<table>
<thead>
<tr>
<th>Title</th>
<th>On real J-homomorphisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Minami, Haruo</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 16(2) P.529–P.537</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1979</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/4910</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/4910</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive: OUKA

http://ir.library.osaka-u.ac.jp/dspace/

Osaka University
ON REAL J-HOMOMORPHISMS

Dedicated to Professor A. Komatu on his 70th birthday

HARUO MINAMI

(Received June 7, 1978)

1. In the present work we consider a Real analogue of J-homomorphisms in the sense of [3]. We use here the notation in [4], §§1 and 9 and [9], §2 for the equivariant homotopy groups which are discussed by Bredon [5] and Levine [10]. Moreover we shall use notations and terminologies of [4], §1 without any references.

Let us denote by \(GL(n, \mathbb{C}) \) (resp. \(GL(\infty, \mathbb{C}) \)) the general linear group of degree \(n \) (resp. the infinite general linear group) over the complex numbers with involutions induced by complex conjugation. Let \(X \) be a finite pointed \(\tau \)-complex. Then, by following the construction of usual J-homomorphisms (cf. [13], p. 314, [2]) we can define homomorphisms

\[
J_{R,n}: [\Sigma^{p,q}X, GL(n, \mathbb{C})]^\tau \to [\Sigma^{p+n,q+n}X, \Sigma^{n,n}]^\tau
\]

and

\[
J_{R}: [\Sigma^{p,q}X, GL(\infty, \mathbb{C})]^\tau \to \pi_{n}^{0,0}(\Sigma^{p,q}X)
\]

for \(p \geq 0 \) and \(q \geq 1 \) where let \(\pi_{n}^{0,0}(\Sigma^{p,q}X) = \lim_{n \to \infty} [\Sigma^{p+n,q+n}X, \Sigma^{n,n}]^\tau \). We now give definitions of \(J_{R,n} \) and \(J_{R} \) below. Let \(\Omega_{d}^{\ast,n}\Sigma^{n,n} \) denote the subspace of \(\Omega^{\ast,n}\Sigma^{n,n} \) consisting of maps of degree \(d \) in the usual sense. Let \(\gamma \) be the \(\tau \)-map of \(\Sigma^{n,n} \) induced by the correspondence of \(R^{n,n} \) such that \((x_{1}, \ldots, x_{2n}) \mapsto (x_{1}, \ldots, x_{2n-1}, -x_{2n})\). By adding \(\gamma \) to the elements of \(\Omega_{d}^{\ast,n}\Sigma^{n,n} \) with respect to the loop addition along fixed coordinates of \(\Sigma^{n,n} \) we have a \(\tau \)-map \(t: \Omega_{d}^{\ast,n}\Sigma^{n,n} \to \Omega_{d+1}^{\ast,n}\Sigma^{n,n} \). Then we obtain \(J_{R,n} \) by assigning to a base-point-preserving \(\tau \)-map \(f: \Sigma^{p,q}X \to GL(n, \mathbb{C}) \) the adjoint of the composite

\[
\Sigma^{p,q}X \xrightarrow{f} GL(n, \mathbb{C}) \xrightarrow{i} \Omega_{d}^{\ast,n}\Sigma^{n,n} \xrightarrow{t} \Omega_{d+1}^{\ast,n}\Sigma^{n,n}
\]

where \(i \) is the canonical inclusion map.

As is easily seen the diagram

\[
\begin{array}{ccc}
[\Sigma^{p,q}X, GL(n+1, \mathbb{C})]^\tau & \xrightarrow{J_{R,n+1}} & [\Sigma^{p+n+1,q+n+1}X, \Sigma^{n+1,n+1}]^\tau \\
\uparrow j_{*} & & \uparrow \Sigma_{1}^{n+1} \\
[\Sigma^{p,q}X, GL(n, \mathbb{C})]^\tau & \xrightarrow{J_{R,n}} & [\Sigma^{p+n,q+n}X, \Sigma^{n,n}]^\tau
\end{array}
\]

