

Title	Note on the Lefschetz fixed point theorem
Author(s)	Nakaoka, Minoru
Citation	Osaka Journal of Mathematics. 1969, 6(1), p. 135-142
Version Type	VoR
URL	https://doi.org/10.18910/4923
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Nakaoka, M.
Osaka J. Math.
6 (1969), 135-142

NOTE ON THE LEFSCHETZ FIXED POINT THEOREM

Dedicated to Professor A. Komatu on his 60th birthday

MINORU NAKAOKA

(Received November 28, 1968)

1. Introduction

Let V be an open set of the n -dimensional euclidean space \mathbf{R}^n , and $f: V \rightarrow \mathbf{R}^n$ be a continuous map such that the fixed point set $F = \{x \in V \mid f(x) = x\}$ is compact. If $i: V \subset \mathbf{R}^n$, then $i-f$ maps $(V, V-F)$ to $(\mathbf{R}^n, \mathbf{R}^n-0)$. Considering the homomorphism of the integral homology groups induced by $i-f$, A. Dold [2] defines the *fixed point index* $I_f \in \mathbf{Z}$ by

$$(i-f)_* \mu_F^V = I_f \mu_0,$$

where $\mu_0 \in H_n(\mathbf{R}^n, \mathbf{R}^n-0; \mathbf{Z})$ is an orientation of \mathbf{R}^n and $\mu_F^V \in H_n(V, V-F; \mathbf{Z})$ is the 'fundamental' class corresponding to the orientation μ_0 . With this definition, he proves the following Lefschetz fixed point theorem:

Theorem A. *Let V be an open set of \mathbf{R}^n , and $f: V \rightarrow V$ be a continuous map such that $f(V)$ is contained in a compact set $K \subset V$. Then the fixed point index I_f of f and the Lefschetz number of $(f|K)_*: H_*(K; \mathbf{Q}) \rightarrow H_*(K; \mathbf{Q})$ are both defined and they agree, where \mathbf{Q} is the field of rational numbers.*

Precisely, he proves the theorem in which V is replaced by a euclidean neighborhood retract Y . However this generalization follows directly from the above one, because he defines the fixed point index of $f: Y \rightarrow Y$ to be that of the composite $i \circ f \circ r: V \rightarrow V$, where $i: Y \rightarrow V$, $r: V \rightarrow Y$ ($r \circ i = id$) is a euclidean neighborhood retraction.

On the other hand, R. Brown [1] shows the Lefschetz fixed point theorem for a compact orientable n -dimensional topological manifold M (see also [3]). Taking an orientation of M , let $\mu \in H_n(M; \mathbf{Z})$ and $U \in H^n(M \times M, M \times M - d(M); \mathbf{Z})$ denote the corresponding fundamental class and Thom class respectively, where $d(M)$ is the diagonal of $M \times M$. Denote by $U' \in H^n(M \times M; \mathbf{Z})$ the image of U under the natural homomorphism. Then the theorem of Brown is as follows:

Theorem B. *Let M be a compact orientable n -dimensional topological*

manifold, and $f: M \rightarrow M$ be a continuous map. Define $\hat{f}: M \rightarrow M \times M$ by $\hat{f}(x) = (f(x), x)$ for $x \in M$. Then the Kronecker product $\langle \hat{f}^* U', \mu \rangle$ is equal to the Lefschetz number of $f_*: H_*(M; \mathbf{Q}) \rightarrow H_*(M; \mathbf{Q})$.

The purpose of this note is to prove a theorem which contains Theorem A and B as corollaries.

