<table>
<thead>
<tr>
<th>Title</th>
<th>Note on the Lefschetz fixed point theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nakaoka, Minoru</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 1969, 6(1), p. 135-142</td>
</tr>
<tr>
<td>Version Type</td>
<td>VoR</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/4923</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive: OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University
NOTE ON THE LEFSCHETZ FIXED POINT THEOREM

Dedicated to Professor A. Komatu on his 60th birthday

MINORU NAKAOKA

(Received November 28, 1968)

1. Introduction

Let V be an open set of the n-dimensional euclidean space \mathbb{R}^n, and $f: V \to \mathbb{R}^n$ be a continuous map such that the fixed point set $F = \{x \in V \mid f(x) = x\}$ is compact. If $i: V \subset \mathbb{R}^n$, then $i-f$ maps $(V, V-F)$ to $(\mathbb{R}^n, \mathbb{R}^n-0)$. Considering the homomorphism of the integral homology groups induced by $i-f$, A. Dold [2] defines the fixed point index $I_f \in \mathbb{Z}$ by

$$(i-f)^* \mu_0 = I_f \mu_0,$$

where $\mu_0 \in H_n(\mathbb{R}^n, \mathbb{R}^n-0; \mathbb{Z})$ is an orientation of \mathbb{R}^n and $\mu_0 \in H_n(V, V-F; \mathbb{Z})$ is the 'fundamental' class corresponding to the orientation μ_0. With this definition, he proves the following Lefschetz fixed point theorem:

Theorem A. Let V be an open set of \mathbb{R}^n, and $f: V \to V$ be a continuous map such that $f(V)$ is contained in a compact set $K \subset V$. Then the fixed point index I_f of f and the Lefschetz number of $(f \mid K)^*: H_*(K; \mathbb{Q}) \to H_*(K; \mathbb{Q})$ are both defined and they agree, where \mathbb{Q} is the field of rational numbers.

Precisely, he proves the theorem in which V is replaced by a euclidean neighborhood retract Y. However this generalization follows directly from the above one, because he defines the fixed point index of $f: Y \to Y$ to be that of the composite $i \circ f \circ r: V \to V$, where $i: Y \to V$, $r: V \to Y (r \circ i = id)$ is a euclidean neighborhood retraction.

On the other hand, R. Brown [1] shows the Lefschetz fixed point theorem for a compact orientable n-dimensional topological manifold M (see also [3]). Taking an orientation of M, let $\mu \in H_n(M; \mathbb{Z})$ and $U \in H^n(M \times M, M \times M - d(M); \mathbb{Z})$ denote the corresponding fundamental class and Thom class respectively, where $d(M)$ is the diagonal of $M \times M$. Denote by $U' \in H^n(M \times M; \mathbb{Z})$ the image of U under the natural homomorphism. Then the theorem of Brown is as follows:

Theorem B. Let M be a compact orientable n-dimensional topological
Let \(f : M \to M \) be a continuous map. Define \(\hat{f} : M \to M \times M \) by \(\hat{f}(x) = (f(x), x) \) for \(x \in M \). Then the Kronecker product \((\hat{f})^* U', \mu\) is equal to the Lefschetz number of \(f_* : H_*(M; \mathbb{Q}) \to H_*(M; \mathbb{Q}) \).

The purpose of this note is to prove a theorem which contains Theorem A and B as corollaries.

Let \(M \) be an orientable \(n \)-dimensional topological manifold which is not necessarily compact, and \(f : M \to M \) be a continuous map such that the fixed point set \(F \) of \(f \) is compact. Take an orientation of \(M \). Then the Thom class \(U \in H^n(M \times M, M \times M - d(M); \mathbb{Z}) \) and the fundamental class \(\mu_F \in H_*(M, M - F; \mathbb{Z}) \) are well-defined. Considering \(\hat{f} : (M, M - F) \to (M \times M, M \times M - d(M)) \), we define the fixed point index \(I(f) \) by

\[
I(f) = \langle U, \hat{f}_* \mu_F \rangle \in \mathbb{Z}.
\]

Then our theorem is stated as follows:

Theorem C. Let \(M \) be an orientable \(n \)-dimensional topological manifold, and \(f : M \to M \) be a continuous map such that \(f(M) \) is contained in a compact set \(K \subset M \). Then the fixed point index \(I(f) \) of \(f \) and the Lefschetz number of \((f|K)_* : H_*(K; \mathbb{Q}) \to H_*(K; \mathbb{Q})\) are both defined and they agree.

