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Introduction. Let k be an algebraically closed field of characteristic zero.
Let k[x,y] be a polynomial ring of two variables and let Aj= Spec(k[x, y]).
Embed A2 into the projective plane P as the complement of a line [.. Let
f €k[x,y] be an irreducible polynomial, let F, be the curve on Af defined by
f=a for every ack and let C, be the closure of F, in P;. Then the set
A(f):={Cq; a€kU(0)} is a linear pencil on P} defined by f, where C.=dl.,
d being the degree of f. The set Ay(f):={Fq; a €k} is called the linear pencil
on A} defined by f. The polynomial f is called generically rational when the
general members of A(f) (or A(f)) are irreducible rational curves. Since the
algebraic function field k(x,y) of one variable over the subfield k(f) then has
genus 0, Tsen’s theorem says that f is generically rational if and only if f is a
field generator in the sense of Russell [9, 10], i.e., there is an element g&k(x, y)
such that k(x, y)=Fk(f,g). If f is a generically rational polynomial, we can
associate with f a non-negative integer n, where n+1 is the number of places
at infinity of a general member F, of Ayf), i.e., the number of places of F,
whose centers lie outside A2.

If d=1, the pencil A(f) has base points situated outside A;. Let p: W—P}
be the shortest succession of quadratic transformations with centers at the base
points (including infinitely near base points) of A(f) such that the proper trans-
form A’ of A(f) by @ has no base points. Then the linear pencil A’ defines
a morphism p: W—P}, whose general fibers are the proper transforms of general
members of A(f); thence they are nonsingular rational curves by virtue of
Bertini’s theorem. Moreover, W contains in a canonical way an open subset
isomorphic to A;. A generically rational polynomial f is said to be of simple
type if the morphism p has n+1 cross-sections contained in the boundary set
W— A} (cf. Definition 1.8, below).

If n=0, a generically rational polynomial f is sent to one of the coordinates
x, y of A} by a biregular automorphism of A} (cf. Abhyankar-Moh’s theorem
[1, 4]); hence f is of simple type. If n=1, a generically rational polynomial is
always of simple type (cf. Theorem 2.3, below). However, if #>>1, a generi-

*) Supported by Grant-in-Aid for Scientific Research
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caily rational polynomial is not necessarily of simple type, as clarified by Saito
[13]. In effect, Saito determined in [12, 13] the standard forms of generically
rational polynomials for #=1, 2 by analytic methods.

One of the purposes of the present article is to determine the standard
forms of generically rational polynomials of simple type for arbitrary n=0 by
means of purely algebraic methods (cf. the results in §§2, 3).

The notations which we use frequently in this article are the following:

Let R be a k-algebra. Then R* is the multiplicative group consisting of
invertible elements of R; R* is called the unit group of R; if R is a finitely
generated, normal k-algebra then R*|k* is a finitely generated abelian group
(cf. [3]). For elements x, y of R*, we denote x~y if xy~'ek*.

Let V be a nonsingular projective surface. Let D,, D, be divisors on V.
Then (D,-D,) is the intersection number (or multiplicity) of D;, D, on V. Let
C be a curve on V and let P be a point on C. Then mult,C is the multiplicity
of C at P. If D, and D, are divisors, locally effective at P, then #(D,, D,; P) is
the local intersection multiplicity of D, D, at P. For an effective divisor D,
we denote by |D| the underlying reduced curve.™®

Let @: W—V be a birational morphism of nonsingular rational surfaces.
If D is a divisor on V then ¢*(D) (or @'(D), resp.) denotes the total trans-
form (or the proper transform, resp.) of D by ¢. Similarly, if A is a linear
pencil on V then @’(A) denotes the proper transform of A by o.

Let p: V—B be a surjective morphism from a nonsingular projective sur-
face onto a nonsingular curve, whose general fibers are nonsingular rational
curves; we call p a Pl-fibration. An irreducitle curve T' on V is called a
cress-section (or quasi-section, resp.) if (I'+C)=1 (or (I':C)=1, resp.) for a
general fiber C of p.

The ground field & is always assumed to be an algebraically closed field of
characteristic zero. The affine space (or the projective space, resp.) of dimension
n defined over k is denoted by A4} (or P%, resp.).

1. Standard compactifications of A;

1.1. Lemma (cf. Gizatullin [2]). Let @: V —B be a surjective morphism from
a nonsingular projective surface V onto a nonsingular complete curve B such that
almost all fiters are isomorphic to P}. Let F=n,C,+---+n,C, be a singular fiber
of o, where C; is an irreducible curve, C;=%C; if i%j, and n,>0. Then we have:

(1) The greatest common divisor (ny, ---,n,) of ny, -+, n, is 1; Supp(F)=
Ul C; is connected.

(*) The readers are warned of not confusing |D| with the complete linear system de-
termined by D. In the present article, we do not use the symbol |D| to signify the
latter meaning.
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(2) For 1<i<r, C; is isomorphic to P} and (C%)<0.

(3) Fori=j, (C;-C;)=0o0r 1.

(4) For three distinct indices i, j and I, C;NC;NC,=¢.

(5) Omne of C/s, say C,, is an exceptional component, i.e., an exceptional
curve of the first kind. If T: V—V, is the contraction of C,, then @ factors as

r
p: V- Vlng, where @,: V,—B is a fibration by P'.

(6) If one of n/s, say n,, equals 1 then there is an exceptional component
among C;'s with 2<i<r.

1.2. A generalization of Lemma 1.1 is the following

Lemma. Let V be a nonsingular projective surface and let A be an irredu-
cible linear pencil on V such that general members of A are rational curves. Let
B be the set of points of V which are base points of A. Let F=n,C,+----+n,C,
be a reducible member of A such that r=2, where C; is an irreducible component,
C:=*C;if i%j, and n,>0. Then the following assertions hold true:

(1) If C;NB=¢ then C; is isomorphic to P} and (C?)<O.

(2) If C:NC;%= P for i%j and C;NC;NB=¢ then C;NC; consists of a
single point where C; and C; intersect each other transversally.

(3)  For three distinct indices 1,7, 1, if C;NC;N C;NB=¢ then C;NC,;NC,=
b.

(4) Assume that (C?)<<O. whenever C;N\B¢p. Then the set S:={C;; C;
is an trreducible component of F such that C;\B=q¢} is nonempty, and there is an
exceptional component in the set S.

(5) With the same assumption as in (4) above, if a component of S, say C,, has
multiplicity m,=1 then there exists an exceptional component in S other than C,.

