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SAMPLE PATH PROPERTIES
of

ERGODIC SELF-SIMILAR PROCESSES

Keizo Takashima

1. Introduction

In this paper we shall study some sample path properties of
ergocdic self-similar processes, in particular, a class of stable
elf-similar processes which includes the fractional stable
processes. A large number of papers on sample path properties
have been devoted to Gaussian processes and Lévy processes, i.e.
stochastic processes with independent, stationary increments.

In case of the Brownian motién; especially, we have Kolmogorov's
test as a refinement of the law of the iterated logarithm and
Chung-Erdos-Sirao's test ( cf. [4] ) as a refinement of Lévy's

modulus of continuity.



We shall show some zero-one laws on sample path properties
for general ergodic self-similar processes in Sections 2 and 5 .
In Sections 3 and 4 ; we shall be concerned with a class of stable
self-similar processes having stationary increments. We shall
give integral tests fof upper and lower functions with respect to
the local growth of sample paths, which correspond to Kolmogorov's

test and also to the results of Khinchin [15] for strictly stable

processes. With respect to the uniform growth, in case of fractional

stable processes with continuous sample paths, we shall give criteria

for upper and lower functions. Furthermore, we shall show the
existence of function which is neither an upper nor a lower function
This fact sharply contrasts with the Brownianmotion case ( cf. [4] )

Various sample path properties of ergodic self-similar
processes can be shown to hold with probability zero or one. Among
such properties, we shall study growth properties in Section 2 and
Hausdorff measure properties in Section 5 . The results in Section
2 enable us to prove the above mentioned results in Section 3 by
using an extension of Borel-Cantelli's lemma given in [16] rather
than that of [3] . These zero-one laws on sample path properties
also have their own interest and their original version can be found
in Lévy [21] ( cf. also Taylor [35] ) , where a Hausdorff measure
property of range of Brownian paths was treated.

In case of the Brownian motion, the.law of the iterated
logarithm means that the exponent of local growth order of sample

paths is equal to 1/2 with probability one, and Lévy's modulus of

°
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continuity implies that the exponent of uniform growth order of
sample paths is equal to 1/2 with probability one. The Brownian
motion is, of course, a self-similar process with exponent 1/2 .
ror the fractional Brownian motion, these three exponents -are known
to be equal to one another. Thus, there naturally arises the
following question : do the above three exponents still coincide

in case of. non-Gaussian self-similar processes with dependent
increments and having continuous sample paths ?

In Section 2 , it will be shown that the above three exponents
are egual to one another for a self-similar process X with
stationéry increments if the tail probability of mardinal
distribution of X decays in an exponential order. By this fact,
~an affirmative answer to the above question will be given for
self-similar processés représented by multiple Wiener ( or Wiener-
Itd ) integrals ( cf. Section 2 , Example 2 ) . In contrast with
this, Theorem 3.4 will give a negative answer to the question for
(a,B)-fractional stable processes with B > 0 : the exponent of
uniform growth order is equal to £ and strictly less than the
exponent, 1/a + B8 , of self-similarity, while the exponent of
local growth order is still equal to 1/a + B .

The author would like to express his gratitude to Prof.
T.Komatsu for kind encouragement and advice. Thanks are due to
Prof.M.Maejima who informed Rosinski's works and sent copies of

preprints in the course of the preparation of this paper. Thanks



also to Prof .M.Fukushima who read the first draft of this paper
and gave kind advice. The author is also grateful to the referee
for hié helpful comments, especially the former part of the proof
of Remark 2.3 in Section 2 is due to him, and moreover, the results
on uniform growth properties of fractional stable processes have

been improved substantially by his comments.



2. Preliminaries and growth properties

In this section we shall first make some preparations for
notions and notations on stochastic processes, énd then, we shall
show some zero-one laws on the local and uniform growth of samplé
paths for ergodic self-similar processes.

Stochastic processes considered in this paper will be assumed
to be real-valued and continuous in probability. Thus, we can
take a separable version of such process without loss of generality.
Moreover, whenever the process allows a version in D([0,o)>R)
or C([0,~)+R) , we shall take this vefsion. For a stocﬁastic

process X = { X(t) : £t > 0} and for k> 0, a > 0 , a scaling

transformation SI< a .0of X 1is defined by
, .
-K
(5., X(t) =a“xXat) , t20 .
Definition 2.1. A stochastic process X = { X(t) : t > 0 }

is called a self-similar process with exponent «K , K > 0 (
shortly k-self-similar process ) , if for any a > 0 , the process
{ (S’< aX)(t) : t > 0} has the same distribution as that of X .
14
Throughout this paper, X will denote a self-similar process
and Kk will denote the exponent of X . Since, in this paper,

scaling transformations will be always considered for self-similar



processes, we shall write simply sa for SK a By Definition
I

2.1 , a scaling transformation Sa of X clearly preserves the
distribution of X , and so the notion of ergodicity or mixing

of Sa can be defined in the usual way ( cf. [5] ) . From this
point of View, we shall call X an ergodic ( or strong mixing

resp. ) self-similar process if S, r a> 0, #1 , is ergodic

( or strong mixing resp. ) . For any fixed « > 0 , k-self-
similar processes are characterized as follows ( cf. Lamperti

(191 ) : let X be the space of K-self-similar processes X
z5 | |
with X(0) = 0 a.s., and Y be the space of strictly stationary

7
—® <

processes Y = { Y(t) t < ® } . Then, there is a bijective

mapping T, : X > Y , defined by
z7
T (X)(E) (= ¥(t) ) = e xEeh) , et cw

A scaling transformation Sa of X corresponds to a shift
transformation Gu of Y , i.e. TKOSa = GUQTK , where u = log a

and eu is defined by

{ euy Y(t) = Y(t+u) , - < t ¢ ® ,

Furthermore, Sa is ergodic ( or strong mixing resp. ) if eu
is ergodic ( or strong mixing resp. )., and X 1is ergodic ( or
strong mixing resp. ) if Y (= TKX ) is ergodic ( or Strong



mixing resp. ) .

We shall assume, in this paper, the followings :

Hypotheses. X = { X(t) :t >0} is a self-similar
process with exponent k >0 , and X(0) = 0 a.s., which is
separable and continuous in probability. Any scaling trénsformation
Sa ;a >0, #£1, is ergodic.

Next, we shall state zero-one laws on growth properties of
sample paths of ergodic self—similar processes. For this aim,
we prepare some notions and notations on growth order properties.

For a positive function g , consider the following events

E, = | there is & > 0 such that [X(t)] < g(t)
for 0 < t < ¢ ’
E; = { there is N > 0 such that [X(t)]| < g(t)
for t > N J ’
Fé = ( there is § » 0 such that
L IX(t)FX(s)I < g(|lt-s|) for s,t€1,|t-s|< 6 ’
where I 1is an interval of [0,%) . In case I = [0,1] , we shall
write shortly Fg for F; .



Definition 2.2. (1) A positive function g is called
an upper function( or a lower function resp. ) with respect to the

local growth at 0, if P( Eg ) =1 (or 0 resp. ) .

