
by various mathematical analysis (e.g., Cronin [17], Istratescu [25],
and Zeidler [63] ). Well-known fixed point theorems are as follows :
Brouwer's fixed point theorem ( Dunford-Schwartz [19] ), Schauder's
fixed/point theorem ( Smart [58] ), and the contraction principle,

i.e., Banach's fixed point theorem ( Smart [58] ).

Schauder's Fixed Point Theorem. Let S be a convex closed set in .
a Banach space. Suppose that V : S + S is continuous and the image
V(S) is relatively compact. Then there exists at least one fixed

point of V in S.

The Contraction Principle. Let S be a closed set in a complete
metric space with a metric p: SxS » [0,+®) and a mapping V : S > S.

Suppose that there exists a positive number k < 1 such that
p<V(X)’V(_V)) _<_ kp<X’Y)

for any x, y € S. Then there exists one and only one fixed point of V
in S.

Fixed point theorems are most useful to discuss the following



qualitative properties of solutions for differential systems : the
exlstence, uniqueness of solutions for initial value problems or
boundary value problems ( Reissig-Sansone-Conti [45] and Sansone
~Conti [57] ), the existence, uniqueness of periodic solutions

( Yoshizawa [61, 62]), and the continuation of solutions for initial
value problems ( Lakshmikantham-Leela [38] ).

In the following chapters the above fixed point theorems play an
important role.

In Chapter 2 an existence theorem of periodic solutions for a
periodic quasilinear system (N), which is associated with a periodic
linear system (L), is obtained by using Schauder's fixed point
theorem. Under additional conditions an existence and uniqueness
theorem of periodic solutions is given by applying the contraction
principle.

In Chapter 3 the continuous dependence of periodic solutions on
a parameter A for the following periodic quasilinear ordinary

differential system

(N') x” = A(t,x,A)x + AF(t,x,\) + £(¢)
associated with the following periodic linear system
(L) x” = B(e)x + f(¢e)

is treated. By Schauder's fixed point theorem the existence of
periodic solutions for (N') is shown. And under Lipschitz conditions
the continuous dependence of periodic solutions on A for (N') is
proved by the contraction principle.

Boundary value problems (N) with a nonlinear boundary condition



N(x) = 0 on a finite interval J=[0,T], T > 0, are discussed in Chapter
4. Corresponding to (N) a linear boundary value problem (L) with a
linear boundary condition L{x) = O is considered. Schauder's fixed
point theorem leads to an existence theorem of solutions for (N).
Under Lipschitz conditions the existence and uniqueness of a solution
for (N) are given by using the contraction principle. In the case that
A(t,x) = B(t) and #(x) = L(x) - ¢ (c € R?), an existence theorem and
a uniqueness theorem of solutions are obtained by Schauder's fixed
point theorem and by the contraction principle, respectively. They
are applied to two points boundary value problems.

In Chapter 5 boundary value problems (N) with a nonlinear boundary

0 on an infinite interval are dealt with.

condition #(x)
Corresponding to (N) a linear problem (L) with a linear boundary
condition L(x) = 0 is considered. The existence of solutions for
(N) is shown by Schauder's fixed point theorem. The existence and
uniqueness of a solution of (N) are proved by the contraction
principle.

The stability of solutions for (N) with F(t,0) = O is considered
in Chapter 6. Sufficient conditions for the uniformly asymptotic
stability in the large of the zero solution for (N) are obtained by
using Schauder's fixed point theorem. The method of this chapter is
quite different from others. Moreover sufficient conditions for the
exponentially asymptotic stability in the large of the zero solution
for (N) are given by constructing a Liapunov's function.

Finally, the discussion on the asymptotic equivalence between
(N) and (L) is given in Chapter 7, showing the uniform stability of

the zero solution or the uniform boundedness of solutions for (N).
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1.2. Periodic Solutions of Periodic Systems.

The problem of the existence of T-periodic solutions for the

following T-periodic quasilinear ordinary differential system
(N) x’ = A(t,x)x + F(t,x)

is discussed by Kartsatos [R27], where A(t,x) is a real nxn matrix
continuous on RxR" and T-periodic in t, and F(t,x) is an R"-valued
function continuous on RxR" and T-periodic in t. Together with the

above, the following linear system
(L) x” = B(t)x

is concerned, where B(t) is a real nxan matrix continuous and
T-periodic. It is assumed that the above (L) satisfies the following

hypothesis.

Hypothesis 1.2.1. There exist no T-periodic solutions of (L)

except for the zero solution.
In the case of the system
(AL) x* = B(t)x + F(t,x),

many authors assume that F(t,x) satisfies Lipschitz condition with
respect to x and study the existence of T-periodic solutions by using
Brouwer's fixed point theorem ( for example, [12 - 14], [201, [23],
[37], and [57] ). Under the same condition on F(t,x), the existence
of T-periodic solutions for (AL) is proved by the implicit function

theorem ( [17] ) or by the contraction principle ( [22] ). Without



assuming the uniqueness of solutions for initial value problems
Gussefeld [21], and Rouche and Mawhin [46] consider the existence of
T-periodic solutions by applying Leray-Schauder's fixed point theorem.
In the case of (N), Lasota and Opial [40] consider some implicit
and qualitative hypothesis correspoding to Hypothesis 1.2.1 : if y
is a continuous and T-periodic function, then A(-,y(+)) belongs to S
where § 1is a compact subset of continuous and T-periodic matrices
whose systems satisfy Hypothesis 1.2.1. Moreover they require the

following condition that

T
(2.1) 1im inf 1 J sup ||F(t,x)|dt = 0.
r - +® o Ixl|sr

The above condition is too strong to ensure the existence of
periodic solutions for (N).

In the case of the system

4

(N") x = A(t,x)x + f(t),

where f(t) is continuous and T-periodic, Kartsatos [27] treats this
subject. He considers a quantitative condition on A(t,x) that there

exists a sufficient small 60 > 0 such that

Na(e,x) Bl £ 50
for t € R and x ¢ R", where B is a constant matrix and the system

(L") x’ Bx

satisfies Hypothesis 1.2.1.



In Chapter 2, instead of the linear system (L'), the linear
system (L), which satisfies Hypothesis 1.2.1, is considered ( not
necessarily independent of t )( see [50, 53]). The existence and
uniqueness of T-periodic solutions for (N) are treated under the

condition that A(t,x) is closed to B(t) in the sense as follows:

Hypothesis 1.2.2. There exist § > 0 and r > 0 such that
T
JHA(S,X) - B(s)llds < &
0

for |x| £ r.

Theorem 2.3.1 is an existence theorem of periodic solutions for
periodic linear systems which are close to (L). In Theorem 2.3.2
sufficient conditions on F(t,x) for the existence of T-periodic
solutions for (N), which are weaker than (2.1), are obtained. Under
explicit and quantitative conditions on A(t,x), the existence of
T-periodic solutions for (N) is proved by using Schauder's fixed point
theorem. Theorem 2.4.1, under additional assumptions, ensures the
uniqueness of a T-periodic solution for (N). Here the contraction

principle is applied.

1.3. Continuous Dependence on a Parameter of Periodic Solutions.

Let A(t,x,\X) be a real nxn matrix continuous on RXRnX[—AO,kO]
with T-periodicity in t, F(t,x,X) an R"-valued function continuous
on RXRHX[-AO,AO] with T-periodicity in t, where A > 0, and f(t)

an R"-valued function continuous on R and T-periodic in t. The T-



periodic quasilinear ordinary differential system
(N) x’= A(tyx,\)x + AF(t,x,A) + £(¢t)
is considered associated with the linear system
(L) x" = B(e)x + £(¢),

which satisfies the following hypothesis.

Hypothesis 1.3.1. There exists one and only one T-periodic

solution of (L).
Here B(t) is a real nxn matrix continuous on R and T-periodic.

A great number of works have been done on the existence and the
continuous dependence on a parameter of periodic solutions for the
quasilinear ordinary differential system containing a parameter
under Hypothesis 1.3.1 ( see [10]1, [171, [18], [22], [23], [411],
(421, [46] ). Especially, in the case where A(t,x,X) = B(t) and

f(t) = 0, Cronin [17] considers the following system
x’= B(t)x + AF(t,x,\)

under the condition that F(t,x,A) satisfies Lipschitz condition
with respect to x and obtains existence theorems of periodic
solutions for the large value of A by using the degree theory. When

A(t,x,A) = B(t), the dependence on A of T-periodic solutions of
(AL) x’= B(t)x + AF(t,x,\) + £(¢t)

is discussed in [17], [23], [41], and [46]. Under the condition that



all the solutions for (AL) are uniquely determined, the existence of
T-periodic solutions for (AL) is proved for sufficiently small
A by wusing the implicit function theoremn. Then sufficient
conditions for the -existence of periodic solutions are not
necessarily given explicitly (see [17], [42]). When the Lipschitaz
condition on F(t,x,A) with respect to x is satisfied, Hale [23]
applies the contraction principle and deals with the continuous
dependence on A of T-periodic solutions for (AL) under some
additional assumptions. Rouche and Mawhin [46] investigate the
continuous dependence on A of T-periodic solutions for (AL) by a
different method of functional analysis. They suppose that oF/dx
is continuous and the value of sup{ [[9F/3x(t,m(t),0)]] : t ¢ R} is
given, where m(+) is a unique T-periodic solution for (L).

In Chapter 3, the dependence on A of T-periodic solutions for
(N) is obtained under Hypothesis 1.3.1 ( see [491,[56] ). Moreover

it is assumed that A(t,x) is closed to B(t) in the following sense.

Hypothesis 1.3.2. There exist Kl > 0 ( Xl < Ao ), r > 0, and

§ > 0 such that
T
qu(s,x,A) - B(s)lids < &
0

for |A]| £ kl and |x|| £ r.

Theorem 3.3.1 is an existence theorem of T-periodic solutions
for periodic linear systems which are close to (L). Theorem 3.3.2,

in which explicit sufficient conditions for the existence of

- 10 -



T-periodic solutions for (N) are shown without assuming the uniqueness
of solutions for initial value problems, is a strict extention of the
above result for the existence of T-periodic solutions for (AL).
Theorem 3.3.3, where sufficient conditions that there exists at

least one T-periodic solution for (N) tending to the T-periodic
solution for (L) are given, is proved by Schauder's fixed point
theorem. In Theorem 3.3.4, explicit and sufficient conditions on
A(t,x,\) and F(t,x,)) ensure the continuous dependence on A of

T-periodic solutions for (N).

1.4. Boundary Value Problems on a Finite Interval.

The following nonlinear boundary value problem of the

guasilinear ordinary differential system

(N) x’ = A(t,x)x + F(t,x)

(C) N(ix) =0

is dealt with, where 4(t,x) and F(t,x) are both continuous on JxR",
and # : C(J) - R® is a continuous operator (not necessarily linear).
Let J = [0,T], where T > O and C(J) be the space of R”-valued
functions continuous on J.

The boundary value problem ((N),(C)) is treated by functional
analysis ( [6], [15], and [27] ). Many authors suppose qualitative
conditions on A(t,x). Moreover Anichini [1,2], Conti-Iannaceci [11],
Kartsatos [31,32], and Opial [44] discuss the existence of solutions

of the boundary value problem ((N),(C)), respectively, under the

- 11 =



condition that

n > +® Ixsn

T
lim inf % f sup l[F(s,x)llds = 0.
0
In Chapter 4, the nonlinear problem ((N),(C)) is considered
associated with the following linear problem

(L) x” = B{t)x

(LC) L(x) =0
( see [55]1 ). It is assumed that the following hypothesis holds.

Hypothesis 1.4.1. There exist no solutions of ((L),(LC)) except

for the zero solution.

In our results an explicit and quantitative condition on A(t,x)

is given as follows:

Hypothesis 1.4.2. There exist § > O and r > O such that
T
[HA(S,X) - B(s)lds < §
0

for x| £ r.

And also much weaker condition on F(t,x) is assumed here.

In Theorem 4.3.1 the existence of solutions of linear problems
which are close to ((L),(LC)) is shown by applying a different
approach ( see [53] ). 1In Theorem 4.3.2 the existence of solutions

of ((N),(C)) is proved by Schauder's fixed point theorem. Theorem

- 12 =



L.3.3 is an existence theorem of solutions of ((N),(C)), where #(x)

L(x) - ¢ and ¢ € R” is arbitrarily given. And we improve Theorem
2 in [44]. Theorem 4.3.4 ensures the existence and uniqueness of a
solution of ((N),(C)) by using the contraction principle.

In section 4.4, the following linear boundary value problem

4

(AL) x” = B(t)x + F(t,x)

(NH) L{x) = ¢

is discussed by a similar approach used in the above problem
((N),(C)). Here B(t) is a real nxn matrix continuous on J,
L : Cc(J) » R" is a bounded linear operator and c € R,

In section 5.5, the above results for ((AL),(NH)) are applied to

the following second order ordinary differential equation
(E) u’’ = f(tyu,u’)
with boundary conditions

alu(O) + a2u'(0)

I
0O

(BC)

i
(]

B u(T) + 8,u’(T)

where f : JXRXR -+ R is a continuous function, Ay Bi’ and c; € R

(i =1,2).

1.5. Boundary Value Problems on an Infinite Interval.

The following boundary value problem of the quasilinear

ordinary differential system

- 13 -



(N) x" = A(tyx)x + F(t,x)

(C) N(x) =0

. . I1im n . .
is considered, where W :Cr + R is a continuous operator( not

necessarily linear ). Here Cilm ={ x e C(RY) : 1im x(t) exists
t>+®

and |x(t)|l £ r for t e R} and R' = [0, +2).

There are many studies on the qualitative theory of quasilinear
ordinary differential systems. Avramescue [4], Kartsatos [311],
Vidossich [59] discuss the existence of solutions under the conditions
that the right-hand side of (N) is differentiable. In Kartsatos [26,
27,28,30,31,33], the problem ((N),(C)) is considered associated with

the linear problem

(L) x” = B(t)x

(LC) L(x) =0

and various existence theorems for ((N),(C)) are obtained under

strong conditions on F(t,x), where L : Cllm + R" is a bounded
linear operator and c¢li™ = { x ¢ c(R*) : lim x(t) exists }. For
t>+%

example, the following operators are considered.

L{x) = Px(0) - Qlim x(¢t); WN(x) = L(x) - C.

t>+o

Here P and Q are both known constant nxn matrices and c¢ ia a fixed

R7-vector. Now it is assumed that the following hypotheses hold.

+0

Hypothesis 1.5.1. JHB(S)Hds < +o,
0

- 14 -



Hypothesis 1.5.2. There exist no solutions for ((L),(LC)) except

for the zero solution.

Hypothesis 1.5.3. There exist two numbers § > O and r > O, and a

summable function ml such that

14(t,%) = B(e)I < m (¢)

for t € RT and Ixll £ r, and that

+00

jml(s)ds £ 6.
0
Under the condition that Hypotheses 1.5.1, 1.5.2, and'1.5.3
hold and that A(t,x), N(x) are sufficiently cloée to B(t), L(x) in
some sense, respectively, Kartsatos [28] assumes some qualitative
"conditions on 4(t,x) in (N) and proves the existence of solutions
for ((N),(C)). However, the qualitative condition in [28] is a
necessary condition when A(t,x) is sufficiently close to B(t).
Several results for the existence and uniqueness of solutions for
((N),(C)) are obtained under Hypotheses 1.5.1, 1.5.2, and 1.5.3 by
applying a different appproach used in [53, 54]. In Theorem 5.3.2
the existence of solutions for ((N),(C)) is shown by using Schauder's
fixed point theorem. We obtain explicit and quantitative conditions
corresponding to qualitative conditions on A(t,x) in [28] and weaker
conditions on F(t,x) than those in [28]. Here it is not considered
any differentiability of right-hand side of (N). Moreover assuming
Lipschitz conditions, the existence and uniqueness of a solution for

((N),(C)) are given by using the contraction principle in Theorem

5.4.7.