is commutative under the identification \(\Sigma^{r,s} \wedge \Sigma^{p,q} = \Sigma^{r+p+s,q} \) where \(j_{*} \) is the
homomorphism induced by a canonical inclusion map $j: GL(n, \mathbb{C}) \subset GL(n+1, \mathbb{C})$ and Σ^{k+1}_q is the suspension homomorphism ([4], (7.2)). Therefore, by taking the direct limits we get a homomorphism

$$J_{R^+} : \lim_{\rightarrow} [\Sigma^{p,q}X, GL(n, \mathbb{C})^\tau] \to \pi^{0,0}_{q}(\Sigma^{p,q}X).$$

Also, as X is compact we have a canonical isomorphism $\mu : \lim_{\rightarrow} [\Sigma^{p,q}X, GL(n, \mathbb{C})^\tau] \to [\Sigma^{p,q}X, GL(\infty, \mathbb{C})^\tau]$. So we define J_R to be the composite $J_{R^+} \mu^{-1}$.

Taking $X = S^{q+1}$ in (1.1) J_R becomes the homomorphism from $\pi_{p+q}(GL(\infty, \mathbb{C}))$ to π_{p+q}. The aim of this paper is to prove the following theorem for the homomorphism

$$J_R : \pi_{2p-2k,2q+2k-1}(GL(\infty, \mathbb{C})) \to \pi_{2p-2k,2q+2k-1}^t$$

for $p \geq k \geq 0$ and $p + k \geq 1$.

Theorem. The image $J_R(\pi_{2p-2k,2q+2k-1}(GL(\infty, \mathbb{C})))$ of the homomorphism (1.2) is a cyclic group of the following order:

- $m(2p)$ if either p, k are even or odd
- $\frac{1}{2} m(2p)$ if p is even and k is odd
- $m(2p)$ or $2m(2p)$ if p is odd and k is even

where $m(t)$ is the numerical function as in [1], II, p. 139.

2. Let X be a compact pointed τ-space throughout this section.

Let KR denote the Real K-functor [3]. Then a similar proof to the complex case gives rise to a canonical isomorphism

$$(2.1) \quad [X, GL(\infty, \mathbb{C})^\tau] \approx \widetilde{KR}(\Sigma^{0,1}X)$$

(cf. [8], Chap. I, Theorem 7.6) and so we may consider J_x of (1.1) the homomorphism from $\widetilde{KR}(\Sigma^{p,q}X)$ to $\pi^{0,0}_{q}(\Sigma^{p,q}X)$ through this isomorphism. In particular, there exist isomorphisms

$$(2.2) \quad \pi_{2p-2k,2q+2k-1}(GL(\infty, \mathbb{C})) \approx \widetilde{KR}(\Sigma^{2p-2k,2q+2k}) \approx \widetilde{KO}(S^{4k}) \approx Z$$

by (2.1) and the Real Thom isomorphism theorem [3]. Similarly we have isomorphisms

$$(2.3) \quad \pi_{4p-1}(GL(\infty, \mathbb{C})) \approx \check{K}(S^{4p}) \approx \check{K}(S^{2p}) \approx Z$$

in the complex K-theory.

Let $\psi : \pi_{p+q}(X) \to \pi_{p+q}(X)$ and $\check{\psi} : \pi_{p+q}(X) \to \pi_{p+q}(X)$ denote the forgetful homomorphisms [4,5]. Then, from the above discussion we have the following commutative diagram:
\[\frac{KO(S^{4k})}{\cong} \xrightarrow{c} \frac{K(S^{4k})}{\cong} \]

\[\pi_{2p-2k,2p+2k-1}(GL(\infty, C)) \xrightarrow{\psi} \pi_{4p-1}(GL(\infty, C)) \]

\[\pi_{2p,2p+2k-1} \xrightarrow{J_U} \pi_{4p-1} \]

where \(c \) is the natural complexification homomorphism and \(J_U \) is the complex stable \(J \)-homomorphism.