(ii) - g 1is called an upper function (Ora lower function resp. )
with respect to the local growth at <« , if P( E: ) =1 (or O

resp. ) .
(ii) g 1is called an upper function (ora lower function resp. )

with respect to the uniform growth, if HP(;Fg ) =1 ( or 0 resp. )

We shall denote the space of upper functions with respect to
the local growth at 0 or = , or with respect to the uniform growth

by _El.' éz ; or U . resp., and also denote the space of lower

xRz =z
functions with respect to the local growth at 0 or « , or with

@

£¥%’ él. , or L resp.

respect to the uniform growth by
AT =z
£

In addition, define the following functionals for X > 0

and a positive function ¢ :

|x(t) |
L = lim sup
Ao B0 A ()
© [x(t) ]
L = lim sup _,
A, d tt tX o(t)
I |x(t) - X(s)|
UA 6 = lim sup X
! h¥0 s,teI, [t-s|<h |t-s]” ¢(|t-s])
. . ' o [0,1]
where I 1is an interval. We shall write simply UA o for UA o
4 r
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Note that t" ¢(t) €U, (or U, , U resp. ) if L, =0

o =5 w7 7 X
( or LX,¢ =0 , UA,¢ = 0 resp. ) a.s.,.and that t ¢(t)€é£@_
( or LT, L, resp. ) , if L) o = ® ( or L§,¢ = X7
2 z 7 -
UX,¢ = ® resp. ) a.s.

In this and the next sections, we shall sometimes assume the
stationarity of increments of processes : a stochastic process X
is said to have stationary increments if for any tO > 0 , the
process { X(t+t0) —'X(to) :t > 0} has the same distribution as
that of X .

We shall now state our results on growth properties of sample
paths of ergodic self-similar processes, first, the foliowing

zero-one law on the local growth.

Proposition 2.1. For a positive monotone function ¢ ,
0 1 d P( E. 0 1
P('Echb ) = or an P <, } = or ;
[oe] o0
where EK,¢ ( or EK,¢ resp. ) denotes Eg ( or Eg resp. )

with g(t) = t% o(t) .

Proof. First, we prove that P{ E|< b )y = 0 or 1 .
4
Case (i) For some a > 0 , assume that ¢(u/a) > ¢(u) , u > 0 .
Put S =s_ . If |x(t)] < tf¢(t) , 0 <t <&, for some § > 0 ,

a
this implies that |X(t)] < t“¢(t/a) . Put u = t/a . Then,



[(sx)(u)]| = |X(au)|/a" < u®¢(u) , for o < u < §/a .

, and P( E_ A s g ) = 0 .

This means that EK’¢(:S_1E 6 <, b

K, 0

Since 8 is ergodic, we have P{( E ) =0 or 1 (cf Is571 ) .

K,
Case(ii) For a > 0 , assume that ¢(u/a) < ¢(u) , u > 0 .
If | (sX)(t)] < 5o (t) , 0 <t <« §'" , for some &' > 0 , this

implies that
|x(at)| < (at) o(at/a) < (at) o(at) .

Put u = at . Then, [X(u)] < u“¢(u) for 0 < u < ad' . This

means that S—1EK'¢(:EK'¢ . Thus again, P ( EK,¢ ) =0 or 1 .

The proof for the second assertion goes similarly with slight

modifications, such as letting N take the place of &6 and the

"

phrase " t > N take the place of " 0 < t < § " , etc., and so

we omit its details. g.e.d.
Corollary. For a positive, monotone function ¢ , there
exists a constant S0 0 < ¢, o < ( or c:,¢ ; 0 < c:i¢ < @
resp. ) such that
L [e ] [ee]
<, b = cK,¢ ( or LK’¢ = CK,¢ resp. } a.s.

Especially, for A , # k , and for ¢ , slowly varying at 0 ( or

-
<
|



© resp. ) ,

Proof. Put =sup { ¢ >0 : P(E =01} .

K,co )

a.s. In case A # kK ,

cK,¢ ‘
Then, it is easily verified that LK,¢ = CK,¢
put Y(t) = tK—K¢(t) . Although ¢ is not monotone in general,
>it is easily shown, for example, that for some positive a ,
Y(t/a) > ¥(t) on some neighborhocod of 0 , if ¢ is slowly
varying at 0 . This is sufficient for the proof of Proposition

2.1 for Thus, the last assertion can be derived from the

E .
K, U

fact that the event [ L ] has probability one

= L =
K, 0 USRS W
and should be invariant with respect to any scaling transformation.
The proof goes similarly for L: 6 g.e.d.
14

Next, we give a sufficient condition for the exponent of local

growth order not less than «k .

Proposition 2.2. Assume that X has stationary increments.

If there exists Yy > 0 such that
(2.1) E[l |x(1)]Y ] <o , and yc > 1,

for any e > 0 and for a positive function ¢ , slowly varying

at 0 ( or o resp. ) ,



x

LK—€,¢ ( or LK+€'¢ resp. ) = 0 a.s.

Proof. By (2.1) , for any s , t , 0 < s <t <=

ELx(£)-x(s) |71 = Ellx(t-s) |71 = Je=s|TEl]x(1)|T] < = .
Because of Yk > 1 , we can apply Theorem 1 of Mdricz [28] , and
we obtain the following estimate for moments of M =

maxoiti1lx(t)l :

E[{ M'] < Co ELIX() Y] <=,

where CYK is a positive constant depending only on YK

By scaling property,

°

P( Ix(t)] > 7%y = p(lx()] > 78y < ¥ Bl x| M1

and

: -n-1 -n(x-¢g)
P( max [x(t) - x(27"" )| > 2 )
2701 pp7m Z
= P( max |x(t)] > 27PUK-8) ) _prm > 2Py
0<t<2 ‘
<c ,=EYn

- 12 -



where ¢ 1is a positive constant independent of n . Using these

estimates, we have

o -n(K-g)
Y 7 P( max [x(t)]| > 278 )
n—j Z—n_1itiz_n
® -n-1 -n(k-g)-1
<y { P( max Ix(t)-x(27%7 )| > 2 1)
= o=l 2—n—1it12"n
#p( |x27P )| 5 2(KE)=T
< c' zn:? Z_EYn © .

By Borel-Cantelli's lemma, with probability one, there is a number

n0 such that

max 1 n |x(t)]| < p~n(K-€) for n > n, .
277 <tc2
This implies that
K-€ K-€ o
|x(t)|/t < 27 , for 0 <t <2 .
By Corollary to Proposition 2.1 , we have L = 0 a.s., where

K-€,1
L}\’1 denotes LA,¢ with o¢(t)

1 . Since € 1is arbitrarily

positive, this means that LK .0 = 0 a.s., for any slowly
' %



varying function ¢ .
For the second assertion, sSince we have E[ MY ] < ® , the

proof is completed by the result of XKbno [18] .

Remark -2.1. Vervaat [36] proved that if X is not degenerate ,

i.e. P( X(1)=0)=01
( or LK'1 ) = Xg @.S5.,
where

(2.2) X, = Sup { x>0 :PC[x(N] >x)>01} .

This implies that the exponent of local growth order of sample
.paths is not greater than « . Thus, if X 1s not degenerated

and satisfies the condition (2.1) , the exponent of local growth
order of sample paths of X 'is equal to «k . There two typical
cases that the moment condition (2.1) is not fulfilled : the first
is the case that X 1is a strictly stable process with exponent o .
Although X does not satisfy (2.1) , the exponent of the local
growth of X is equal to « = 1/a ( cf. [15] ) . On the other
hand, when X 1is an (o,B)-fractional stable process with

0 <a <1 and - 1/a < B8 < 1-1/a , no positive bounded function



can be an upper function by the result of Maejima [23] .

Nekt, we shall discuss the uniform growth of sample paths, and
we give the following result for UI< o 7 which shows a difference
r

between local growth properties and uniform growth ones.