- 15 -



1.6. Stability of Solutions.

A large number of results have been obtained for the stability

of the zero solution of ordinary differential systems

(s) x” = X(t,x), X(t,0) =0
‘and
(P) x” = X(t,x) + F(t,x), F(t,0) =0

Here X(t,x) and F(t,x) are both R"-valued functions continuous on

R™xR™. It is assumed that the following hypothesis holds.

Hypothesis 1.6.1. The zero solution of (S) is uniformly

asymptotically stable.

In order to investigate the asymptotic behavior of the zero
solution for (P), the following four methods are effective
Liapunov's second method([62]), the invariance principle([39]), the
method via fundamental matrices of solutions([60]), and that via
fixed point theorems([3]).

When X(t,x) is Lipschitz continuous in x, Liapunov functions
corresponding to (S) can be constructed by using converse theorems.
Without assuming Lipschitz conditions on X(t,x), Athanassov [3]
discusses sufficient conditioné for the asjmptotic behavior of
solutions, not in the sense of Liapunov, by using Schauder's fixed
point theorem.

When X(t,x) = A(t,x)x, Kartsatos [R27] establishes various kinds

of sufficient conditions for the asymptotic behavior of solutions for

- 16 -



(N) x” = A(t,x)x + F(t,x).

He utilizes the method via fundamental matrices of solutions.
However, fundamental matrices of solutions can not be solved
explicitly in general.

In Chapter 6, it is assumed that X(t,x) = B(t)x and that

Hypothesis 1.6.1 holds ([47],[75]). Then, since the following system
(L) x’ = B(t)X

is linear, Hypothesis 1.6.1 holds if and only if the zero solution of
(L) is exponentially asymptotically stable in the lafge (see [61]).

Moreover it i1s assumed that the following hypothesis holds. b

Hypothesis 1.6.2. There exists a constant § > O such that

+ 0
[ sup [A(s,x) ~ B(s)|ds £ §
o lIxlisr

for any r 2> 0.

Under Hypotheses 1.6.1 and 1.6.2, sufficient conditiéns for the
global stability of the zero solution for (N) in the sense of

- Liapunov, are obtained by Schauder's fixed point theorem and
Liapunov's second method. Here it is not assumed that the right-hand
side of (N) is Lipschitz continuous with respect to x. However, the

following hypothesis is assumed.

Hypothesis 1.6.3. A1l the solutions of (N) for initial value

problems are uniquely determined.

- 17 -



In section 6.3 we consider the systems with the perturbed term
F(t,x) which is treated by Lasota and Opial [40] and Opial [44]. In
Theorem 6.3.1, a sufficient condition that the zero solution of (N)
is uniformly asymptotically stable in the large is obtained by
Schauder's fixed point theorem. In section 6.4, a similar approach
to [53 - 56] is used and Theorem 6.4.1 for the exponentially
asymptotic stability in the large of the zero solution is given by

applying Liapunov's second method.

1.7. Asymptotic Equivalence.

The following two ordinary differential systems

(s) x” = X(t,x)
and
(P) x” = X(t,x) + F(t,x)

are said to be asymptotically equivalent, if there exists a solution
of (P) approaching to a given solution of (S) as t + +» and vice
versa. Here X(t,x) and F(t,x) are both continuous on R xR”.

A great number of works have been done on this subject.‘Assuming
various kinds of stability the following methods are used : the
comparisbn principle ( [7] ), especially, the method by Liapunov
functions ( [35,36] ), the method via fundemental matrices of
solutions ( [8], [29], [43] ), and the method via fixed point

theorems ( [34] ).

In the case that (S) is nonlinear, Liapunov functions play an

- 18 -



important role under the conditions that X(t,x) and F(t,x) satisfy
Lipschitz continuity with respect to x. Liapunov functions
corresponding to (S) are constructed by using converse theorems in
order to diséuss the asymptotic equivalence between (S) and (P).
When X(t,x) = B(t)x and fundamental matrices of solutions for (8)
~are given, various sufficient conditions for the asymptotic
equivalence are obtained. However,fundamental matrices of solutions
can not be easily solved in genaral. In [8], under the condition
that (S) is linear and the zero solution of (8) is conditionally
stable, the asymptotic equivalece is discussed. In [34], the case
where X(t,x) = A(t,x)x is dealt with and the authors consider a
condition on A(*,x(+)), where x(+) is an element of a given set of
functions.

In Chapter 7, the following linear ordinary differential system

(L) and quasilinear system (N)

(L) x’ B(t)x

(N) © = A(e,x)x + F(t,x)

X
1

are considered ( (48] ). The asymptotic equivalence between (L) and

(N) is treated under the following hypothesis.
Hypothesis 1.7.1. There exists a constant K > 1 such that
-1
1K () X5 (0 < K

for t 2 1 2 0, where XB is the fundamental matrix of solutions for

(L) such that XB(O) = J. Here I is the identity matrix.

- 19 -



Hypothesis 1.7.71 holds (i.e., the zero solution of (L) is uniformly
stable in the sense of Liapunov) if and only if all the solutions of
(L) are uniformly bounded ( [23] ). It is assumed that A(t,x) is

sufficiently close to B(t) in the following sense.

Hypothesis 1.7.2. There exists a constant § > O such that

+00
J sup ll4(s,x) - B(s)jds < 8
o lIxlisr

for any r 2> O.

Here A(t,x)x and F(t,x) are not necessarily Lipschitz continuous.

However, the following hypothesis is considered.

Hypothesis 1.7.3. A1l the solutions of (N) for initial value

problems are uniquely determined.

In Chapter 7, sufficient conditions for the asymptotic
equivalence are given by a similar approach to [47] and [54] as
well as by using Schauder's fixed point theorem. In Theorem 7.3.7,
under a condition which is concerned with the integral of F(t,x) in
the neighborhood of the origin, the uniform stability of the zero
solution for (N) and the asymptotic equivalence between (L) and (N)
are obtained. In Theorem 7.3.2, the condition on F(t,x), which is
considered in [401 and [44], ensures the uniform boundedness of the
solutions for (N) and the asymptotic equivalence between the two

systems.
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NOTATIONS

The symbol |+ will be a norm in R” and corresponding norm for
nXn matrices. Let J be a set in R and C(J) the space of R"-valued
functions bounded and continuous on J with the supremum norm flelly.
M(J) is the space of real nxn matrices bounded and continuous on J

with the norm
1B, = supl [B(¢))] : t e J}, Be M(J).
We denote

Sr ={ x e R" : x| <rl}t, r>0

and
en = supl HL(x) N & qxl, = 1},

where L : C(J) + R" is bounded linear operator. We put R’ = [0,+w).
In this thesis the following notations and definitions are

used.

Chapter 2.

Let J = [0,T], T > 0. A function x € C(R) is said to be
T-periodic if T is the smallest number such that x(t+T) = x(t) for ¢
€ R. CT is the space of T-periodic functions with the supremum

norm. We denote

CT,r ={ x e CT :olixll, £r }y, r > 0.
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Chapter 3.

Let M be the space of real nxn continuous, T-periodic matrices
with supremum norm. CT - is the same as the above chapter.

Chapter 4.

J/A Cr(J) -~ R" is a continuous operator(not necessarily linear),

where Cr(J) ={xec(J) : IxI,<r}t, r>0, and J = [0,T], T > O.

Chapter 5.

Lz clim 5 g7 is a bounded linear operator and # : Ciim > R" is

a continuous operator ( not necessarily linear ), where

Clim ={ x e C(R+) : 1lim x(t) exists }
t>+®
and
cf_im ={ x e cti?, xil, < r}, r >O0.
Chapter 6.

In this chapter the following definitions of the asymptotic

stability of solutions for
(S) x” = X(t,x)

are used. A solution through a point (t1,&) in R*xR" will be denoted

by X(.;Tig)-

Definition 1. The zero solution of (s), with x(t,0) = 0, is

uniformly stable, if for any € > O there eixsts an n > O such that
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when T > 0 and [&] £ n,
‘HX(t;T,é)H L«
for all t > T.

Definition 2. The solutions of (S) are uniformly bounded, if

any o > O there exists a 8 > O such that when T > 0 and (& £ a,
Ix(t;51,8) 0 < B
for all t 2> 7.

Definition 3. The zero solution of (S8) is uniformly attractive
in the large, if for any € > O and a > O there exists a T > 0 such

that when t > 0 and (&) £ «a,
ix(t51,8)1 < ¢
for all ¢t > v + T.

Definition 4. The zero solution of (S), with X(t,0) = 0, is
uniformly asymptotically stable in the large, if it is uniformly
stable, uniformly attractive in the large and +the solutions of (S8)

-are uniformly bounded.

Definition 5. The zero solution of (S), with x(t,0) = 0, is

exponentially asymptotically stable in the large, if there exists a

¢ > 0 such that for any o > O there exists an ¥ > 0 satisfying

lx(t;T,8) 1 < MIElexp( - c(t - 1) )
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for all ¢t > 1 and €} £ a.

Let V(t,x): R'xR™ - R be continuous on R*xR” and locally

Lipschitz continuous in x. We define the following notation.

V. (t,x) = lim sup h '{ V(e+h,x+hf(t,x)) - V(t,x) }.
(s) h =+ +0 )

Chapter 7.

The two ordinary differential systems

(S) x” = X(t,x)
and
(P) x” = X(t,x) + F(t,x)

are said to be asymptotically equivalent, if there exists a solution

x of (P) such that
x(e) = x () >0 (&> =),

for a given solution x. of (8), and vice versa.

1
The definitions of the uniform stability of the zero solution and
the uniform boundedness of solutions are the same as those in

Chapter 6.
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CHAPTER 2
PERIODIC SOLUTIONS OF PERIODIC SYSTEMS

2.17. Introduction.

The problem of the existence and uniqueness of T-periodic
solutions for the following T-periodic quasilinear ordinary

differential system
(N) x” = A(t,x)x + F(t,x)

is discussed in this chapter, where A(t,x) is a real nxn matrix
continuous on RxR" and T-periodic in t, and F(t,x) is an R%-valued
function continuous on RxR" and T-periodic in t. Together with the

above system, the following linear system
(L) x” = B(t)x

. . . . n
is concerned, where B(t) is a real nXp matrix continuous on RxXR~ and

T-periodic. It is assumed that the following hypotheses hold.

Hypothesis 2.1. There exist no T-periodic solutions for (L)

except for the zero solution.
Hypothesis 2.2. There exist 8 > O and r > O such that

T
JIIA(s,x) - B(s)lds £ §
0
for x € S .
Ir
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In section 2.3 the existence of T-periodic solutions for (N) is
shown by using Schauder's fixed point theorem. In section 2.4 the
existence and uniqueness of a T-periodic solution for (N) are proved

by applying the contraction principle.

2.2. Preliminaries.

Let J = [0,T]. Consider a bounded linear opeator L : c(J) » R"

such that
L{x) = x(0) - x(T)

Cwith 1L = supl NL(x(*)) : Ixl, = 1}, where C(J) is the space of R"
-valued functions continuous on J with the supremum norm [<fi,. Then

we have |L]] = 2. Let XB be the fundamental matrix of solutions

for (L) such that XB(O) = I. Put

Ug = I - XB(T),

we have

We alsé put

T
K = exp([1B(s)1as).
0

t ,
Since XB(t)X;l(T) =T + JB(s)XB(s)X;l(r)ds for t, T e J, we have
T
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1Xgle)Xg (1) <1+

t
jnB(s)quB(s)Xgl(T)nds :
T

Thus, by applying Gronwall's lemma, it follows that
(2.1) 1Xg(e)xg (1) < K

for t, 1 € J, which implies that

(2.2) 1Xg(e) 1l < K and X5 ()N < K.
The following lemma concerned with Up holds.

Lemma 2.1. The statements (i) - (iii) are equivalent mutually.
(i) Hypothesis 2.1 holds;
(i1) UB is nonsingular;

(iii) For any f € CT , there exists a unique T-periodic solution of
(2.3) x” = B(t)x + f(t),
where CT is the space of functions continuous on R and T-periodic.

The above lemma can be proved in the same way as the proof of
Lemma 5.2 in Chapter 5.
From the elementary result in linear algebra, the folloﬁing

lemma is obtained.

Lemma 2.2. Suppose that Hypothesis 2.1 holds. Then there exists

a constant number p ( 0 < p < 1 ) such that

(2.4) nogtn < 1/e.

Such a p will be fixed throughout this chapter.
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2.3. Existence of Periodic Solutions.

In this section the existence of T-periodic solutions for (N)
is discussed by Schauder's fixed point theorem. Now consider

the following linear problem

(2.5) x" = A(t,y(t))x + F(e,y(t))
(2.6) L(x) =0

for y e CT,r’ where

(2.7) Co. , =}{ x € Cpot lxll, <1},

Let Xy be the fundamental matrix solutions of the linear homogeneous

I. The existence

i

system corresponding to (2.5) such that Xy(O)

theorem of ((2.5),(2.6)) is obtained as follows:

Theorem 2.3.1. Suppose that Hypotheses 2.1 - 2.2 hold and
there exists a non-negative number C satisfying the following

condition (2.8).
v T
(2.8) JHF(S,X)Hds £ rC for x e S_.
0
Let the following relations (2.9) - (2.10) hold.

e
(2.9)  K*8-exp(8) < ————;
211Ug™ 1
p( 1 =-0)

{ 2K-exp(8) + p( 1 - p ) }Krexp(§)

(2.10) c <
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Then for any y € CT r,there exists a nonsingular matrix Uy such that
, .

(2.11) L(Xy(-)xo) = nyo

for X € Rn, whose inverse satisfies
(2.12) HU;IH <1/{ (1 -0p) 1},

and there exists one and only one solution Xy € CT r such that
s

t t
(2.13) % (e) = = 0L )] + [4(s, ()% (s)as + [P(s,y(s))ds,
0 0
-t
where py(t) = ny(t)X;l(s)F(s,y(s))ds for t e J.

0]

Proof. In the same way as (2.71) it can be seen that
(2.14) 1, ()X T (0) 1 < Krexp(8)
for t,t ¢ J, so that

(2.15) X, (e)ll < K-exp(§) and HX;l(t)H < Kkeexp($).
t .
Since () = Xg(e) + xy(e) [X3M(5)( Als,5(s))-B(s) )X (s)ds for ¢ ¢

0

J, by (2.1), Hypothesis 2.2, (2.9), and (2.15), we have

1x,(e) = Xp(e)l < K*6-exp(8)

IA

o/ (201U5 ).

Then it follows that
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il

10, = Ugdxgll = NL(X (+) = Xp())x I

I

olix I/ 1Ug

for x, € R, From (2.4) we get

N0 xoll 2 001 = p Jlixgl.