In the following we identify \(\Sigma^{r,q} \) with \(\Sigma^{r+p,q} \). Regarding \(\Sigma^{1,0} \) as the one-point compactification of \(R^{1,0} \) with \(\infty \) as base-point, the quotient \(\Sigma^{1,0}/\{0, \infty \} \) is homeomorphic to \(S^1 \), where \(S^1 \) has the involution \(T \) interchanging factors. For a base-point-preserving map \(f: S^p \to X \), define a \(\tau \)-map \(\tilde{f}: \Sigma^{p,q} \to X \) by the composition

\[\Sigma^{p,q} = (\Sigma^{p-1,0} \cap \Sigma^{0,q}) \to \Sigma^{p-1,0} \cap (\Sigma^{1,0}/\{0, \infty \}) \]

for \(p, q \geq 1 \) where \(\pi \) is the natural projection, \(\tau \) is the involution of \(X \) and \(\tau' \) is the involution of \((\Sigma^{p-1,0} \cap \Sigma^{0,q}) \to (\Sigma^{p-1,0} \cap \Sigma^{0,q}) \) induced by that of \(\Sigma^{p-1,0} \to \Sigma^1 \cap \Sigma^{0,q} \) and \(T \). Then the correspondence \(f \to \tilde{f} \) determines a homomorphism

\[\alpha: \pi_{p,q}(X) \to \pi_{p,q}(X) \]

for \(p, q \geq 1 \) (cf. [5], p. 286, [4], (10.5)).

Let \(J_{U,n}: \pi_{4p-1}(GL(n, C)) \to \pi_{4p-1+2n}(S^{2n}) \) be the complex \(J \)-homomorphism. Let \(\alpha_n: \pi_{4p-1}(GL(n, C)) \to \pi_{2p-2k,2p+2k-1}(GL(n, C)) \) and \(\alpha_n: \pi_{4p-1+2n}(S^{2n}) \to \pi_{2p-2k,n+2p+2k-1}(\Sigma^{n,n}) \) denote the homomorphisms of (2.5) for \(X = GL(n, C) \) and \(X = \Sigma^{n,n} \) respectively. Then we have the commutative diagram:

\[\pi_{4p-1}(GL(n, C)) \xrightarrow{\alpha_n} \pi_{2p-2k,2p+2k-1}(GL(n, C)) \]

\[\pi_{4p-1+2n}(S^{2n}) \xrightarrow{\alpha_n} \pi_{2p-2k,n+2p+2k-1}(\Sigma^{n,n}) \]

The commutativity is proved as follows. For a \(\tau \)-map \(g: \Sigma^{2p-2k,2p+2k-1} \to GL(n, C) \) we denote by \(\text{ad} g \) the adjoint of the composition: \(\Sigma^{2p-2k,2p+2k-1} \xrightarrow{g} GL(n, C) \subseteq \Omega^{2n}_{n} \Sigma^n \). Then \(J_{U,n} \) is given by the assignment \(g \mapsto \text{ad} g \) as in §1. In the above, forgetting the \(Z_2 \)-action we get the homomorphism \(J_{U,n} \). Hence we also use the same notation for maps in the complex case. Let us define a map \(\lambda: S^n \times S^{2p-2k} \times S^n \times S^{2p+2k-1} \to S^n \times S^n \times S^{2p-2k} \times S^{2p+2k-1} \) by \(\lambda(u_1, v_1, u_2, v_2) = u_1 \times u_2 \times v_1 \times v_2 \) (\(u_1, u_2 \in S^n, v_1, v_2 \in S^{2p-2k}, v_2 \in S^{2p+2k-1} \)). And we define a map
$f': S^{4p-1+2k} \to S^{2n}$ by $f' = (\text{ad}f)\lambda$ for a map $f: S^{4p-1} \to GL(n, \mathbb{C})$. Then $f' = \text{ad}f$ since the degree of λ is 1, and so $f' = \text{ad}f$. Besides we see easily that $f' = \text{ad}f$. Therefore $\text{ad}f = \text{ad}f$ which implies $\alpha_\ast J_{U,\ast}([f]) = J_{R,\ast}\alpha_\ast([f])$ where $[f]$ denotes the homotopy class of f.