Our proof of this theorem is different from that of Theorem A due to Dold. Therefore this paper gives another proof of Theorem A.

The method we use to prove Theorem C is essentially the one due to J. Milnor [4] and is the one employed by Brown to prove Theorem B.

2. A fundamental lemma

Let \(M \) be an \(n \)-dimensional topological manifold, and \(d : M \to M \times M \) be the diagonal map. Let \(K \) be a compact subset of \(M \).

Lemma 1. There are an open neighborhood \(W \) of \(d(K) \) in \(K \times M \) and a retraction \(r : W \to d(K) \) such that the diagram

\[
\begin{array}{ccc}
K \times M & \to & K \\
\downarrow d(K) & & \downarrow l \\
W & \rightarrow & W \\
\uparrow r & & \uparrow r
\end{array}
\]

is homotopy commutative, where \(k \) and \(l \) are the inclusion maps.

Proof. For \(r > 0 \), let

\[
O_r = \{(x_1, \ldots, x_n) \in \mathbb{R}^n | x_1^2 + \cdots + x_n^2 < r \}.
\]

It is easily seen that there exists a finite set \(\{V_1, \ldots, V_s\} \) of coordinate neighbor-
hoods of M such that

$$
\bigcup_{i=1}^s h_i^{-1}(0_i) \supseteq K,
$$

where $h_i : V_i \approx \mathbb{R}^n$ is a homeomorphism.

Put

$$
V'_i = h_i^{-1}(O_i), \quad V''_i = h_i^{-1}(O_2),
$$

$$
V' = \bigcup_{i=1}^s V'_i, \quad V'' = \bigcup_{i=1}^s V''_i.
$$

The space $V''/V'' - V''_i$ obtained from the closure V'' by identifying $V'' - V''_i$ to one point is homeomorphic with the n-sphere S^n. Therefore a homeomorphism f of V'' into $S^n \times \cdots \times S^n$ (s times) is defined by

$$
f(x) = (f_1 p_1(x), \ldots, f_s p_s(x)) \quad (x \in V''),
$$

where $p_1 : V'' \to V''/V'' - V''_i$ is the projection and $f_i : V''/V'' - V''_i \approx \mathbb{R}^n$ is a homeomorphism. Since $V' \subset V''$ and $S^n \times \cdots \times S^n \subset \mathbb{R}^m$ ($m=(n+1)s$), we can regard V' as a closed subset of \mathbb{R}^m. Since each V_i is an ANR, so is $V = \bigcup_{i=1}^s V_i$.

Consequently, the inclusion map $V' \subset V$ has an extension $g : Q \to V$, where Q is a neighborhood of V' in \mathbb{R}^m. It is obvious that there exists $\varepsilon > 0$ such that if $x, y \in V'$ and the distance from x to y in \mathbb{R}^m is smaller than ε then

$$
(1-t)x + ty \in Q \quad \text{for any } t \in [0, 1].
$$

Put

$$
W = \{(x, y) \in K \times V' | d(x, y) < \varepsilon\},
$$

and define $r : W \to d(K)$ by $r(x, y) = (x, x)$.

We can now define a homotopy $f_t : W \to K \times M$ of $k \circ r$ to l by

$$
f_t(x, y) = (x, g((1-t)x + ty)) \quad \text{q.e.d.}
$$

Let R be a fixed principal ideal domain, and we shall take coefficients of homology and cohomology from R. Consider the cup product

$$
\smile : H^*(K \times (M, M - K)) \otimes H^*(K \times M) \to H^*(K \times (M, M - K)).
$$

Lemma 2. For $\alpha \in H^*(M)$ and $\gamma \in H^*(K \times M, K \times M - d(K))$ we have

$$
j^* \gamma \circ p_1^* i^* \alpha = j^* \gamma \circ p_2^* \alpha,
$$

where $p_1 : K \times M \to K, p_2 : K \times M \to M$ are the projections and $i : K \to M, j : K \times (M, M - K) \to (K \times M, K \times M - d(K))$ are the inclusion maps.
Proof. By Lemma 1 and the naturality of the cup product, we have a commutative diagram

\[
\begin{array}{c}
H^*(d(K)) \\
\downarrow k^* \\
H^*(d(K)) \\
\end{array} \quad \begin{array}{c}
H^*(K \times M) \xrightarrow{\gamma} H^*(K \times M, K \times M - d(K)) \\
\downarrow l^* \\
H^*(W) \xrightarrow{l^*} H^*(W, W - d(K)).
\end{array}
\]