Hence Uy has the inverse satisfying (2.12).

By Lemma 2.1 the problem ((2.5),(2.6)) has one and only‘one
solution X, satisfying (2.13). Since (2.5) is T-periodic and the
uniqueness of solutions of (2.5) for initial value problems, X, is
T-periodic solution for (2.5). We shall show that ”xy(t)n < r for

t € J. From (2.8), (2.12), (2.13) and (2.14) we obtain

nxy(t)n < + rC +

2rCKexp($§) F
JHA(s,y(s))nux (s)lids
o( 1 -p ! y

for t € J. By applying Gronwall's lemma and (2.10) we have

. 2rCKexp(8) F
I, ()1 < + rc |exn|[1a(s,y(s)) yas
o( 1 -p) 5
L r.
Thus X, € Cp e This completes the proof. Q.E.D.

By applying Schauder's fixed point theorem we obtain the

following theoremn.

Theorem 2.3.2. Suppose that the same assumption as Theorem
2.3.1. Then there exists at least one T-periodic solution for (N)

which belongs to CT,r
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Proof. It is easy to show that the solution of ((2.5),(2.6))

can be expressed by

-1
t) = = X _(t)U L + t
x,(t) e y [£(p,)] p,(t)
for t € J, where y € CT,r’ Define V:CT,r > CT,r by V(y) = X Then V
maps the convex closed set CT r into itself. It is easily seen that

the compactness and continuity of V are proved in the same way as the
proof of Theorem 3.3.2 in Chapter 3.

According to Schauder's fixed point theorem, V has at least one
fixed point in CT,r’ Therefore there exists at least one solution of

(N) and this completes the proof. . : Q.E.D.

2.4. Existence and Uniqueness of Periodic Solutions.

When A(t,x), F(t,x) satisfy Lipschitz conditions, respectively,
the existence and uniqueness of a T-periodic solution for (N) are

shown by the contraction principle as follows:

Theorem 2.4.1. Suppose, under the assumptions in Theorem 2.3.1,

that there exist a positive number L1 such that

L lIx

”A(t’Xl) - A(t,X2)|| 1

I~

1 "'Xz”

and

IF(e,x ) = Fle,x )0 < Lolix, = x|

2

for t € J, x x_ € Sr' Let Li satisfy the following inequality.

1’ 2



bleexp(26) 2Kexp(6)

(2.17) L, + b, 1 +
p( 1 -9 ) p( 1 - p )
2Kexp(8)
+ < 1,
o( 1 -p)

where bl = 2rCKexp(8) and bz = (T + rCKexp(8))Kexp(S8). Then there

exists one and only one T-periodic solution for (N) which belongs to

CT,r'
Proof. Let k be the left-hand side of (2.17). We shall show that
the operator V :CT,r > CT,r such that
2.18 4 t) = - x (e)u~t[¢L + t
( ) [(V(y)I(t) y( ) y [ (py)] py( )

is a contraction. Let Yi2¥, € CT c and let Xl,X2 be fundamental

matrices of the following linear systems, respectively.
x" = Aty (e))x 5 x7 = Ale,y,(e))x.
By the same argument as (2.1), we obtain for t,T e J

1%, () X371 ()0 < Kexp(8) (1 =1,2),
which yields |

Ip,ll, < rCKexp(s),

where

o (t) = x.(t)jxi1<s)p(s,y.(s>)ds

for t e J. Since
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[x, (£)17 = ACe,y,(e))X (&) + [ ale,y (t)) - 4(e,y (£)) 1x (¢),
by the variation of parameters formula, we obtain for t,t e J

x (e) = X, (£)x] ()x (7)
t
[, (OXHE)T 4ls,y, () - als,y,(s)) 1x (s)ds,
T

then
X, (e)x71 (1) = X, (e)X1 (1)1 < L K?exp(R6) 1y, = Vol

Hence we get
2
X, = X0, < L K?exp(28) My, - v,

and

-1

]

-1 2
- X2 e < LlK eXP(QG)HYl - Yzﬂm~
Let Ui be matrices such that

) = U.x. (i =1,2)

L(Xi(')xo i%o

for X, € R . We have
W, = U0 < namnx, - X 1,
2
L 2L KPexp(28) My, = ¥, llq-
By the same argument as (2.12) it follows that

ot <1/ e 1 -0 )},

so that

-1

‘ -1 -1 -1
~ T IO T T A T Tl
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2L1K2exp(26)

< y, = ¥yl
p2( 1 - p )? ooz
Moreover it follows, for t € J, that
. T
1, (e) = p, ()0 < [1X, (£)X72(s) = X, ()X, () MIF(s, v, (5)) lds
0
T
# 1, (0 ) MIF(s,y, () = Fls,y,(s))lds
0

I

Loy, = yyllee
From (2.18) it follows, for t e J, that.

NV(y)1(e) = Wy )1 < X, = X0 00 iLiie, i,
PR R IS e TV T T
X IO L, = Pl

+ P, = Pyl

)
b L K*exp(26) IL1b, L K exp(36)
< ly, = v,llo * Iy, = v,ls
p( 1 - p ) p2( 1 - p )3
Kexp(§)
+ CNLN + HENL b, My, = vyl + LB Ny, = v,

e 1 -0 ) |
= klly, = y,lle-

Thus, from (2.17), V is a contraction. This completes the proof.

Q.E.D.
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CHAPTER 3

CONTINUOUS DEPENDENCE ON A PARAMETER OF PERIODIC SOLUTIONS

3.17. Introduction.

Let 4A(t,x,A) be a real nxn matrix continuous on RanX[—AO,AO]
with T-periodicity in t, F(t,x,A) an R"-valued function continuous
on RXRHX[—kO,AO] with T-periodicity in t, where Ao > 0, and f£f(¢t)

an R"-valued function continuous on R and T-periodic in t. The T-

periodic quasilinear ordinary differential system
(N) ‘ x’= A(t,x,k)x +_AF(t,X,k) + f(¢)
is considered associated with the linear system
(L) x” = B(t)x + f£(t),

which satisfies the following hypothesis.

Hypothesis 3.1.There exists one and only one T-periodic solution

for (L).

Here B(t) is a real nxn matrix continuous on R and T-periodic. And

it is assumed that 4(t,x) is closed to B(t) in the following sense.

< X)), r >0, and § > O

Hypothesis 3.2. There exist Xl > 0 (A 0

1
such‘that

T
["A(S,X,)\) - B(S)"ds S §
0
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for x € §_ and [A] < A

In this chapter the following properties of T-periodic solutions
for (N) are considered by Schauder's fixed point theorem and the
contraction principle : the existence, the dependence on A, and the

continuous dependence on A.

3.2. Preliminaries.
Define a bounded linear operator L: C[0,T] > R" by

L(x(+)) = x(0) - x(T)

with the norm
1L = supl NL(x(*))N : Nxfy, =1 1.

Then we have L] = 2. Let XB be the fundamental matrix of

solutions for the homogeneous system corresponding to (L) such that

XB(O) = I, where I is the identity matrix. Put Up =1 - XB(T).

We have

L(XB(°)XO) = UBXO

for X, € Rn. The following lemmas are well known.
Lemma 3.1. Hypothesis 3.1 is equivalent to det Uy # 0 (seel23]).
Lemma 3.2. If det UB # 0, then we can choose a positive constant

o ( 0 < p <1 ) such that

(3.1) gt < 1/e.
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A positive constant satisfying (3.1) will be fixed throughout

this chapter. From the above lemmas the following lemma is obtained.

Lemma 3.3. Suppose that Hypothesis 3.1 holds. Let w(*) be the

T-periodic solution of (L). Then

Imii, < MK( 1 + 2K/p ),

T T
where M = fuf(s)nds and K = exp(an(s)nds).
¢} 0
t
Proof. Since XB(t)Xgl(T) =7 + JB(s)XB(s)Xél(T)ds, by using
' T
Gronwall's lemma, it follows that
(3.2) g (e)xg (1)) < K

for t,t ¢ [0,T], which implies that HXB(t)H < K for t e [0,T].
A solution x(*) of (L) is T-periodic if and only if L(x(°)) = 0,

so that

5
N
o+
—
1]

()5 L(p(+))] + p(2),

where p(t) = XB(t)jXél(s)f(s)ds for t e R, with [p(t)]] < kKM for

t € [0,T]. Therefore

Im(e)n < X Ce) ozt nncgks + qp(e)y

I

kM( 1 + 2K/p ).
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This completes the proof. Q.E.D.
In this chapter it is assumed that

r > ry = kM( 1 + 2K/p ).

3.3. Continuous Dependence on a Parameter of Periodic Solutions.
Consider the following periodic linear nonhomogeneous system

(3.3) x' = Av(t,y(t),)\)x + AF(t,y(t),A) + £(¢)

for y e CT,r’ together with a boundary condition

(3.4) L(x(+)) = 0.

Here

CT,r = { x € Cp ot lixll, £ 1 },

and C, is the space of T-periodic functions of C(R).
Put Uy =1 - Xy(T), where Xy is the fundamental matrix of solutions
of the linear homogeneous system corresponding to (3.3) such that

Xy(O) = I. We have

) = U x

L(Xy(')x ¥¥o

0

for X, € R". By an analogous argument in Theorem 2.3.71 in Chapter 2

the following theorem is obtained.

Theorem 3.3.1. Suppose that Hypotheses 3.1 and 3.2 holds and

that there exist numbers 6 > 0, A > O and Al > 0, Al < Ao,
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satisfying the conditions (3.5) - (3.6) below.

P

(3.5) K?6exp(8) < ————
21U
2Kexp (§) ’
(3.6) { AA N }Kexp(6)] 1 + < r.
o1 =-p)
Let F satisfy the condition (3.7).
T
(3.7) j”F(s,x,A)”ds < A for x € Sr’ A€ Al'
o]

Here A = [—Al,X

.1]' Then, for y e CT,r and X € Al, there exists the

inverse of Uy such that

(3.8) nu;ln <1/ p(1-0)}

and there exists one and only one solution xyeCT , of ((3.3),(3.4))

such that
t
%, (8) = = USHL(p ()] + jA<s,y<s>,x>xy<s>ds
0
t t
(3.9) ' KJF(s,y(s),X)ds + jf<s>ds,
o} o}
t .
vhere p () = Xy(;)fx;l(s){ AF(s,y(s),A) + £(s) }ds for t ¢ R.
0

Proof. By the same argument used in (3.2), it can be seen that
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(3.10) 1, ()X 2 (1)1 < Kexp(8)

for t, T € [0,T]. Since, by the variation of parameters formula,

t
X,(e) = xp(e) + Xp(0) [KG2()T Als,y(s),0) = B(s) }x(s)ds,
0

we obtain, from (3.2), Hypothesis 3.2, and (3.10),

t
X, (e) - Xple)n < anB<t)Xgl<s)nuA(s,y(s>,A) - Bls)nx (s)lds
0

< K?8exp(8§)
for t ¢ [0,T]. This yields, by (3.5),

nx,(£) = xp(e)n < o/ C 200570 ),

so that
H(UB - Uy)XOH < OHXOH/HUélﬂ
for x_ e R®. From (3.1) we have
_HUyXOH >2p( 1 -0p )HXOH-

Hence Uy has the inverse and (3.8) holds.
The problem ((3.3),(3.4)) has a unique solution x,, satisfying
(3.9). Since L(xy(-)) = 0, x,, belongs to Cp. We shall show that

Ix ly £ £ By the definition of p, we obtain
Ip, (e)i £ KO A8 + M )exp(S)

for t e [0,T). It follows, from (3.7) and (3.9), that
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2K( AL+ Jexp(6) ¢
+ an(s,y<s),A)uux (s)lds + A A + M.
p( 1 -p) 7

0

HXy(t)H <

By using Gronwall's lemma, (3.6) and Hypothesis 3.2, we have

2Kexp(§) £
e, (el < ags + )| 1+ exo( [14(s,y(s), 1) 1ds )
y 1
p( 1 -0 5
2Kexp(§)
< (A pa+M )| 1+ Kexp(§)
1
p( 1 -0 )
L r.
Hence o bélongs to CT e This completes the proof. Q.E.D.

By applying Schauder's fixed point theorem, an existence theorem
of T-periodic solutions of (N) is obtained without assuming the

uniqueness of solutions of (N) for initial value problems.

Theorem 3.3.2. Suppose that the same assumption as Theorem 3.3.1
holds. Then, for any A € Al, there exists at least one T~periodic

solution of (N).

Proof. Let X e Al. From Theorem 3.3.7 we can define an operator
- 5 : . . 3 s s
P o CT,r > CT,r by P(y) X where x,, is a unique T-periodic

solution of (3.3) in C We shall show that 2 is a continuous

T’I'.

compact operator. For the continuity of P it suffices to prove that
Ply ) » Ply,) (n>=),

as y, >y, (n~> o) in Cr . Let X_ ,X_  be the fundamental

n » I n 0



s

matrices of solutions for the following linear systems, respectively.

’

x = A(t,yn(t),k)x ; x’ = A(t,yo(t),k)x.
It follows that
1x,(e)x F (1)1l < Kexp(8) and X (£)x " (1) < Kexp(s)

for t, 1 e [0,T]. By the variation of parameters formula we have

t

X (8) = xo(6) = X (6) [x;2(s)0als, 7o (2),1)=A(s,y, (), M)} X, (s)ds.
0

Then we obtain
T
X, - X, Ny < Kzexp(Zd)jllA(s,yn(S),K) - A(s,y,(s),A)1ds,
0

which implies that

(3.11) X > X, (n > o),

I - X (T). Then

Put Un =71 - Xn(T) and Uo
W, -, It~ 0 (n » «).

From Theorem 3.3.71 we get

10250 < 1/(p(1 - o)} and WUSTH < 1/{p(1 - p)}.

We have

1

- _1 2
S B LA A A L RN

0
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Thus

-t - ot >0 (o).
Since
t
()23 () =L [X2H () (s, v, (), M) ~4(s,y, (s),A)) ¥y (s)ds x5 (e,
0

in the same way as (3.11), we obtain

(3.12) X - X;

(n»=).

Let p () = x (t) X;1(S)F(S,yn(8),K)ds

ju}
O Yt

t
and po(t) = X, () [X31(s)F (s, (s), M) ds.
0

Since all the following sequences {Xn(°)}, {X;l(°)}, {F(-,yn(-),k)}
are uniformly convergent in [0,T] as n > ®, respectively,
> p, (n=+=).

Pn

Hence
Py, ) = Ply,)  (n=>=).

In order to prove the compactness of P it suffices to show that
the image P( Cp . ) is uniformly bounded and equicontinuous. By the

definition of P we obtain
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(3.13) - Pyl = 1% Nl <r
for y e Cp . Thus P( Cr., ) is uniformly bounded.
From (3.9) and (3.13) it follows that

1021 (ey) = [P0 1 (e

t

< ljnj(s,y(s),x)nrds + IAI)J;§<s,y<s),A)nds

! fa

for t , t, ¢ (0,T], which implies that P( C

is equiconti .
N T, r ) is equic nuous

According to Ascoli-Arzela's theorem 7( CT , ) is a relatively
compact subset in CT. Therefore P is a compact continuous operator
from C into C . And also C is a convex closed subset in

T,r T, r T, r
Cpe By using Schauder's fixed point theorem ” has at least one

fixed point x in CT,r’ i.e., x satisfies

x7(t) = ale,x(e),\)x(t) + MF(t,x(t),N) + £(¢t)

for A e A . This completes the proof. ‘ Q.E.D.
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Suppose that the following hypothesis holds.