Here, by taking the direct limits we get the commutative diagram

$$
\begin{array}{ccc}
\pi_{4p-1}(GL(\infty, \mathbb{C})) & \xrightarrow{\alpha} & \pi_{2p-2k, 2p+2k-1}(GL(\infty, \mathbb{C})) \\
\downarrow J_U & & \downarrow J_R \\
\pi_{4p-1} & \xrightarrow{\alpha} & \pi_{2p-2k, 2p+2k-1}
\end{array}
$$

where each α is defined as the direct limit of α_\ast. As in proof of the commutativity of the above diagram, we can show that the lower homomorphism α is well-defined.

By the definition of α it follows that the realification homomorphism $r: \hat{K}^{-1}(S^{4p-1}) \to \tilde{KR}^{-1}(S^{2p-2k, 2p+2k-1})$ coincides with $\alpha: \pi_{4p-1}(GL(\infty, \mathbb{C})) \to \pi_{2p-2k, 2p+2k-1}(GL(\infty, \mathbb{C}))$ through the natural isomorphisms. Because, $\psi \alpha = 1 + \ast$, $\psi = e$, $\sigma = 1 + \ast$ and \ast is the operation on $K(X)$ defined in [12], §2. Thus, by (2.2), (2.3) and (2.6) we get the commutative diagram

$$
\begin{array}{ccc}
\hat{K}(S^{4p-1}) & \xrightarrow{r} & \tilde{KO}(S^{4p-1}) \\
\downarrow \cong & & \downarrow \cong \\
\pi_{4p-1}(GL(\infty, \mathbb{C})) & \xrightarrow{\alpha} & \pi_{2p-2k, 2p+2k-1}(GL(\infty, \mathbb{C})) \\
\downarrow J_U & & \downarrow J_R \\
\pi_{4p-1} & \xrightarrow{\alpha} & \pi_{2p-2k, 2p+2k-1}
\end{array}
$$

where r is the realification homomorphism.

Let $GL(\infty, \mathbb{R})$ denote the infinite general linear group over the real numbers and J_Λ denote the real stable J-homomorphism in stable dimensions $4p-1$. Let us put

$$g_\Lambda = J_\Lambda(1), \quad \Lambda = O, \, U \, \text{or} \, R,$$

identifying $\pi_{4p-1}(GL(\infty, \mathbb{R})), \pi_{4p-1}(GL(\infty, \mathbb{C}))$ and $\pi_{2p-2k, 2p+2k-1}(GL(\infty, \mathbb{C}))$ with Z. Then, from (2.4), (2.7) and [12], (2.2) we see that

$$\alpha(g_\Lambda) = \begin{cases}
2g_R & \text{if } k \text{ is even} \\
\frac{g_R}{g} & \text{if } k \text{ is odd}
\end{cases}$$

and

$$\psi(g_\Lambda) = \begin{cases}
g_R & \text{if } k \text{ is even} \\
2g_R & \text{if } k \text{ is odd}
\end{cases}$$

Furthermore it is known that

$$g_\Upsilon = \begin{cases}
2g_\Upsilon & \text{if } p \text{ is even} \\
g_\Upsilon & \text{if } p \text{ is odd}
\end{cases}$$
and the order of \(g_0 \) is equal to the number \(m(2p) \) ([1], II, Theorem (2.7) and [11]) which is divisible by 8 ([1], II, p.139).

Let \(o(p, k) \) denote the order of the image of (1.2). Then, by (2.8) and (2.9), we obtain

Lemma. For \(p > k \),

\[
o(p, k) = \begin{cases}
 dm(2p) & \text{if either } k, p \text{ are even or odd} \\
 2dm(2p) & \text{if } k \text{ is even and } p \text{ is odd} \\
 \frac{1}{2} \text{dm}(2p) & \text{if } k \text{ is odd and } p \text{ is even}
\end{cases}
\]

where \(d = \frac{1}{2} \) or 1.

