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Abstract

An alternate description for ribbon disk complements in 4heall is provided. It
is known (and reestablished) that this description is eeit to the standard LOT
description, up to 3-deformation. Amenable to geometrjuarents, the alternate de-
scription yields asphericity results for ribbon disk coempkents using simple graph-
theoretic criteria and, later, using a relative homotopgugr which arises naturally.
In the course of making and modifying the description, twgoathms are given for
presenting ribbon disk groups.

1. Introduction

A ribbon is an immersed 2-dimensional disk B whose boundary is a p.l. knot
and whose self-intersections arbon-like meaning they are of the type illustrated
in Fig. 1. In particular, the singular set for a ribbon immensp: B> — S* consists
of pairs of arcs inB?, each pair comprised of a large, properly-embedded arc and a
small, interior arc. Examples of ribbons are shown in Fig. 2.

A ribbon diskis a properly embedded p.l. disk in the 4-bai}, whose projection
onto S* = Bd(B%) is a ribbon. Slides along a collar on Bgf{) account for the morph-
ing of ribbons to ribbon disks. For a thorough discussionibbons and ribbon disks,
see [1] and [7].

In [7] Howie describes 2-dimensional spines for ribbon diskmplements via la-
beled oriented trees. A review of Howie’s spines, calledT spines is included in
Appendix B of this article. LOT spines illuminate strikingrslarities between ribbon
disk complements irB* and classical knot complements 8. For example, presen-
tations for ribbon disk groups based on LOT spines strongbemble Wirtinger pres-
entations for knot groups. Furthermore, LOT spines, liketkeomplement spines, are
seen to be subcomplexes of contractible 2-complexes. ht 6§ such similarities, it is
not surprising that the questions which ribbon disk comglets invoke are similar to
esteemed questions concerning knot complements. Foramds question: Are they
aspherical? Indeed, many ribbon disk complements sharbdimmtopy class of a knot
complement and are thus aspherical. Not all ribbon disk ¢ements enjoy this status
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Fig. 1. A ribbon-like intersection.
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Fig. 2. Pages from a catalog of ribbons.

[7] and [11], however, and the question of asphericity remmaipen. In this way ribbon
disk complements play an important role in the investigatid Whitehead’s question
whether every subcomplex of an aspherical 2-complex isf isspherical [14] and [6].

In Section 2 of this article an alternate description to ti@TLdescription is pro-
vided. The main result in this regard is

Theorem 2.1. A ribbon disk complement in“Bcan be described as &complex
of the form

[U\ I U c#BdU),

where U is a3-dimensional cube with handles aitis an interior graph in U. The
graph I' contains the original ribbon knot and is obtained by attachispanning arcs
to the ribbon knagtone spanning arc for each ribbon singularity.



ASPHERICITY RESULTS FORRIBBON DISK COMPLEMENTS 101

Fig. 3. Corresponding core graphs for the ribbons above.

This description for the ribbon disk complement is based orkvioy Robert Craggs,
which tells a more general story of 2-complexes in 4-mad#golHere, the description
is presented as it applies to ribbon disk complements. Forghder's benefit, motiva-
tion for this description is provided in Appendix A. In [3, @pter 2], Cavagnaro shows
that this description is equivalent to the standard LOT dpson, up to 3-deformation.
This equivalence is (re)established in Appendix B of thisckr. The proof is the au-
thor’'s own and follows quickly from earlier observations.

The description in Theorem 2.1 is further modified to obtai2-dimensional spine
for the ribbon disk complement, from which a presentationtfe ribbon disk group
can be written. To this end, the notion ofcawre graphis helpful. Define a core
graph for a ribbon to be any 1-dimensional spine for the niblanose vertex set con-
tains precisely one point from each singular arc of the nibb©ne may, for example,
thicken the ribbon to a cube with handles, then identify aimessional core, being
sure to place vertices on the ribbon’s singular arcs. In\@y, the vertices of the core
graph correspond to ribbon singularities and the edgesettie graph correspond to
1-handles in a thickening of the ribbon. Fig. 3 illustratesiraples of core graphs.

It may be assumed, without changing the 3-deformation tyjpth@ complement,
that the LOT for a ribbon is a chain, that is, a tree with prelgiswo extremal vertices
[7, Proposition 4.1]. Consequently, it may be assumed thadra graph has precisely
two vertices of valence 3 and that its remaining verticesshalence 4. In particular,
the chain assumption allows the small arcs in the singularokehe ribbon immer-
sion to be ordered left to right iB2. The leftmost small arc, then, corresponds to
one vertex of valence 3 in the core graph; the rightmost sarallto the other vertex
of valence 3. All intermediate small arcs correspond toicest of valence 4. This
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arrangement for core graphs will be assumed throughout.

Further, an edge’s position at a vertex of a core graph willirbportant. Each
vertex in the core graph, therefore, will be said to have addge, a bottom edge,
and either one or two side edges, depending on its valendeeld avill be placed on
ends of edges at a vertex and these labels play the centeainrelriting a presentation
for the ribbon disk group.

In Section 3 the language of the core graph is used to stateswbericity results
for ribbon disk complements, both based on simple, grapbrttic criteria. The first
result establishes asphericity provided a certain sulbgcdia twist-free core graph is a
forest. (Intuitively, a twist-free core graph corresporidsa ribbon without half-twists.)

Theorem 3.1. Suppose all edges containing a bottom label are deleted fiom
twist-free core graph. If the graph which remains is a forélsen the ribbon disk com-
plement is aspherical.

The second result establishes asphericity provided the gaaph has a particular
cut-edge property. This result may be viewed as a topolbgicalog of a well-known
algebraic result in the subject.

Theorem 3.2. Suppose a core graph C can be written as=CAU eU B, where
A, B are disjoint core graphs and e is an edge which connects .thew and B cor-
respond to aspherical ribbon disk complemeriteen C corresponds to an aspherical
ribbon disk complement.