Hypothesis 3.3.There exists a continuous and strictly increasing
function u : [O,AZ] > R+, 0 < Az < Al, such that u(0) = 0 and that

for (t’XQ)\) (53 [O,TJXSI'XAz

Na(e,x,x) = B(e) < u(lAl),
where A2 = rkz,kz ] and RT = [0,+=).
Then we have the following theorem.

Theorem 3.3.3. If, under the assumption in Theorem 3.3.2,
Hypothesis 3.3 holds, then for any € > O there exists an n(eg) > 0
such that for all A, |X| < n(e), there exists at least one

T-periodic solution x(*;e,\) of (N) satisfying
(3.14) IIx(t5e,2) = w(e)) L e

for t € R.

Proof. Choose € such that 0 < ¢ < r =~ r. Let n = n(e) > 0
satisfy the following inequality.
2Kexp(§)
(3.15) { r ,Tu(n) + na }Kexp(8)| 1 + < e,
p( 1 -0 )

We denote CT ={ wecC

. 7 Wi, <€ }. For each A, |X| < n(e), and

w e C , we consider the following linear nonhomogeneous system

T,e

(3.16) z" = Aw(t,w(t),X)z + AFW(t,w(t),x) + fw(t,w(t),K)

_4_5_



together with a boundary condition
(3.17) L(z(+)) = 0.
Put 4 (t,w(c),A) = A(e,w(t)+mn(e),A), F (t,w(c),x) = F(e,w(e)+n(c),n),

{ A(e,w(e)+m(e),A) - B(t) }m(t). Then the

il

and fw(t,w(t),l)

following relations (3.18) - (3.20) are obtained.

T

(3.18) [1a, Ce,wie)n) = B(s)nas < 6
0
T

(3.19) [ie, (eowe), 0 nas < a5
.

N4(s,w(s)+m(s),x) = B(s)llm(s)lds

O 3

T
Jnfw(t,w(t),x)uds <
0

(3.20)

IA

r Tu(n).

We denote Zw by the fundamental matrix solutions for the linear

homogeneous system corresponding to (3.16) such that ZW(O) = I. Let
_ . _ . N .
v, =1 - ZW(T). We have L(ZW( )xo) VX, for x, € R, Since
t
Zw<t)Z;1(T) = I + JAW(t,w(t),A)Zw(s)Z;l(T)ds, we obtain
T
(3.21) 1z, ()2 (1)l < Kexp(8)

for t, 1t e [0,T]. By the variation of parameters formula, we get
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t
7,(t) = xp(e) + x(e) [x51 ()0 4, (s,w(s),2) = B(s) }Z,(s)ds.
0

From (3.2), (3.5), (3.18) and (3.21)
1z, (c) = xg(e)n < o/ 21051 ),

which implies that

(v, = Ugdx Il < elix /105 0.

Hence we have the following estimate.
(3.22) et <1/ (1 -0 ) ks

There exists one and only one solution z  of ((3.16),(3.17))

such that
t
2, (c) = = VHL(a, (+D)] + [4, (siw(s), M)z, (s)as
0
t t
(3.23) + XJFW(S,W(S),X)ds + wa(s,w(s),X)ds
' 0 0

for t € R, where
t

(3.24)  q,(£) = 2,(0)[2;2()0 AR (s2u(s),0) + £, (s,w(s),2) Tds.
0

By using (3.19),(3.20) and (3.21), it follows that

(3.25) g, lle < KU nA + r Tu(n) }exp(s).

It is clear that z, belongs to CT' We shall show that nzwn°° < €.
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From (3.19), (3.20), (3.22), (3.23) and (3.25), we have

2K{ na + rOTu(ﬂ) Yexp(6)

1z, ()1 < + [1a, (sawls),2) 10z, () s

p( 1 -p) 5

+ nA + r Tu(n).

By using Gronwall's lemma and (3.15)

3
[ 2Kexp(§) £
2, (e)1 < { nd + £ Tu(n) }| 1+ exp( [I14, (s2w(s),1) 1ds)
o( 1 -p) 5
( : 2Kexp(8)
<{na+r Tu(n) |1+ Kexp(§)
p( 1 -0 )
< e.
We can define an operator @ : C, _ > Cp _ by Q(z) = z, where z

is a unique T-periodic solution of (3.16) in CT,e' By the same
argument used in the proof of Theorem 3.3.2,0 is a compact continuous
operator. And also CT,a is a convex closed subset in CT. According

to Schauder's fixed point theorem, for any € > 0 and A, |X| < n(e),

Q has at least one fixed point z(+) = z(+;e,A) in Cp . satisfying

cz7(e) = ale,z(e)*m(e),A)z(e) + AF(e,z(e)+m(c),A)

+ { a(e,z(e)+m(e),x) = B(t) }n(e).

Let =x(<*;e,X) = z(*;e,A) + (). It can be seen that there exists
at least one T-periodic solution x(e¢;e,A) of (N) satisfying (3.14).

This completes the proof. Q.E.D.

When 4, F satisfy Lipschitz conditions with respect to x,
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respectively, we have the following theorem for the continuous

dependence on A of periodic solutions of (N).

Hypothesis 3.4. There exists a positive constant L such that

Na(e,x ,A) = A(e,x , M) £ Lilx, - x|

and that

IF(t,x,0) = F(e,x,, A0 £ Liix, = x|

1’ 2

for any t € [0,T], X e A, and x; € S, 1=1,2.

Theorem 3.3.4. Suppose that the assumption in Theorem 3.3.3 and

Hypothesis 3.4 hold. If

(3.26) Ay S AL+ M
and
r
(3.27) \ 2rLT| Kexp(§) + ——— | < 1,
) A+ M

then, for any X € Az’ there exists one and only one T-periodic

solution x(*;)\) of (N). Moreover
(3.28) x(t3x) »w(e) (x=>0)
uniformly in t € R.

Remark. From the second assertion of Theorem 3.3.4, the

T-periodic solution for (N) is continuous in A.

Proof. Choose X € A . By Theorem 3.3.2, we can define an
e D = 3 3
operator P: Cp = CT,r by P(y) X, for y e C; _, where x, is the

T-periodic solution of (3.3) in Cr .- Then we have
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(3.29) [P(y)1(e) = - Xy(t>u;1[1(py<~))1 +p,(t).

Denote k by the left-hand side of (3.27). We shall show that ? is a
contraction. Let Yi2Y, € CT,r and let Xl,X2 be the fundamental

matrices of the following linear systems, respectively.

4

x’ = A(t,yl(t),k)x 3 ox o= A(t,yz(t),k)x.
By the same argument used in (3.2), we obtain
1%, (e)X; (1)1l < Kexp(8)
for i = 1, 2, where t, 1 ¢ [0,T]. This yields

p Ml £ K( X8 + M Jexp(§),

where
t

(3.30)  p,(¢) = X, (&) [x]H(s)0 AF(s,y (5),0) + £(s) }ds
0

for t € [0,T]. Put v, =1I- Xi(T) for i =1, 2. In the same way as

(3.8) it follows that nu;ﬂ; <1/{ o( 1 -0 )}, so that

-1

1]

-1 2 2
-un L, - v/t et -0 )%t

Since

[x (£)]17 = A(e,y, (), 0% (&) + [ 4(e,y (£),2) - A(e,y (£),A) 1x (),

by the variation of parameters formula, we obtain

T
hx, (e) - x (e)n < KzeXp(Zd)JHA(s,yl(S),l) - 4(s,y,(s),X)lids
0
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< LTR?exp(28) 1y, - 1,
for t e [0,T]. Hence we get
(3.31) ¥, = Xl £ LTK?exp(28) 1y, = v,

In the same way as (3.31) we have

1 1

o

X,

- 2
R < LTK*exp(28) 1y, = ¥, 1y

We shall show
(3.32) IP(y,) = P(y,)lg £ klly, = v, 1l
for y , y, € Cp . From (3.29) it follows that

[P(y)1(e) = = X, ()07 L(p, (+))] + p(¢)

for i =1, 2, so that

NPy )1Ce) = [P(y,)1(e) < E, + B, + E. + E,.
Here
_ -1
ELo= 20X, = Xl MU 7P s
_ -1 -1
E, = 20X, 00,7 = U 7 1p  Ngs
_ -1
Eyo= 20X 00,7 e, = Pyl
and
E4 = ”pl - Pz”oo'
We get
2Kexp(§) ‘
E < LT ( A4+ M )Kzexp(Zd)Hyl - Yylle
p( 1 - p)
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2Kexp(§)
< LTl 1+ ( A8+ ¥ )K?exp(28)lly, = ¥,
p( 1 - p)

by using (3.6), we obtain
(3.33) E, < fLTKeXP(é)HYl = Yol

We have

(

I, - 0,1

p2( 1 - p>2J

xy
/N

< 2Kexp(§) Kexp(§)( AzA + M)

\
20z, - x1,

2Kexp(§) Kexp (&) ( AL+ M )
' p2( 1 - p )ZJ

I

\

( )
2LTK?exp(26) 1y, - v,ll, |

< 2Kexp(6) - | Kexp(68)( AL+ M )
L p2( 1 - p )2
12
R2Kexp(§)
= LT {Kexp(8)32( A8 + M )y, = ¥, 1y
p( 1 -0 )

by using (3.6), we get

2
r

E, < LT (A8 + M)y, - vy I,
2 AN+ M 2 1 2
1
)
r2LT
(3.34) < ly, = vl
ALA

On the other hand, from (3.30) we have

T :
E, <X, - qumfuxglum{ INHF(s,y, (s),2)0 + 1£(s)I }ds
0

- 52 -



T

+ nxznman;
0

C - XML IMNECs, v (), )+ nE(s) ) s

T

¥ uxzumfuxglnmlxlnF(s,yl(s),A) = F(s,y,(s),X)llds
0

< LTK?exp(38) ( A, A+M )iy, = y,ll, + LTk®exp(38)( A A+w My, = v,y
+ LTK?exp(28)A 1y, - ¥, llu»

by using (3.6), (3.26), 0 < p < 1 and O < A, £ A,, we have

(3.35) E, £ rLTRexp(8)lly, = ¥, lq-

This yields

2Kexp(§)
E, < rLT Kexp(§)lly, - v,
1 2 '™
k p( 1 -0 )
(
2Kexp(§) (s)
< rLT| 1 + Kexp(8)lly, = v, lles

L o( 1 -0 ) Lo

by using (3.6), we have

r2LT

(3.36) E

I

ly, = y. Il
A A+ 1 2

for 0 < A, <A From (3.33),(3.34),(3.35)and (3.36) we can see that

L
(3.32) holds. Since P is a contraction, for any A e\A2 there exists
one and only one solution of (N), which belongs to CT i
In order to show that (3.28) holds it suffices to prove that @

is a contraction, where Q@ is the operator defined in Theorem 3.3.3.

- 53 -



Let € such that 0 < 2¢ < r - r, and let n = n(e) satisfy (3.15).

Choose A such that
(3.37) IX] < min( r - 2e, n(e) ).

Let w_,w_ e C and let 21,22 be the fundamental matrices of the

1772 T,€

following linear systems, respectively.

Id 4

z = Al(t,wl(t))z s oz 0= Az(t,wz(t))z.

where Ai(t,wi(t)) = A(t,wi(t)+n(t),k) for i =1,2. Put

t
a,(6) = 2,(0) [272 ()0 AP, (s,w,(s)) + £,(s,w,(s)) Das
0

for t € R, where Fi(t’wi(t)) = F(t,wi(t)+ﬂ(t),A),
and fi(t,wi(t)) = { A(t,wi(t)+n(t),k) - B(t) }m(t), and put

v. =1~ Zi(T) for i = 1,2. Then we have the following estimates.

”Zi(t)Z;l(T)" < Kexp(6) for t,t € [0,T];

1z, - Z2,l, £ LTKzexp(za)uwonoo ( wo T oW, o= w, )?
z]t - 2) M, < LTK?exp(268) fIw 1l

g, N, < Krexp(s) Cx= [afa + r mu(|r] ));

. .
IV, = VIl £ 2LTK*exp(28) 1w I3

it < 1/C e 1 = 0 )3
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s S0 v = v/t e (1 - 0 )%}

2LTK?exp(28)

IA

p?( 1 - p )? ole:

Moreover it follows that

T
lg, = a0, £ 12, - zznmfuZ;lnw{ XTI (syw (D) + IIE (sow (s))1 Yds
0

T

+ nzzumfnZ;
0

T - 20 I (syw ()1 + NE (saw ()1 Yds

T . :
+ Kexp<6)f{IXInFl(s,wl(s>)~F2(s,w2(s))n+nf1(s,w1<s))—fz(s,w2<s)>n}ds.
. |

T
Since JHfl(s,wl(s)) - fz(s,wz(s))ﬂds < rLTjw,ll,, we have
0

g, - q,llq < RLTK®exp(38)Alw Nl + LTKexp(8) ( [A] + r )iw 1,

LT{ |x] + 2K?exp(268)A YKexp(8)llw o, + rLTKexp(8)llw iy

It can be seen that

[a(w ) 1(e) = = 2, ()] (L(q,(+))] + q,(¢)

for i = 1, 2, so that

1

Hle(w )1(e) = [Q(w,)I(E)N £ 202, =2, I IV, Hla, It21Z, 01V =V g 1,

t+ 2z HmHV_lﬂﬂq - g0l * g, - g, l,
2 2 1 2 1 2
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~

2LTK*exp(38) A ALTK”exp(Aé);

IA

w I, + llw Mo
p( 1 -p) ° p*( 1 - p )® °
2Kexp(§) ~
+ LT| 1 + { |x] + 2KZ%exp(R268)A }Kexp(cS)]lwo]loo
p( 1 -p)
2Kexp(6)
+ rLT| 1 + Kexp(8) fiw 1,
p( 1 -0 )
2Kexp(§) 2Kk%exp(28) A ~
= 1 + LTKexp(§) + |A|] +2K%exp(268)A v ol
p; 1T -0) o( 1 -p)
2Kexp(§)
+ rLT| 1 + Kexp(d)Hwonm.
p( 1 -9 )
By using (3.15), (3.36) and (3.6), we obtain
[ rLT( 2e + |x] ) r2LT
1a(w ). - alw )i, < woll + | = [liw,]
AN+ M AA+ M
{ 1 1
r 2r2LT
S |lwylls
AA+ M
L "2
From (3.27) Q is a contraction. This completes the proof. Q.E.D.
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CHAPTER 4
BOUNDARY VALUE PROBLEMS ON A FINITE INTERVAL

4.1. Introduction.

In this chapter the following nonlinear boundary value problem

of quasilinear ordinary differential system

4

(N) x” = A(t,x)x + F(t,x)

(C) N(x) =0

is dealt with, where A(t,x) and F(t,x) are both continuous on JxR”,
and ¥ : C(J) » R" is a continuous operator (not necessarily linear).