Let M be an orientable n -dimensional topological manifold which is not necessarily compact, and $f: M \rightarrow M$ be a continuous map such that the fixed point set F of f is compact. Take an orientation of M . Then the Thom class $U \in H^n(M \times M, M \times M - d(M); \mathbf{Z})$ and the fundamental class $\mu_F \in H_n(M, M - F; \mathbf{Z})$ are well-defined. Considering $\hat{f}: (M, M - F) \rightarrow (M \times M, M \times M - d(M))$, we define the *fixed point index* $I(f)$ by

$$I(f) = \langle U, \hat{f}_* \mu_F \rangle \in \mathbf{Z}.$$

Then our theorem is stated as follows:

Theorem C. *Let M be an orientable n -dimensional topological manifold, and $f: M \rightarrow M$ be a continuous map such that $f(M)$ is contained in a compact set $K \subset M$. Then the fixed point index $I(f)$ of f and the Lefschetz number of $(f|K)_*: H_*(K; \mathbf{Q}) \rightarrow H_*(K; \mathbf{Q})$ are both defined and they agree.*

Our proof of this theorem is different from that of Theorem A due to Dold. Therefore this paper gives another proof of Theorem A.

The method we use to prove Theorem C is essentially the one due to J. Milnor [4] and is the one employed by Brown to prove Theorem B.

2. A fundamental lemma

Let M be an n -dimensional topological manifold, and $d: M \rightarrow M \times M$ be the diagonal map. Let K be a compact subset of M .

Lemma 1. *There are an open neighborhood W of $d(K)$ in $K \times M$ and a retraction $r: W \rightarrow d(K)$ such that the diagram*

$$\begin{array}{ccc} & k & \rightarrow K \times M \\ d(K) & \swarrow r & \uparrow l \\ & W & \end{array}$$

is homotopy commutative, where k and l are the inclusion maps.

Proof. For $r > 0$, let

$$O_r = \{(x_1, \dots, x_n) \in \mathbf{R}^n \mid x_1^2 + \dots + x_n^2 < r\}.$$

It is easily seen that there exists a finite set $\{V_1, \dots, V_s\}$ of coordinate neighbor-

hoods of M such that

$$\bigcup_{i=1}^s h_i^{-1}(O_i) \supset K,$$

where $h_i : V_i \approx \mathbf{R}^n$ is a homeomorphism.

Put

$$\begin{aligned} V'_i &= h_i^{-1}(O_1), \quad V''_i = h_i^{-1}(O_2), \\ V' &= \bigcup_{i=1}^s V'_i, \quad V'' = \bigcup_{i=1}^s V''_i. \end{aligned}$$

The space $\bar{V''}/\bar{V''}-V''_i$ obtained from the closure $\bar{V''}$ by identifying $\bar{V''}-V''_i$ to one point is homeomorphic with the n -sphere S^n . Therefore a homeomorphism f of V'' into $S^n \times \cdots \times S^n$ (s times) is defined by

$$f(x) = (f_1 p_1(x), \dots, f_s p_s(x)) \quad (x \in V''),$$

where $p_i : \bar{V''} \rightarrow \bar{V''}/\bar{V''}-V''_i$ is the projection and $f_i : \bar{V''}/\bar{V''}-V''_i \approx S^n$ is a homeomorphism. Since $\bar{V'} \subset V''$ and $S^n \times \cdots \times S^n \subset \mathbf{R}^m$ ($m = (n+1)s$), we can regard $\bar{V'}$ as a closed subset of \mathbf{R}^m . Since each V_i is an ANR, so is $V = \bigcup_{i=1}^s V_i$.

Consequently, the inclusion map $\bar{V'} \subset V$ has an extension $g : Q \rightarrow V$, where Q is a neighborhood of $\bar{V'}$ in \mathbf{R}^m . It is obvious that there exists $\varepsilon > 0$ such that if $x, y \in \bar{V'}$ and the distance from x to y in \mathbf{R}^m is smaller than ε then $(1-t)x + ty \in Q$ for any $t \in [0, 1]$. Put

$$W = \{(x, y) \in K \times V' \mid d(x, y) < \varepsilon\},$$

and define $r : W \rightarrow d(K)$ by $r(x, y) = (x, x)$.