Proof. Let p: V—V be the shortest succession of quadratic transfor-
mations with centers at base points (including infinitely near base points) of A
such that the proper transform A of A by p has no base points. Then, by
Bertini’s theorem, general members of A are isomorphic to P}. The assertions
(1), (2) and (3) are then apparently true by Lemma 1.1. We shall prove the
assertions (4) and (5), assuming that B¢p. Let PEB. Set P;:=P, and let
P, -+, P,_, exhaust infinitely near base points of A such that P; is an infinitely
near point of P;_; of order one for 1=:<s—1. For 1=:<s, let o V-V,
be the quadratic transformation of V,_, with center at P;_,, where V=V,
and let o=0,+*+o,. Then o factors p, i.e., p=c+p. Let E;:=(c;11°*** ;)
(67'(P;-1)) for 1=i<s and let E{:=o7'(P,.;). Let E;:=p'(E!) for 1<i<s.
It is clear that E/=E; and (E{")=(E?) for 1<i<s, and that (E?)<<—1 for
1<i<s and (E?)=—1. Moreover, E is not contained in any member of A;
indeed, if otherwise, A would have yet a base point on E,, which contradicts the
choice of points Py, ---, P,_;. The member F of A corresponding to F of A
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may contain some (not necessarily all) of E,, -+, E,_;. After the above process
made for every point of B and every sequence of infinitely near base points
{Py, Py, -+, P,_;} as above, we know that if we write F=(mC,+---+n,C,)+
(m,Dy+ ---+m,D,) with C;=p'(C;) for 1<i<r then we have;

1°if ;€S then C;=C; and (C})=(C?),

2° if C;& S then (CH< -2,

3°(DH<—2for 1<i<t.
Then the assertions (4) and (5) follow from the assertions (5) and (6) of Lemma
1.1. Q.E.D.

1.3. Let IV be a nonsingular projective surface containing an open subset U,
which is isomorphic to Af. Since U is affine, the boundary set V—U is con-

nected and purely of codimension 1. Write V—U= L’JC,., where C; is an
i=1

irreducible component. We assume that the boundary curve V—U has only
normal crossings as singularities. Then we have the following

Lemma (cf. Ramanujam [8]). Let V and C/s be as above. Then the
following assertions hold true:

(1) For every i, C, is isomorphic to Pj.

(2) Fori=j, (C;+C;))=0or 1.

(3) For three distinct indices i, j and I, C;NC; N C)=¢.

(4) Thereis no circular chain (or loop) {C;, -+, C;} such that (C;,-C;,, )=1
for 1= j<sand (C;-C;)=1.

V is then called a normal compactification of A;. V is called a minimal
normal compactification if the following additional condition is satisfied:

(5) If an irreducible component, say C,, of V—U is an exceptional curve of
the first kind, then at least three other components of V—U meet C,.

1.4. Let V be a normal compactification of A;. Then the dual graph of the
boundary curve V—U is defined by assigning a vertex o to each irreducible
component and by connecting two vertices by an edge (like 0—o) if two cor-
responding components meet each other. The condition (4) of Lemma 1.3
says that the dual graph of V—U is a tree. The dual graph is said to be linear
if it is a tree and each vertex has at most two branches. Then we have the
following.

Lemma (cf. Ramanujam [8]). Let V be a minimal normal compactification
of A;. Then the dual graph of the boundary curve is linear.

The dual graphs of all possible minimal normal compactifications of A}
were classified by Morrow [7]. An algebraic proof of the above lemma of
Ramanujam and also of Morrow’s resuit (even over the ground field of positive
characteristic) was given by S. Mori [6]. However, we use this result only in
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one place (cf. 3.11) in this article.

1.5. Let k[x, y] be a polynomial ring in two variables x, y and let f be an irre-
ducible polynomial of degree d >0 in k[x,y]. Let A(f) be the linear pencil on
P; defined by f. Then A(f) has base points on the line L. at infinity. Set ¥
:=P}. Let @: V=V, be the shortest succession of quadratic transformations
with centers at base points (including infinitely near base points) of A(f) such
that the proper transform A of A(f) by @ has no base points. Let p: V—P}
be the surjective morphism defined by A. Then each irreducible (excep-
tional) curve arising in the process ¢ of quadratic transformations is either a
quasi-section of p or contained in a fiber of p. Let I, -, T', exhaust all
irreducible (exceptional) curves arising in the process @, which are quasi-
sections of p. Then it is clear that every I'; is isomorphic to Pj.

Note that ¥ contains in a canonical way an open subset & which is isomor-
phic to A} and that V is a normal compactification of U=A}. Let y: V-V
be a contraction of all possible exceptional (contractible) components of V— U,
which are contained in the fibers of p. Then V is a nonsingular projective
surface containing an open subset U, which is isomorphic to A;. However,
V 1s not necessarily a normal compactification of A (cf. [5; Example 2.4.4, p.
122]). Moreover, there exists a surjective morphism p: V' —P; such that
p=p-Y. We set T';==+(I";) for 1=<i<p and denote by S.. the fiber of p which
corresponds to the member dl.. of A(f). If we identify U with Spec(k[x, y]),
there exists an inhomogeneous coordinate u of P} such that the point p(S.) is
givenbyu=co and S,N U=F, for each a €k, where S, is the fiber of p lying
over the point u=a.

1.6. Assume that f is generically rational, i.e., general members of A(f) are
rational curves. Then, with the above notations, S.. is isomorphicto P;. Let
S, ++, S, be all fibers of p such that F;:=S; N Uisareducible curve for 1=<i<r.
Let m; be the number of irreducible components of F; for 1<i<7r. On the
other hand, T, -+, T', exhaust all quasi-sections of p which are contained in
V—U, while they are not necessarily nonsingular. Let §; be the degree of the
morphism p|r,: T;—P;. Note that yr|z,: T';—T; is the desingularization of

T;. For 1=j<p, let v;= 3] (eq—1), where eq is the ramification index of p|z,
e
at a point Qef‘j and the summation ranges over all points @ of I'; such that

J
p(@)*+p(Sx). Then we have the following.

Lemma (cf. Saito [13], Suzuki [15]). With the assumptions and the notations
as above, we have:

(1) p-l—r—lzgm,.; (2) n+1=p+$}vj, where n+1 is the number of
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places at infinity of a general member F, of A(f) (cf. Introduction.)

Proof. (1) We note that S, -«-, S, are all singular fibers of p. Indeed,
suppose that S is a singular fiber of p other than S, :-+,S,. Then S has only
one irreducible component C which meets U. Let x be the multiplicity of C
in S. Since pCNU=SNU is defined by an equation f=q with some a €k,
we have f—a=2\g" for some irreducible polynomial gek[x,y] and AEER*.
The assertion (6) of Lemma 1.1 implies that x>1. Then f is reducible, which
contradicts the choice of f. Let S be an irreducible fiber of p. Then we
have

X(V) = X(S)-X(P+ 2 (X(S)—X(S),

where X( ) denotes the Euler number (cf. Safarevit [11; p. 58]). Let m! be
the number of irreducible components of S;. Since the dual graph of S; is a
tree, it is easy to show that X(S;)=2m!—(m!—1)=m/+1. On the other hand,
it is easy to see from construction of V' that the Picard group Pic(V) is a free

abelian group of rank 14p+ E(mf —m;). Since V is rational, X(V) is then
equal to 2+l—l—p+2(m£ —m;). Thus, from the above equality, we obtain

34p+ 2 (mi—m) = 4+ 2} (mi—1),

whence follows the first equality.