Moreover the following linear boundary value problem

(AL) x” = B(t)x + F(t,x)

(NH) ‘ "~ L(x) = ¢

is discussed by a similar approach used in the above problemn.
Here B(t) is a real nxn matrix continuous on J, L : C(J) - R" is a
bounded linear operator and c¢ e R”. Our results for ((AL), (NH)) are

applied to the following second order ordinary differential equation
(E) u”’ = f(t,u,u’)

with boundary conditions

alﬁ(O) + azu'(o)

Il
O

(BC)

I
9]

8 u(T) + B u’(T)
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where f : JXRXR - R is a continuous function, Q. Bi’ and c; € R
(i=1,2).
In what foliwos, the nonlinear problem ((N),(C)) is considered

associated with the following linear problem

(L) : x’ = B(t)x

(LC) L(x) = 0.
It is assumed that the following hypothesis holds.

Hypothesis 4.1. There exist no solutions of ((L),(LC)) except

for the zero solution.

In our results an explicit and quantitative condition on 4(t,x)

as follows:

Hypothesis 4.2. There exist § > O and r > O such that
T

IIIA(s,x) - B(s)lds < §
4]

for x € S .
r

In section 4.3 the existence, and the uniqueness of solutions
for ((N),(C)) are proved by Schauder's fixed point theorem, ana by
the contraction principle, respectively. In section 4.4 the
existence and uniqueness of solutions for ((AL),(NH)) are treated
in a similar approach to section 4.3. The above results for

((AL),(NH)) are applied to ((E),(BC)) in section 4.5.
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4L.2. Preliminaries.
Let XB be the fundamental matrix solutions of (L) such that
XB(O) = I, where I is the identity matrix. Since

t
XB(t)X;l(T) =T + jB(s)XB(s)Xél(T)ds,
T

for t,T ¢ J, we have

1Xg(e)xg (1) <1+

t
fuB<s)nnXB(s)X;1(r)nds
T

Thus, by applying Gronwall's lemma, it follows that
(4.1) nXB<t}X;1(r>u <K

for t, T € J, which implies that

(4.2) 1Xg(e)l < K and X5 (e)1 < K,
where

T
kK = exp(an(s)nds).
0

Let UB be the constant matrix such that

(4.3) LOxg(+)xy) = Ugx,

for X, € R". The following lemma concerned with Ug holds.

Lemma 4.1. The statements (i) - (iii) are equivalent mutually.

(i) Hypothesis 4.1 holds;
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(ii) UB is nonsingular;
(iii) For any f e C(J) and ¢ € R", there exists a unique solution
x € C(J) of

’

x* = B(t)x + £(t), L(x) = c.

The above lemma can be proved in the same as the proof of Lemma
5.2 in Chapter 5.
From the elementary result in linear algebra, the following

lemma is obtained.

Lemma 4.2. Suppose that Hypothesis 4.1 holds. Then there exists

a constant number p ( 0 < p < 1) such that
(4.4) gt < 1/e.

Such a p will be fixed throughout this chapter.

4.3. Existence and Uniqueness of Solutions for Nonlinear Problems.

In this section the problem ((N),(C)) is discussed by applying
Schauder's fixed point theorem and the contraction principle.

Consider the following problem

(4.5) x" = Alt,y(t))x + F(e,y(t))
(4.6) L(x) = L(y) - #(y)

for y e Cr, where

c ={xecC(J) s qxi1, <r}.

r

Let Xy be the fundamental matrix solutions of the linear homogeneous

system corresponding to (4.5) such that Xy(O)= I. An existence
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theorem of ((4.5),(4.6)) is obtained as follows.

Theorem 4.3.1. Suppose that Hypotheses 4.1 - 4.2 hold and

there exist nén—negative numbers C and a satisfying the following

conditions (4.7) - (4.8), respectively.
T

(4.7) JHF(s,x)Hds < rcC for x € Sr;
0

(4.8) NL(x) = N(x)) £ ar for x e C_.

Let the above numbers satisfy the following relations (4.9)—(4.10l.

(4.9)  K?*8exp(s8) < e
I

AT

akexp(Ss) < p( 1 - p ) and
(4.10) e p( 1 - p ) - aKexp(§)
T { Kexp(8)QLI + p( 1 - o ) }Kexp(s)

Then for any y € Cr’ there exists a nonsingular matrix Uy such that

(4.171) L(Xy(')xo) = UyXO

n . , .
for xo € R, whose inverse satisfies

(4.12) uu;ln <1/ pl 1 =p) 1},

and there exists one and only one solution Xy € Cr such that

xy(t) = U;l[L(y) - NM(y) - L(py)]
t t
(4.13) + jA<s,y<s>>xy<s>ds v [F(s,y(s))as,
0 o]
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t

where py(t) = ny(t)X;l(s)F(s,y(s))ds for t € J.
0

Proof. In the same as (4.1) it can be seen that
(4.14) an(t)X;l<r)n < Kexp($)
for t,t € J, so that

(4.15) 1x,(e) 1 < Kexp(8) and nx;1<t>n < Kexp($§).

t
Since X (¢) = #p(e) + Xy(t) [X37(s)( 4(s,y(s))-B(s) ) (s)ds for ¢ e
0

J, by (4.1), Hypothesis 4.2, (4.9), and (4.15), we have

X, (e) = Xp(e)n < KZGpr(é)

I~

o/ (NLINTZ )

Then it follows that

MU, = Ug)xgll = IL(X (+) = xg(+))x|

y

I

-1
DHXOH/HUB I
for x_ € R°. From (4.4) we get

N0 2 p( 1 = p iyl

Hence Uy has the inverse satisfying (4.12).
By Lemma 4.1 the problem ((4.5),(4.6)) has one and 6nly one

solution X, satisfying (4.13). We shall show that ny(t)n < r for

- 62 -



t € J. From (4.7), (4.8), (4.12), (4.13) and (4.14), we obtain

ix (e)) £ + rC +

~ar + ||L]lrCKexp(§) j ( (o))
< N4(s,y(s))llx _(s)lds
i o( 1 -0 ) . y

for t € J. By applying Gronwall's lemma and (4.10) we have

ar + |[L]rCKexp(§) £
I, Cedn < + rC |exp JHA(s,Y(S))Hds
p( 1 -0 ) 5
L{r
Thus X, e Cr. This completes the proof. . Q.E.D.

By applying Schauder's fixed point theorem we obtain the

following theoremn.

Theorem 4.3.2. Suppose that the same assumption as Theoremn

4.3.1. Then there exists at least one solution of ((N),(C)).

Proof. It is easy to show that the solution of ((4.5),(4.6))

can be expressed by

x, () = xy<t>u;1tﬁ<y> - #(y) =~ L(p )] + p (&)

for t € J, where y € C_. Define V:C_ ~ C, by Viy) = X, Then V maps
the convex closed set Cr into itself. It is easily seen that the
compactness and continuity of V are proved in the same way as the
proof of Theorém 3.3.2 in Chapter 3.

According to Schauder's fixed point theorem, V has at least one

fixed point in Cr. Therefore there exists at least one solution of
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((N),(C)) and this completes the proof. Q.E.D.

By using the above theorem, an existence result for the linear

problem ((N),(C)) is obtained.

Theorem 4.3.3. Suppose that Hypothesis 4.1 and (4.9) hold, and

that there exists a constant CO > O such that

p( 1 -p)

[NL)Kexp(8) + p( 1 - o )IlKexp(§)

Let A(t,x) satisfy the following condition for any r > 0.
T
flms,x) - B(s)lds < 8
0
for x € §_. And let F(t,x) satisfy the following condition.

T
(4.16) 1im inf 1 J sup [[F(s,x)|ds < C_.
n 0
n > +© o x| sn

n . ,
Then, for any c € R, there exists at least one solution of

((x),(c)).

Proof. There exists an a > 0 such that

o( 1 - p ) - aKexp(§)

[ 1Liikexp(8) + o( 1 - p ) IKexp(§)
For any c € R, we putvthe following operator N
N(x) = L(x) - c.

From (4.16), there exists a sufficiently large r > 0 satisfying

- 64 -



lch < ar
and
T
[17 (s, ) 1as < rc,
0
for x € S_. By Theoren 4.3.2; ((N),(C)) has at least one solution

in Cr. This completes the proof. Q.E.D.

When 4(t,x), F(t,x) and #(x) satisfy Lipschitz conditions,
respectively, the existence and uniqueness of a solution for

((N),(C)) are shown by the contraction principle as follows:

Theorem 4.3.4. Suppose, under the assumptions in Theorem 4.3.1,

that there exist a positive number L1 such that

14(e,x) = ale,x ) < Lolix, = x|

and

IF(e,x ) = Fle,x ) < Lolx, = x,

for t € J, x x, € S_, and a positive number L2 such that

1’ 2
Wy ) = My )1 < Lolly, = .y, 0,

for yir» ¥, € Cr‘ Let Ll and L2 satisfy the following inequality.

)
b K*exp(R6) 1£11Kexp (S)
L, + b, 1+
p( 1 =p ) p( 1 -p )
(4.17) .
Kexp(8)( nLn + L, )
+ <1,
o( 1 -p )
where b, = r(a + [|L|CKkexp(8)) and b, = (T + rCKkexp(68))Kexp(S8).
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Then there exists one and only one solution of ((N),(C)).

Proof. Let k be the left-hand side of (4.17). We shall show that

the operator V : Cr > Cr such that
(4.18) [V(n)1(e) = X ()0 L) - #(y) = L(p )T + b (¢)

is a contraction. Let Yi2¥, € Cr and let X1’X2 be fundamental

matrices of the following linear systems, respectively.
x" = Ale,y (£))x 5 x7 = A(t,y, (t))x.
By the same argument as (4.1), we obtain for t,T e J

X, (e)x; (1) < kexp(8) (i =1,2),
which yields

Ip, Il £ rCKexp(6),

where

for t ¢ J. Since

[x ()17 = A(e,y,(e))x () + [ A(e,y () - A(e,y (&) 1x (t),

by the variation of parameters formula, we obtain for t,T e J

x () = x (e)x M ()x, (1)

t
[, (00 4ls,,(s)) = als,y,(s)) 1x (s)as,
T
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then
1K, ()X (1) = X, ()X () < L K2exp(28) Iy, = ¥l
Hence we get

2
¥, = Xl < LoKexp(28) 1y, - v, 1,

and

-1
1

1

- 2.
X7t~ xSt < LoK2exp(28) 0y, - y, I,

Let Ui be matrices such that

L(Xi(-)xo) = U.x, (1i=1,2)

for X ¢ R°. We have

o, = U 0 < NLnx, - X0,

A

LN, K2exp(28) Ny, = ¥, lly-
By the same argument as (4.12) it follows that
Nw;H < 1/0 o1 =0 )3,
so that
e I T T A A NI/

1
ILIIL K*exp(28)

p2( 1 - p )?

1y, = ¥,

Moreover it follows, for t e J, that

T
e, (£) = p(e)0 £ Jnxl<t)xgl(s) - X, ()X () IMF(s,y (s))llds
0
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T .
¢ 1K, (O () ME(s,y () = Fls,y,(s))1ds
0

S Liboly, = ¥, lp
From (4.18) it follows, for t e J, that
1V(y )1Ce) = [V(y )1(e)y
<MK, = XU H0ILCy,) = My )+ 1Lhp 0]

SR L 1

L 18 PAC2D R SN I VA | I
XGOS I (y ) = Ly D0+ W (y ) = #(y )1+ RTINS

e, - p,le

bl
b, L K?exp(28) ILNb L KPexp(36)
< ly, = vl + - — |y, - v,l,
p( 1 -p ) ) (1 -0 )
Kexp(6)
+ UL+ L, + HLNL b )Ny, = vyl + Loblly, = vl
p( 1 -0 )

= kly, = v, llee

Thus, from (4.17), V is a contraction. This completes the proof.

Q.E.D.
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L.4. Existence and Uniqueness of Solutions for Linear Problenms.
Consider the following linear problem

(AL) x” = B(t)x + F(t,x)

(NH) L(x) = c,

where ¢ ¢ R". By the same approach as section 4.3 we obtain the

following results.

Theorem 4.4.1. Suppose that Hypothesis 4.1 holds and that there

exists a positive number C1 satisfying

T
1im inf * j sup [[F(s,x)lids £ c,
n >+ 70 x|sa
0
and
-1
(4.19) C, < /LR g unLn + 1)1,

where K = max{“XB(t)Xél(s)“: 0 s <t £T}. Then, for any c ¢ R",

there exists at least one solution of ((AL),(NH)).
Proof. From (4.19) there exists a number a, > 0 such that

. 1 - KUzt a,
= —1 "
KCENUGT LN + 1)

For any c ¢ R", we put a positive number r satisfying

el < a,r

and
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T
JHF(s,x)”ds < rc,
¢]

for x ¢ S .
r

Consider the following linear problem
(4.20) x’ = B(t)x + F(t,y(t))
(NH) L(x) = ¢

for y € C_. The above problem ((4.20),(NH)) has one and only one

solution Xy such that

t t
x,(£) = U3Me - g )] + [B(s)x (s)ds + [Fla,y(s))as,
0 0

t
where qy(t) = JXB(t)Xél(s)F(s,y(s))ds, with qu(t)” < KlfCl for t e
0

J. We shall show that
x (&) <r

for t e J. It follows that
t
lx, (el < nglu(a1r+uAnnqyuw) +an(s)unxy(s)nds trc,
0
by using Gronwall's lemma, so that

t

e, (e) < r(nugtiiay + U5 NILIK,C, + C Jexp an(s)nds
0
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< rlonugtna, + O (nugtunsnk, + 1) de, Ik
L r.
Therefore we can define an operator V. : C_ =+ C_ by Vl(y) = x,. V.

is continuous on C_ and the image Vl( c_ ) is a compact subset in
Cr. Thus, by Schauder's fixed point theoren, Vl has at least one
fixed point in C_, that is, ((AL),(NH)) has at least one solution in

Cr. This completes the proof. Q.E.D.

By using the contraction principle we can show the existence and

uniqueness of a solution of ((AL),(NH)) as follows:

Theorem 4.4.2. Suppose that Hypothesis 4.1 holds and that there

exists a positive number L3 satisfying
WF(e,x) - Fle,y)il £ Lolix = vl
for t € J, x € R" and y ¢ R®. If

-1
(4.21) (nug nnLnk, + 1)K LT <1,

n . ,
then, for any c € R°, there exists one and only one solution of

((AL), (NH)).

Proof. Let c e R" be given arbitrarily. Consider the above
linear problem ((4.20),(NH)) for y e C(J). It can be seen that for y
in C(J) there exists one and only one solution X, of ((4.20),(NH)).
We can define an operator V_ : c(J) » ¢c(J) by Vz(y) = x,. It can

be expressed as follows

[V, (y)1(t) = XB(t)Uél[c - L(qy)] + qy(t)-

- 71 -



We have
' -1
HVz(Y) - VZ(Z)Hoo < (HUB HHLHKl + 1)K1L3T”Y -zl

for y, z € C(J). From (4.21), V2 is a contraction. Therefore
((AL), (NH)) has one and only one solution. This completes the proof.

Q.E.D.