If we define \(p : d(K) \to K \) by \(p(x, x) = x (x \in K) \), then it holds that \(p_1 \circ k = p \) and \(p_2 \circ k = i \circ p \). Therefore it follows that

\[
l^*(\gamma \circ \rho_i \alpha) = l^* \gamma \circ r^* k^* \rho_i \alpha
\]

\[
= l^* \gamma \circ r^* p_1^* \rho_i \alpha = l^* \gamma \circ r^* k^* p_1^* \alpha
\]

\[
= l^* (\gamma \circ p_1^* \alpha).
\]

Since \(l^* : H^*(K \times M, K \times M - d(K)) \cong H^*(W, W - d(K)) \) is an excision isomorphism, we obtain

\[
\gamma \circ p_1^* i^* \alpha = \gamma \circ p_1^* \alpha.
\]

This, together with the naturality of the cup product, implies the desired result. q.e.d.

For topological pairs \((X, A)\) and \((Y, B)\), consider the slant product

\[
\lambda : H^*((X, A) \times (Y, B)) \otimes H_*(Y, B) \to H^*(X, A).
\]

The following relations hold between the cup, cap and slant products: For \(\gamma \in H^*((X, A) \times (Y, B)), \alpha \in H^*(X), \beta \in H^*(Y) \) and \(b \in H_*(Y, B) \), we have

\[
(1) \quad \alpha \cap (\gamma/b) = (p_1^* \alpha \cap \gamma)/b,
\]

\[
\gamma/(\beta \cap b) = (\gamma \cap p_2^* \beta)/b.
\]

in \(H^*(X, A) \), where \(p_1 : X \times Y \to X \) and \(p_2 : X \times Y \to Y \) are the projections (see [5]).

By an orientation \(\mu \) over \(R \) of an \(n \)-dimensional topological manifold \(M \) we mean a function which assigns to each \(x \in M \) a generator \(\mu_x \) of \(H_*(M, M - x) \) which "varies continuously" with \(x \), in the following sense. For each \(x \) there exist a neighborhood \(N \) and an element \(\mu_N \in H_*(M, M - N) \) such that the image of \(\mu_N \) in \(H_*(M, M - y) \) under the natural homomorphism is \(\mu_y \) for each \(y \in N \).

If an orientation over \(R \) of the manifold \(M \) exists, \(M \) is called orientable over \(R \).

Assume that \(M \) is orientable over \(R \) and an orientation \(\mu \) of \(M \) is given. Then it is known that, for each compact subset \(K \) of \(M \), there is a unique element \(\mu_K \in H_*(M, M - K) \) whose image in \(H_*(M, M - x) \) under the natural homomorphism is \(\mu_x \) for any \(x \in K \) (see [3]). It is also known that there exists a unique
element $U \in H^n(M \times M, M \times M - d(M))$ such that

$$\langle l^*_x U, \mu_x \rangle = 1$$

for any $x \in M$, where $l_x : (M, M - x) \to (M \times M, M \times M - d(M))$ is a continuous map sending $x' \in M$ to $(x, x') \in M \times M$ (see [3], [5]). Denote by $U_K \in H^n(K \times (M, M - K))$ the image of U under the natural homomorphism.

A simple calculation shows

\[(2)\quad U_K/\mu_K = 1.\]

We shall now prove the following fundamental lemma.

Lemma 3. The diagram

\[
\begin{array}{ccc}
H^q(M) & \xrightarrow{(-1)^q i^*} & H^q(K) \\
\downarrow{\mu_K} & & \downarrow{U_K/|} \\
H_{n-q}(M, M-K) & & \\
\end{array}
\]

is commutative, where $i : K \subset M$.

Proof. For $\alpha \in H^q(M)$, we obtain by (1), (2) and Lemma 2

\[
U_K/(\alpha \smile \mu_K) = (U_K \smile p^*_K \alpha)/\mu_K \\
= (U_K \smile p^*_K i^* \alpha)/\mu_K = (-1)^q (p^*_K i^* \alpha \smile U_K)/\mu_K \\
= (-1)^q i^* \alpha \smile (U_K/\mu_K) = (-1)^q i^* \alpha,
\]

which proves the desired result. q.e.d.