In Section 4 the main description for the ribbon disk commeamis modified by
eliminating the cone from the description. In this settihg tibbon disk is complement
described as the ribbon graph complems#{I" with 2-cells attached along a complete
set of meridional curves in BU(). Recall thatU is a regular neighborhood of the
ribbon in S* andT is an interior graph comprised of the ribbon knot and spanaircs.
A modification in this direction suggests a second algorittam presenting a ribbon
disk group. The presentation in this case is a relative ptaien with respect to a
standard Wirtinger presentation far(S®\ I).

Furthermore, this approach suggests a natural pair of sgaceonsider: the ribbon
disk complement itself and the ribbon graph complem®&ht I" which is a subset of
it. Using the homotopy sequence of the pair, an aspheriesylt is obtained based on
the second relative homotopy group.

Theorem 4.1. Let Y =[S*\T'lU{Ey, E,, ..., Ey} denote the ribbon disk com-
plement as described above and let X be the subspdcel'S If m,(Y, X) is a free
group, then Y is aspherical.
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Fig. 4. An example of a ribbon and corresponding 3-maniféd

Empirical evidence suggests this condition is necessadysaificient for a sizable
subset of ribbon disk complements.

2. An alternate description for ribbon disk complements

Fix a collar S* x | on the boundary oB* and consider a ribbon disk embedded
in the collar. Recall that the ribbon disk projects along fiers of the collar onto a
ribbon in S® x {0}. To begin the alternate description for the ribbon disk clement,
let U denote a regular neighborhood of the ribbonShx {0}. Notice thatU is a
3-dimensional cube with handles and that the boundary ofitimn disk, which is a
ribbon knot, resides in its interior. It may be assumed withioss of generality that
U is Heegaard inS°. Let W denote the 3-manifold obtained by removing frasnthe
interior of a small regular neighborhood of the ribbon kre, illustrated in Fig. 4.

Next, add toW the cone over Bd{) to obtain the 3-complex

W U ¢ % Bd(U).

The description for the ribbon disk complement is complebsd adding 3-cells to
this 3-complex, one 3-cell for each ribbon singularity, @ding to the instructions
which follow.

Let S, S, ..., S denote the singular arcs in the ribbon. v there exists a col-
lection of annuli{A;, Az, ..., Ay} with the following properties:
(1) The annuli{ Ay, Az, ..., Ay} are mutually disjoint.

(2) Each annulugA; is properly embedded itJ.
(38) Each annulusd; intersects the ribbon transversely in a circle which bouaadhisk
containing§ and which misses all other double arcs.

A good deal of flexibility is available in choosing such arindio avoid patholo-
gies, however, take each annulds to be as pictured in Fig. 5.

Now, for eachi, let &; = A UcxBd(Aj). These pinched 2-spherég, X,,..., &,
serve as placeholders for the 3-cells which are attachadl toc « Bd(U) to complete
the description for the ribbon disk complement. In summémg, ribbon disk comple-
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Fig. 5. A typical annulusA;, in the collection{ A, Ay, ..., Ayl

ment in the 4-ball has the 3-deformation type of the 3-comple
W Uc#*BdU) U {Dyq, Dy, ..., Dn},

where W is a ribbon knot complement in a cube with handlésand eachD; is a
3-cell attached toN U ¢« Bd(U) along a pinched 2-sphere per the instructions above.

REMARK 2.1. As noted earlier, the motivation for this descripticor fa rib-
bon disk complement is given in Appendix A. This descriptioill soon be mod-
ified and will ultimately be shown, in Appendix B, to be equemt to the standard
LOT description.

REMARK 2.2. It follows from this description that the ribbon diskogp is iso-
morphic to the fundamental group of the 3-compWxJc+Bd(U), a singular 3-manifold
with precisely one non-manifold point, its cone point.

REMARK 2.3. By [2, Lemma 2.1], the 3-compleéW/ U ¢ x Bd(U) 3-deforms to
the ribbon knot complement i® together with 2-cells attached along a complete set
of meridional curves in Bd{). It follows that the ribbon disk group is a homomorph
of the classical ribbon knot group, a fact which has been rebgein the literature.
Notice, in this context, the kernel of the epimorphism ismally generated by the
meridional curves in Bd{).

The current description for the ribbon disk complement permmodifications in
several directions. The description, for example, permittapses which eliminate the
3-cells {Dy, Dy, ..., Dy}. The price for performing these collapses is the addition of
spanning arcs to the ribbon knot. This is the content of tHieviing theorem, which
serves as the main statement of the alternate description.
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Fig. 6. A typical series of collapses which leads to the remhov
of a 3-cell D;.

Theorem 2.1. A ribbon disk complement can be described as-eomplex of
the form

[U\ T Uc*BdU),

where U is a3-dimensional cube with handles afitis an interior graph in U. The
graph I" contains the original ribbon knot and is obtained by attachispanning arcs
to the ribbon knatone spanning arc for each ribbon singularity.

Proof. The main idea for the proof is demonstrated in Fig.r6alneighborhood
of each singular ar&, collapse toward the annulug; from either direction, starting
at faces on the boundary of a regular neighborhood of the. Khloése collapses cre-
ate a free face iPA; and the 3-cellD; may now be collapsed through this free face.
Performing such a series of collapse for eachchieves the promised modification of
the ribbon disk complement.

The reader satisfied with the intuitive argument above mashw® skip ahead to
Remark 2.4. A more precise argument for the claim in Theoremi® made below.

Let p: B2 — S® denote the ribbon immersion and g%, S, ..., S} denote the
singular arcs inpo(B?). For each, let p~%(S) = A; U &, whereA; is a large, properly-
embedded arc iB2 ands; is a small, interior arc. There exists a collection, oo, ..., an}
of arcs inB? with the following properties:

(1) Int(x) lies in the component of iNB?) \ U{A1, Ao, ..., Ay} which containss;.
(2) One endpoint of; is an endpoint of; and the other endpoint of lies on BdB?).
(3) «; does not meet any peef and does not meet any circte(A;) excepto(A),
which it meets transversely in a single point.