(2) For each j (1=j=p), S.NT; consists of a single point, which is also a
one-place point. For, if otherwise, V— U would contain a circular chain of ir-
reducible components, which is a contradiction by the assertion of Lemma 1.3.
Then there is only one point on I'; lying over the point p(S..), where the rami-
fication index of #|5; equals §;. By Hurwitz’s formula, we obtain §,—1=v; for
every j (1=j=p). On the other hand, note that if S is a general fiber of p, S
has n-1 distinct points outside of SN U, among which §; points lie on T'; for
each j (1=j=<p). Therefore, we have the second equality. Q.E.D.

1.7. Lemma. Let f be a generically rational polynomial in k[x,y]. Then,
with the notations as above, the following conditions are equivalent:

(1) n=0;

(2) =1

(3) r=0, i.e., the curve F, on A} defined by f=a is irreducible for every
aERk;

(4) f is sent to one of coordinates x, y by a biregular automorphism of Aj:=
Spec (k[x, y]).

Proof. Note that p>0. Then the implication (1)=>(2) is clear. Suppose
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p=1. Then r=0 by the first equality of Lemma 1.6, because m; =2 for every
. This implies the assertion (3) (cf. the proof of the first equality of Lemma
1.6). Suppose the condition (3) is satisfied. Then V is a relatively minimal
rational ruled surface, whence V' is a Hirzebruch surface F,=Proj(Op® Op1(a))
with a=0. Let M be the minimal section of F,,i.e., M is the cross-section of
p with (M?)=—a; when a=0 we take a cross-section of p as M. Since Pic(V)
is a free abelian group generated by M and the fiber S.. of p, the unique quasi-
section T" of p contained in V—U is linearly equivalent to a divisor of the
form aM+BS., where o and @ are non-negative integers such that 8=aa.
Since U= Aj} and V—U=TI'"U S.., we know that I" and S., also generate Pic(}).
Then a=1, and T is a cross-section. This implies that SN U is isomorphic
to Aj for every fiber S of p other than S.. Hence the curve F, defined by
f=0is isomorphic to A;. Now, the assertion (4) follows from Abhyankar-Moh’s
theorem (cf. Abhyankar-Moh [1], Miyanishi [4]). The implication (4)=(1)
is clear. Q.E.D.

1.8. DErFINITION. Let f be a generically rational polynomial in R[x, yj. f is said
to be of simple type if the equality p=n--1 holds.

The second equality of Lemma 1.6 shows that f is of simple type if and
only if T, ---, T', are all cross-sections of p.

Lemma. Let f be a generically rational polynomial in k[x,y] such that a
general member of A(f) has two places at infinity, i.e., n=1. Then f is of simple
type. Moreover, Af) has only one reducible fiber, which has two irreducible
components.

Proof. By Lemma 1.7, we have p=2. Then, by the second equality
of Lemma 1.6, we must have p=2, whence f is of simple type. Then the first
equality of Lemma 1.6 implies that r=1 and m;=2. Q.E.D.

1.9. Let f be a generically rational polynomial in k[x,y]. We assume in this
paragraph that f is of simple type, i.e., p=n-1. Then every I';(1=j=<p) is
a nonsingular rational curve. We assume, furthermore, that p=>2, i.e., n=1.
Since U is isomorphic to A}, two distinct T'; and T'; do not meet each other
on any fiber S of p other than S..; indeed, if otherwise, V—U would contain
a circular chain of irreducible components. Note also that S, .-, .S, exhaust
all singular fibers of p.

Let A be an irreducible component of S;—S; N U (if it exists at all) for some
i(1<i<r). If there is a sequence of irreducible components {A,, -, A;} of
S;—S;N U such that Aj=A, A/\N A, F¢ for 1=I<t and A,NT;#¢ for some
j (1=<j<mn-+1), we say that A is connected to I';. Since V—U is a connected
curve, every irreducible component A of S;—S;N U is connected to some T';
(1=<j=<mn-+1), while A is not connected to two distinct I'; and T'y; indeed, if
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otherwise, V—U would contain a circular chain of irreducible components.
For each pair (7,j) with 1<{<r and 1<j<n+1, let E;; be the union of all
irreducible components A of S;—S;N U, which are connected to I';, Then
E;; is a connected curve if it is not empty.

Set P.:=p(S.) and P;:=p(S;) for 1<i<r. Then the points P. and
P;s are determined by u=o0 and u=c;(1<i=r), respectively, with respect to
the inhomogeneous coordinate u of Pj (cf. the paragraph 1.5). Set Z:=
P,—{P., P, ---,P,}. Then p}(Z) with the morphism p: p™Y(Z)—Z is a
trivial P'-bundle over Z, i.e., there exists a Z-isomorphism 7: p™(Z)3Z X P;.
We may assume that there exist points @, :--, @,;, on P} such that
77 Zx{Q;})=T;Np X(Z) for 1=j<n+1. Now, choose an inhomogeneous
coordinate v on P} (=the fiber of p) such that Q,,, is defined by v=co and
Q; is defined by v=d; for 1< j<mn; in the sequel, we set Q.:=@Q,,, and T'..:=
T,.. Let p,: ZXPi—P; be the second projection. Then the morphism
p2em: pY(Z)— P} (or equivalently saying, the inclusion of the subfield k(v) into
k(x,y)) defines a linear pencil L on V without fixed components such that
Ty, -+, T, are contained in distinct members =, -+, E,, Heo:=E,; of L,
respectively.

For each i (1<i<7), let Sy, -+, S,,, exhaust all irreducible components of
S; such that S;;NU=*¢ for 1<a<m,;. Set F;;:=S;,NU and let f;,, be an
irreducible polynomial in k[x,y] such that F;, is defined by f;,,=0, where
1=a=<m;. 'Then, for each i (1<i<r), we have

u—c; = f—c; = N;+ J-i(fia)mm ’

where A, Ek* and «a;, is a positive integer. Then we have:
19.0. Ky, (I ILf) ] = Hu, o, 1T (w—c), T (0—d))™.
1.9.2. If n=2, the linear pencil L has no base points which lie outside S...

Proof. Suppose that @ is a base point of L with @& S... Thenitis clear
that Q€ S; for some 7 (1<i=<7). Note that, for every j(1=<j=n+1), the un-
derlying curve of E; is contained in the union of I'; and the underlying curves
of S’s(1=i{<r). Since n+1=3, this implies that either there are at least two
components of S; intersecting one of the cross-sections I';’s, or there are at
least three components of S; passing through the point @, which contradicts
the assertion (4) of Lemma 1.1.

1.9.3. After a suitable modification™® of V with centers at points of S.., we may

(*) a succession of quadratic transformations with centers at points and contractions of
exaceptional curves of the first kind.
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assume that L has no base points on S..