3. **Lefschetz fixed point theorem**

Let M be an n-dimensional topological manifold which is orientable over R. Let V be an open set of M, and K be a compact subset of V. Given an orientation μ of M, we shall denote by $\mu_K \in H_n(V, V - K)$ the element corresponding to μ_K under the excision isomorphism $H_n(V, V - K) \cong H_n(M, M - K)$.

If $f : V \to M$ is a continuous map such that the fixed point set F is compact, then we call

$$I(f) = \langle U, f_\# \mu_{V} \rangle \in R$$

the **fixed point index** of f, where $f : (V, V - F) \to (M \times M, M \times M - d(M))$ is a continuous map given by $f(x) = (f(x), x)(x \in V)$. It follows that $I(f)$ is independent of the choice of orientation.

For a compact set K such that $F \subset K \subset M$, we have
where \(f^* : H_n(V, V - K) \to H_n(M \times M, M \times M - d(M)) \). This follows from that \(\mu^Y_K \) is the image of \(\mu_K \) under the natural homomorphism.

Lemma 4. In the case \(M = \mathbb{R}^n \), we have

\[
(i - f)^* \mu^Y_K = I(f) \mu_0,
\]

where \(i - f : (V, V - F) \to (\mathbb{R}^n, \mathbb{R}^n - 0) \) is a continuous map sending \(x \in V \) to \(x - f(x) \in \mathbb{R}^n \).

Proof. Define \(\Delta : (\mathbb{R}^n \times \mathbb{R}^n, \mathbb{R}^n \times \mathbb{R}^n - d(\mathbb{R}^n)) \to (\mathbb{R}^n, \mathbb{R}^n - 0) \) by \(\Delta(x, y) = x - y (x, y \in \mathbb{R}^n) \). Then, for \(l_0 : (\mathbb{R}^n, \mathbb{R}^n - 0) \to (\mathbb{R}^n \times \mathbb{R}^n, \mathbb{R}^n \times \mathbb{R}^n - d(\mathbb{R}^n)) \), we have \(\Delta \circ l_0 = id \). Denote by \(\mu_0 \in H^n(\mathbb{R}^n, \mathbb{R}^n - 0) \) the dual to \(\mu \in H_n(\mathbb{R}^n, \mathbb{R}^n - 0) \). Since \(\langle l_0^* \Delta^* \mu_0, \mu_0 \rangle = 1 \), we have

\[
\Delta^* \mu_0 = U \in H^n(\mathbb{R}^n \times \mathbb{R}^n, \mathbb{R}^n \times \mathbb{R}^n - d(\mathbb{R}^n)).
\]

Since \(\Delta \circ f = i - f \), we obtain

\[
I(f) = \langle \Delta^* \mu_0, f^* \mu^Y_K \rangle = \langle \mu_0, (i - f)^* \mu^Y_K \rangle,
\]

which shows the desired result. q.e.d.

Let \(N \) be a graded module over a field \(K \), and \(\varphi : N \to N \) be an endomorphism of degree 0 which factors through a finitely generated graded module. Taking a homogeneous basis \(\{ a_\lambda \} \) of \(N \), put

\[
\varphi(a_\lambda) = \sum_\mu r_{\lambda \mu} a_\mu \quad (r_{\lambda \mu} \in K).
\]

Then it follows that \(r_{\lambda \lambda} \) is zero except a finite number of \(\lambda \), and that

\[
\Lambda(\varphi) = \sum_\lambda (-1)^{\deg a_\lambda} r_{\lambda \lambda} \in \mathbb{R}
\]

is independent of the choice of \(\{ a_\lambda \} \) (see [2]). \(\Lambda(\phi) \) is called the Lefschetz number of \(\phi \).

Theorem D. Let \(M \) be an \(n \)-dimensional topological manifold which is orientable over a field \(K \), and let \(f : M \to M \) be a continuous map such that \(f(M) \) is contained in a compact set \(K \subset M \). Then the fixed point index \(I(f) \) of \(f \) and the Lefschetz number \(\Lambda((f | K)_*) \) of the homomorphism \((f | K)_* : H_*(K) \to H_*(K) \) of homology with coefficients in \(K \) are both defined and they agree.

Proof. The fixed point set \(F \) of \(f \) is a closed subset of \(K \), and hence is compact. Therefore \(I(f) \) is defined.