Fig. 7 demonstrates a choice of argsfor a ribbon with two singularities used in
an earlier example. The arggw;) guide the collapses which eliminate the 3-cdlls

Without loss of generality, it may be assumed that the deson has a CW de-
composition such thafy, N(p(x)), N(p(i)) N A, and N(p(a;)) N N(p(Bd(B?))) are
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Fig. 7. A choice of arcga, ap} in B? for a ribbon with two
singularities. The images of these arcs guide the collapsése
ribbon disk complement.

subcomplexes for eadhand the regular neighborhood$(p(w;)) are mutually disjoint.
The two 2-cells which compriséN(p(a;)) N N(p(Bd(B?))) are both free faces on
N(o(ei)). CollapseN(p(«;)) through these free faces towak{p(c;)) N Ai. The 2-cell
N(p(xi)) N A is now a free face oD;. CollapseD; through this free face. Observe
the effect of this operation: The 3-cdl); is now absent and the grapi{Bd(B?)) re-
moved fromU has been enlarged by a spanning arc. Continuing in this we3reglls
Dy, Dy,..., D, may be removed from the description of the ribbon disk comglet. []

REMARK 2.4. For a result similar to Theorem 2.1, the reader is eragmd to
see [4, Theorem 3]. There, a strong connection is made betW@d spines and com-
plements of properly embedded arcs in cones over surfaces.

REMARK 2.5. The reader is cautioned not to confuse the tecore graphand
ribbon graph The term core graph refers to a 1-dimensional core for &ehing of a
ribbon. On the other hand, the term ribbon graph refers tdfori knot with spanning
arcs attached, as in the statement of Theorem 2.1.

ExAmMPLE 2.1. To illustrate Theorem 2.1, consider again the exampla db-
bon with two singularities. In this case, the ribbon disk pdement is described as
a ribbon graph complement in a cube with two handles, togettin the cone over
the boundary of the cube with handles. The ribbon graph iainét from the original
ribbon knot by attaching two spanning arcs, one for eachusdmidy. The outcome is
shown in Fig. 8.

At this point, further modifications of the main descriptiare available. One could,
for example, aim to remove the cone from the description.s Thidone in Section 4,
where a modified 3-dimensional description is obtained. @ndther hand, one could
aim to collapse the description to a 2-dimensional compiem which a presentation
for the ribbon disk group can be written. This latter goallwibw be pursued.
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Fig. 8. A ribbon disk complement for a ribbon with two singu-
larities.

Fig. 9. The two types of hubs: 4-valent and 3-valent.

As before, neighborhoods of the singularities are the pynfiacus. Each transverse
self-intersection in the ribbon creates an area of integelstib, in the description of the
ribbon disk complement. A hub will be called 4-valent or 3evd, depending on the
valence of the corresponding vertex in the core graph. FifjuStrates the two types
of hubs. The key observation is that each type of hub, whetharlent or 3-valent,
collapses to a 2-complex whose fundamental group is freamf 2. This reduction to
a 2-complex will be shown for a 4-valent hub.

Using Fig. 10 as a guide, begin by partitioning the hub inte¢hsections: a top
section, middle section, and bottom section. The top antbivosections are identical
and serve merely as transitions. By comparison, the mided¢ic is the most inter-
esting, as it captures the structure of the hub. Some libsrtgken with the shapes of
regions to best illustrate the collapses which follow.

First, collapse the interiors of the sections as complesalypossible, preserving
exterior walls while doing so. The motive here is to creatacgpin the interiors of
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top
section

middle
section

bottom
section

Fig. 10. Interior collapses in the top, middle, and bottorotisas
(top views included to illustrate collapses).

sections by collapsing toward their exterior walls. It lsetp view these collapses from
the top, thus this vantage point is taken in Fig. 10. Noticat tihe exterior walls of
the sections are intact after the first stage of collapses.

Next, collapse as completely as possible the horizontalswahich separate the
sections. Notice that vertical interior walls created ie first stage restrict collapses of
horizontal walls in this second stage. For example, the fedathe top section (which
is the same as the ceiling of the middle section) does noags#l completely due to
this restriction. Fig. 11 (a) illustrates. Select 2-cefisthe figure are shaded to empha-
size that they do not collapse. As before, the vertical exteralls are preserved, to
be addressed in the final stage.

Lastly, collapse as completely as possible the verticarext walls. Recall that the
alternate description for the ribbon disk complement rexsia cone over the boundary
of the cube with handles. This cone allows much of these wallgollapse. Each
section has two exterior 2-cells which are free faces foel&ccreated by the cone.
These 2-cells are deleted (to collapse the 3-cells). Thellmisection may be collapsed
a bit further near the four holes in its walls. The cells dadehere are not attached
to the cone. Rather, their vicinity to the holes allows thenbe deleted. Fig. 11 (b)
shows the outcome.

To complete the collapse of the hub, delete all 1-cells which free faces on
2-cells created by the cone. Then, do the same for O-cellghwhie free faces on
1-cells created by the cone. Fig. 11 (c) shows what is leftnwélé such collapses are
made. Reconnecting the three pieces, one recovers the @eotoe which the 4-valent
hub collapses. Similarly, a 3-valent hub may be collapsed &adimensional complex.
While verifying, the reader is encouraged to follow the imatlabove and to take a top
view to witness the collapses. Fig. 12 summarizes the firsding



ASPHERICITY RESULTS FORRIBBON DISK COMPLEMENTS

(b)

Fig. 11. Collapses in (a) the horizontal walls which sepatae
sections and then (b) and (c) the vertical exterior walls.

Fig. 12. Collapsing hubs to obtain spines for ribbon disk plan
ments. Recall, on the left a cone is taken over the boundary of
the cube with handles. Likewise, on the right a cone is takem o
the bold edges in the 2-complexes. (Edges of the 2-complexes
are labeled in the figure in anticipation of computing funéam

tal groups.)
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-1
Yi XiYi

i

Fig. 13. Labels at a vertex of a core graph. (The two 3-valent
vertices in the core graph are labeled similarly, with onethef
side edges omitted.)