We can now define a homotopy $f_t : W \rightarrow K \times M$ of $k \circ r$ to l by

$$f_t(x, y) = (x, g((1-t)x + ty)). \quad \text{q.e.d.}$$

Let R be a fixed principal ideal domain, and we shall take coefficients of homology and cohomology from R . Consider the cup product

$$\begin{aligned} \cup : H^*(K \times (M, M-K)) \otimes H^*(K \times M) \\ \rightarrow H^*(K \times (M, M-K)). \end{aligned}$$

Lemma 2. For $\alpha \in H^*(M)$ and $\gamma \in H^*(K \times M, K \times M - d(K))$ we have

$$j^* \gamma \cup p_1^* i^* \alpha = j^* \gamma \cup p_2^* \alpha,$$

where $p_1 : K \times M \rightarrow K$, $p_2 : K \times M \rightarrow M$ are the projections and $i : K \rightarrow M$, $j : K \times (M, M-K) \rightarrow (K \times M, K \times M - d(K))$ are the inclusion maps.

Proof. By Lemma 1 and the naturality of the cup product, we have a commutative diagram

$$\begin{array}{ccccc}
 & & H^*(K \times M) & \xrightarrow{\gamma \cup} & H^*(K \times M, K \times M - d(K)) \\
 H^*(d(K)) & \xleftarrow{k^*} & \downarrow l^* & & \downarrow l^* \\
 & \xrightarrow{r^*} & H^*(W) & \xrightarrow{l^* \gamma \cup} & H^*(W, W - d(K)) .
 \end{array}$$

If we define $p : d(K) \rightarrow K$ by $p(x, x) = x$ ($x \in K$), then it holds that $p_1 \circ k = p$ and $p_2 \circ k = i \circ p$. Therefore it follows that

$$\begin{aligned}
 l^*(\gamma \cup p_1^* i^* \alpha) &= l^* \gamma \cup r^* k^* p_1^* i^* \alpha \\
 &= l^* \gamma \cup r^* p^* i^* \alpha = l^* \gamma \cup r^* k^* p_2^* \alpha \\
 &= l^*(\gamma \cup p_2^* \alpha) .
 \end{aligned}$$

Since $l^* : H^*(K \times M, K \times M - d(K)) \cong H^*(W, W - d(K))$ is an excision isomorphism, we obtain

$$\gamma \cup p_2^* i^* \alpha = \gamma \cup p_2^* \alpha .$$

This, together with the naturality of the cup product, implies the desired result.
q.e.d.

For topological pairs (X, A) and (Y, B) , consider the slant product

$$/ : H^*((X, A) \times (Y, B)) \otimes H_*(Y, B) \rightarrow H^*(X, A) .$$

The following relations hold between the cup, cap and slant products: For $\gamma \in H^*((X, A) \times (Y, B))$, $\alpha \in H^*(X)$, $\beta \in H^*(Y)$ and $b \in H_*(Y, B)$, we have

$$\begin{aligned}
 (1) \qquad \alpha \cup (\gamma/b) &= (p_1^* \alpha \cup \gamma)/b , \\
 \gamma/(\beta \cup b) &= (\gamma \cup p_2^* \beta)/b
 \end{aligned}$$

in $H^*(X, A)$, where $p_1 : X \times Y \rightarrow X$ and $p_2 : X \times Y \rightarrow Y$ are the projections (see [5]).

By an *orientation* μ over R of an n -dimensional topological manifold M we mean a function which assigns to each $x \in M$ a generator μ_x of $H_n(M, M - x)$ which “varies continuously” with x , in the following sense. For each x there exist a neighborhood N and an element $\mu_N \in H_n(M, M - N)$ such that the image of μ_N in $H_n(M, M - y)$ under the natural homomorphism is μ_y for each $y \in N$.

If an orientation over R of the manifold M exists, M is called *orientable* over R .