Proppsition 2.3. Let ¢ be a positive function, slowly

varying at 0 .

(i) There exists a constant cK,¢ ¢ 0 < CK,¢ <o,
such that
UK,¢ = cK’¢ a.s.
(ii) For any A , 0 < A < Kk ,
P(U}\,Cb:O),P(0<UAI¢<“),P(UA7¢=°")

Moreover, assume that X has stationary increments. For any c ,

0 <c ¢<»

P( 0 < U <c ) , P(cx« UA,¢ < o ) < 1 .



Proof. Put S ='Sa . First, note that for any A ,

[0,1] _ 10,al A-K
(2.3) UA,¢ o S = UA,¢ a , a > 0,
where U&O&1] o S denotes U&Oé1] for the process { (SX)(t) :
t >0 } .
(i) By (2.3) , for a>1 and ¢ > 0 ,
110,11 . .10,a) 10,11
S[UK’(b _c]—[UK'd) _<_c]C[UK’¢ < 1

By the ergodicity of S , we have P( UK o <e¢c ) =0 or 1
14

Put Ce,p = SUP { c>0: P( UK’¢ <c) =0} . Then,
UK,¢ = cK’¢ a.s.
(ii) By (2.3) , the events [ Uk,¢'= 01, [ 0« UA,¢ < @ ],
and [ UA 6 = © ] are invariant with respect to S . Thus, these
, .

events have probability zero or one.

Next, Assume that X has stationary increments and that
there is c > 0 such that P( 0 < UX o <c ) =1 ., Again by
14
(2.3) , we have

[O,a]_i aK-A )

P( 0 < UA,¢

- 16 -



On the other hand, because X has stationary increments, we have

[T-a,1] o oA )y =1 , for 0 <a <1 .

P( 0 < UA,¢ <

Take a , 1/2 < a < 1 . Then, since

[0,a] [1-a,1]
U = U U
Un,e = max LU 0T Uy oo
we obtain
K-A _
P( 0 < UA,¢ < c a Yy = 1 .

By iterating this arguement, since a < 1 , we have

P(O <Uy 4 <0)=1.

This is a contradiction, and it is verified that

P( 0 < U < ¢ )<1, for any ¢ , 0 < c < »®
A, —

The proof goes similarly for P( c < U < ) <1,

Ard
dg.e.d.



Remark 2.2. As 1s shown in Proposition 2.1 and its
corollary, for any positive, monotone function ¢ , £X o(t)
belongs to either U or L, , and L is equal to a certain
2 27 A
constant with probability one. In contrast with this, with réspect
to the uniform growth, Proposition 2.3 , (ii) , shows the possibility

of existence of a positive function ¢ , slowly varying at 0 ,

and a positive number A, A < kK, such that

§) <« @ =1 .

| P( 0 < A, U )

In this case, for any ¢ > o , ctxw(t) can be neither an upper

nor a lower function with respect to the uniform growth, because

the infimum of support of distribution of UA " is equal to O
14

and its supremum is egqual to @ . In Section 3 , we shall show

~that for an (a,B)-fractional stable process with B > 0 ,

and the support of distribution of UB 1 is (0,») . This means
14

the impossibility of general zero-one law for upper and lower

functions with respect to the uniform growth, analogous to

Proposition 2.1 .



Remark 2.3. For XA > Kk , it is verified analogously that

UK o = 0 a.s. or « a.s. From the following facts, it is clear
, .

that UA o = © a.s., for non-degenerate processes : assume that
I

X has stationary increments. Then,

(i) if X is not degenerate, UK 1 = Xg @eS., where
7

X, is defined by (2.2) .
(ii) If the tail probability of |X(1)| decays in an
exponential order, i.e. there exist positive constants C1 B C2

and Y such that

P( Ix(1)] > x ) < C; exp { -C, x' } for large x ,

UK~€,1 =0 a.s., for € > 0 .
Proof. (i) ( This proof is due to the referee. )
By the definition, UK ;2 LK , - Thus, it is clear that
4 14
UK,1 > Xy a-s., by Remark 2.1 . 1In case Xg < © put
ES £ = [ |x(t) - X(s)l/lt—s]'< > Xy + § 1] for any positive § .
!

Then, since X is self-similar and has stationary increments,

P ES " ) 0 , by the definition of Xg - Thus, the union of
14
Es £ over rational s , t of [0,1] , has probablity zero. This
r
means that U < X a.s.

K,1 — 70

(ii) By Theorem 1.1 of Bernard [1] , there is a positive



constant M such that M t° ¢ U , if

[o, t72 PC x| 2 £7°

<+

This is easily checked by the above condition. Thus, UK e 1
—Cy

M a.s. This implies that- UK_ =0 a.s., by Proposition 2.3 .

g,1

g.e.d.
In case X satisfies the conditions of (i) and (ii) , gF+E
belongs to U or L , according as € <0 or >0, i.e,
—ll 173

—

B

the exponenthéf the uniform growth of sample path of X 1is equal

to x .

In the rest of this section, we shall make some remarks on
ergodic properties of scaling transformations of self-similar
processes. With respect to many known self-similar processes,
scaling transformations can be shown to be ergodic. We shall here
show that scaling transformations are strong mixing for several
typical examples, other than stable self-similar processes, with

respect to which we shall discuss in the next section.

-20 -



Example 1. Let X be a Gaussian process with mean 0 ,
and covariance

{2 4 225 0 [t-s|® /2, 0 <k <1 .

E[X(s)X(t)] =
We can easily show the strong mixing of X Dby applying the
criterion;of Maruyama [25] on strong mixing of stationary

Gaussian processes to the process Y ( = TK(X) ) .

Example 2. ( [271 ) Let m be a positive integer and

consider the self-similar process X defined by

X(t) = f...me O (uqy.eepu ) @B(u,)...dB(u_) , t > 0,
where { B(t) : -» < t < o } 1is a Brownian motion and Qt is a
square ‘integrable function on Rm», invariant under permutations

of arguements, with QO = 0 and

aK—m/Z

Qat(au1,...,aum) = Qt(u1,.,.,um)

Qt+h(u1,...,um) - Qt(u1,...,um) = Qh(u1—t,.“.,um—t)

for a, t>0 and h > 0 ,

where 0 <k <1 . Then, X 1is a k-self-similar process ( cf.



Mori and Oodaira [27] ) . In [27] ; the law of the iterated logarithm
is proved.' Dobrushin [7] studied analogous self-similar processes
represented by multiple Wiener-Itd integrals. Surgailis [33]
discussed ergodicity of shift transformations of stationary random
fields represehted by stochastic integrals based on Poisson random
measure. ‘He introduced a notion of 'subordinated' which corresponds
to the notion of ‘'factor' in the ergodic theory except the necessity
Qf taking sn appropriate version of stochastic integral. In this
example, it can be similarly shown that a scaling transformation

of the above process X 1is a factor of a certain scaling transfor-
mation of the Brownian motion B . Thus, the strong mixing of
scaling transformation of X 1is deduced from a well~known faet in
the ergodic theory ( cf. for example, Cornfeld, Fomin and Sinai

{51 , p.230 - 231 ) . It is also known that the tail probability

of |X(1)| decays in an exponential order ( cf. [24] , [271 ) .
Example 3. ( [147 ) Let X be a process defined by
X(t) = [ o L.(x) dz(x) , t > 0, and X(0) = 0,
where 2 = { Z(x) : -© ¢ x < ® } is a strictly stable process

with exponent ¢ , 0 < @ < 2 , and Lt(x) is the local time

- 22 -



at x of é strictly stable process Y with exponent £ ,

1 < B < 2, which is independent of Z . Then, X is a self-
similar process‘with exponent k = 1 — 1/a + 1/(aB) ( cf. Kesten
and Spitzer [14] ) . As in the above examplé, by taking appropriate
versions of stochastic integral and local time, we can show that

a scaling transformation of X 1is a factor of direct product of

a certain scaling transformation of Z and a transformation of
Lt(x) inéuced from a certain scaling transformation of Y .