In both the 4-valent and 3-valent cases, the fundamentalpgaf the reduced
2-complex is a free group on two generataxs,and y;. For example, in the case of a
4-valent hub, take the base point to be the cone point andtkekenaximal tree to be
the collection of edges from the cone point to the verticessulne that all horizon-
tal edges agree in orientation with and that all vertical edges agree in orientation
with y;. A presentation for the 2-complex then becomes

{a,b,cd e f,st,x,y|tel ac by, ablcld, dts eyt fls, fxl,

which reduces tdx;, yi | } by extended Nielsen operations. Furthermore, under this
reduction, the side edgecorresponds tg; and the top edge corresponds tgx; y;.
Likewise, it is seen for the case of a 3-valent hub that theldmmental group of the
2-complex is free on the generatots y;. Here, too, the side edgecorresponds tg;

and the top edgé corresponds to/~1x;yi. For this calculation, take the cone point as
the base point and include all edges from the cone point tovghigces in the maximal
tree, as before. In this case, however, additional edged toebe included to make the
tree maximal. The edgeg and h suffice.

A 2-dimensional spine for the ribbon disk complement, tfees may be described
as a union of collapsed hubs, connected via their top, bottomd side edges. The core
graph documents the connections to be made. Altogetherstiggests an algorithm for
writing a geometric presentation for the ribbon disk group.

ALGORITHM 1 for writing a presentation for a ribbon disk group. Firstage
distinct labels on the vertices of the core graph as shownign 18.

Then:
(1) For each vertex of the core graph, one writes two genexatp and y;.
(2) For each edge of the core graph with labels, sagndl, on its ends, one writes
a relator of the form; =1, or I; =15, depending on whether the hubs are connected
without or with a half-twist.
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- 1
X
Y11 R
#yl—/ y2‘4
X X

Fig. 14. A presentation for the ribbon disk groufp, X2, y1, V2 |
x1=%0 vt =y, Xoyn, Yy = Vo).

Fig. 15. A presentation for the ribbon disk group, Xz, X3, X4,
Y1 Y2, Y3, Ya | X0 = Yo 'XaY2, Y1 = X3, Y XaY1 = Yo, X2 = Y3, Y2 =
Ya, Y3 = Yy XaYa, Y3 X3Y3 = Xa}.

ExXAMPLE 2.2. To demonstrate the algorithm for obtaining a ribbork djsoup
presentation, an earlier example of a ribbon with two siagtiés is revisited. Its core
graph, with labels, is drawn in Fig. 14, and the presentatownits ribbon disk group
is written below. The presentation has 4 generators (twee&wh vertex) and 3 relators
(one for each edge). The first relatos, = x5, documents that the bottom of hub 1
is attached to the bottom of hub 2, with a half-twist.

ExAMPLE 2.3. A second, more sophisticated core graph is shown inlbigAs-
sume that its connections are made without half-twists. fiiesentation for this ribbon
disk group has 8 generators and 7 relators, correspondittgetd vertices and 7 edges
in the core graph. The first relator, = y,'x2y», documents that the bottom of hub 1
is connected to the top of hub 2.
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Feif 4

Fig. 16. Local changes at a vertex of the core graph to remove
a half-twist. On the left, the patl® originally traverses the ver-
tex top-to-bottom. It is made to traverse the vertex bottortep
instead, alteringP only in a neighborhood of the vertex. Like-
wise, on the right, a bottom-to-top traverse is switched to a
top-to-bottom traverse by alterinB locally.

REMARK 2.6. A core graph without twisted connections will be saidb&twist-
free. Relators given by a twist-free core graph regd= x; or y; = yj‘lxj yj, for
example, and noki = x;* or yi = (y;'xjy;)"". Any core graph with twists can be
replaced by a twist-free core graph without changing the dtopy type of the corres-
ponding 2-complex. Put another way, a ribbon with twists barreplaced by a ribbon
without twists without changing the homotopy type of the pdement. This follows,
intuitively, from the fact that the homotopy type of the cdempent is determined by
its LOT. Beneficial, local changes can be made to a ribbonowitlthanging the LOT.
This claim for core graphs is justified, formally, below.

It suffices to show that any core graph with half-twists canréaced by a core
graph with fewer half-twists. Recall it is assumed that tleeecgraph has two verti-
ces of valence 3 and remaining vertices of valence 4. Eadiexémas a top edge and
a bottom edge incident to it, and either one or two side edgeisiént to it, depend-
ing on its valence. There exists in the core graph a gatfunique up to orientation)
which begins at the side edge of one 3-valent vertex, endseasitle edge of the other
3-valent vertex, and moves transversely through the rdngpid-valent vertices. That
is, P moves top-to-bottom, bottom-to-top, or side-to-side tigio each vertex, mimick-
ing on the page the formation of the ribbon in space. Nofténcludes each vertex
of the core graph twice and each edge once. FollowMgabel its initial vertex 1,
the next vertex traversed side-to-side 2, the next ver@retsed side-to-side 3, and so
on. Thus, the vertices are numbered 1,.2,, n as they are traversed side-to-side. Let
1, 2], [2, 3],...,[n, n—1] denote the corresponding subpathskof

Now, suppose the core graph has a half-twist, withessed bgdagee. Thene is
in subpath [, i 4+ 1] for somei (1 <i <n—1). The core graph is altered as follows:
(1) For each vertek > i + 1, interchange its top and bottom connections. As Fig. 16
illustrates, interchanging the top and bottom connectigna local move onP which
leaves other connecting data unchanged.