Proof. If S. is not contained in any member of L then L has no base
points on S... Suppose that L has a base point @ on S.. Let s:=i(E, E'; Q)
for distinct general members = and E’ of L. Set @,:=@, and let @, -+, Q,_,
be infinitely near points of €, which lie on (the proper transforms of) E,
such that @, is an infinitely near point of @;_, of order one for 1=<i<s. Let
a;: Vi—V;_, be the quadratic transformation of V;_, with center at @;_,, where
Vo:=V, and let g=0,*+-+0,. Let E;i=(c41°* *0,) (7' (Q;-)) for 1=i<s,
and let E;:=57%Q,_;). Let SL:=0¢"(Sx), let T}:=¢'(T";) for 1=j=<n+1,
and let L':=¢g'(L). Then we have the following dual graph of &7'(S.):

—1 =2 —2 —1
O O cone O O .
Si’ El Es—l Es

Since n+4-1=2, some member E;(1<j=<n-+1) does not contain S... More-
over, since (T';+S.)=1, we know that @, @,, --*, @,-, exhaust all base points
(including infinitely near base points) of L centered on S... Therefore, L’ has
no base points centered on S... Thus E| is a cross-section of L', and SLUE, U ---
UE,_, is contained in some member of L’. Let 5: ¥/,—V be the contraction of
S.,E, -, E,_,. Now, replace V by V. Then the above modification 5+0':
V -V changes only S... Q.E.D.

1.9.4. Assume that r=2. Then, for every j (1= j<n-1), at most one of E,, -+,
E,; is a nonempty set.

Proof. Suppose that (at least) two of E,;, -+, E,;, say E,; and E,;, are
nonempty sets. By 1.9.3, we may assume that L has no base points on S..
Then V is a normal compactification of U. Note that (S2)=0 and no excep-

tional components are contained in (] E;;. By contracting (possible) excep-
i=1

tional components in ¥—U, we would obtain a minimal normal compactifica-
tion of A, for which the dual graph of the boundary curve is not linear.
This contradicts Lemma 1.4. Q.E.D.

1.9.5. For distinct pairs (i,§) and (i',]'), we have E;;NEyy=¢. Furthermore,
we have S;—S;N U= 'T[:JIEU for every i (1=i<7).

Proof. Clear from the construction and the above arguments.

1,9.6. Assume that =2. With 7 modified so that L has no base points (cf.
1.9.3), L defines a P'-fibration 7: V' —P} such that S. is a cross-section of 7.
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1.9.7. Assume that n=1. After the modification of ¥ so that L has no base
points on S.., we call V a standard compactification of A} with respect to a generi-
cally rational polynomial f of simple type. Then we have the following

Lemma. Let f be a generically rational polynomial of simple type in k[x, y]
with n=1. Let V and V be standard compactifications of Aj:=Spec(k[x,y])
with respect to f. Let p: V—P} (or p: V—P}, resp.) be the P'-fibration of V
(or V, resp.) defined by f. Then there exists an isomorphism 0: V —V such that
p=p-0. ' ‘

Proof. V (or V, resp.) contains an open subset U (or U, resp.) isomorphic
to Aj. The identity morphism id.: U U extends to a birational mapping
6: V—V such that p=p-f. We shall show that § is an isomorphism. Let
L and B be the generic fibers of p and p, respectively. Then both B and B
are complete normal models of the algebraic function field k(x, y) of one variable
over t=k(f). Hence B and P are isomorphic to P;. Let I'y, .-, T, (or
T,, -+, T, resp.) be the cross-sections of p (or p, resp.) contained in ¥V—U (or
V—U, resp.). Since 8—{I,NG, -+, T,1NB} is identified to —{['N B,
-+, Tsy NV} under 6, B is isomorphic to L under §, and we may assume that
OI;NBV)=T;NDB for 1=j<n+1. Then §:T;—T; is an isomorphism for
1<j<n+1. Let S,--,S, (or S, -+, S,, resp.) be reducible fibers of p (or
p, resp.). Define E;; (1<i<r and 1<j<n+1) for V in the same fashion as

r n+l _ . . .
for V; note that |] |J E;; contains no exceptional curves of the first kind. Let
i=1 731

S.. (or S.., resp.) be the fiber of p (or p, resp.) contained in V—U (or V—U,
resp.). If @ is not biregular, V—U contains an irreducible curve 7T which
becomes an exceptional curve of the first kind after a succession of quadratic
transformations with centers at points in V'—U. Since every component in

r n+l

E;; has self-intersection multiplicity < —2,7 must be S... However, if S.,
1

i=1j=
is contracted after a sequence of quadratic transformations, T, -+, T,,; meet
each other at one point on S.., which is a contradiction. Hence 6 is biregular.
Similarly, 67! is biregular. Thus 6 is an isomorphism such that p=p-6.
Q.E.D.

1.10. In the second section we use the following

Lemma (cf. Miyanishi [3,5]). Let X be a nonsingular affine surface de-
fined by an affine k-domain A. Assume that the following conditions are satisfied:

(1) A4 is a unique factorization domain and A*=Fk*.

(2) There exist nonsingular irreducible curves C, and C, on X such that
C.NC,={P}, and C, and C, intersect each other transversally at P.

(3) C, (resp. C,) has only one place at infinity.
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(4) Let a, be a prime element of A defining the curve C,. Then a,—a is a
prime element of A for all a k.

(5) There is a nonsingular projective surface V containing X as an open
subset such that the closure C, of C, in V is nonsingular and (a,), (=the zero part
of the divisor of a))=C,. Then X is isomorphic to A}, and the curves C, and C,
are sent to the axes of a suitable coordinate system of Aj.

1.11. Here, we recall a general result due to Russell [9; Cor. 3.7] on a generi-
cally rational polynomial.

Proposition. Let f be a generically rational polynomial in k[x,y]. Then
there are at most two points (including infinitely near points) of the curve f=0 on
the line at infinity l.. In particular, the degree form of f has at most two distinct
irreducible factors.

2. Generically rational polynomials with n=1

In this section, f is a generically rational, irreducible polynomial in k[x, y]
with n=1. Then f is of simple type and Ay(f) has only one reducible member
consisting of two irreducible components (cf. Lemma 1.8). Let f=c¢, be the
reducible member of A f). We use the notations of the previous section
with due modifications.

2.1. Lemma. With the notations of 1.9, we have one of the following cases:
(1) Case F\yNFy,&=¢. Then (S,*Sp)=1 and F,,~A} for a=1, 2.
(2) Case F\yNFy,=¢. Then (Sy,+Sy,)=0, and one of F,, and Fy, say Fy,
is isomorphic to A and the other, say F, is isomorphic to A (= Ai— (one point)).

Proof. (1) Suppose F;;NF,+¢. Then (S,-Sp)=1 (cf. Lemma 1.1,
(3)). Since E;NE,=¢, we may assume that (T',UE,)NS,,+¢ for a=1, 2.
Since the dual graph of S| is a tree, it is easy to see that F,,~ A4} for a=1, 2.
(2) Suppose F;;NF,=¢. Then one of S, and Sy, say Sy, intersects both
T,UE, and T, U E),, and the other one, say S};, intersects only one of T,UE,,
and T,UE,,. Then (S,+S;,)=0, F,,=A} and F,,=~A}L. Q.E.D.

2.2. Lemma. With the notations of 1.9 and after a suitable change of coordinates
of k[x,y], we have one of the following cases:

(1) fu=xand f,=y.

(2) fu=x and f,=x'y-+P(x), where 1>0 and P(x)Ek[x] with deg P(x)<!
and P(0)=0.