Since a direct product of strong mixing transformations is strong
mixing ( cf. Cornfeld, Fomin and Sinai [5] , Chapter ﬂO ; Section

1 , Theorem 2 , for example ) , any scaling transformation of X

is strong mixing.

Example 4. ( 1121, [131) Let { U(x) 2 x> 0}
and { M(x) : x > 0 } be strictly stable processes with
exponents o ; B, 0 < a , B < 1, which have increasing sample
paths a.s. Let { B(t) : t > 0} be the standard Brownian motion,
Assume that these processes are independent one another. Define

a process { v(t) : t >0} by

]

vV(t) = fo"° L (U(x) ) aM(x) , t >0, and V(0) =0,

where Lt(x) is the local time at x of B . Let X be a process

defined by

- 23



1 1

X(t) U (B(V (t))) , t>0, and X(0) =0 ,

Then, X is a self-similar process with exponent «k = aB/{( aB)

( cf£f. Kawazu [12] , Kawazu and Kesten [13] ) . Taking an appropriate
vérsion of the local time Lt(x) ; we can show that a scaling
transformation of X is a factor of triple direct product of

scaling transformations of U , M and B . Thus, X is strong

mixing as in the previous examples.



3. Growth properties of stable self-similar processes

Pushing forward the general arguements in the previous section,
we shall consider growth propérties oflsample paths of a class of
stable self-similar processes. We shall call a stochastic process
stable if its finite-dimensional distributions are stable
distributions. We now define a class of stable self-similar
processes as follows : let 0 < a < 2 and B > -1/a . For a

function f , # 0 , satisfying

(3.1) 0 <[ o lf(s)|%as ¢« »
put
£P f(s/t) , £ >0,
£.(s) =
0 7 t = 0 °
Let X = Xa 8 £ be a process whose finite-dimensional distribution
7 14

is given by
(3.2) Bl exp { 1 J,_7 8, X(t) } ]

=exp { [ o w( 5,7 8 B (5)) ds )

for - < 61,...,en < w , 0 5_t1<...< tn <o , n>1,



where

[ e 1y viax) L0 <o <1
_ igx . ' _

(3.3) w(g) = ' [ (e -1 - iEx I[]X[i1]) v(dx) , a =1

[ (e _ 1 - irx) v(ax) 1< a <2
Here V(dx) is a Lévy measure on R - {0} , given by

-a-1
v(dx) = a {C+I[x>0] + C—I[x<0] }olx| dx ,

where C+ :» C_ >0, C+ +C_ >0 ( in case o =1, C+ =C ),
and I[ 1 denotes the indicator function. Then X 1is a stable
self-similar process with exponent «k = 1/a+ B . We shall denote

this class of stable self-similar processes by J§(a,B) :
7

-

S

¢

a,B) = { Xa,B,f : £ satisfies (3.1) } .

N

Any X of $§(a,B) is continuous in probability, and can be

2/
represented as

X(t)

]

[ o £(s) @z (s) a.s.,for t >0,

where { Z,(s) 1 -® <5 <@ } is a strictly stable process with

exponent @ , whose characteristic function is given by

E[ exp{ 1gz (s) }] = exp{ s V(&) } .
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Proposition 3.1. Any X of $(qg,B) 1is an infinitely
7
divisible process in the sense of Maruyama [26] ( cf. also

Lee [20] ) and is strong mixing of all order.

This proposition will be proved in the next section.

In addition, we define a subclass JS*(q,R) of S(¢,B) by
=

# </

If B =0 and f(s) =1 {s) , thenm X 1is Z itself and.
: [0,7] o

belongs to \£f(a,8) . Next consider a function f defined by

A7
(3.5) £(s) =a, {((1-)8 - (=)} +a_ ((1-0)B = (=5)f } ,
where x_ = max{x, 0} , x_ = max{-x, 0} , - /g < g <1 -1/q ,
B #0 , - o < a, ya_ <o ]a+|+ la | # 0 .

In this case, X 1is called a fractional stable process ( cf. [11] ,
[22] , [23]1 =and [341 ) . We shall call X an (g,B8)-fractional
stable process when we want to indicate ¢ , B explicitly.

Clearly, ft iﬁduced from this f satisfies the following

relation :
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(3.6) ft+h(s)~— ft(s) = fh(s—t) a.e. in s ,

for any fixed t , h > 0 .

Thus, (a,f)-fractional stable processes belong to S*¥(«,B) .
,2’/7
We shall now discuss growth properties of sample paths of
these stable self-similar processes. First, we give integral tests

for upper and lower functions with respect to the local growth.

Theorem 3.1. Let 1T <02 <2, B8>0, and ¢ be a

positive monotone function. With respect to any X of S*(«,B) ,
: z

Y/

0

£ o(t) € U, (or U, resp.)
/;7 2;7

if the integral

-1 -a ® -1 ~Q
I, = f0+ t™ 6(t) T dt (or I = [t ¢(t) "dt resp. )
converges, where Kk = 1/¢ + B . 1In this case,
® 0
LK’¢ =0 ( or LK,¢ = resp. ) a.s.
Theorem 3.2. Let 0 < a < 2, B> - 1/q and ¢ be a
positive monotone function. Assume that there exists 60 > 0 such

that



o 60 a
(3.7) [ o Isl 7 [f(s)]7 @s < = )

o a + 6
(3.8) ] o |£(s)] ds < e .

K ©
't d(t) G.fg ( or LZ resp. )
7T Iz
if the integral IO (or I_ resp. ) diverges.
. ) <«
In this case, LK’¢ = ( or LK,¢ = ® resp. ) &a.S.
Remark 3.1. (i) If X 1is a fractional stable proceés,

i.e. £ 1is given by (3.5) , the conditions (3.7) and (3.8) are
satisfied.

(ii) Put

¢ o ©

7

)t[1/a )t[1/a+€

oe) = l1og €] J10g , log

where n > 1 and log(k) is the logarithm function iteréted

. K o
k times. Then, tT o(t) € Uf and .£4’ if € >0, 1 <o < 2
¢ R? o A
and 8 > 0 , tT o(t) € Lz and éi if € <0, 0 <a < 2 and
6 > <1/s . YA
(iii) In case X 1is an (a,B)-fractional stable process

with 0 < a < 1 , any positive bounded function becomes a lower
function and the assertion of Theorem 3.2 is meaningless, since

any version of X 1is nowhere bounded ( cf. Maejima [23] ) -




- Next we shall discuss the uniform growth properties of sampie
paths of fractional stable processes. TFrom Proposition 2.3 , it
can be expected that fhere are some aspects of problems of the
uniform growth, different from those of the local growth. Tn the
rest of this section, we shall investigate behavior of sample paths
with respect to the fractional stable processes with continuous
sample paEhs and show.a remarkable difference of their uniform
growth properties from their local growth properties. These
results also contrast sharply with known results on Gaussian
self-similar processes ( cf. for example, Chung, Erdos and Sirao

(41 ) .