(2) Remove the half-twist witnessed by edge
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It is claimed that the presentations associated with thgirai and new core graphs
are Nielsen equivalent. The following Nielsen moves on thgimal presentation achieve
this equivalence:

(1) X = VXY L for k=i + 1,

(2 Y= Yt fork=i+1,

3) xj — x;l for each vertexj traversed top-to-bottom or bottom-to-top by subpath
[i,i+1]U---U[n—=1,n].

Notice that moves of type (1) and (2) switch the top and bottabels at a vertex:

(top label) e iy — Xk,

(bottom label)xk — ViXkYi t = Yie Xk Yk

This agrees with the local change in the core graph at suchrtaxveFurther, no-
tice that moves of type (3) assure that the old connecting datpreserved (except,
of course, for the one edge on which it is changed). In pdeicwonsider any edge
in the core graph besides the edgeThen P traverses this edge either before or after
it traversese. If before, then both labels on this edge are unchanged andahnecting
data is preserved. If after, then both labels on this edgechaaged to their inverses,
again preserving the connecting data. For the eeldgtself, one of its labels is ne-
cessarily changed to its inverse and the other is not, reamgothe half-twist from the
connecting data. This completes the formal proof of thentlaiade in Remark 2.6.

3. Asphericity results using graph-theoretic criteria

The first application of the alternate description is a grtoretic result in the
spirit of [7, Theorem 10.1], which states that a ribbon disknplement is aspherical
provided a certain graph kindred to the LOT is a tree. A shglgeneralized version
of this result will actually be used here. Consider a groupsentation of the form
P ={Xy, X2,..., Xm | @& = b1, @ =Dy,...}, wherea,, b, j =1, 2,... are nonempty
words in the alphabetx;’, x5, ..., x}i} and the wordsa, bj‘1 are cyclically reduced.
The right graph of P, ®(P), is defined to be the graph on verticgsg, Xy, . .., Xm
whose edge®; are in one-to-one correspondence with the relaggrs= b; such that
€j connectsx;, andXx;, provideda,, b; end inx;,, x;, respectively. It is known that if
®(P) is a forest, then the 2-complex modeled Bris aspherical ([10] and [12]). This
result is the main observation in the proof of the followirgedrem.

Theorem 3.1. Suppose all edges containing a bottom label are deleted from
twist-free core graph. If the graph which remains is a forglsen the ribbon disk com-
plement is aspherical.

Proof. LetP denote the presentation based on the core graph and@(fej de-
note its right graph. It suffices to show thét(P) is a forest. Recall that the rela-
tors in P correspond to the edges in the core graph. If, for examplegdne in the
core graph has two bottom labels, then the correspondirajorein P is of the form
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Xi = Xj. In ®(P), one gets an edge joining and x;. If an edge in the core graph
has one top label and one bottom label, then the corresppridiator inP is of the
form x = yjflx,- Yj, or yiXi = X;y;. In this case, one gets an edge &{P) joining
x andy;. Technically, the relatoy; xy; = y;lxj y; is faulty as it has negative pow-
ers and these negatives cannot be voided by simply movingrdeto opposite sides.
This issue may be resolved, however, by an elementary expans . For each such
relator, add toP a new generatot and a new relatot = yflxi yi. This new relator
is of an appropriate type, as it can be rewrittgh = X;y;. The old relator may now
be rewritten ag = y;lxj Yj, or yjt = X;y;j, making it appropriate as well. 1®(P),
an edge connectg to t and another connectsto y;. Since no other edges if(P)
meett, the two edges may be regarded as a single edgé(i®) connectingy; and
yj. An analysis of remaining cases fills in the table below.

edge in core graph relator edge in®(P)
bottom-bottom X = X| X X
bottom-side Xi =Y

bottom-top X = Y7y i Yj
side-side Vi =Y

side-top Y =YX

top-top Yoy = yrixyp | i Yj

The proof of the theorem is completed by observing that eastexx in ®(P)
has valence 1. The bottom of hubmakes one connection and this connection pro-
duces the one edge i®(P) incident to x;. No other connection produces an edge
incident to x;. It follows that any cycle in®(P) must go solely througty vertices.
Such a cycle exists inb(P), however, only if there is a corresponding cycle in the
core graph consisting solely of top and side connections. aByumption, no such
cycle exists. ]

ExAMPLE 3.1. The core graph in Fig. 17, for example, satisfies thetgthporetic
criterion of Theorem 3.1. The corresponding ribbon disk pment is therefore aspher-
ical. Edges with bottom labels are given a lighter weighteitaphasize the application of
the criterion. Notice that deleting the lighter edges lsawdree.

The geometric nature of the alternate description for aofibllisk complement
will continue to be utilized. The next goal is to express aob disk complement
as a union of aspherical spaces whose intersection is asphand ;-injective. This
requires that the intersection be simple relative to thecespand is accomplished by
requiring a certain cut-edge property in the core graph.
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Fig. 17. Example of a core graph which satisfies the graph-
theoretic criterion of Theorem 3.1.

d

Fig. 18. Y1 NY; is a sphere with two holes, which has the homo-
topy type of a circle.

Theorem 3.2. Suppose a core graph C can be written as=CAU eU B, where
A, B are disjoint core graphs and e is an edge which connects.thie and B cor-
respond to aspherical ribbon disk complemeriteen C corresponds to an aspherical
ribbon disk complement.

Proof. Using Theorem 2.1, let denote the description of the ribbon disk com-
plement which corresponds 6. Recall thatY is a ribbon graph complement in a
cube with handled) together with the cone over Bdj. By hypothesis,U consists
of two disjoint cubes with handles (corresponding to graph®) connected with a
1-handleE (corresponding to the edg®). A transverse disk irE essentially splitsy,
suggesting a natural decomposition Yof Taking this suggestion, writ¥ as a union,
Y = Y1 UY,;, such that:

(1) Y1NY; has the homotopy type of a circle (Fig. 18); and
(2) Y1, Y2 have the homotopy types of aspherical ribbon disk complésnen

The first property follows from the fact thaf; N Y, is a sphere with two holes.
Notice that a transverse disk B meets the ribbon graph in two points. The two holes
in this disk correspond to these points of intersection. Mduale, the cone over the
boundary of the disk is required by the description of thdaito disk complement. The
second property follows from the fact th¥t, Y, correspond to the graph&, B, which
are assumed to be core graphs for aspherical ribbon disk leamepts.