Proof. (1) Suppose F,,NF,#*¢. Then, by virtue of Lemmas 1.7 and
1.10, we may change coordinates of k[x, y] so that f;,=x and f,=y.
(2) Suppose FyNFy,=¢. Then, by virtue of Abhyankar-Moh’s Theorem
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(cf. Lemma 1.7), we may assume that f;,=x. Taking account of 1.9.1, we
have only to prove the following assertion:

Let gek[x,y] be an irreducible polynomial such that g £ k[x] and g(0, y)=0.
Assume that we have the following identification of rings,

k[x,y, x7%, g7 = R[u, v, u™, v71].
Then g s of the form:

g = Mx'y+P(x)), where A€k*, 1>0 and P(x)Ek[x]
with deg P(x)<<I and P(0)=0.

Indeed, by comparison of the unit groups of both rings, we have: u~x"g?
and v~x"g%, where a, B, v, € Z such that ad—By=-41. This implies that
g satisfies

x°g’y = G(x, g), where G(x,g)Ek[x, g].

If 5>0 then we have a relation: gh(x, y)=k[x] with A(x, y)=k[x, y], which im-
plies g€k[x], a contradiction. Hence b=0. Write

g = Afx)y"' 4+ Ay(x) and G(x, g) = Byx)g"+ - +By(x),

where A,(x), B;(x)€Ek[x] (0={<M and 0= j=<N) and Ay(x)B,(x)=0. Then we
have

x%y = By(x) Ay(x)" y N - eeeeee ,

whence M=1 and A (x)~x'. Therefore, g is written in the stated form after

replacing y by y+C(x). Q.E.D.

2.3. Theorem (cf. Saito [12; p. 332], Sugie [14]). Let f be a generically ration-
al, irreducible polynomial in R[x,y] with n=1. Then, after a suitable change of
coordinates, f is reduced to either one of the following two forms:

(1) f~x"y*+1, where >0, B3>0 and (a, B)=1.

(2) f~ x"(x'y+P(x))P+1, where a, B,1>0, (a, B)=1 and P(x)E k[x] with
deg P(x)<! and P(0)=0.

Proof. Clear by Lemma 2.2.

2.4. Proposition. Assume that the curve C, on P defined by f=0 intersects l..
in only one point P. Let d\:=mult,C,. Then d,<<d=the degree of f. Moreover,
there exists a birational automorphism p of Pji such that p induces a biregular
automorphism on A}:=Pj—l.. and that ihe proper transform C{ of C, by p intersects
l in two points with (Ci-l.)<d,.

The existence of an automorphism p such that p|,z is a biregular au-
tomorphism and that the proper transform p’(C,) intersects /., in two points
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follows from the above theorm. However, the above proposition is proved by
a constructive method depending on Lemma 1.2, which allows us to determine
more explicitly an automorphism p with the stated properties. For more
details, the readers will be referred to Miyanishi [5; Chap. II, §6].

2.5. It is clear that the integers o and B in Theorem 2.3 are the multiplicities
of components S;; and S, of the fiber S), respectively, in the standard com-
pactification of A% with respect to f. On the other hand, Lemma 1.9.7 im-
plies that the standard compactification of A} with respect to f is obtained by
assuming that f is written in the form stated in Theorem 2.3. By a straight-
forward computation, we know that the dual graphs of E,, and E,, are linear.
For details, see [5; ibid.].

3. Generically rational polynomials of simple type with n>1

In this section, f is a generically rational, irreducible polynomial of simple
type with z>1. In the paragraphs 3.1~3.4, we consider the case r=1; in
the paragraphs 3.5~3.8, we consider the case where »=2 and m;<n for every
1 (1=<i=<r); in the paragraphs 3.9~3.12, we consider the case where r=2, m,=
n and m,=2,

3.1. We shall consider the case r=1. For convenience’s sake, we simplify the
notations as follows: 3:=3S,; Z,:=38,, F,:=F\,, f.:=fi,, as:=ay, for 1=Zazm,,
where m=p=mn+1; E;:=E,; for 1=<j<n+1; we may assume that ¢,=1
(cf. 1.9.) Note that the pencil L on the standard compactification V of A} with
respect to f has no base points; hence L defines a P'-fibration 7: V—P}. Let
E be a general fiber of 7. Since (S..-E)=1, we have (£-E)=1. This implies
that there exists an irreducible component A of = such that (A-E)=1, i.e., A
is a cross-section of 7, and the other components of = are contained in the
fibers E,, :++, E,;, and possibly one other fiber of L, as will be seen below.
First, we shall prove the following:

Lemma. With the assumptions and the notations as above, we have one
of the following cases:

1) ANU=x¢. We may assume that A=73,,,. Then ENU=A} and
F,=Aj for 1=<a=<n;3,(1<a=<n) belongs to one and only one of E,, -+, E,.1,
while none of B, -++, E,., contains two of =,’s; thus, after a suitable change of
inhomogeneous coordinate v of Py (=the fiber of p) and a suitable change of in-
dices, we may assume that =, belongs to E, for 1=<a<n; F,.,=A—(ANE,.,)U

Ql((I‘j UE;)NA), where A=P}; a,,=1.

(2) ANU=¢. We may assume that A is a component of E,.,. Then
ENU=Ay; 3, (1=a=n+1) belongs to one and only one of E,, -+, E,; none of
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5..s belongs to B,,,; thus, after a suitable change of indices, we may sasume that
3., belongs to E, for 1<a<n and =.,,, belongs to either one of ;s (1= j=n), say
2., or none of them; F1= A} for 2<a<n and F,,,~A;. Moreover, (i) Fi=A}
either if 3, is a component of B, and 3, N2, .,==¢ or if 2, belongs to none of
E/s (1=j<n), and (ii) F,=A} if =,., is a component of E, and ;N %+ .

Proof. (1) SupposeANU=¢. As in the statement, we may assume that
A=3,,,. ThenENU=E—ENS., whence SN U=A4;}. Since (E-X,)=0 for
1<a<mn, 3, belongs to the fibers of L. Hence we may assume that one of
By Bur1, S8y E,., contains none of Z.’s (1=<a=<mn). Then the inhomo-
geneous coordinate v of P; (=the fiber of p) is an element of k[x, y]; indeed,
the polar divisor of v on V has no irreducible components meeting the open set
U=Spec(k[x,y]). Since EN U=xA}, we may assume, after a suitable change
of coordinates in K[x,y], that v=x (cf. Abhyankar-Moh’s Theorem). Then
the curve v=a on U is isomorphic to A; for every a=k. This implies that
2, (1=a=n) belongs to one and only one of E,, ---, E,, and that none of E,’s
(I=j=mn) contains two of =/s. Note that T';UE; is contained in E; for

1<j<n+l. It is now clear that F,,,=A—(ANE,.)U ] (T;UE,)NA),
=1

where (I';UE;)NA is a single point if it is nonempty and A=P;. Since
(E-=)=1, the multiplicity a,,, of A in 3 equals 1.