Let 1 <@ <2, 0 <B<1~-1/qg and let £, be a function

induced from £ defined by (3.5) , i.e.
ft(s) = a, {(t—s)E - (-S)E} + a_.{(t—s)g - (—s)?.} .
Consider

(o]
X(t) = Xa,B,f(t) = f_m ft(s) dza(s) .
We take a version of Za whose sample paths are right-continuous
and have left-limit with probability one. We also take a version

of X having continuocus sample paths with probability one.



We denote jumps of %, at time t by Az(t) ; i.e.
Az(t) = Zg(t) - Za(t—o) P t ¢ oo

Of course, X satisfies the conditions of Theorem 3.1 and
Theorem 3.2 .. Therefore, upper and lower functions with respect
to the local growth are determined by the integral tests and the
exponent of local growth order is equal to k = 1/ao + B .

The following theorem, however, shows that almost all sample paths
of X have certain times at which they behave like B-Holder

continuous functions.

Theorem 3.3. Let 1 <o <2, 0<B <1 -1/a and
X = X with f defined by (3.5) . Then,
a,B,f
. -8 _
limg 1o ( X(t+h) - X(t) ) h =a A (t) , 0<t <1, a.s.
. -8
llmh+0 (X(t) - X(t-h)) h "= - a_AZ(t) , 0 <t <1, a.s.
Corollary. Let f' be also defined by (3.5) with

certain a; and a' . Then, for some constant c¢ # 0 ,

and cX have the same distribution if and only if

X
G.lBlf'

(errf
f=cf' .



Remark 3.2. Cambanis and Maejima [2] proved the
result of this corollary for the case that 1T <a< 2
- 1/a < B <1 - 1/a and z, is a symmetric stable process.
We obtain their result only for 0 < B <1 - 1/oo but without

the symmetry of distribution of Zu .

We next consider the functional UB 1 and show that UB 1
. ’ !
behaves a little differently than as it is expected from the last

theorem.

Theorem 3.4. Under the same assumptions in Theorem 3.3 ,

UB,1 = maX_, o o [f(s)] Supoiti1 |AZ(t)| ', a.s.
Remark 3.3. In case a, a_ > 0,
MaX g eq com [£(s)]| = max{ |a+[, la | ¥ .

On the other hand, in case a a <0 ,

LER S |£(s)]| = |a+| {Ia_/a+|1/(1—8) + 1}1_8

> max{ |a+| cla |l Y .



Corollary. Under the same assumptions in Theorem 3.4

let ¢(t) be a positive function defined for t > 0 .

. A . o B

(i) Assume that 111'[1‘__4/O o(t) = . Then, t ¢(t) € Uu

=5
U = 0 eSa A

and 8,4 a.s

(ii) Assume that limt+0 ¢(t) = 0 . Then, t8¢(t)€ Lu

and UB,¢ = © a.s. 4

(iidi) Assume that

0 < lim inf o(t) < lim sup, dp(t) < =

t+o0
Then, t8¢(t) belongs to neither U nor Lu , and the support

of the distribution of U N is (0,®) .
r

The first version of the results on the uniform growth

was unsatisfactory and improved by referee's suggestions.
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4, Proofs for results of Section 3

Before giving proofs for main theorems, we first verify the

strong mixing of all order of stable self-similar processes.
Proof of Proposition 3.1. Since every finite-dimensional
distribution of X 1is stable by the definition, X 1is clearly an
infinitely divisible process in the sense of [26] .
From (3.2) , the characteristic function of (¥Y(0),Y(t)) ,
Y = TK(X) ; is given by
E[ exp { 1 ( 08Y(0) + n¥(t) ) } 1

= exp{ [/ [ exp{ ix(0f(u) + ng(uzt) )} - 1

- ia(x) (6f(u) + ng(u;t) )1 v(dx) du } ,

where g(u;t) = f(ue_t) e_t/a and
0 , 1f 0 < < 1,
a({x) = XI[IXIi1](X) , if o =1 ,
X , 1f 1 < a < 2 .

Since Y has no Gaussian component, it is enough for verification
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of the conditions of Theorem 6 of [26] , to show the following :

(A) limg ffF(t,d) v(dx) du = 0 , for § > 0 ,
(B) ling e [fppy [£00) gtuit)| x% viax) au =0
where F(t,8) = { (x,u) : |f(u)g(u;t)] x2 >¢6} , and
F(e) = [ (x,u) : 0 < x < ( £(w?2 + guz)2 )" V/2 3 .

(A) is derived from the fact that for any fixed § >0,

ffF(t §) le-a—1 dx du < ¢ [ If(u)g(u;t)[a/2 du

and (B) is derived from the fact that

gy Ewatuit)] %% viax) du < e’ flEwg(u;t)|*/? au
where ¢ and <¢' are positive constants, independent of t ,
because If(u)la/2 and lg(u;t)!m/2 are sguare integrable and
.so
[ £ g(u;t)lm/2 du » 0 as t > o .,
g.e.d.
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We shall now turn to proofs of theorems in Section 3 .

Let X be a process of JS*(a,B) . First, note the following
27

fact : there exist pgsitive cppstants K1 ’ K2 such that
K, x'a;P(‘l X(1)] > x ) <K, %,
and
(4.1) K, |t-s|* x™% < P(lx(t)-x<s)l > x ) <K, e-s|® 7%,

for 0 <s , £t < , and for x> 1.

This is derived from a well-known estimate for tail probability

of stable distributions ( cf. Gnegenko and Kolmogorov [8] , p.182) .
In case @K > 1 , i.e. B > 0 , by using Theorem 3.2 of Mdéricz,
Serfling and Stout [29] , we can obtain the next estimate for
maximum of X , which plays an important role in the proofs of

Theorem 3.1

Lemma 4.1. For a process X of JS*(a,B) , there exists
X7
a positive constant K3 , depending on & , B and K2 such that



Outline of proof. Fix n > 1 . Using the notations of

[29] , put X, = X(k/n) - X((k-1)/n) , and  g(i,3) =K, |(3-1)/n|*"

and ¢(t) = t% , for 1 <k <mn, 1 <4i,Jj<n and t > 0 .

Let ax take the place of « in [29] . Then, it is easily
verified that each condition in [29] can be satisfied. Thus,

n Ix(kx/nm)| > x ) < K, x ¢ .

By Theorem 3.2 of [23] p K3 depends not on n , but only on

a , B, K2 , and so we have the assertion of lemma by letting

n > g.e.d.

Using this lemma, we prove Theorem 3.1 |,

Proof of Theorem 3.1. We start from the proof for Uz .
It is enough to prove the theorem for a decreasing function ¢ A

by Remark 2.1 . For ¢ > 0 , define events

&3]
]

[lx(2™™ ] 2™ 5 co(2™™ 1,

By (4.1) and Lemma 4.1 ,

zr1=1 P{ En ) L C1 2n=°1° ¢(2—n)—“ < C2 f0+ t_1¢(t)_a dt < «,



IX(t)[ , and c C c are positive

0<t<1 T2 T30

constants independent of n . By Borel-Cantelli's lemma, with

where M = max c

4

probability one, there is a number N, such that

Ix(t)] < .IX(z‘“”)l v lxct) - x2™™ Ny
<2c 27 g2y 2T o R g(ey
for - 27771 <t <2™™ no> n, .
This implies that LK,¢ < 21+K c a.s. Since ¢ 1is arbitrarily
positive, this means that LK,¢ =0 a.s., and that (béfﬂl°

For the local growth at « , the proof goes similarly with trivial

modifications. g.e.d.
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We now proceed to the proof of Theorem 3.2 . For this
purpose, we prepare the following estimate for tail probability

of two-dimensional distribution of X .