Assume that M is orientable over R and an orientation μ of M is given. Then it is known that, for each compact subset K of M , there is a unique element $\mu_K \in H_n(M, M - K)$ whose image in $H_n(M, M - x)$ under the natural homomorphism is μ_x for any $x \in K$ (see [3]). It is also known that there exists a unique

element $U \in H^n(M \times M, M \times M - d(M))$ such that

$$\langle l_x^* U, \mu_x \rangle = 1$$

for any $x \in M$, where $l_x : (M, M - x) \rightarrow (M \times M, M \times M - d(M))$ is a continuous map sending $x' \in M$ to $(x, x') \in M \times M$ (see [3], [5]). Denote by $U_K \in H^n(K \times (M, M - K))$ the image of U under the natural homomorphism.

A simple calculation shows

$$(2) \quad U_K / \mu_K = 1.$$

We shall now prove the following fundamental lemma.

Lemma 3. *The diagram*

$$\begin{array}{ccc} H^q(M) & \xrightarrow{(-1)^n i^*} & H^n(K) \\ \curvearrowright \mu_K \searrow & & \nearrow U_K / \\ H_{n-q}(M, M - K) & & \end{array}$$

is commutative, where $i : K \subset M$.

Proof. For $\alpha \in H^q(M)$, we obtain by (1), (2) and Lemma 2

$$\begin{aligned} U_K / (\alpha \curvearrowright \mu_K) &= (U_K \curvearrowright p_2^* \alpha) / \mu_K \\ &= (U_K \curvearrowright p_1^* i^* \alpha) / \mu_K = (-1)^n (p_1^* i^* \alpha \curvearrowright U_K) / \mu_K \\ &= (-1)^n i^* \alpha \curvearrowright (U_K / \mu_K) = (-1)^n i^* \alpha, \end{aligned}$$

which proves the desired result. q.e.d.

3. Lefschetz fixed point theorem

Let M be an n -dimensional topological manifold which is orientable over R . Let V be an open set of M , and K be a compact subset of V . Given an orientation μ of M , we shall denote by $\mu_K^* \in H_n(V, V - K)$ the element corresponding to μ_K under the excision isomorphism $H_n(V, V - K) \cong H_n(M, M - K)$.

If $f : V \rightarrow M$ is a continuous map such that the fixed point set F is compact, then we call

$$I(\hat{f}) = \langle U, \hat{f}_* \mu_F^* \rangle \in R$$

the *fixed point index* of f , where $\hat{f} : (V, V - F) \rightarrow (M \times M, M \times M - d(M))$ is a continuous map given by $\hat{f}(x) = (f(x), x)$ ($x \in V$). It follows that $I(f)$ is independent of the choice of orientation.

For a compact set K such that $F \subset K \subset M$, we have

$$(3) \quad I(f) = \langle U, \hat{f}_* \mu_K^V \rangle,$$

where $\hat{f}_* : H_n(V, V-K) \rightarrow H_n(M \times M, M \times M - d(M))$. This follows from that μ_F^V is the image of μ_K^V under the natural homomorphism.

Lemma 4. *In the case $M = \mathbf{R}^n$, we have*

$$(i-f)_* \mu_F^V = I(f) \mu_0,$$

where $i-f : (V, V-F) \rightarrow (\mathbf{R}^n, \mathbf{R}^n - 0)$ is a continuous map sending $x \in V$ to $x-f(x) \in \mathbf{R}^n$.

Proof. Define $\Delta : (\mathbf{R}^n \times \mathbf{R}^n, \mathbf{R}^n \times \mathbf{R}^n - d(\mathbf{R}^n)) \rightarrow (\mathbf{R}^n, \mathbf{R}^n - 0)$ by $\Delta(x, y) = y - x$ ($x, y \in \mathbf{R}^n$). Then, for $l_0 : (\mathbf{R}^n, \mathbf{R}^n - 0) \rightarrow (\mathbf{R}^n \times \mathbf{R}^n, \mathbf{R}^n \times \mathbf{R}^n - d(\mathbf{R}^n))$, we have $\Delta \circ l_0 = id$. Denote by $\bar{\mu}_0 \in H^n(\mathbf{R}^n, \mathbf{R}^n - 0)$ the dual to $\mu_0 \in H_n(\mathbf{R}^n, \mathbf{R}^n - 0)$. Since $\langle l_0^* \Delta^* \bar{\mu}_0, \mu_0 \rangle = 1$, we have

$$\Delta^* \bar{\mu}_0 = U \in H^n(\mathbf{R}^n \times \mathbf{R}^n, \mathbf{R}^n \times \mathbf{R}^n - d(\mathbf{R}^n)).$$