We shall give a proof of Theorem in §§3–5.

3. Proof for \(p > k \), \(k \) odd and \(p \) even. By [5], Fig. we have an exact sequence

\[
\pi^*_{2p-2k-1, 2p+2k+1} \xrightarrow{\psi} \pi^*_{4p-1} \xrightarrow{\alpha} \pi^*_{2p-2k, 2p+2k-1}
\]

(cf. [4], (10.5)). Therefore, if we suppose that \(o(p, k) = \frac{1}{4} m(2p) \) then \(\alpha(\frac{1}{2}m(2p)\ g_0) = \frac{1}{4} m(2p)g_0 = 0 \) by (2.8), (2.9) and so there exists an equivariant map

\[
f : \Sigma^{2p-2k-1+n, 2p+2k+n} \to \Sigma^{n, n}
\]

for \(n \) sufficiently large such that the image of the homotopy class of \(f \) by \(\psi \) is \(\frac{1}{2} m(2p)g_0 \).

Since \(k \) is odd,

\[
\widetilde{KR}(\Sigma^{2p-2k-1+n, 2p+2k+n}) \simeq \widetilde{KO}(S^{4k+1}) = 0
\]

and

\[
\widetilde{KR}(\Sigma^{2p-2k-1+n, 2p+2k+n+1}) \simeq \widetilde{KO}(S^{4k+2}) = 0
\]

Therefore we have the commutative diagram

\[
\begin{array}{ccc}
0 & \leftarrow & \widetilde{KR}(\Sigma^{n, n}) \\
\downarrow c & & \downarrow c \\
\widetilde{K}(S^{2n}) & \overset{f'}{\leftarrow} & \widetilde{K}(S^{2n} \cup CS^{4p-1+2n}) \\
& & c \downarrow \\
0 & \leftarrow & \widetilde{K}(S^{2n})
\end{array}
\]

where \(f' \) is a representative of \(\frac{1}{2} m(2p)g_0 \), \(CA \) is the cone of \(A \) and \(c \) is the natural complexification homomorphism ([12], §2). This diagram implies that \(e_c(f') = 0 \), which contradicts to the fact that \(e_c(f') = \frac{1}{2} \) ([1], IV, §7). Hence we see by Lemma that \(o(p, k) = \frac{1}{2} m(2p) \).
4. Proof for \(p > k \) and \(p, k \) even or odd. Using the notation of Landweber for the stable homotopy groups [9], by [5], Fig. and (12) we have the following commutative diagram in which the columns and the rows are exact sequences:

\[
\begin{array}{c}
0 \\
\downarrow \psi^* \\
\lambda_{4p-2k-1,2p+2k} \rightarrow \pi_{4p-1} \rightarrow \lambda_{4p-2k,2p+2k-1} \downarrow \\
\psi \\
\alpha \downarrow \alpha \\
\pi_{4p-2k-1,2p+2k} \rightarrow \pi_{4p-1} \rightarrow \pi_{4p-2k,2p+2k-1} \\
\end{array}
\]

for \(k \geq 0 \). (\(\lambda^*_{p,q} \) and \(\pi^*_{p,q} \) are Bredon's \(\pi^*_{p+q} \) and \(\pi^*_{p+q} \) respectively.) If we assume that \(o(p,k) = \frac{1}{2} m(2p) \), then \(\alpha(\frac{1}{2} m(2p)g_0) = \frac{1}{2} m(2p)g_0 = 0 \) by (2.8), (2.9) and therefore there is an equivariant map

\[f: \Sigma^{2p-2k-1+n,2p+2k+n}/\Sigma^{0,2p+2k+n} \rightarrow \Sigma^n, \]

such that the image of the homotopy class of \(f \) by \(\psi^* \) is \(\frac{1}{2} m(2p)g_0 \).