4.5. Two Points Boundary Value Problemns.

Consider the second order ordinary differential equation (E)

with boundary conditions (BC) or the equivalent linear problem

(4.22) x” = Bx + F(t,x)
(NH) L{x) = c.
Here we put as follows. x = “(u,v) € R with |x| = [u| + |v].
B = 01 . F(t,x) = 0
00 ’ f(t,u,v) ’
3 .
, u(e) ) alu(O) + azv(O) ; : o c,
v(e) B,u(T) + B_v(T) c,
-Then we have
1t o o
X . (t) = and U, = ! 2
B 01 B
8, B, T +8,
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When A = al(ng + 52) - a8, # 0, we obtain

—

sl ool BlT + B, -,
B ~ A 8
- B, o
and
”Uélﬂ = max[ ([8,7 + 8, [+]8, 1)/ [a], (la [+]a, )/ 8] 1,

so that Hypothesis 4.1 holds. Moreover we get kK, =1+ T, K = exp(T)
and ||| < o + B, where o = max(|a |,[a,|) and B = max([B |, |B,]).
By applying Theorem 4.4.1, an existence result for ((E),(BC)) is

obtained.

Example 1. Suppose that A # O holds and that there exists a

positive number C2 satisfying

T
lim inf % f sup |f(s,u,v)|ds < c,
n > +® ° Ix{|En

and

c, < 1/0 exp(T)L (1+T) Uz N(atg) + 1 1 1.
Then, for any t(c yC.) € R2, there exists at least one solution of

1’72
((E), (BC)).

By Theorem 4.4.2, the following result for the existence and

uniqueness of a solution of ((E),(BC)) is given.

Example 2. Suppose that A # O holds and that there exists a

positive number L such that
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lf(t,ul,vl) - f(t,uz,v2)l < L( Iul - uzl

for t e J, t(ul,vl) € R2 and t(uz,vz) € R2. If

[ ozt n(a+8) (147) + 1 J(1+7)LT < 1,

t 2 , .
then, for any (cl,cz) € R, there exists one and only one solution

of ((E),(BC)).
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CHAPTER 5

BOUNDARY VALUE PROBLEMS ON AN INFINITE INTERVAL

5.1. Introduction.

The following boundary value problem of the quasilinear ordinary

differential system

(N) x” = A(t,x)x + F(t,x)

(C) N(x) =0

is considered, where 4(t,x) and F(t,x) are both continuous on R xR",
and # :Cilm > R" is a continuous operator( not necessarily linear ).

Here

clim - { x e C(R") : 1lim x(t) exists and Ixi, <rl}, r> 0.

r b4 00

The above problem ({(N),(C)) is considered associated with the linear

problem
(L) ‘ x” = B(t)x
(LC) L(x) = 0,
. . . + 1im n
where B(t) is a real nxn matrix continuous on R and L : C > R
is a bounded linear operator. ctim = ¢ xeC(R") : 1lim x(t) exists }.

>+

It is assumed that the following hypotheses hold.
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+0

Hypothesis 5.1. JHB(S)Hds < 4o,
' 0

Hypothesis 5.2. There exist no solutions for ((L),(LC)) except

for the zero solution.

Hypothesis 5.3. There exists two numbers § > 0 and r > 0, and a

summable function m1 such that

4(e,x) = B(e) £ o (t)

for any t € R" and x e Sr’ and that

jml(s)ds < 8.
0

In section 5.3 the existence of solutions for ((N),(C)) is shown
by Schauder's fixed point theorem. In section 5.4 , under Lipschitz
conditions the existence and uniqueness of a solution for ((N),(C))

are proved by the contraction principle.

5.2. Preliminaries.

Let XB be the fundamental matrix solutions for (L) such that
XB(O) = I, where I is the identity matrix. Under Hypothesis 5.1 we

obtain the following lemna.
Lemma 5.1. Suppose that Hypothesis 5.1 holds. Then

(5.1) () x5 () < K
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for t,T € R" and there exist linm XB(t) and lim Xél(t), where
>+ >+

+00

K = ex([1B(s)1ds).
0

t
Proof. Since XB(t)Xél(T) =T + jB(s)XB(s)Xél(T)ds for t,T ¢ R”
T
so that

t
()5 O <1+ [1B(s)11K5(s) x5 (1) Nds,
0
by using Gronwall's lemma, which implies that (5.1) holds. Hence
we have for t € R’

IXg(e)n < K, WxpT ()N < K.

t
Since Xél(t) =7 - fXél(s)B(s)ds, it follows that
6]

2
151 (ey) = x5 e < | [ixgt(s)niB(s) s
t
1

I

2
KfuB(s>nds
t1

for t ,t, € R*. By Hypothesis 5.1 there exists lim Xél(t).

t>+®

Since XB(t>Xél(t) = I, it follows that there exists lim XB(t). This

t>+®

completes the proof. Q.E.D.
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From the above lemma there exists a unique constant matrix UB

‘such that
(5.2) L(xg()x ) = Upx,

for x, € R". Under Hypothesis 5.1 we get the following lemma

concerned with UB'

Lemma 5.2. Suppose that Hypothesis 5.1 holds. Then the
following statements (i) = (1ii) are equivalent mutually.
(i) Hypothesis 5.2 holds;

(11) Up is nonsingular;

+00

(1ii) For each continuous R"-valued function f such that [”f(s)”ds

0
n ' , , lim
< +® and each ¢ € R, there exists one and only one solution x € C

of the following linear problem

(5.3) x” = B(t)x + £(t)
(5.4) L{x) = c.

Proof. (i) » (ii). Let Hypothesis 5.7 hold. Then there exist no
vectors x e R" satisfying L(XB(')XO) = 0 except for the zero vector.

By (5.2) Uy is nonsingular.
(11) > (iii). Let Ug be nonsingular. Put

x(t) = XB(t)Uél[c - L(p)] + p(e),

where ¢ € R" and
t

p(£) = [Xp(e)x5}(s)£(s)ds
! |
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for t € R', then it can be seen that x(°*) is a solution of ((5.3),
(5.4)). From the uniqueness of solutions of initial value problems

for (5.3), x(*) is a uﬁique solution of ((5.3),(5.4)).

(i1i) » (i). It is clear. This completes the proof. Q.E.D.
Remark. Consider the case where L(x) = 1lim x(t). It can be
£+

easily seen that Hypothesis 5.2 holds under Hypothesis 5.71. The

following linear problem
x” = (sint/t)x, L(x) =0

shows that Hypothesis 5.1 is not necessarily satisfied under
Hypothesis 5.2. | | | |

It is clear that the inequality (5.1) holdsvunder Hypothesis 5.2.
The scalar equation x” = (sint)x implies that Hypothesis 5.2 does

not necessarily hold even if (5.1) is satisfied.
The following lemma is an elementary result in linear algebra.

Lemma 5.3. Let UB be nonsingular. Then there exists a positive

number p < 1 such that
(5.5) | hogtn < 1/e.

Under Hypotheses 5.1 and 5.2 there exists a p in (5.5). Such a

positive number p is fixed throughtout this chapter.

m

A set S in Cii is said to be equiconvergent if for any € > O

there exists a T(e) > O such that [£f(t) - lim f(1)|<e for all f € S

T+
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and all ¢t > T(e). In the same way as the well known proof of

Ascoli-Arzela theorem, we have the following lemma.

Lemma 5.4. If a set S in Cilm is uniformly bounded, equi-

continuous and equiconvergent, then S is relatively compact in Cilm

5.3. Existence of Solutions.
Consider the following linear problem

(5.6) x" = A(t,y(t))x + F(t,y(¢c))

(5.7) L{x) = L{y) = #(y)

for y € Ciim. Let Xy be the fundametal matrix of solutions of the
linear homogeneous system corresponding to (5.6) such that Xy(O)=I.

An existence theorem for ((5.6),(5.7)) is obtained as follows.

Theorem 5.3.1. Suppose that Hypotheses 5.1 and 5.2 hold. Let
non-negative number 8§, C, a and a summable function m, satisfy the

following conditions (5.8) - (5.10).

Y
Lnnugt

.
—_ ’

(5.8)  K2?8exp(§) <

aKexp(8) < p( 1 - p ) and

(5.9) p( 1 - p ) - aKkexp(§)
c <

~{ Kexp(8)ILn + o( 1 -0 ) }Kexp(é)’

+00

(5.10) mz(s)ds < rcC.

o —,
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Let F(t,x) and N(x) satisfy the following conditions (5.11) - (5.12),
(5.12), respectively.
(5.11)  WF(e,x)l & m (¢) for (t,x) e R'xS_;

(5.12) NL(x) = N(x)| £ ar for x e Ciim.

lim

Then for any y € Cr

sthere exists a nonsingular matrix Uy such that

(5.13) LK, (*)xg) = U x,

n . . ,
for X ¢ R, whose inverse satisfies

(5.14) nu;ln <1/ pC 1 =p) 1},

and there exists one and only one solution xy € Ciim for
((5.6),(5.7)) such that
- -1 _ _
xy(t) = U, [L(y) - #(y) L(py)]

t t
(5.15) v Jals,v(s))x (s)as + [F(s,y(s))as,

0 Q

t
where py(t) = ny(t)X;l(s)F(s,y(s))ds for t ¢ RT.

0

Proof. From Hypotheses 5.1 and 5.2 it follows that

+00

fHA(s,y(s))uds < 4
o]

for y e Ciim. Using Lemma 5.1, we have Uy satisfying (5.13). By the

same argument used in (5.1) it can be seen that
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(5.16) 1x, ()X H ()0 < Kexp(8)
for t,t e R+, so that
1%, (£)0 < Kexp(8) and 11X, (&)1 < Kexp(s).

Since, by the variation of parameters formula,

t

X,(e) = Xy(e) + X(e) [X5H()L 4ls,¥()) = B(s) }x (s)ds,
0

we get

t
1%, (¢) = Xp(elt < [uxge)xgt ()04 Cs,¥(s)) - B(s)IN, (s) hds
0

I

K%8exp(6).
This yields, by (5.8),
1, (e) = Xg(e)n < o/ uLnnugtn }

so that = for x, € Rr"

10 = U )x it = NLL(Xp() = X (<) )x 10

I

ncnnxg - XwaHXOH

(5.17) ollx I/ 1UZ .

(PN

We have, from (5.17) and (5.5), for Xy € R"

ollx Il 2 MUE (UG = U )x |

v

EN I S |
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2 xgll = 10 x /0,
which implies that
HUYXOH >p( 1 -0p )HXOH-

Hence Uy has the inverse satisfying (5.14).
By Lemma 5.2, the linear problem ((5.6),(5.7)) has a unique
solution xy satisfying (5.15). We shall show that [lxynoo < r. From

definition of p we obtain for t e R"
(5.18) pr(t)ﬂ < rCKexp(§).
It follows, from (5.14), (5.12) and (5.18), that
-1 -1
o, [L(y) - W(y) - L(py)Jn <y, Mnely) = wiy)u + nLnnpynm]

ar + [|[L}rCKexp(§)

p( 1 -p )

IA

so that, by (5.15), (5.11) and (5.10),

ar + ||[L||rCKexp(§) £

x ()1 < +rc+ |
y

' 0

Na(s,y(s))lix _(s)lds.
o( 1 -p ) y

By Gronwall's lemma we have

uxy(t)n < 4(s,y(s))lids).

ar + ||L||rCKexp(§) ¢
- + rC exp(f
p( 1 - p ) 5

Since

+00 + +

exp([14(s,y(s))1ds) < exp([Ua(s,y(s)) - B(s)uas + [1B(s) yds)
0 0 ' 0
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< kKexp(§),

it follows, by (5.9), that ny(t)" < r for t e R'. The existence

of lim x_(t) is easily proved. Hence x_belongs to cti? This
t>+o y r

completes the proof. Q.E.D.

By applying Schauder's fixed point theorem we obtain the

following theorem.

Theorem 5.3.2. Suppose that the same assumption in Theorem
5.3.1 holds. Then there exists at least one solution of ((N),(C)),

which belongs to Cilm.

Proof. It is easy to show that the solution x, of ((5.6),(5.7))

can be expressed by
-1 )
.1 t) = X (e)U_~LL -V - L + t
(5.19) x,( ) y( ) y [Lly) (y) ()1 + p (£)
for t e R+, where y € Ciim. From Theorem 5.3.1 there exists one and

only one solution xy(') of ((5.6),(5.7)) for any y € Ciim, so that
Clim N Clim b limo
r r

y V(iy) = x,, for y e C,

we can define an operator V :
3

Then V maps the convex closed set Ciim

into itself.

We shall show that V is a continuous compact operator. For the

continuity of V it suffices to prove that
V(y ) > Viyy) (2> <),

as y_ > Yo (n > ») in Cilm. Let Xn ,XO be fundamental matrices
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of the following linear systems, respectively,

’

x" = A(t,y (t))x sooxT = A,y (t))x.
It follows that for t,t e R”
X ()X T ()1 < Kexp(8) and X ()X (1) < Kexp(6).
Since
(X (e)17 = ale,y (£))x (£) + [ 4(e,y (e)) - Ale,y (&) 1x_(¢),

by the variation of parameters formula, we obtain

+00

X, = X, lg < Kzexp(26)J”A(s,yn(S)) - A(s,y (s))lds.
0

Prom Lebesgue's convergence theorem we have

(5.20) X > X, (n~>w)

in M(RY). Let U , U, be constant matrices satisfying the

following relations, respectively.

L(Xn(')x ) = UnX H L(XO(')X

0 0

By (5.20) we get
W, =, 1 >0 (n=>=).
From Theorem 5.3.1 we obtain
0-M 1 < 1/CeC 1 =0 )} and Uyt < 1/{ o( 1 -p ) 1.

We have
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T e TR T | A [
<nu - ug /et 1 -0 )2 ).
Thus
Ww-t - ot >0 (o).

By the same way as (5.20) we get

~1

x> x71
n 0

(n =+ o)

in M(R"). Hence it follows that, by Lebesgue's convergence theoren,
t t v
[ (o) (suy (s))as > [x;H(s)F(s,yg(s))ds (n > =)
0 0

uniformly with respect to t € R*. Therefore

V(y ) > Vy) (n>=).

In order to prove the compactness of V it suffices to show that
the image V( Ciim ) is uniformly bounded, equicontinuous and

1im

equiconvergent. By the definition of V we obtain for y e Cr

(5.21) ()l = Nx ll, < 1

Thus V( clim ) is uniformly bounded. From (5.15) and (5.21) it
r

follows that for t;s t, € R"

() () = (V) ()

2
J{ ml(s) + |B(s)| }rds| +

t

<

’

Jéz(s)ds
t

1 1
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which implies that V(Ciim) is equicontinuous. By the same argument
about the equicontinuity, V(Ciim) is equiconvergent. Thus, by Lemnma

1im

5.4, V(Ciim) is a relatively compact set in o

According to Schauder's fixed point theorem, V has at least one
fixed point in Ciim. Therefore there exists at least one solution

for ((N),(C)) and this completes the proof. Q.E.D.
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5.4. Existence and Uniqueness of Solutions.