Lemma 4.2. Let X be a process of JS(¢,B) . There exists

a positive constant K such that for a , b > 0 and for 0 < h < 1,

4

K -a/2

p(lxm) 0™ > a, |x(] 2 b)) <x, {0° (@)™2 4 (@a0)™ ),

where § = min {60, 60/(a+60)}/4 .

Proof. Let po{x) , - ® < x < ©» , be a non-negative,
infinitely differentiable, even function such that |p(x)| < 1 and
1 if x| < 1/2,
p(x) =
0 if x| > 1,

and P(&) be its image of Fourier transformation, i.e.
o(x) = (2m)71 [ 2 &3*¥% 5(e) ac .

Put X' = X(h) =¥ X" = X(1) and

[ 4



®X.(€) = Elexp(i&X')]l , 9d,u(n) = Elexp(inx")1 ,

Xll

o w(&,Nn) = Elexp(i&X' + inx")1 .

X',X
Note that

1

2m™" [ 2 BE) ag = p(0) = 1

Using this relation, we have the following estimate :

p( |x(m)h™ > a, [x(1)] >b)

SEMCT - p(X'/a) )1 - p(x"/b) )]

- (2m 72 Br{f -5 A 5 gyagr (f (1= Py B (nyan) ]

= (2m) 72 [J{1-0, (8/a) -0 (n/b)+0y 1 Lu(E/a,n/b)}B(£)F(n)dEdn
= (2m) T2 [0y, yu(&/a,n/b) =6y, (E/a)0, . (n/b)}F(E)F(n)dEdn
+(2m) T2 [{1-0,, (8/2)} {1-0 . (n/D)}B(E)F (n)dEdn

®X' (g/a)(bxu(n/b)

= (2m) "3 foy . u(E/an/p)(1 - }5(£)5(n)agan

(DX' ,Xu(g/a,ﬂ/b)

+ E[ 1 - p(X'/a) 1 E[ 1 - p(xXx"/b) 1
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It is enough to estimate the first term in the last side,

because we have the following estimates for the second term :

El 1 - p(X'/a) 1 <P( [x'| >a/2) <c;a™®

EL 1 - o(x"/b) 1 < P( |X"| >b/2) <y b %
where ¢, is a positive constant independent on a , b and h .
By (3.2) ,

0.0 (8) = expl [ W(EE(u/m) BTV ) au}

den(n) = exp{ [ ¥(nf(uw)) du}

Op (&) = expl [ w(e£(u/mn™ /%) 4 nf(u)) qu )
Here Y is given by (3.3) . Thus,

kO S UG ee (armn ) wpnt (u)

Pxr (8T - w(eE(u/mn % nE(u))} au }

It is easily derived from (3.3) that
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[0(E) + 0(n) - v(Erm ] < oy | (X5 1y @™ —1) x| 7% ax]

< C3 lgla/Z lﬂla/z

where <, and cj depend only on C+ , C_ and . Therefore,

by Schwarz' inequality, we have

-1/a

Jlv(Ef(u/h)h )+w(nf(u))-w(af<u/h)h“1/“+nf(u))l du

<ep 1enl®2 172 Jsum) s %7 au

IQ/Z

< cc l&n

Thus, we have

®X'(g/a) CDXn(n/b)
]

Il -

| 13¢£)8(n)| dagan

XI'Xu(E/a,ﬂ/b)

< g Cab)~ %2 fref v V2 e u/m) £ () |Y2 au )

x Iznl“/215<a>6<n)l dgdn + ff |8(&)8(n)| dagdn }
|£n|>ab

Because p is infinitely differentiable, 0 has moments of all

order and we have
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/] [5(e)5(n) | dgan < e, (ab)™4 .

len]|>ab

Getting these estimates together, we have

P( |x(m)| ™% > a, [X(1)] > b))

< cg {(ab) | £(u/h) £(u)| du + (ab)" %31 ,

6 ' 7 and Cg are positive constants independent

of a, b, h, & and n .

Therefore, by the following lemma, the proof is completed.

Lemma 4.3. Under the same assumptions and by the same

notations as in Lemma 4.2 , there exists «c¢' > 0 such that

F a2 Jgu/m) £ (w2 au < ' w8, for 0 <h o<1 .
Proof. Put
F(x) = [ [£(u)|* du  for x> 0 .
[|ul>x]

Divide the integral into three parts :
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[ 072 gqa/m) £uy |32

du
S P - S

We give estimates for these three intgrals by using Schwarz'

inequality. For I1 ’

I, < U778 1200 | % V20778 £ (u/m) | %au/m) 12
<O SEw]® an 32 1B p ) % 312
< e r1//a) 2

For I and I ;

( F(0) - F(/A) )1/2

12 £ g y
I, < c,. F(1//R) /2
3 — 711 ’

where €9 1 Cq9 and c,q are positive constants independent

of h .
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From the conditions (3.7) and . (3.8) , we obtain the following

estimates for F(x) by Holder's and Chebyshev's inequalities :

—60
F(x) < Cqp X '
6'
F(0) - F(x) < c13 X ' for x > 0,
whére S5 and c,3 are positive constants independent of x ,

! - -
and &' = 60/(a + 64) -
Getting these estimates together, we verify the estimate of the
lemma and we complete the proof of Lemma 4.2 .

g.e.d.

Using Lemma 4.2 , we now prove Theorem 3.2 . In proving a
function to be a lower function, we usually use an extension of
Borel-Cantelli's lemma by Chung and Erdds [3] . In this paper,
we apply the following lemma by Kochen and Stone [16] , which we

state here in a form convenient for our use.

Lemma 4.4. ( {161 ) Let En be events and assume

that

N N 2
n=1 P(Emf\En)/{ zn=1 P By A



Zero-one laws in Section 2 enable us to prove results by this lemma,

whose conditions are much more easily checked than those of [3] .

Proof of Theorem 3.2. First, we prove the result with
respect to the local growth at 0 . It is enough to consider the
problem for decreasing function ¢ , because of Remark 2.1 .

Define events

E_ = Ix(2™] 2™ > co2™) 1, for ¢c>0,n>1.
Then,
@ © -n, -a -1 —q
Yoo POEL ) 20 Lo_q 0(270)77 2 ¢y [y £70 0(8)7 at
By Lemma 4.2 , we have for no>m,
P Em!\En )

<oy {270 M2 ™e2™ 2 4 sz ™o }

where Cq, 1 Sy and cy are positive constants independent of

m and n . Therefore,
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Thus, by Lemma 4.4 , we have P( E i.o. } > 0 . This implies

n
that Lo o > c -a.s. Since ¢ 1s arbitrarily poéitive, we have
[4
L = © a.s.,.and tK¢(t) c L, .
K,d , £
2y

The proof goes similarly for the growth at « , with slight

modifications. g.e.d.



Next we shall turn to the proofs for Theorem 3.3 and
Theorem 3.4 . The following lemma is suggested by the referee
and plays an important role in the proofs.

Put

aft(s)

gt(s)=———é——‘,51‘éo , £, t >0,
S

and

Y(£) = [ 2z (s) gy (s) s , t> 0,

Y(0) 0 .