(2) Suppose ANU=¢. After a suitable change of the inhomogeneous
coordinate v, we may assume that A is a component of E,,,. We have (E-Z,)=0
for 1=a<n+1 and (E;-A)=1 for 1<j=<n. Hence T';UE;, which is con-
tained in E;, is connected to A by means of one or more of =,’s for 1< j=<mn.
This implies that E,,, contains at most one of =.’s and E; (1<j=n) contains
at most two of =.’s. Suppose that E,,, contains one of =s, say =,,,. Then
E;(1=j=mn) contains one and only one of Z/’s (1=a=<mn). After a suitable
change of indices, we may assume that =; contains =; for 1=<j=<#n. Then it is
easy to see that v—d;~ffif;}, for 1<j=<mn, where 8;>0(1=j=<n)and v>0; v
is independent of j. Since u—1~jf7'--f,21', the identification of rings in
1.9.1 implies (by computing the unit groups of the rings on both hand sides)
that the following matrix A is unimodular,

Oyereeee Ay Oyyg
B, —97
A=| -
0 IBn -7

However, detA:(——l)”{Bl-~°,8,,a”+1—|—'yZ‘_,”l;6’1---,8,-_1a,~;8,~+1---6,,}, whence 4 is

not unimodular because n=2. Therefore, E,,, contains none of Z,’s (1=<a=
n-+1). Then, after a suitable change of indices, we may assume that = is used
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to connect I'; UE; to A for 1=<j<n. The remaining component X,,, belongs
to one of E,’s (1=<j=mn), say E,, or none of them. Itis then clear that F,~ A4}
for 2<a=<mn. If either =,,, belongs to none of E;’s (1=<j=<n) or Z,,, is a com-
ponent of 5, and 3, N Z,,,=¢, then Fi=~A4). If Z,,, is a component of =, and
2, NZ,,#¢, then Fi=~A4;. Inany case, F,,;=~A4}. Since ENU=E—(ENS.)
U(E N A), it is isomorphic to Aj. Q.E.D.

3.2. Lemma. With the assumptions and the notations of Lemma 3.1, after a suit-
able change of coordinates of k[x,y], we have ome of the following four cases:
(1) Case ANU=¢:

fi~ v—d; (1Sj=n) and
funr~ ¥+ [ (e—d )+ P(x), €20, Pk,
where €,;=0 whenever (I';UE;)N A=¢, and where ;>0 and P(d;)+0 whenever

(T;UE)NA=%¢p. Moreover, o,y =1.
(2) Case ANU=¢ and Z,,,C|E;|® for 1=j=n:

fori~ & and  fi~ x(x'y+P(x))—d; for 1=j=mn,
where 1>0, =0 and P(x)=k[x]; deg P(x)<t and P(0)==0 if t>0, and P(x)=0

if t=0. Moreover, ot,.,=1.
(3) Case ANU=¢, 2,,,C|E,| and 2N 3, ,F¢:
fonr~ %, fi~cy and fi~ ¥'y+di—d; for 2<j=mn,
where 1>0. Moreover, a,.,—a;l==1.
4) Case ANU=¢, 2,.,.C|E,| and Z N2, =¢:
fun~ ) fi~ &y+P(x) and [~ #(s'y+PE)+d—d; for 2<jsn,

where I, t>0 and P(x)sk[x] with deg P(x)<<t and P(0)%0. Moreover,
(X,,+1—-la1: :‘:1.

Proof. (1) Since none of Z,’s (1=a=n+1) is contained in E,,, we have
vEk[x,y], and since ENU=<A}, we may assume that v=x (cf. Abhyankar-
Moh’s Theorem). Then, each fiber E;(1 =<j=<n) of L (or 7) has only one
component 3; which intersects U, and 3;NU=F,. Since E; corresponds to
the value v=d;, we have f;~x—d;. Now, the curve F,,,, which is defined
by f,+,=0, is written in the form:

(*) For an effective divisor D on V, we denote by |D| the underlying reduced curve of

D.



354 M. MivanisHI AND T. SUGIE

forr= Pox)y"++-Pp(x),
where Py(x), -+, Py(x)Ek[x] and Py(x)=0. Since F,,, meets the curve x=a
transversally in a single point for ¢ €k such that a+d; (1=j=n) or a=d; with
F;NF,.,#=¢. Hence we know that N=1 and Py(x)~ I:Il(x——dj)":‘, where &;=0

lf anF”+l=|:¢, i.e., (FJUEJ)nA:(i). If anF”+1:¢, i.e., (P’UE])DA=F¢,
we have ;>0 and P,(d;)#0. Thus, we obtain the stated form for f,,;,. On
the other hand, we have:

u—1l~ fit-farit and v—d;~ fFi with B;>0 for 1=<j<n.

The identification of rings in 1.9.1 implies that the following matrix 4 is uni-
modular,

Oy =y Oy
B
A=
0o :
B, 0
Since det A=(—1)"at,+,8:***B,, We have B,=-=8,=a,,;,=1.

(2) Since =,,,q¢ |E;| for 1<j=mn, there is one more reducible fiber E,, other
than E;’s (1= j<n-1), such that

EO = T+lzn+1+Z,

where (T-S.)=1, (T-2,,)=1, |Z|CE,,, if Z>0, and [>0. Then T, (:=
TNU)=A}if (T-3,,)=1and Ty=A} if (T-=,,,)=0. Since ENU=Aj, we
may assume, by virtue of Theorem 2.3 that f,,,=x and T, is defined by y=0
(if T=A}) or x'y+P(x)=0 (if T=Aj)), where t>0 and P(x)Ek[x] with
deg P(x)<<t and P(0)#=0. Moreover, we may assume that the fiber 5, corre-
sponds to the value v=0, where vEk[x,y] because |E,.,| NU=¢. Since E;
corresponds to the value v=d; and F;=|E;|NU for 1=<j=mn, we have
fi~ «!(x*y+P(x))—d;. We obtain a,,,=1 by the same argument as in the case
D).

(3) The fiber E, is, then, written in the form:
El = 21+lzn+1+z ’

where (£,°A)=1, (£,:2,.1)=1, |Z|=E,UT,, and [>0. Since F,=~F, =~ Aj},
we may assume that f,,,=x and fj=y (cf. Lemma 1.10). Since v<k[x, y] and
the fiber =, corresponds to the value v=d,, we may assume that v=x'y-}d,.
Then we have f,~ v—d;=x'y+d,—d; for 2<j=<mn, because =,C|E;| and
(2;+A)=1. On the other hand, we have:

u—l~ filefuiit, v—di~ fifan
and v—d;,~ f; for 2=<j=n.
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By the same reasoning as in the case (1), we have the following unimodular
matrix

Q- d, Oy
1 l

Since det A=(—1)"(et,+;—ayl), we have a,,,,—a,l=+1.
(4) The fiber E, is, then, written in the form:

B, =3 +15,.,+2Z,

where (B,-A)=1, (£,:2,.1)=0, 2,.,N|Z|=£¢, |Z|=E,UT, and I>0. Since
F,.,== A}, we may assume that f,,,=x. Since vEk[x,y] and ENU=A}, v is
a generically rational polynomial with #=1, and the curve v=d, is a reducible
member of Ay(v) with two mutually non-intersecting components. By virtue
of Lemma 2.2, we may set

fi=«'y+P(x), t>0, P(x)ek[x]
with deg P(x)<t and P(0)=0.