Consider the diagram

\[
\begin{array}{c}
\Sigma^{2p-2k-1+n,2p+2k+n}/\Sigma^{0,2p+2k+n} \\
\uparrow \pi \\
\Sigma^{2p-2k-1+n,2p+2k+n} \rightarrow \Sigma^n, \]
\]

where \(f = f \pi \) and \(\pi \) is the map collapsing \(\Sigma^{0,2p+2k+n} \) to a point.

Putting

\[
A = \widetilde{KO}_{\mathbb{Z}_2}(\Sigma^{2p-2k-1+n,2p+2k+n}/\Sigma^{0,2p+2k+n}),
\]

\[
B = \widetilde{KO}_{\mathbb{Z}_2}(\Sigma^{2p-2k-1+n,2p+2k+n}),
\]

\[
C = \widetilde{KO}_{\mathbb{Z}_2}(\Sigma^{2p-2k-1+n,2p+2k+n+1})
\]

and taking

\[n \equiv 0 \mod 8, \]

we have by [9], Lemma 4.1

\[A \cong KO^{-2p-2k-n-1}(P^{2p-2k-2+n}) \]

where \(P^m \) is the real projective \(m \)-space and we have by [6] and [9], Theorem 3.1

\[A \cong \begin{cases}
0 & \text{if } p = 2q, k = 2l \text{ and } q+l \text{ is odd} \\
& \text{or } p = 2q+1, k = 2l+1 \text{ and } q+l \text{ is even} \\
Z_2 \oplus Z_2 & \text{if } p = 2q, k = 2l \text{ and } q+l \text{ is even} \\
& \text{or } p = 2q+1, k = 2l+1 \text{ and } q+l \text{ is odd}
\end{cases} \]
REAL J-HOMOMORPHISMS

$B \simeq Z, C \simeq Z_2$ if p, k are even

and

$B \simeq Z, C = 0$ if p, k are odd.

In any case A, C are torsion groups and B is a free abelian group. Hence $f^* = \pi^* f^*: \widetilde{KO}_{Z_2}(\Sigma^n, \tau) \to B$ is a zero map since $\pi^*: A \to B$ is so. And therefore we have the commutative diagram

\[
\begin{array}{ccc}
0 & \leftarrow & \widetilde{KO}_{Z_2}(\Sigma^n, \tau) \\
\rho & \downarrow & \rho \\
0 & \leftarrow & \widetilde{KO}(S^{2n}) \\
\end{array}
\]

\[
(4.1)
\]

where f' is a representative of $\frac{1}{2} m(2p) g_0$ and ρ is the forgetful homomorphism.

From [9], Theorem 3.1 and Proposition 3.4 we see that $\widetilde{KO}_{Z_2}(\Sigma^{5m, 5m})$ is a free $RO(Z_2)$-module with a single generator u for which the Adams operation ψ^* satisfy

\[
\psi^*(u) = \begin{cases}
\frac{1}{2} k^{8m}(H-1)u & \text{if } k \text{ is even} \\
\frac{1}{2} k^{8m} (k^{8m} - k^{4m}) (H-1)u & \text{if } k \text{ is odd}
\end{cases}
\]

for $m > 0$ where H is a canonical, non-trivial, 1-dimensional representation of Z_2. Since $\rho(u)$ becomes a generator of $\widetilde{KO}(S^{10m})$, (4.1) and (4.2) imply that $e'(f') = 0$. On the other hand $e'(f') = \frac{1}{2}$ ([1], IV, §7). This contradiction and Lemma show that $o(p, k) = m(2p)$.

5. Proof for $p = k$. Considering the following diagram

\[
\begin{array}{ccc}
\pi_{0, 4p-1} (GL(\infty, C))^\varphi & \xrightarrow{\varphi} & \pi_{0, 4p-1} (GL(\infty, R)) \\
\downarrow J_K & \cong & \downarrow J_0 \\
\pi_{0, 4p-1} i' & \xrightarrow{\varphi} & \pi_{0, 4p-1} t'
\end{array}
\]

where φ is the fixed-point homomorphism [4, 5] we see that this diagram is commutative and therefore $o(p, p)$ is divisible by $m(2p)$.