1

Note here that Y(t) can be defined for almost all sample paths

of Zy because by the results of Khinchin [15] , for any € > 0 ,
(4.2) lim SUP_, 4 |Za(s)l|S|—1/a(log[5|)_1/a_€ =0 a.s.,
and Igt(s)] = Of ls[B_2 ) as s » to

Lemma 4.5. The process Y = { Y(t) ; t > 0 } has the

same distribution of Xa 8. f i.e. Y is a version of fractional
1 I

stable process Xa,B,f .

Outline of Proof. For N > 0 , using approximations

of stochastic integral
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N
[_x Epls) dz(s)
and integral
[N 24(s) g (s) ds

N

by Riemann's sums, we can easily show that for any t > 0

[N f£i(s) az(s)

-N
and
N
[ § 2g(s) gu(s) ds + £.(N) 2 (N) - £, (-N) Z_(-N)
have the same distribution. Since |ft(s)| = O(Is]8—1)
as s > o , we have by (4.2)

lft(N) Za(N)l ' \ft(—N) Z(-N)| » 0 as N t = .

This implies that X(t) and Y(t) have the same distribution.
To show that X and Y have the same finite-dimensional

distributions, it is needed only to replace ft(s) by
Ek 6 fr (s) , - =<8 <= , 0 < b <@

k

in the above arguments. g.e.d.
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Proof of Theorem 3.3. Since the functionals under

consideration are measurable, it is enough to show the following

Lemma 4.6.

. _B 3
l:l_mh{(o (Y(t+h) - Y(t)) h = a_ Az(t) , 0 <t <1, a.s.
. -8 '
lim o (¥(E) - ¥Y(t-h)) h " = -a A (t) , 0 <t <1, a.s.
Proof. First, note that for h > 0 ,

Se,n(8) - 9.(s) = g (s-t) and g_(s) = b’ g(s/h)

df(s)
where g(s) = = — , s 0,1 .
ds

This is derived from the fact that ft satisfies (3.6) .

Using this relation, we have

Y(t+h) - Y(£) = [ 7 2,(s) ( g, (s) - g (s) ) ds

n? /2

Za(t+hv) g(v) dv .

By (4.2) , there is M > 0 such that

-~ 50 -



1/a 1/a+1 }

IZa(t+hv)| < max{ M, |v] (loglvl)

for - ® < vV < @ and 0 < t <1 o

Therefore,

l1/Cl. I)T/U,+1}

lZa(t+hv) g(v)] < max{ M, |v (log|v lg(v)]| .
Since the right hana side is an integrable function of v ,
it is derived from Lebesque's convergence theorem that
. -B _ ©.

lim o (Y(t+h) - ¥(£)) h™° = [ _lim .2 (t+hv)g(v) dv .

Here note that
Za(t) if v>0,
lim

he 0 Za(t+hv) =

z2,(t-0) if v <0 ,

f(-®) - f(»°) =0 ,

]

f_: g(v) dv

and

il

[3 giv) av = £(0) - £(=) = a, .

Then, we obtain

Lim o (¥(E+h) - Y(£)) n8

]
o]
>

[wN]
o+
S
-~
O
|~
o+
I A
—
-~
o8}
.
[4)]
L)
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Next we prove the second assertion. For h > 0 and t-h > 0 ,

Y(t) - Y(t-h) = [7 2 (s) ( gp(s) - g, 4 (s) ) ds

| o 24(s) g% (s-t) ds

= hsj_: z,(t+hv) g*(v) av ’
df*(s)
where g*(s) = - —m— ’
ds
£x(s) = - a, ((1+)® = ()%} - a_ t0ee)® - (0B,
af*t(s) 8
g*t(s) = - ————— and f*t(s) = t° f*(s/t) ,
ds
and in the above we use the following relations :
g . (s) - g (s) = g* (s-t) and g* (s) = nf! g*(s)
t t-h h h °
. g-2 '
Since [g*(v)]| = o(|v] ) as v > te ' Lebesgue's

convergence theorem can be again applied and we obtain

lim, , ,(Y(t) - Y(t-h)) h P - [ 2 lim o

*
he 0 Za(t+hv)g (v) dv

= - a_ Az(t) , 0 <t <1 ;r a.s.
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Proof of Theorem 3.4. As in the proof of Theorem 3.3 ,

it is enough to show the following

Lemma 4.7.

lim sup lY(t) - v(s)| h_B
~h¥0 0<s<t<1, t-s<h
= max_m<s<mlf(s)| SUPG ¢ (1 IAZ(t)I a.s.
Proof. Since sample paths of 2 are right-continuous and

a

have left-limit, for any € > 0 and 0 < t < 1 there is

n =7n(t,e) > 0 such that

|z (£-0) - 2z (s)] <€ for t-ng<s <t , and

|z (t) - 2z,(s)| <& for t <s <t .

Let € be fixed. Because [0,1] is compact, there are tj,o,a, t

m -
of [0,1] such that [0,1]c \J T (t.-n,/2, t, +n,/2) , where

Ny is n corresponding to t, . Here note that if 0 < t <1
and [A,(t)] > 26 , then t =t for some 1 <k <m .
Put
Be = Ul = My v By v 0yl
and
B*k = ( tk - nk/z ’ tk + nk/z ) °
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Put 0 = (t-s)/h for 0 <h <1 and 0 <s <t <1, t-s <h .

Then,
Y(t) - ¥(s) = [__ Z,(w) € gi(u) - g (u) ) du
= hB f ® g (s+hv) g _(v) dv .
-0 Q p
Since lgp(v)l < Ig(v)] for ]v] > 2 , there is N > 0 such that
SupOiSi1 f|v|>N IZa(s+hv) gp(v)] dv
< Supoisi1lel>N |Za(s+hv) g(v)| av < e ,
and
f{v(>N lgp(V)l dv < flVl>N lg(v)| av <«
Now we have for s , t of Bi '

(Y(t) - ¥(s)) n~F

= [N 2,(5,-0) g (v) dv + [y Ap(t) His+hvit) g (v) dv
+ [ (B, (s+hv) = 2 (£,-0)) (1 - H(s+hvit)) g (v) dv
e [ Nz, (s+hv) = z,(t,)) Hisshvity) g (v) av

+ flVl>N Za(s+hv) gp(v) dv 5
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where H(x;xo) =
Because f_m gp(v) dv = 0 and flVl>N lgp(v)l dv < € ; we have

]f_ﬁ g,(v) av] < € and {f_g Z,(t-0)g (v)av] < [z (£, -0)]e .

Let Ny = min > 0 and h < no/(ZN) . Then, s+hv

T<k<m nk

belongs to Bk for s of B*k and |v| < N . Therefore,

[y (3 (s+hv) - 2_(£,-0)) (1 - H(s+hvit,))
+ (Za(s+hv) - Za(tk)) H(s+hv;tk)} gp(v) dv

<e [ Igp(v)l av < 2e (la_| + [a_| ) 0B
< 2¢ (|a+| +la |y .