Then we may assume that v—d,=f,f,., = «'(x'y-+P(x)). Hence f;~ v—d,=
x!(x'y+P(x))+d,—d; for 2= j<n. We obtain e, ,,—Ila;=+41 by the same argu-
ment as in the case (3). Q.E.D.

3.3. Theorem. Let f be a generically rational, irreducible polynomial of simple
type in k[x,y] with n>1 and only one reducible member in A(f). Then, after a
suitable change of coordinates in k[x,y), f is reduced to one of the following four
polynomials:

(1) f~ (T (r—d)))- (v TT (e—dy) s+ PE)+1,

where d,, -+-,d, are mutually distinct elements in k and P(x)Ek[x]; a;>0 and
&;=0 for 1=j=<mn; P(d;)=0 if £§;>0.

@) f~ x T (Haty+P)—d))-+1,

where 1>0, t=0 and P(x)=k[x]; deg P(x)<<t and P(0)=0 if >0 and P(x)=0 if
t=0; a;’s and d}’s are as in the case (1).

() fr sty T (y—d)t1,

where dy, -+, d, are mutually distinct elements in k*; 3>0, I>0 and ;>0 for
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I1sj=n; B—al=+1.
(4) fr o (ay+P@)%e Ty +P)—d) 1,

where t>0 and P(x)=k[x] with deg P(x)<<t and P(0)%0; B3, I, a;’s and d}’s are
as in the case (3).

Proof. Follows easily from Lemma 3.2.

3.4. By comparison of the unit groups of two rings, which are connected to
each other by the identification of rings as in 1.9.1, we can prove the following:

Proposition. Let f,, -+, f,., (n=2) be mutually distinct irreducible poly-
nomials in R[x,y]. Assume that we have the identification of rings,

K, 3, (fifus) ] = Kl 0,07, (11 (0—d))7,

where u=f1"+ f321* with ;>0 (1=i<n-+1), and d,, -+-, d, are mutually distinct
elements of k. Then, after a suitable change of indices and a suitable change of
variables u and v, we are reduced to the following case:

v—di~ fiiff: and v—d;~ f;, for 2=j=m,
where B3, 8,=0 and a,B,—a,B,=-1.

3.5. Next, we shall consider the case where r =2 and m;<<n for every i (1=i=7).
Here, we retain the notations in 1.9. Since m; =2, we have n=3.

Lemma. With the assumptions and the notations as above, we have:

(1) For every i (1=i=<r), E;;NE=¢ for 1=j=n-+1, where = is a general
fiber of the P'-fibration 7: V —Pj (cf. 1.9.6), and there exists an irreducible com-
ponent A; among S;’s (1=a=m;) such that (A;E)=1, i.e., A, is a cross-section
of 7; moreover, E;;UT;C |E;| for 1=i<r and 1< j=n+1.

(2) ENU=4;.

(3) For every i (1=i=r), F,,=A}; if S,+A; (1=a=m;) and A,NU=

Ai— lel ((I‘j U E”) n Ai)‘

4) Omneof E)s (1=j=n+1), say E,,,, contains none of S;’s (1=i=r and
1=a=m,;). Then, every E; (1= j=n) contains one and only one of S;’s (1=i=r
and 1=a=m;) with multiplicity 1. After a suitable change of indices, we may
assume that, for every i (1<i=<r), we have:

A;=3S8, and S,CI|E,l,

where b:=(i, a)=(m,— 1)+ -4 (m;_,— 1)+ (a—1) for 2<a=<m,.
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Proof. (1) Suppose that, for some 7 (1=<:=7), S; contains an irreducible
component A such that ANU=¢ and (A:-E)=1, i.e., A is a cross-section of
7. Suppose, for convenience’s sake, that ACE,,.,. Then (T;UE;))NE=¢
for 1 <j=<mn, whence T';UE,;C |E;|. Since A is a cross-section of 7, every
T';UE;; (1=j=<m)is connected to A by one or more components of S,’s
(1=a=m;). However, since m;<<n, this is impossible. This implies that there
exists a component A; among S;,’s (1=a=m,) such that (A;-E)=1, i.e.,, A;isa
cross-section. Then (T';UE;;) NE=¢ for 1=j=n+1, whence (T';UE;;)C | E,|.

(2) Itis now clear that EN U=E—(EN S.)=Aj}.

(3) Suppose that S;,*+A,; (1=a=<m;). Since S,NE=¢, S,, is a com-
ponent of some E; (1=j=n+1). If S;;NA;=+¢, then S;;N(T;UE;;) =+ ¢;
indeed, if otherwise, S;,C U, which is a contradiction. Hence F;,= A};. If
SiuNA;=¢ then E;;+¢ and E;;NS,,+¢, whence F,,=A}. Itis now clear

that A,NU=A,~ | (T;UE;)NA).

(4) Since A; (1=<:=r) is a cross-section of 7, A; is not contained in any
one of E;’s (1=j=<n). The remaining components of S;;’s (1=i=<rand 1=a=

r
m;) are contained in the union of By, --+, E,,,. Since X} (m;—1)=n (cf. Lemma
i=1

1.6), one of E/’s, say E,,,, contains none of S;’s. Then the inhomogeneous
coordinate v is an element of k[x,y]. Since 2N U=2A}, we may assume that
v==x (cf. Abhyankar-Moh’s Theorem). Then |E;| N U, which corresponds to
the value v=d,, is irreducible for I<j<n. Hence, every E; (1= j=n) contains

one and only one of S;’s. The remaining assertion is easy to prove.
Q.E.D

3.6. Lemma. With the assumptions and the notations as in Lemma 3.5, we have:
(1) fio~ x—d, with b=(i, a), for 1<i=<r and 2=<a=m,;.

(2) fa~ y- f[ (x—d})’i+Py(x) with £;=0 and P x)<k[x], where ;=0 if

(3) an=1 for everyi (1=i=r).

Proof. (1) As in the proof of Lemma 3.5, we may assume that v=x.
Then, since S;,C |E,| with b=1(z, a) and S;,=|E,| N U, we have f,,~ x—d,.
(2) f:can be determined by the same argument as used in the proof of
Lemma 3.2, the assertion (1). We only note that A; meets (or does not meet,
resp.) the unique component among S,,’s contained in E; if and only if (T'; U E, )
NA;=¢ (or (T;UE;))NA;*+¢).
(3) We have:

m;
u—c;,~ Il fie for 1=<i<r
a=1

and v—d;~ f,, with j=9(,a), for 1=j=n.
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Let 4;(1=i<r) and 4 be the following square matrices of size m; and n-r,
respectively;

The identification of rings in 1.9.1 implies that 4 is a unimodular matrix.
Hence a;;=1 for 1=i=<r. Q.E.D.

3.7. Theorem. Let f be a generically rational, irreducible polynomial of simple
type in R[x,y] with n>1, r=2 and n>m; for every i (1=i=r); indeed, n=3.
Then, after a suitable change of coordinates in K[x,y], f has one of the following
presentations:

Sl T (e —d o))+ (- I st P))yte, for 1i=r,

where d,, ---,d, are mutually distinct elements of k, c;=k*; a;,>0, €,=0 and
e(a):=(¢, a) (cf. Lemma 3.5); P(d;)+0 if &;>0; &>0 if j*=e(a) for all a
(1=a=sm,).