When A(t,x), F(t,x) and ¥(x) satisfy Lipschitz conditions,
respectively, the existence and uniqueness of a solution for

((N),(C)) are obtained by the contraction principle as follows:

Theorem 5.4.1. Suppose, under the assumptions in Theorem 5.3.2,

that there exists a summable function n satisfying

N4(e,x ) = Ale,x ) < nle)lx, = x|

and
IFCe, %) = Fle,x ) < nle)lix, = =,
+ o
for t € R+, X9 X, € Sr’ with L1 = Jn(s)déq and that a positive
0

number L2 satisfies

W (y,) = #(y )< Lty = v, 0,

for Yoo ¥, € Cllm. Let Ll and L2 satisfy the following inequality.
bleexp(26) " ILiKexp(8)
Ll +b2 1+ ‘
o( 1 -0 )

p( 1 -p )

Kexp(8){ Ly + L}
(5.22) + <1,
o( 1 -p)

where b = aC + ||[L||CKexp(S8) and b2 = { 1 + rCkexp(8) }Kexp(§).
Then there exists one and only one solution of ((N),(C)L which

belongs to Cilm.
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Proof. From Theorem 5.3.1, we can define an operator V : Ciim -

Cilm by V(y) = xy for y ¢ Cilm, where xy is a unique solution for

((5.6),(5.7)) in Ciim. From (5.19) we get for t ¢ R™
-— -1 - -—
(5.23)  [V(n)I(6) = X (UML) - H(y) = L(p )] + p (¢).
Let k be the left-hand side of (5.22). We shall show that V is a

1im

contraction. Let yi1Y, € Cr

and let X1’X2 be the fundamental

matrices of the following linear systems, respectively.
x" = Ale,y (e))x 5 x" = A(e,y (¢))x.
By the same argument used in (5.1), we obtain for t,t ¢ R”
1%, ()X;H (1)1 < Kexp(8) (4 =1,2),
which yields

Ip; Nl £ rCKexp(8),

where

t
pi(t) = X, () [x;2(s)F(s,y,(s))ds
0

for t € R”. Since
[x, ()17 = a(e,y (e))x () + [ a(e,y (e)) - ale,y,(£)) 1x (¢),

by the variation of parameters formula, we obtain for t,T e RT
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X (e) = X, ()% (1) x (1)

t

[0 als,y () = als,y,(s)) 1x,(s)ds.
T

Then

+00

X, (e)x] (1) = X, (e)x; (0] Kzexp(26>fn(s>uyl(s) - v,(s)lids
0

I

I

2
L K*exp(R8) 1y, = ¥, llpe
Hence we get
2
X, - X, < L K eXP(25)HY1 - ¥,

and

-1
1

1

X" = X7l £ LoK2exp(28) 1y, = ¥, Il

Let Ui be matrices such that

L(Xi(°)xo) = U,x (i=1,2)

0

for x_ e R".

o We have

N0, = U0 <NLNnx, = Xl
SNLNL K2exp(28) Ny, = v, 1l

By the same argument as (5.14) it follows that

ot < 1/0 o 1 - 0 )3,
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so that
-1 -1
S HUl HHUl - UZHHU2 ]

HLHLleexp(25)

ly, = ¥y llo-
02( 1 -p )2 ! 2
Moreover it follows that
+00
1P, = Pyl < [IX ()X]2(s) = X, ()3 () INF (5,7, () Ids
0
+00

+ (1, () (1P (s, v, () - Fls,y,())ds
0

In

rCLlKZexp(26)Hyl -yl * LlKeXP(é)HYl - Yyl

Lib,lly, = 7,0

From (5.2) it follows that for t e R’
vy )1(e) - [V(yz)J(t)H
P A W A IS VAC I I C O N I VA T I

BN [N VSRR I C N I VAT N

XN,
MU THENL y,) = Ly )0+ Wy ) = #(y )0+ LM, = p, ]

+ e, - p,ll,
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b, L K?exp(26) NLib, L K*exp(38)

< Ny, = vy I, + ly, = vl
o( 1 -0) ! 2 p2( 1 - p )2 ' 2
Kexp(§)

+ CHLW + Ly + WLUL, b, My, = yolle * Lob Ny, = v ),
p( 1 -0 )

= klly, = ¥l

Therefore, from (5.22),V is a contraction. This completes the proof.

Q.E.D.
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CHAPTER 6

STABILITY OF SOLUTIONS

6.1. Introduction.
The following quasilinear ordinary differential system
(N) x” = A(t,x)x + F(t,x), F(t,0) = 0

is considered in this chapter. Here A(t,x) is a real nxn matrix
continuous on R'xR" and F(t,x) is an R"-valued function continuous
on R'xR". Together with the above system, the following linear

system
(L) x” = B{t)x

is concerned, where B(t) is a real nxn matrix continuous on R'. The
stability of the zero solution of (N) is discussed under the

following hypothesis.

Hypothesis 6.1. The zero solution of (L) is uniformly

asymptotically s;able in the large.

Hypothesis 6.1 holds if and only if the zero solution of (L)
is exponentially asymptotically stable in the large ( see [62] ).

In order to investigate the global behavior of solutions of (N),
Schauder's fixed point theorem will be applied under the following

hypothesis.
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Hypothesis 6.2. 411 the solutions of (N) for initial value

problems are uniquely determined.

- In what follows we assume that A(t,x) is close to B(t) in the

following sense.

Hypothesis 6.3. There exists a constant § > O such that

+0

f sup l|A(s,x) - B(s)|lds < §
l

o llxlisr

for any r 2 0.

In Theorem 6.3.1, a sufficient-condition that the zero solution
of (N) is uniformly asymptoticaliy stable in the large is obtained
by Schauder's fixed point theorem. A similar approach to [53 - 56]
is used, and Theorem 6.4.1 for the exponentially asymptotic stability
in the large of the zero solution for (N) is given by applying

Liapunov's second method.

6.2. Preliminaries.

Lemma 6.2.1. Hypothesis 6.1 holds if and only if there exist

K > 1 and A > 0 such that

-1

(6.1) 1xg(e) x5

(1) £ Kexp( - A(t - 1))

for t > T, where Xp is the fundamental matrix of solutions of (L)

such that XB(O) = I. Here I is the identity matrix (see [23]).

‘Lemma 6.2.2. Suppose that Hypotheses 6.1 and 6.3 hold. Then,

- 94 -



for r 2 0 and y in C(R+) such that |yll, £ r, we have

(6.2) qu(t)X;l(T)n < Kexp(KS - A(t - 1))

for t > 1, where X 'is a fundamental matrix solutions of

x” = A(t,y(t))x and Xy(O) = If

Proof. Let r > 0 and y € C(R") such that iy, £ r. By the

variation of parameters formula, we have

X, (2) = xg(e)xp ()X (1)
t
¢ [X5(0)x51 () 4(s,¥()) = B(s) }x (s)as
T

for t > t. From (6.1) it follows that

nxy(t)x;l(r)nexp(xt) < Kexp(At)

t v
v k[14(s,(5)) = BLS)IIE ()2 (1) fexp(hs) ds

T
for t > t. Thus, by applying Gronwall's lemma, we have
t .
an(t>X;1(r)uexp<At) £ Kexp(At + KJnA<s,y(s)) - B(s)lids),
T
which implies that (6.2) holds. This completes the proof. Q.E.D.

6.3. Uniformly Asymptotic Stability in the Large.

In this section we consider the below condition (6.3) on F(t,x),
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which is appeared in [40] and [44]. Under additional conditions a

stability theorem is given as follows:

Theorem 6.3.1. Suppose that Hypotheses 6.1 - 6.3 hold and that
there exists a non-negative number C < 1/{ Kexp(Kk§) } satisfying the

following conditions (6.3) and (6.4).

+00

(6.3) 1im inf 1 j sup [[F(s,x)llds £ C;
r > +® r o lIxlisr
+00
(6.4) lim inf - J sup |IF(s,x)llds < C.
r > +o0 T o llxlisr

Then the zero solution of (N) is uniformly asymptotically stable in

the large.

Proof. (Uniform Boundedness) 'Let a > 0 be given arbitrarily.

By (6.3), there exists a B > a satisfying

Kaexp(KS§)
(6.5) B >
1 - CKexp(K$)
and
+00
(6.6) . f, sup |IF(s,x)llds < BC.
o lxl=B

For v > O, 1€l £ a, and i ¢ N, we put

]

(1) = max{4(e,x)IB+IF(t,x)l: t e J, lxI < B},

where Ji = [1,7T + i]. We consider the following subset DB(i) in

C(Ji)’ where C(Ji) is the space of continuous functions on Ji with
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the supremum norm.

DB(i) = {y € C(Ji): v satisfies conditions (6.7)—(6.9) below }.

(6.7) y(1) = &;
(6.8) ly(e)ll < B for t e Ji;
(6.9) ly(e) = y(s)n < mg(d) |t - s| for t,s e J,.

It follows that DB(i) is convex and closed. By Ascoli-Arzela's
theorem, DB(i) is a compact subset in C(Ji).

Consider an initial value problem

(Ny) x* = A(e,y(t))x + F(t,y(t)), x(1) =¢

for y € DB(i). It is easily seen that for y e DB(i) there exists

one and only one solution x,, of (Ny) such that

t
(6.10)  x () = X ()X (x)E + jxy<t>x;1(s>F<s,y(s>>ds
T

for t € J. From (6.2), (6.5), (6.6), and (6.10), we obtain Xy(T) =

£ and
lx ()i £ Kexp(KS§)a + Kexp(KG)J supllF(s,y)lds
d o lIylisg

|~

Kexp(k§)(a + BC)

I
w

t
for t e Ji' Since xy(t) = g + J[A(s,y(s))xy(s) + F(s,y(s))]ds,

T
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we have
Ix,(e) = x ()N < mg(i)|e ~ 5]

for t,s e J.. Thus, X, belongs to DB(i) for y e DB(i)'
We can define an operator V : DB(i) > DB(i) by V(x) = X It

can be expressed as follows: |

t

[(V(y)1(e) = Xy(t)X;l(T)E + ny(t)X;l(s)F(s,y(s))ds

T
for ¢t e'Ji. In a similar way to the proof of an analogous part in
Theorem 3.3.2 in Chapter 3, we can show that V is continuous on
DB(i). By applying Schauder's fixed point theoren, thas'at least
one fixed point in DB(i). Therefore there exists at least one
solution x(+) of (N), which belongs to DB(i). For any i ¢ N, we can
choose a solution xi(°) in DB(i), so that we obtain a sequence {xi},

where x. satisfy the following conditions (6.11) - (6.13).

(6.11) x, belongs to DB(i) for i € N;
(6.12) Xi(t) satisfies (N) for t e Ji;
(6.13) Xi(t) = xi(T+i) for t 2 1T + 1i.

Let J = [0,+»). It is clear that {xi} is uniformly bounded and
equicontinuous on any compact interval in J. In a similar way to
the proof of Ascoli-Arzela's theorem, we obtain some subsequenc of
{xi} which converges uniformly on any cqmpact interval in J, the

limit of which is a solution of (N) passing through £ at 1. From
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Hypothesis 6.2, it follows that for any o > O, there exists a B > O
such that if 7 > 0 and &) £ a, then [x(t))] < B for t > 1, where
x(*) is a unique solution of (N) passing through £ at 1. This

implies that the solutions of (N) are uniformly bounded.

(Uniform Stability) Let € > O be given arbitrarily. From (6.4)

there exist n > O and n, > 0, n, < nn < g, satisfyin
1 AN ying

1

e n(1 - CKexp(Ké))
f suplliF(s,x)llds < nC  and n, .
o lxli=n Kexp(K§)

For 7 2 0, &1 £ n,» and i € N, we consider a constant mn(i) and a
subset Dn(i) in C(Ji)‘ In a similar to the proof of the uniform
boundedness, we can show that the zero solution of (N) is uniformly

stable.

(Uniform Attractivity in the Large) For any o > 0, we choose a
B satisfying (6.5) and (6.6). We denote x(+) by the solution of (N)
passing through & at 1, where any v > O and |l £ a. Then [x(t)] <

B for t > t. Since x” = B(t)x + [4(t,x) - B(t)lx + F(t,x),

t
x(£) = X)X HOE + [x5(e)x52 () [4(s,x()) = B(s)Ix(s)ds
T

t
+ JXB(t)Xél(s)F(s,x(s))ds
T

for t 2 1. From (6.1) and (6.3), for any sufficiently small ¢ > O

there exists a large T; > O satisfying
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IXg(£) X5  (1)EN < e/ [3exp(ks)]

and
t
KJHF(S,X(S))Hds < e/[3exp(KkS)]
T+T,

for t > 1 + T, . We have

T+T1
Kexp(-At) [exp(As) IF(s,x(s))Ids < e/ [3exp(Ks)]
T
for t > t + T2, where T, > T;. Hence
t
Ix(e)0 < e/exp(k8) + K[Ua(s,x(s)) - B(s)llx(s)ds
T
for t > v + T2. By Gronwall's lemma and Hypothesis 6.3, we obtain
t
(6D < eexp(k[4(s,x(s)) - B(s)lds - ko)
0
L€
for t > 1t + T,. This completes the proof. Q.E.D.

6.4. Exponentially Asmyptotic Stability in the Large.

By using Liapunov's second method as well as Schauder's fixed

point the following theorem is obtained.

Theorem 6.4.1. Suppose that Hypotheses 6.1 - 6.3 hold and that

+
(6.14) J sup |[F(s,x)llds £ rC
- o lIxli=sr
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for all r > 0, where C is the same as in Theorem 6.3.1. Then the
zero solution of (N) is exponentially asymptotically stable in the

large.

Proof. By (6.14), the inequality (6.3) holds. Let a > O be
given arbitrarily. When T Z O and €]l £ a, in a similar to the
argument used in the uniform boundedness of Theorem 6.3.1, it can be
seen that |x(t)|] < b for t > T, where x(+) is the solution of (N)

passing through £ at t and

& IKexp (KS)
b =
1 - CKexp(KS§)
We denote
n(t) = fA(e,x(t)) - B(t)

for ¢ > T and
U(t,y) = supl l¢(t+s;t,y)llexp(is) + s > 0}

for t > T and |yl £ b, where ¢(*;t,y) is the solution of (L) passing

through y at t. From Theorem 19.1 in [62], we have

Iyt < vle,y) < Kiiyll,

'U(t’yl) - U(t)}’z)l S K”YI - yzll,
and

U (ty)’)S‘ }\U(t;}’)

(L)

for t 2 1, and lyl, Ny, I, ly,I < b.
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Consider the following function

t

W(t,y) = 0(e,y)exp( = K[n(s)ds )
T

for t > t and llyll £ b. By the same way as the proof of Theorem

4.1 in [62], we have
exp( - K§ )iyl < w(t,y) < Klyl,
[wie,y ) = w(e,y )| < Kliy, = v,

for t > 1 and Ilyl, Hyln, Hy2H < b. Moreover it can be shown that
W(t,x) is continuous in (t,x). Since x” = B(t)x + [4(t,x) - B(t)]x

+ F(t,x), we have

t )
W;N)(t,X(t)) < exp —KJH(S)dSJ[ - Kn(e)U(e,x(t)) + UZL)(t,X(t))
T

+ KNA(t,x(e)) = B(e)x(e) + KWF(e,x(e))N ]

IA

t
exp -an<s)ds (= kn(e)U(e,x(t)) = AU(t,x(£))
T

+ Kn(t)Uu(t,x(e)) + KNF(t,x(e))| )

2N

- A (e,x(t)) + KNF(e,x(e))y
for t > 1, and hence

& ICKk?exp (K§)
w(ie,x(t)) < | w(t,g) + exp(- (e - 1)).
1 - CKexp(KS)
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Therefore

CKk?exp (KS§)
Ix(e)l £ exp(KS)| K + Netexp(- (e - 1))
1 - CKexp(KS§)

Kexp(K8) &1l
= exp(- A(t - 1))
1 - CKexp(KS)

for ¢ > 1, which implies that the zero solution of (N) is
exponentially asymptotically stable in the large. This completes
the proof. Q.E.D.
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CHAPTER 7

ASYMPTOTIC EQUIVALENCE

7.1. Introduction.

The following linear ordinary differential system (L) and

quasilinear system (N)

(L) g B(t)x

x
I

(N) x’ A(t,x)x + F(t,x)

are considered in this chapter. Here B(t) is a real nxn matrix
continuous on R, and 4(t,x) and F(t,x) are both continuous on R'xR®.
The asymptotic equivalence between (L) and (N) is treated under the

following hypothesis.
Hypothesis 7.1. There exists a constant K > 1 such that

(7.1) | nXB(t)Xl;l(T)n < K

for t 2 1 2 0, where XB is the fundamental matrix of (L) such that

XB(O) = J. Here I is the identity matrix.