On the other hand,

f_g A, (ty) H(s+hv;tk) gp(v) dv

= AZ(tk) fp(vk) - IIVI>N A (t) H(s+hv;t,) gp(v) dv

where vy, = (tk—s)/h .
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We also have
IIIV]>N Az(tk) H(s+hv;tk? gp(v) dv |
< Ab e oo loptn L av < fag(e] e .
. Getting the above estimates together, we obtain
-8
[(Y(t) - ¥(s)) h™ = 8 (g) £ (v
<e {lzg (e -0 ] + 2(la ]l + fa_) + [8,0e)] )

for 0<s<t<1,s,t€B*k,O<t—s<h and

h < no/(ZN) . Note here that
, sup lfp(vk)l = max lf(v)l o
O0<t-sx<h, s,tEB*k ~®<y <™
Then, we have
| sup ly(t) - Y(s)| h_B - maxlf(u)lIAZ(tk)l l
O<t-s<h , s,teB* -0 <®

k

< € {]Za(tk—O)I + 2(|a+| + la_|) + IAZ(tk)I b
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Since { B*k , k=1,..., m} 1is a covering of [0,1] , this means

| 1im  sup  |¥(t) - ¥(s)| n°®
h¥0 0O<s<t<i
t-s<h
- max |£(v)]| sup IAZ(t)l |
~®LYyLK® 0<t<1

< & (supy i |2, (6, -0)] + 2(!a+l + la_|) * S |2, (01} .

Thus, letting € v+ 0 , we obtain the desired result.
g.e.d.
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5. Other sample path properties

In this section we shall consider sample path properties
other.than growth 6rder properties dealt in Section 2 , especially,
we shall discuss some properties related to Hausdorff measures.
First, we recall the definition of Hausdorff measures. Let ¢ be
a positive, continuous function and A be a subset of Rd ; @ > 1.

Denote ‘the Hausdorff measure of A with respect to measure function

x! d(x) by mY ¢(A) , defined as follows :
?

s : Y
(a) = 11m6+0 inf Uégd (a(u))y' o(da(u)) ’
Az

My, 6

where 1inf denotes the infimum over all coverings ‘QG of A with
Kb
balls U , d(U) < 6§ , and d(U) denotes the diameter of U ,

and Y > 0 . In case ¢ = 1 , mY stands for er@

(1) Hausdorff measure of range of sample paths

In considering this problem, we assume that X takes wvalues

. d . . . .
in R, d > 2 , because in one-dimensional case this problem

becomes trivial. Denote the range of path by Rt :

R, = { X(s) : 0<s <t} , for t » 0 .



P.Lévy made a comment on Hausdorff measure of range of Brownian
paths in Rd in the introduction of [21] : for a positive,
continuous function ¢ , slowly varying at O ,

(R =Ct for >0, a.s.,

my 6(Re)

where C 1is a constant, 0 < C < ® . He gave only an idea of
proof ( cf. footnote (2) , he reduced arguements to Kolmogorov's
zero-one law ) . We shall derive this fact from ergodicity of

scaling transformations for general self-similar processes.
Proposition 5.1. Let ¢ Dbe a positive, continuous,
monotone function, slowly varying at 0 . There exists a constant
C, 0 ¢<C < =, such that
m1/K’¢(Rt) =Ct for t » 0, a.s.
Proof. For XA > 0 , define an event EX by

Ey = [my 0 o(R) 2 At , t>01.

Note that



where S = Sa ’ Rt°s denotes Rt with respect to the process

{ (sX)(s) : s >0} and c A ={cx : x€A} . Since ¢ is

slowly varying,

m1/K,¢(a Rat) = m1/K,¢(Rat)/a .

Thus, we have S_TEX(: Ey . Therefore, P( E, ) =0 or 1.

Put

C=sup { A : P{ Ey ) =1 } .

Then, the assertion of the proposition can be proved. g.e.d.
(2) Hausdorff dimension of zero points
Put z ={s:0<s <t, X(s) =0 } . Taylor [35] made

another approach to zero-one law for Hausdorff dimension of Zt
in case X 1is the Brownian motion ( cf. [35] , Lemma 1 ) . He
reduced arguements, in contrast with [21] , to strong Markovian
properties of the Brownian motion. We give én extension of Lemma 1

of [35] to general ergodic self-similar processes. The Hausdorff

dimension of a subset A is defined by

dim A = inf { Y >0 :m



Proposition 5.2. For any v » 0 ,

P my(Z1) >0 ) =0 or 1.

Furthermore, there exists YO , O i.Yo < 1 , such that
.dlm Z1 = YO a.s.
Proof. Consider an event F = [ mY(Z1) >0 71 .
Let 0 < a <1, and 8 = Sa . Then, we have S_1FCZF ; Since

10S denotes Z1 for the process { (SX)(s):

s >0 } . This implies the first assertion. For the second

Z1°S = Za , Wwhere 2
assertion, the proof goes similarly as in [35] . _ g.e.d.
(3) Hausdorff dimension of graphs of sample paths

Denote the graph of path by G_

Proposition 5.3. There exists Yo ¢ 0 < Yo £ 2 , such that

dim G1 =Yg a.s.



Proof. It is enough to show that for any Y 0 ,

P( mY(G1) >0 ) =0 or 1.

Note that
—K
G,08 = { (s,a X(as)) : 0 < s <11}
-K
={ (u/a, a~"X(u)) : 0 <u <a }

where G denotes G, for the process { SX(s) : s > 0 1} .
This implies that my(G1°S ) < c my(Gl) for some constant ¢ .

Take a , 0 < a < 1 . Then, S—1[ mY(G1) >0 1C 1 my(G1)v> 013,

and so we have the above assertion.

Kono [17]

graph and range of sample paths.

g.e.d.

gave some estimates for the Hausdorff dimension of

Checking his conditions by using

well-known fact about the density of stable distribution { cf.

Ibragimov and Linnik [91 )

of graph of

for 1 <«

(a,B)-fractional stable process is equal to

, we have that the Hausdorff dimension

2-K

2 and 0 < B <1 - 1/¢ ., From this fact, we expect

that the Hausdorff measure properties of sample paths are closely

related to the local growth properties rather than the uniform

growth property.
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(4) Slow points
Kahane [10] showed the existence of slow points for Brownian
paths and recently this problem attracts interests of probabilists
( cf£. [61 , [371 ) . A point T is called a slow point of a sample
path if
lim supg,, |X(T+6) - X(T)] 5 ¢ w
Proposition 5.4.
P( there exist slow points ) = 0 or 1 .

Furthermore, there exists Yo 0 < Yo £ 1 , such that

dim { slow points }

Yo a.s.,

Sketch of proof. If T is a slow point of a path, aT
is a slow point of SX . Thus, the first assertion is easily
derived from the ergodicity of S . The second assertion is derived
similarly as in the proof of Proposition 5.3 with slight modifica-
tions such as letting the set of slow points take the place of

Gt , and so we omit its details. i g.e.d.
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(5) Irregularity points

Orey and Taylor [30] studied the Hausdorff measure properties
of irregularity points of Brownian paths. This problem will be

formulated for self-similar processes as follows : put

X{t+h) - X(t)

L (t) = lim sup
o) h'0 hK o(h)

E ={s:0<s <t, L¢(s) > X},

for a positive, slowly varying function ¢ and X > 0 .

Proposition 5.5. ' There exists a constant Cy v 0 < Cy £ 1
such that
dim E>\,1 = CA a.s.
Proof. Since ¢ is slowly varying, L¢(t)°s = L¢(at)
and Ek,t°s = El,at , where S = Sa and L¢(t)os and Ek,t°s

denote L¢(t) and EA : for the process { SX(s) : s > 0 1} .
I

This means that

-1
ST m (B ;) >0 1T Im(E ) >0



for any y » 0 and 0 < a < 1 . Therefore,

P( mY( E ) >0 ) =0 or 1.

A,

The uniqueness of the dimension is proved similarly as in the

proofs of the previous propositions. : g.e.d.
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