116 T. BEDENIKOVIC

Fig. 19. Example of a core graph which satisfies the criteabn
Theorem 3.2, with cut-edge marked.

Slone

Fig. 20. A core graph whose corresponding ribbon disk comple
ment is known, inductively, to be aspherical.

Now, Y; NY, is aspherical, as it has the homotopy type of a circle. Furtiine
generator forry(Y1 NY,) maps to nontrivial elements in the torsion-free growpéY:)
and 1(Y2). It follows that 71(Y1 N YY) injects intor1(Y1) and m1(Y2). By [13, The-
orem 5],Y is aspherical. ]

REMARK 3.1. A strong connection has been established between thep-gr
theoretic property ofocal indicability and the topological property of asphericity [5].
The result in Theorem 3.2 may be viewed as a topological gnafothe fact that
the amalgamated product of locally indicable groups vianitdi cyclic subgroups is
itself locally indicable [8, Theorem 9]. Recall that thedrgection space used in the
proof of Theorem 3.2 has the homotopy type of a circle. Ammalging two aspher-
ical spaces along this intersection space gives an asphepace.

ExampPLE 3.2. The core graph in Fig. 19 satisfies the criterion of TaespB.2.
Deleting the marked cut-edge produces two valid core grapisese subgraphs are
known to correspond to aspherical ribbon disk complemeasgsthe LOT’s for their
ribbons have diameters less than or equal to 3 [7, Theorem A].
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ExampLE 3.3. Inductively, families of ribbons with increasing diaters can be
formed whose complements are known to be aspherical. Figug@ests how to proceed.

4. An asphericity result using a relative homotopy group

The description for the ribbon disk complement in Theoreth &lows for modifi-
cations in different directions. Rather than collapsingat@-dimensional complex, one
may wish instead to remove the cone from the description.hifoend, [2, Lemma 2.1]
applies. It is known that the description in Theorem 2.1 8uwas to the ribbon graph
complementS® \ I with 2-cells attached along a complete set of meridionavesiin
Bd(U). A modification in this direction yields a second algoritfor writing a pres-
entation for a ribbon disk group. In this case the presemiais written as a relative
presentation( )V | R} with respect to a standard Wirtinger presentatidhfor the rib-
bon graph group.

ALGORITHM 2 for writing a presentation for a ribbon disk group. Firstaw
a ribbon graph™ which corresponds to the ribbon. To avoid pathologies, heariethod
in the proof of Theorem 2.1 to obtain the ribbon graph. Neggntify a complete
set of meridional disks in a thickening of the ribbon. A coetpl set of transverse
disks suffices.

Then:
(1) Write the standard Wirtinger presentation), for the graph groupry(S®\ I).
(2) Add to )V one relator for each meridional disk in the collection abokach such
relator is of the formx; x]-*l for some generators;, x; in W and denotes the word
in m1(S*\ I') read by the boundary of the meridional disk. The nature ef ribbon
ensures that each relative relator has length two.

Fig. 21 illustrates the modified description for the ribboskdcomplement using
the example of a 2-singularity ribbon considered earlidre Tibbon disk complement
can be described ass{\ I'] U {E;, E,}, whereT is the ribbon graph and,, E, are
the 2-cells shown in Fig. 21. These 2-cells form a completeo$emeridional disks
in a thickening of the ribbon. The corresponding ribbon diskup has a presentation
of the form {W | x; x;l, xmxgl}, wherelV is a standard Wirtinger presentation for the
ribbon graph group and the's are generators in that presentation.

The current description for ribbon disk complements sutgg@s natural pair of
spaces to consider: the ribbon disk complement itself ardribon graph comple-
ment which is a subspace of it. Graph complement§irare well-studied 3-manifolds
whose properties lead to the next asphericity result.

Theorem 4.1. Let Y =[S*\T'JU{Ey, E,, ..., E,} denote the ribbon disk com-
plement as described above and let X be the subspdadel'S If mo(Y, X) is a free
group then Y is aspherical.
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2—cells attached —

L
/

Fig. 21. A modified 3-dimensional description for the ribbaisk
complement. The cone is removed from the earlier descriptio
replaced by two 2-cells attached along meridional curves in
thickening of the ribbon.

Proof. Noting thatr,(X) = 0, the long exact sequence of the pait, ) gives:

0 — 72(Y) = 7a(Y, X) > 71(X) = m1(Y) = O.

Now, rk(r,(Y, X)) > 1 must be true, as it is a free crossed module owgiX) with
boundary mapm and a basis which corresponds {tg;, Eo, ..., En} ([14]).

If rk(mo(Y, X)) = 1, i.e.m(Y, X) =~ Z, thend is either the zero map or is one-
to-one. (Note thatr;(X) is torsion-free.) Howeverp cannot be the zero map. On
one hand,d = 0 implies 72(Y) =~ 7,(Y, X) = Z. On the other handy = 0 implies
m1(Y) = m1(X). Since X is an irreducible 3-manifold with boundary, the gromp(X)
is locally indicable [5, Corollary 6.2]. It follows by [5, Tdorem 5.2] thatr,(Y) = 0,
contradicting an earlier consequence. It must be trueetbis, thatd is one-to-one.
By exactnessy,(Y) = 0, as desired.

If rk(m2(Y, X)) > 1, then the center of,(Y, X) is trivial. However, ke is con-
tained in the center af(Y, X) [9, Section 1], and thus kér= 0. Again, by exactness,
7'[2(Y) =0. ]

Corollary 4.1. If the graphT is Heegaard in & then Y is aspherical if and only
if (Y, X) is a free group.