Since $\Delta \circ \hat{f} = i-f$, we obtain

$$I(f) = \langle \Delta^* \bar{\mu}_0, \hat{f}_* \mu_F^V \rangle = \langle \bar{\mu}_0, (i-f)_* \mu_F^V \rangle,$$

which shows the desired result. q.e.d.

Let N be a graded module over a field R , and $\varphi : N \rightarrow N$ be an endomorphism of degree 0 which factors through a finitely generated graded module. Taking a homogeneous basis $\{a_\lambda\}$ of N , put

$$\varphi(a_\lambda) = \sum_\mu r_{\lambda\mu} a_\mu \quad (r_{\lambda\mu} \in R).$$

Then it follows that $r_{\lambda\lambda}$ is zero except a finite number of λ , and that

$$\Lambda(\varphi) = \sum_\lambda (-1)^{\deg a_\lambda} r_{\lambda\lambda} \in R$$

is independent of the choice of $\{a_\lambda\}$ (see [2]). $\Lambda(\varphi)$ is called the *Lefschetz number* of φ .

Theorem D. *Let M be an n -dimensional topological manifold which is orientable over a field R , and let $f : M \rightarrow M$ be a continuous map such that $f(M)$ is contained in a compact set $K \subset M$. Then the fixed point index $I(f)$ of f and the Lefschetz number $\Lambda((f|K)_*)$ of the homomorphism $(f|K)_* : H_*(K) \rightarrow H_*(K)$ of homology with coefficients in R are both defined and they agree.*

Proof. The fixed point set F of f is a closed subset of K , and hence is compact. Therefore $I(f)$ is defined.

From Lemma 3 it follows that the diagram

$$\begin{array}{ccc}
 H^q(K) & \xrightarrow{(-1)^{nq}(f|K)^*} & H^q(K) \\
 \downarrow f^* & & \uparrow U_K/ \\
 H^q(M) & \xrightarrow{\cap \mu_K} & H_{n-q}(M, M-K)
 \end{array}$$

is commutative. It is obvious from the definition of the cap product that the image of the homomorphism $\cap \mu_K$ is finitely generated. Therefore $(f|K)^*$ factors through a finitely generated module, and hence $\Lambda((f|K)^*)$ is defined.

Let $\{\alpha_\lambda\}$ $\{\beta_\mu\}$ and $\{\rho_\nu\}$ be homogeneous bases of $H^*(M)$, $H^*(M, M-K)$ and $H^*(K)$ respectively, and put

$$\begin{aligned}
 f^*(\rho_\nu) &= \sum_\lambda m_{\nu\lambda} \alpha_\lambda, \\
 U_K &= \sum_{\nu, \mu} c_{\nu\mu} \rho_\nu \times \beta_\mu, \\
 \langle \beta_\mu \cup \alpha_\lambda, \mu_K \rangle &= y_{\mu\lambda}.
 \end{aligned}$$