Hypothesis 7.1 holds (i.e., the zero solution of (L) is uniformly
stable) if and only if all the solutions of (L) are uniformly bounded
(see [23]). It is assumed that A(t,x) is sufficiently close to B(t)

in the following sense.

Hypothesis 7.2. There exists a constant § > O such that
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40

j sup ll4(s,x) - B(s)|ds <8¢

o lxlisr

for any r 2 0.

Here A(t,x) and F(t,x) are not necessarily Lipschitz continuous.

However, the following hypothésis is assumed.

Hypothesis 7.3. A1l the solutions of (N) for initial value

problems are uniquely determined.

In what follows sufficféﬁt conditions for the asymptotic
equivalence are given by a similar approach to [47] and [55] as
well as by using Schauder's fixed point theorem. In Theeorem 7.3.1,
under a condition which is concerned with the integral of F(t,x) in
the neighborhood of the origin, the uniform stability of the zero
solution for (N) and the asymptotic equivalence between (L) and (N)
are proved. In Theorem 7.3.2 the condition on F(t,x), which is
considered for the existence of solutions of (N) in [40] and [4417,
ensures the uniform boundedness of solutions for (N) and the

asymptotic equivalence between the two systems.

7.2. Preliminaries.

Lemma 7.2.1. Suppose that Hypotheses 7.1 - 7.2 hold. Then, for

any r > 0 and y e C(R") such that iy, £ ry we have
(7.2) 1%, (£)X P ()1 < kexp(K8)

for t > 1T > 0, where Xy is a fundamental matrix solutions of
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x” = A(t,y(t))x and Xy(O) =T,

Proof. Since X;(t) = B(t)Xy(t) + [A(e,y(t)) - B(t)]Xy(t), by

the variation of parameters formula, we have

X, (t) = XB(t)X;I(T)Xy(T)

t B

+ xp(6) [151 () LAls, ¥ (s)) - B(s)IX (s)ds

T

for ¢t > 1 2 0. It follows that, by (7.1),

t
X, ()X (T < K+ KfﬂA(s,y(s>> = B(s) X, ()X * (1) yds
T

for t > t 2 0. From Gronwall's lemma, we get
t .
1%, ()X, (00 < Kexp| K[14(s,(s)) - B(s) yds
T

< Kexp(K§)

for ¢ > 1 > 0. This completes the proof. Q.E.D.

By Schauder's fixed point theorem the uniform stability of the

zero solution of (N), with F(t,0) = 0, is shown as follows:

Lemma 7.2.2. Let Hypotheses 7.1 - 7.3 hold. Suppose that
F(t,0) = 0 and that there exists a positive number C < 1/{Kexp(KkS)}

such that

, 4+
(7.3) lim inf 1 f supllF(s,x)|lds £ C.
r>+o0 T o lIxlisr
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Then the zero solution of (N) is uniformly stable.

The above lemma can be proved in the same way as the proof of
Theorem 6.3.1 in Chapter 6. Furthermore the following lemma is

obtained.

Lemma 7.2.3. Let Hypotheses 7.1 - 7.3 hold. Suppose that the

following condition is satisfied.

+00
(7.4) lim inf ; J supllF(s,x)llds < C,
r > +® o lxlisr

where C < 1/{Kexp(Kk8)}. Then the solutions of (N) are uniformly

bounded.

7.3. Asymptotic Equivalence.

In the following theorem the asymptotic equivalence between (L)
and (N), zero solutions of which are uniformly stable, respectively,

is shown by Schauder's fixed point theorem.

Theorem 7.3.1. Suppose that the assumption in Lemma 7.2.2

holds. Then (L) and (N) are asymptotically equivalent.

Proof. Let a > O satisfy a, <1 - CKexp(k§). From Hypothesis

7.1 and (7.3), there exist positive numbers a and n (a, > n) such

1 1

that, when T > 0 and &} < n,
a1(1 -~ CKexp(Kk$§) - ao)

(7.5) Hxl(t)H <
Kexp(KS§)
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for t > 1, and that

00
(7.6) ‘ J sup lF(s,x)lds £ alC.
o lxlisa,

Here xl(-) is the solution of (L) passing through & at 1. We shall

show that there exists a solution x(+) of (N) such that
Ix(e) - x (el » 0

as t » +o, and [Ix(t)]] < a, for t > 1. Let { €, > 0} be a sequence

1
such that

2091 €i-1
(7.7) e < min| a, - n, and that e, <
Kexp(K§) 3K

for i e N. From Hypothesis 7.1 and (7.3), there exists a divergent

sequence { t, >t : ¢ =71, t,> t.  for i € N} such that
400
(7.8) al[ ;gﬁégi(s,x> - B(s)lds < €,
Fi-1
and that
+00
(7.9) [ ﬁzﬁégj(s»x)ﬂds L e
Fi-1

for i e N. Let J, = [1, t,] and J = [t,+»). We define a number

m(i) = max{ [A(t,x)la +IF(t,x)l: ¢t e J, Nxl < a, }
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and denote the following sets.

(i) ={ z e C(J) : z e C(i-1), fiz(t) - 2(r)l < m(i)|e - r]

for t,r € J., and lz(t) - xl(t)n L e, for t 2> t }
for i € N, where
c(0) ={ z e c(J) : fz(e)) £ a, for t e J }.

Let D(i) be the subset in C(Ji) such that, for any y e D(i), there
exists a z € C(i) satisfying z(t) = y(t) for t e g Then D{(i) is
convex and closed. By Ascoli-Arzela's theorem, it is a relatively
compact subset in C(Ji) for i € N.

Consider an initial value problem
(¥,) x" = Ae,y(e))x + F(e,y(e)), =x(t.) = y(t.)

for t € Ji’ where y € D(i). There exists one and only one solution

x_ of (Ny), which belongs to C(Ji)’ such that

y
t

(7.10) x,(8) = X ()X M (e dy(e ) JXy(t)X;l(s)F(s,y(s))ds
t

i

for t € J.. It follows that, by (7.2), (7.5), (7.6), (7.7), and the
definition of D(i),

+00

Ix (e) < Kexp(KS8)ly(e. )N + Kexp(Ké)f supl|F(s,y)lds
Y * lylisa
i 0 1

al(1 - CKexp(KS§) - ao)
< Kexp(K$) te. +alcC
Kexp (KS) 1
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t
for t e J,. Since x,(t) = y(&,) + [[A(s,y(s))xy(s) ¢ F(s,y(s))]ds
) |

i

for t e Ji’ we obtain

t
1, (8) = x (O < |[T0aCs, () ay + 1 (s, (s))1Tds
r

(7.11)
<m(i)|t - rf

for t, r e Ji' We shall show that X, belongs to D(i-1). It suffices

that ny(t) - Xl(t)ﬂ Le; ,fortel, = [ti_l, ti]. Since

t

x,(8) = Xp(e)xp (e )y (e) + Xp(e) [X51(s)[4(s,5(s)) = B(s)]x (s)ds
t.
(7.12)
t
+ 25(e) [151 () F(s,v(5)) as
t

I

and x (t) = XB(t)Xél(ti)xl(ti) for t e I_, we have, by the definition
of D(i), (7.1), (7.7), (7.8), and (7.9),

t. t.
1 1
lIx, (e) - x, (e)0 < Ke; + Kalan(s,y(s)) - B(s)lids + Kan(s, y(s))lds
t. t.
1-1 : i-1
(7.13) < 3Ke,
Lgi
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for t e I, and hence x, € D(i). We can define an operator V : D(i)

+ D(i) by V(y) = X, It can be seen that

t
V() 1Ce) = X ()5 e Iy(e) + X () [x,2(s)F(s,y(5)) ds
t

i

for t e Ji’ then V is continuous on D(i). As n > +w, if Yo T Yo in

D(i), then Xy(t) - Xy(t) uniformly for t e J.. By using Schauder's
n 0

fixed point theorem, V has at least one fixed point x, in D(i) for

f
any i € N. From the definition of D(i), there exists a z e C(i)
such that z(t) = Xf<t) for t € J.. Let x, = z. Then we obtain a
sequence {Xi}’ where Hxi(t)n < a for t e J, and { X, }ois’
equicontinuous on any compact interval in [1,+®). In a similar way

to the proof of Ascoli-Arzela's theorem, there exists a subsequence,

which limit is a solution x of (N) as well as satisfies
(7.14) 1x(8) = %, ()1 0

as t - +o,
Conversely, by Lemma 7.2.2, there exists a positive number n <

a, such that, when T > 0 and {&]l < n, the solution of (N)

a1(1 - CKexp(Kk$) - ao)

Kexp (KS§)

ly(e51,8)1 £
where a and a, are the same as in (7.5). We denote y(+) by the

solution y(<;t,&) and Xy the fundamental matrix for solutions of

x” = A(t,y(t))x.
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Consider the following sequence { €. > 0 } such that

aja; 5
e < a, - M, and that €, <
Kexp(KS§) 3Kexp(KS)

i-1

and { £, > 1} satisfying the foregoing (7.8) and (7.9). We define

m (1) = max{ B(t)fa, = t e J, lxl < a, }

and the following sets Cl(i), D (i) ( for i € N ) and Cl(O).

1

Cl(i) ={ zeC(J) : z ¢ Cl(i—l), nz(e) - z(r) | < ml(i)lt - rl
for t,r € Ji’ and llz(t) - y(e)| £ €, for t > t }s

Cl(O) ={ ze Cc(J) : gz(e)] £ a, for t e J };

Dl(i) ={ ue C(Ji) ¢ there exists a z € Cl(i) such that

z{(t) = u(t) for any t € Ji }.

For any i € N and u € Dl(i), there exists one and only one
solution X, for the following initial value problem
x’= B(t)x; X(ti) = u(ti),

. . o _ -1 .
where t e J.. Since xu(t) = XB(t)XB (ti)u(ti), we have

a1(1 - CKexp(Kk§) - ao)

lx (e)) <K + €, < a
¢ Kexp(KS§) 1 L
for t e Ji. This yields
t
e, (£) = x, ()1 < |[1B(s)a,ds
r
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<m (i)le - r
for t, r e Ji' Furthermore

e, (£) = y(e)il < e,

for t e Ii‘ In fact, it is follows that

t
x(8) = X ()X (e ule,) + X () [x72(s)[B(s)-4(s,y(s))]x, () ds
t.
and
t
y(6) = X ()M Dyle,) + X ()X H()F(s,y(s))ds

t.
1

for t e Ii’ we obtain-

Ix, (e) = y(e)l < Kexp(k&)ly(e,) - ule )]

t. t.
+ Kexp(xa>aljn3(s) = 4(s,y(s))qds + Kexp(KS)J"F(s,y(s))”ds
t t

i-1 i-1
L e

i-1

for t e I.. Hence x belongs to Dl(i). In the same argument used

in (7.14), there exists a solution x of (L) such that
Ix(t) = y(e)y + 0
as t > +o, This completes the proof.. : Q.E.D.

Under the condition that (7.4) holds, the asymptotic equivalence
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between (L) and (N), solutions of which are uniformly bounded,

respectively, is proved by Schauder's fixed point theorem.

Theorem 7.3.2. Suppose that the same assumption in Lemma 7.2.3

holds. Then (L) and (N) are asymptotically equivalent.

Proof. From Hypothesis 7.1, for any o > O, there exists a B > O

such that, when T > 0 and €]} < a, the solution of (N)

A
w

e, (e5T,8) 01 <

for t > 1. Let x_(+) = xl(-;T,E). By (7.4) we can choose a b > B

1
such that

40

f sup [[F(s,x)|lds < bC.

o Ixll=b

Let { e, > 0 } be a sequence satisfying e, < b - B and ¢, < e, _./(3K)

for i € N. From Hypothesis 7.1 and (7.4), there exists a divergent

sequence { t, 2T vty =1, t, >t forielN } such that
+00
b(1 + C)exp(kS§)| sup l|4(s,x) - B(s)|ds £ €.
lIxl<b '
Fi-1
and that
+00
sup lIF(s,x)lds £ €
lIxli=b
Fi-1

for i € N. We define a number n(i) and sets E(i) (for i e N), E(O)

as follows:

- 114 -



o]
.
~
I

max{ JA(t,x) b+ F(t,x) )+ ¢ e J.=[t,c .1, lix| < b };

E(i) = { z e C(J) : z e E(i-1), llz(t) = 2z(r)) < a(i)|t - r|
for t, r € J., and nz(e) - xl(t)n Le; for t 2 ¢t };
E(0) ={ z e Cc(J) : Yz(e)| £ b for t € J = [T,+®) }.

Let F(i) be the subset in C(Ji> such that, for any y e F(i), there
exists a z e E(i) such that z(t) = y(t) for t e g F(i) is a
convex and compact subset in C(Ji) for i e N.

Consider an initial value problem
(Ny) x" = Alt,y(e))x + F(e,y(t)),  x(t,) = y(t))

for t e J., where y € F(i). The solution X, of the above problem

satisfies (7.12) for i € N and t € Ii = [ti ti]' We have

-1?

t,
e, (601 < Qi (e ive ) + K[ 1a(s,v()) = B(s)lx, (s) lids
t

t.
1
+ Kan(s,y<s>)nds
t

t.
1
bK + Kqu(s,y(s)) - B(s)nnxy(s)nds + bCK,
t

I

so that, by using Gronwall's lemma, we obtain
I, (e < bK(1 + C)exp(KS)

for t e I.. Moreover ny(t)" < b for t e g In a similar way to .

(7.13), we have
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t.
Ix,(e) = x (el < ke, + bk(1 + C)exp(Ké)an(s,y(s)) - B(s)lds
t

i-1

t.

1
+ k[IF(s,7(5)) s
tia
S €5

for i € N and t € Ii’ and hence

x, Cedll < lix (e)i + ey S B+ ey < b

0
for t € J.. In a similar way to (7.11), we get
Ix, (e) = x ()1 £ n(i)|t - rf

for t, r e J,. Therefore x,, belongs to F(i).
In the same manner as (7.14), there exists a solution x of (N)

such that
Ix(t) = x () > 0

as t - +o,

From Lemma 7.2.3, for any a > 0, there exists a Bl > 0 such
that, when 1 > 0 and JIE]l £ o, the solution y of (N) satisfies
Ny(e) < B, for t > 1, where y(t) = €. In the same way as (7.14),

there exists a solution x of (L) such that
Ix(t) = y(e)g = O

as t > +», This completes the proof. : Q.E.D.
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