Proof. If mo(Y, X) is a free group, them,(Y) = 0 by Theorem 4.1, whethdr is

Heegaard or not. On the other hand, suppbsis Heegaard ane,(Y) = 0. Consider
again the exact sequence of the padr K):

0 — m2(Y) = 7a(Y, X) > 71(X) = 72(Y) — 0.
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Fig. 22. Several ribbon graphs known to be Heegaard.

Note thatm,(Y, X) injects intowy(X), which is a free group by hypothesis. Therefore,
wo(Y, X) is itself free by the Nielsen—Schreier theorem. []

REMARK 4.1. The ribbon graph associated with a ribbon may indeeddegyaard.
In fact, ribbons which yield Heegaard ribbon graphs seenotmfa sizable subset of all
ribbons. The ribbon graphs in Fig. 22, for example, are akdéard. For each of these
graphs, the group of the graph complemenginis free.

REMARK 4.2. Not all ribbon graphs are Heegaard, however. The rilgyaph in
Fig. 23, for example, is not. In this example;(S*\T') = (a, b, x, y | ababta~b™1),
which is not a free group, as it contains the trefoil grof@pb | ababta=b™t) as a
free factor. Interestingly, the ribbon disk complementhis texample has the homotopy
type of the classical trefoil knot complement.

A. Motivation for the initial description of the ribbon disk complement

Motivation for the initial description given in Section 2 gre@sses in two stages.
First, the ribbon is moved along the fibers of a collar $f= Bd(B*) such that the
ribbon knot remains in Bd*) and the rest of the ribbon moves to its interior. The
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Fig. 23. Example of a ribbon graph which is not Heegaard.

ribbon continues to be a singular disk in the initial stagel @am intermediate spine
for the complement is described. In the second stage, thglsiities in the ribbon
are resolved by applying 3-deformations and then deletsidual arcs. It is observed
that this resolution causes 3-cells to be added to the imetiate spine.

As before, letU be a regular neighborhood of a ribb@ = p(B?) in S® and let
W be the 3-manifold defined bW = U \ Kl(k), wherek denotes the ribbon knot. It
may be assumed thal is Heegaard, in which cas#/ is a knot complement in an
unkotted cube with handles. Let: S° x [0, 1] — B* be a collar on BdB*) and let
ho: S* — [0, 1] be a continuous height function such thgf'(1) = S*\ Int(U) and
hy1(0) = k. Define a magh from S into the collaru(S® x [0, 1]) by x — u((X, ho(X))
and move the ribborR to its imageh(R) along the fibers of the collar. At this mo-
ment, the ribbon resides in the interior Bff, with the exception ok, which remains
in Bd(B%).

Define a second height functiom : S* — [0, 1] such thathy(x) < hg(x) for all
x € S, andhy(x) = ho(x) if and only if x € kU(S?\Int(U)). Notice that the 4-manifold
N = {u(u,t) e B*|ue U andhy(u) <t < 1} is a regular neighborhood df(R) in
B*. The closure of the complement ®f in B4 consists of three pieces:

Xo = B\ u(S°x [0, 1)),
X1 = u((S*\ Int(U)) x [0, 1]),

and
Xo = {u(x, 1) € B*| x e W and 0<t < hy(x)}.

For convenience, label the subspadgs= (Bd(U) x [0, 1]) and Yz = {u(X, h1(x)) |
x € W} of the complement. The diagram in Fig. 24 helps identify sarheéhe key
spaces in this description.

Now, the the complemenB*\ N collapses toY, U X, by the following sequence
of moves:
(1) CollapseX; to Y1 U (X1 N Xp).
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X 0: core of the 4—ball

collar for the 4-ball

N: regular neighborhood
of raised singular ribbon

Y2: copy of W in the collar

copy of U in the collar
(the raised singular ribbon
resides inside) k: ribbon knot in the

boundary of the 4-ball

Fig. 24. Key spaces in the description of the complement at an
intermediate stage.

(2) CollapseX; to Ya.
(3) CollapseY; to Y1 N Xo.

Therefore, at this intermediate stage, the complement hdssaription homeo-
morphic to the identification space

Y, 1T Xo,

whereY, and Xg are identified along the shared spdgdx, hi(x)) | x € Bd(U)}. How-
ever, Yo, Xo, and {u(x, h1(x)) | x € Bd(U)} are merely homeomorphic copies \6f, B4,
and Bd{J) respectively. Thus, the identification space may be reghab

W I B,

where the identification is made along copies of BY{n the boundaries oV and B*.
RegardingB* as the cone x S® over its boundary, the space above in turn collapses
to the identification space

) W 1I ¢ % Bd(U),

with identifications, again, along copies of RH( This completes the first stage of the
process.

Next, the ribbon’s singularities will be resolved. This Mrlearly be accomplished
by way of 3-deformations. Recall that the singular set fag tibbon immersionp
is a collection of arcs{A;, 8;} in B? such that the arc\; separate the interior of
B? into disjoint open 2-cells. LeC denote a component d? \ {A;}. For eachs;
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in C, choose an are; in C which connects Bd() to Bd(B?). This process should
mimic the method in the proof of Theorem 2.1. (See Fig. 7 foreaample.) Then
Int(C) \ {§;, «;} is an open 2-cell whose image underis an open 2-cell, sag, in
R. The 2-cellC serves as a base for a vertical 3-deformation of the ribbongathe
fibers of the collar on Bd§*). Attach a 3-cell alongé and then collapse immedi-
ately throughé. This operation elevates the points of (f:)(in the collar, eliminating
the singularities which correspond to thgs. However, a 2-cell with edge(s; U «;)

is a byproduct of this move. Perform a side collapse to ektginthe interior of this
2-cell. Each such collapse produces a residual ae;). Operate in a similar manner
on the remaining components & \ {A;} to obtain an embedded ribbon disk Bf*
with residual arcs attached. The complement of this compbe<the same deformation
type as f), since it is obtained by perfoming 3-deformationsBf on the ribbon. Now,
deleting the residual arcs yields the embedded ribbon dgskfi By duality, deleting
1-cells from the complex corresponds to adding 3-cells gocamplement. These dual
3-cells complete the description of the ribbon disk comm@atrngiven at the beginning
of Section 2.