Then it follows from the above commutative diagram that

$$\begin{aligned}
 (-1)^{n \deg \rho_\nu} (f|K)^* \rho_\nu &= U_K / (f^* \rho_\nu \cap \mu_K) \\
 &= \sum_{\kappa, \mu} (c_{\kappa\mu} \rho_\kappa \times \beta_\mu) / (f^* \rho_\nu \cap \mu_K) \\
 &= \sum_{\kappa, \mu} c_{\kappa\mu} \langle \beta_\mu, f^* \rho_\nu \cap \mu_K \rangle \rho_\kappa \\
 &= \sum_{\kappa, \lambda, \mu} c_{\kappa\mu} m_{\nu\lambda} \langle \beta_\mu, \alpha_\lambda \cap \mu_K \rangle \rho_\kappa \\
 &= \sum_{\kappa, \lambda, \mu} c_{\kappa\mu} m_{\nu\lambda} \langle \beta_\mu \cup \alpha_\lambda, \mu_K \rangle \rho_\kappa \\
 &= \sum_{\kappa, \lambda, \mu} c_{\kappa\mu} m_{\nu\lambda} y_{\mu\lambda} \rho_\kappa.
 \end{aligned}$$

Therefore we have

$$\Delta((f|K)^*) = \sum_{\lambda, \mu, \nu} (-1)^{(n+1) \deg \rho_\nu} c_{\nu\mu} m_{\nu\lambda} y_{\mu\lambda}.$$

The diagram

$$\begin{array}{ccc}
 H^*(M \times M, M \times M - d(M)) & \xrightarrow{\hat{f}^*} & H^*(M, M-K) \\
 \downarrow i^* & & \uparrow d^* \\
 H^*(K \times (M, M-K)) & \xrightarrow{(f \times id)^*} & H^*(M \times (M, M-K))
 \end{array}$$

is commutative, where i^* is the natural homomorphism. Therefore it follows from (3) that

$$\begin{aligned}
 I(f) &= \langle U, \hat{f}_* \mu_K \rangle = \langle \hat{f}^* U, \mu_K \rangle \\
 &= \langle d^*(f \times id)^* U_K, \mu_K \rangle \\
 &= \sum_{\mu, \nu} c_{\nu\mu} \langle d^*(f^* \rho_\nu \times \beta_\mu), \mu_K \rangle
 \end{aligned}$$

$$\begin{aligned}
&= \sum_{\mu, \nu} c_{\nu\mu} \langle f^* \rho_\nu \cup \beta_\mu, \mu_K \rangle \\
&= \sum_{\lambda, \mu, \nu} c_{\nu\mu} m_{\nu\lambda} \langle \alpha_\lambda \cup \beta_\mu, \mu_K \rangle \\
&= \sum_{\lambda, \mu, \nu} (-1)^{(\mu-1) \deg \rho_\nu} c_{\nu\mu} m_{\nu\lambda} \langle \beta_\mu \cup \alpha_\lambda, \mu_K \rangle \\
&= \sum_{\lambda, \mu, \nu} (-1)^{(\mu-1) \deg \rho_\nu} c_{\nu\mu} m_{\nu\lambda} y_{\mu\lambda}.
\end{aligned}$$

Consequently we obtain $I(f) = \Lambda((f|K)^*)$. Since $\Lambda((f|K)^*) = \Lambda((f|K)_*)$ is obvious, we have the desired result. q.e.d.

A topological manifold which is orientable (over \mathbf{Z}) is orientable over \mathbf{Q} , and $I(f)$ for $R = \mathbf{Z}$ coincides with $I(f)$ for $R = \mathbf{Q}$. Therefore Theorem D implies Theorem C.

Lemma 4 shows that $I(f)$ coincides with I_f due to Dold when $M = \mathbf{R}^n$. Therefore Theorem C implies Theorem A. It is clear that Theorem C implies Theorem B.

OSAKA UNIVERSITY

Bibliography

- [1] R. Brown: *On the Lefschetz number and the Euler class*, Trans. Amer. Math. Soc. **118** (1965), 174–179.
- [2] A. Dold: *Fixed point index and fixed point theorem for euclidean neighborhood retracts*, Topology **4** (1965), 1–8.
- [3] M. Greenberg: *Lectures on Algebraic Topology*, Benjamin, 1967.
- [4] J. Milnor: *Lectures on Characteristic Classes* (mimeographed notes), Princeton, 1957.
- [5] E. Spanier: *Algebraic Topology*, McGraw-Hill, 1966.