Let us denote by $\Omega_2 S^n$ the space of base-point-preserving maps of S^n into itself of degree \tilde{d}, by $GL(n, R)$ the general linear group of degree n over the real numbers and by $GL(n, R)_0$ its identity component. Then the real J-homomorphism $J_{0, n}: \pi_{4p-1} (GL(n, R)) \to \pi_{4p-1+n} (S^n)$ is induced by the composition

\[
GL(n, R)_0 i' \subseteq \Omega_2 \rightarrow \Omega_2 S^n
\]
where \(i' \) is the inclusion map and \(t' \) is a similar one to \(t \) in §1 ([2], §1). Particularly, if \(n \geq 4p+1 \) then we may consider \(J_{0,*} \) the stable real \(J \)-homomorphism \(J_0: \pi_{4p-1}(GL(\infty, R)) \rightarrow \pi_{4p-1}^s \).

For a map \(f: S^{4p-1} \rightarrow \Omega_1^n S^n \), define a map \(f': S^{4p-1} \rightarrow \Omega_1^n S^n \) by \(f'(x) = f(x) \wedge f(x) \) (\(x \in S^{4p-1} \)). Here we regard \(S^n \wedge S^n \) as a space with involution switching factors and then \(S^n \wedge S^n \approx S^n \times S^n \) as \(\tau \)-spaces. The assignment \(f \mapsto f' \) determines a homomorphism \(\omega': \pi_{4p-1}(\Omega_1^n S^n) \rightarrow \pi_{0, p-1}(\Omega_1^n S^n) \). And so we define a homomorphism

\[
\omega: \pi_{4p-1}(\Omega_1^n S^n) \rightarrow \pi_{0, 4p-1}^s \]

by the composition

\[
\pi_{0, 4p-1}(\Omega_1^n S^n) \xrightarrow{\omega'} \pi_{0, 4p-1}(\Omega_1^n S^n) \xrightarrow{t^*} \pi_{0, 4p-1}(\Omega_1^n S^n) \rightarrow \pi_{0, 4p-1}^s
\]

where the unlabelled arrow is the obvious homomorphism. Then we can easily check that the diagram with the natural isomorphism \(\pi_{4p-1}(GL(n, R)) \approx \pi_{4p-1}(GL(\infty, R)) \)

\[
\pi_{0, 4p-1}(GL(\infty, C)) \xrightarrow{i'} \pi_{4p-1}(GL(\infty, R)) \approx \pi_{4p-1}(GL(n, R)) \xrightarrow{i''} \]

is commutative for \(n \geq 4p+1 \). From the commutativity of this diagram and the fact that \(J_0 \) factors into the following three homomorphism:

\[
\pi_{4p-1}(GL(n, R)) \xrightarrow{i''} \pi_{4p-1}(\Omega_1^n S^n) \xrightarrow{t^*} \pi_{4p-1}(\Omega_1^n S^n) \approx \pi_{4p-1}(\Omega_1^n S^n)
\]

for \(n \geq 4p+1 \) ([12], §1), it follows that \(m(2p) \) is divisible by \(o(p, p) \). This completes the proof of Theorem.

6. Finally we observe examples for the case \(k \) even and \(p \) odd.

By [5], (8) and [7], Table 1 we obtain

\[
\lambda_{k, 1}^* \approx Z_{12} \text{ and } \lambda_{0, 5}^* \approx Z_{504}
\]

using the Landweber's notation and so, making use of the exact sequence of [9], p.129, we have

\[
\pi_{k, 1}^* \approx Z_{24} \text{ and } \pi_{0, 5}^* \approx Z_{504}.
\]

Since \(m(2p) = 24 \) and \(m(2p) = 504 \) if \(p = 1 \) and \(p = 3 \) respectively, we get by Lemma
and the above isomorphisms \(o(p,k) = m(2p) \) for \((p,k) = (1,0), (3,0)\). We therefore conjecture that \(o(p,k) = m(2p) \) for \(k \) even and \(p \) odd generally.

OSAKA CITY UNIVERSITY

References