B. Equivalence with the standard LOT description

It will be shown that the description for ribbon disk compkemts used in this work
is equivalent to the standard LOT description, up to 3-dwédion. In particular, it will
be shown that the corresponding presentations are Nielp@nagent. The presence of
the conjugating relators in Algorithm 1 and the fact that toee graph is an immer-
sion of the LOT help make this a reasonable assertion. Forgheéer’s benefit, first a
review of the LOT description is given.

As before, letp: B2 — S® be a ribbon immersion and IS}, i =1,2,...,n,
denote the double arcs in the ribb@B?). For eachi, let p~%(S) = A; U &, where
Aj is a large, properly-embedded arc Bf and §; is a small, interior arc. The LOT
associated with the ribbon is a tree Bf defined by the properties which follow.
Vertices The vertices of the LOT are in one-to-one correspondendh thie compo-
nents of BZ\ {A;}.

Edges Two vertices are joined by an edge if the corresponding @mapts of B2 \
{Aj} share on their boundaries a large a¢ for somej.

Labels Each edgee of the LOT is labeled with a vertex(e). If the edge exists by
way of a large arcAj, theni(e) is the vertex which corresponds to the component of
B2\ {Aj} containing the small arg;.

Orientations The ribbon p(B?) inherits a positive side and a negative side from the
disk B2. Orient each edge of the LOT such that its image undegierces the ribbon
from its negative side.

The LOT spine for the ribbon disk complement is then the 2qem modeled on the
presentation{{v},ev | {A(€)L(€)A(€)T(€) t}ece), Where V, E denote the vertex and
edges sets of the LOT andz help denote initial and terminal vertices of edges.
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Regarding the alternate description in this article, ongirize with a core graph
for the ribbon. By Remark 2.6, it may be assumed that the comphgis twist-free. It
is again beneficial to identify a path in the core graph whielgibs at the side edge
of one 3-valent vertex, ends at the side edge of the othede3waertex, and moves
transversely through the remaining 4-valent vertices. alRgbat such a path traverses
each edge exactly once and moves top-to-bottom, bottotoptoer side-to-side through
each vertex as it does so. Using this path, the core graph ealivlded into segments
as follows: Segment 1 begins at the initial vertex and endbefirst vertex met at the
top or bottom. Segment 2 begins where segment 1 ends andhwesituntil a vertex
is met at the top or bottom. Continuing in this way, the corapdr can be written
as a union of segments which share vertices but do not shgesedlotice that the
segments are in one-to-one correspondence with the comison&B? \ {A;}.

The core graph yields a group presentation (see Algorithrant) the segments of
the core graph may be associated with strings of relatorigdgresentation. Indeed,
one may write relators in the order that corresponding edgedraversed, to make the
association of segments and strings of relators more chedypical string of relators
begins and ends with a top or bottom label and has only sideldah between. The
first (resp. last) string is exceptional in that it necedgdregins (resp. ends) with a side
label. Now, this group presentation may be expanded aswsilo
(1) For each segment of length 1 of the forn= x; or x; = yj‘lx,- yj, add a new
generatora and a new relatoa = x;.

(2) For each segment of length 1 of the foym'x y; = yj‘lxj yj, add a new generator
a and a new relaton = y1x;y;.

(38) For each remaining segment, add a new gener@atolf the segment contains a
bottom labelx;, then add the relatoa = x;. If it does not, then it must contain a
side labely;, in which case the relaton = y; is added. This assignment need not be
unique.

This expanded presentation collapses to a presentatidmedetters{a;}. To achieve
this rewriting, first collapse all relators of length 2 by waf/ (1) and (3) above. Then
finish the rewriting by way of (2). The claim is that the new g®station is precisely the
LOT presentation for the ribbon disk complement. This iskelished by making two ob-
servations about the presentation, one about its gensratorthe other about its relators.

Generators in the collapsed presentatiofhe generators in the collapsed presenta-
tion correspond with the segments in the core graph. The eegmin turn, correspond
with the components oB?\ {A;}. Therefore, the number of generators is in agreement.

Relators in the collapsed presentatio®nly relators involving top labels remain
in the collapsed presentation. That is, all relators are pnéwhe form ai‘laja,- = &.
Furthermore, the lettera;, ax correspond to consecutive segments. This is true since
top labels are conjugates of bottom labels per Algorithm HesE consecutive segments
correspond to components 8f\ {A;} which share a large singular arc on their bound-
aries. On the other hand, the conjugating letiercorresponds to a segment which
meets the vertex at the side. Such a segment correspondsinintdé the component
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-1 -1
Y1111 Yy 0¥
441_/ "y

X X

Fig. 25. A core graph from an earlier example. (Note: The ttwis
free replacement is the same core graph, which does not happe

in general.)
segment 3 ﬂ segment 1
a /\
3 / a
+a1 — L a3‘¥
az\\Jaz

segment 2
Fig. 26. A graphic which illustrates the rewriting process.

of B2\ {A;} which contains the matching small singular arc. In this wag relators
are in agreement as well.

ExamMPLE B.1. Equivalence will be demonstrated for a presentatiomfa pre-
vious example. (See Fig. 25.)
ordered presentatior(Xy, Xz, Y1, Y2 | Y1 = Y, XaY2, X2 = X1, Y; Xay1 = Ya},
strings of relators (3, all of length 1)1 = Y, %5 | Xo = X1 | Yy *Xay1 = Vo,
new generatorsay, ay, as,
new relators:a1 = VY1, a2 = X2, ag = Yy,
collapsed presentatiofa, &, as | & = a3 apas, a; a&a = ag).

The collapsed presentation is precisely the LOT presemtdtr the ribbon disk
complement. While working through the previous examples teader may find
Fig. 26 helpful.
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