From Lemma 3 it follows that the diagram

\[
\begin{array}{ccc}
U & \xrightarrow{f^*} & U \\
\downarrow & & \downarrow \\
H_*(M \times M, M \times M - d(M)) & \xrightarrow{\mu^Y_K} & H_*(M, M - d(M))
\end{array}
\]
is commutative. It is obvious from the definition of the cap product that the image of the homomorphism $\sim \mu_K$ is finitely generated. Therefore $(f|K)^*$ factors through a finitely generated module, and hence $\Lambda((f|K)^*)$ is defined.

Let $\{\alpha_\lambda\}, \{\beta_\mu\}$ and $\{\rho_\nu\}$ be homogeneous bases of $H^*(M)$, $H^*(M, M-K)$ and $H^*(K)$ respectively, and put

$$f^*(\rho_\nu) = \sum \lambda m_{\lambda \nu} \alpha_\lambda,$$

$$U_K = \sum_{\nu, \mu} c_{\nu \mu} \rho_\nu \times \beta_\mu,$$

$$\langle \beta_\mu \sim \alpha_\lambda, \mu_K \rangle = y_{\mu \lambda}.$$

Then it follows from the above commutative diagram that

$$(-1)^{\deg \rho_\nu}(f|K)^* \rho_\nu = U_K/(f^* \rho_\nu \sim \mu_K)
= \sum_{\nu, \mu} (c_{\nu \mu} \rho_\nu \times \beta_\mu)(f^* \rho_\nu \sim \mu_K)
= \sum_{\nu, \mu} c_{\nu \mu} \langle \beta_\mu, f^* \rho_\nu \sim \mu_K \rangle \rho_\nu
= \sum_{\nu, \mu} c_{\nu \mu} m_{\nu \lambda} \langle \beta_\mu, \alpha_\lambda \sim \mu_K \rangle \rho_\nu
= \sum_{\nu, \mu} c_{\nu \mu} m_{\nu \lambda} \langle \beta_\mu \sim \alpha_\lambda, \mu_K \rangle \rho_\nu
= \sum_{\nu, \mu} c_{\nu \mu} m_{\nu \lambda} y_{\mu \lambda} \rho_\nu.$$

Therefore we have

$$\Delta((f|K)^*) = \sum_{\lambda, \mu} (-1)^{\deg \rho_\nu} c_{\nu \mu} m_{\nu \lambda} y_{\mu \lambda}.$$

The diagram

$$H^*(M \times M, M \times M - d(M)) \xrightarrow{f^*} H^*(M, M-K) \xrightarrow{i^*} H^*(K \times (M, M-K)) \xrightarrow{(f \times id)^*} H^*(M \times (M, M-K))$$

is commutative, where i^* is the natural homomorphism. Therefore it follows from (3) that

$$I(f) = \langle U, f^* \mu_K \rangle = \langle U, \mu_K \rangle$$

$$= \langle d^* (f \times id)^* U_K, \mu_K \rangle$$

$$= \sum_{\mu} c_{\nu \mu} \langle d^* (f^* \rho_\nu \times \beta_\mu), \mu_K \rangle.$$
\[= \sum_{p,v} c_{p,v} \langle f^* p_v \circ \beta_{\mu}, \mu_K \rangle\]
\[= \sum_{\lambda, p,v} c_{p,v} m_{v,\lambda} \langle \alpha_{\lambda} \circ \beta_{\mu}, \mu_K \rangle\]
\[= \sum_{\lambda, p,v} (-1)^{(n-1) \deg p_v} c_{p,v} m_{v,\lambda} \langle \beta_{\mu} \circ \alpha_{\lambda}, \mu_K \rangle\]
\[= \sum_{\lambda, p,v} (-1)^{(n-1) \deg p_v} c_{p,v} m_{v,\lambda} y_{\mu,\lambda}.\]

Consequently we obtain \(I(f) = \Lambda((f|K)^*)\). Since \(\Lambda((f|K)^*) = \Lambda((f|K)_*)\) is obvious, we have the desired result. q.e.d.

A topological manifold which is orientable (over \(\mathbb{Z}\)) is orientable over \(\mathbb{Q}\), and \(I(f)\) for \(R=\mathbb{Z}\) coincides with \(I(f)\) for \(R=\mathbb{Q}\). Therefore Theorem D implies Theorem C.

Lemma 4 shows that \(I(f)\) coincides with \(I_f\) due to Dold when \(M=\mathbb{R}^n\). Therefore Theorem C implies Theorem A. It is clear that Theorem C implies Theorem B.

Bibliography