Proof. Follows easily from Lemmas 3.5 and 3.6.

3.8. Finally, we shall consider the case where r=2 and m;=n for some
i1 (1=¢=r). We may assume that m;=n. Lemma 1.6 then implies r=2, m;=n
and m,=2. We consider first the case n=3; the case =2 will be treated in
the paragraphs 3.11 and 3.12. The P!-fibration p: V—P; has two singular
fibers S; and S,, where S;N U has 7 irreducible components and S,N U has 2
irreducible components. Here we retain the notations in 1.9. Let A; (=1, 2)
be the irreducible component in S; such that (A;-E)=1, where A, must be one
of S,, and Sy, say Sy, (cf. the proof of the assertion (1) in Lemma 3.5).

Lemma. Assume that n=3. With the assumptions and the notations as
above, we have one of the following two cases:

(I) Case A\NU=¢. Then we have the same situation as stated in Lemma
3.5 with r=2.

(II) Case A\ANU=¢. We may assume that A,CE, ,,,. Then the following
assertions hold true:

(1) Foreveryj (1=j=n), T;UE,;C|E;|; Si, (1=a=n) belongs to one and
only one of B’s (1= j =n); after a change of indices, we may assume that S, is con-
tained in B, with multiplicity 1 for 1 <a=<n; F,,=~= A} for 1<a=<n.

(2) ENU= Ay, where E is a general fiber of the P'-fibration 7:V —Pj.

(3) Sy belongs to ome of E)s (1=j=n+1), and Spd |E,,|; we may



GENERICALLY RATIONAL POLYNOMIALS OF SIMPLE TYPE 359

assume that S, C |E,|; Fp=A} and Fy=S,— "[j: (T;UE;)NS,,.
=

Proof. (I) If A;N U==¢, we have only to follow the arguments in Lemma
3.5.

(II) Assume that AN U=¢. We may assume that A, CE,,,,. Since
E,;NE=¢, we have T;UE,;C|g;| for 1=j=n. Since (T;UE;)NA,=¢,
T';UE,; is connected to A, by one and only one of S,’s for 1=<j=<n. After a
suitable change of indices a, we may assume that S;,C |E,|. Then it is clear
that Sy, is a component of E, with multiplicity 1 and that F ,== A} for 1<a=<n.
This proves the assertion (1).

(2) Since ENU=E—(ENS.)U(ENA,), ENU=A}.

(3) Suppose that Sy, belongs to none of E;’s (1<j=<n-+1). Then S, CU,
which is a contradiction. Hence S, belongs to one of Es(1=<j=<n+1).
Suppose that S;,C | E,,|. Then, in the identification of rings in 1.9.1, we have:

”
u—e~1Lf1%,  u—a~ fibtfop
v—d;~ f;f:# for 1=<j=n,

where 8>0, B is independent of j. By comparison of the unit groups of the
rings of both hand sides in 1.9.1, we know that the following matrix A4 is uni-
modular,

au"'aln 0 0
0.0 a, ay

_ |1 0 —8
A= .0
0o~ :

10 —p

Since det A=—Bary+( D) ay;) and =3, 4 is not a unimodular matrix, which
i=1

is a contradiction. Hence S, & |E,,,|. Then we may assume that S,,C |E,|.
Then Fj==A; (cf. the proof of the assertion (3) of Lemma 3.5), and F,=S,,—

n+1
Ql(l"' UE,;)) NSy, Q.E.D.
3.9. Lemma. With the assumptions and the notations as in Lemma 3.8, assume
that A\NU=¢. Then, after a suitable change of coordinates in k[x,y], we have:
(1) fa~ =, fu~ &'y+P(x), and f;~ x(x'y+P(x))+d,—d; for 2=<j=n,
where 1>0, P(x)ek[x], deg P(x)<<l and P(0)=0.
(2) an=an=1.
Proof. Since F,= A}, we may assume that f,=x (cf. Abhyankar-Moh’s

Theorem). Since |E,,,| N U=¢, the inhomogeneous coordinate v is an element
of k[x,y]. Since ENU=xAj, v is a generically rational polynomial with n=1,
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and the curve v=d, is the unique reducible member of A v) with two
disjoint components F,, and F;,. Since (S;;-A,)=1, the fiber E, is of the form:

B, = Sy+tSp+Z with |Z|=T,UE,.
On the other hand, since F;;N Fp=4¢, f, is written in the form:
fu=*y+P@),
where />0 and P(x)=k[x] with deg P(x)<</ and P(0)#0. Then we have:
v—d;~ x(x'y+P(x))+d,—d; for 1=<j=mn,

v—d;~ f; for 2=j=mn.

n
Since u—c,~ II f1% and u—c,~ f33f2%, we have the following unimodular
a=1

matrix,
anp-ra, 0 0
O ...... 0 a21 0(22
4— 1.. 0 0 ¢
“ 0
0
Since det A=aa5t=1, we have a;=a,=t=1. Q.E.D.

3.10. Theorem. Let f be a generically rational, irreducible polynomial of simple
type in k[x,y] with n=3, r=2, m=n and my,=2. Then, after a suitable change
of coordinates in k[x, y), f is reduced to a polynomial of one of the following types:

() fis a polynomial of the type given in Theorem 3.7, where y=2, m;=n and
m,=2;

(D) f~ @y Pw)- [T e+ Pe)—d) it
where 1>0, o;>0 (2= j<n), P(x)sk[x] with deg P(x)<<l and P(0)=0, cEk*,
and d;’s (2= j=<n) are mutually distinct elements in k*.

Proof. Follows from Lemmas 3.8 and 3.9.

3.11. We shall consider the remaining case: n=2 and m,=m,=2. As in
3.8, let A; be an irreducible component of S; such that (A;+E)=1, where
1=1,2. We shall prove the following:

Lemma. With the assumptions and the notations as above, we have either

AUU=E¢por A,NU=F6.

Proof. Suppose that A;N U=¢ for i=1,2. We may assume that A|,CE,,
and TUE;US;C|E;| for i=1, 2, (cf. the proof of Lemma 3.8); the com-
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ponent S;; has multiplicity 1 in E; for =1, 2. Suppose A,CE,. Then
E;=+¢ and Ey;=+¢, which contradicts the property 1.9.4; this is the only one
place where we have to depend on Lemma 1.4. Therefore, A, E,;. 'We may
assume that A,CE,, T'UE, US,C|E,| and TyUE,US,C |E,|. Then we
have: u—¢;~ fii*fi¢ for i=1,2, v—d\~ fufuf77 and v—d,~ f,f77, where
v>0. Hence we have the following unimodular matrix,

ay ap 00
a=190 7T%
01 00—y

Since det A= —a0t—Y( 02+ patz)<<—1, this is a contradiction. Q.E.D.

Therefore, we have two cases: A,NU=*¢ for i=1, 2; A\NU=¢ and
A NU=¢. The case AN U=+E¢ and A, N U=¢ is reduced to the second case.
In both cases, we are reduced to the same situation as in Lemma 3.8 with
r=2 and m;=2 (=1, 2). Therefore, we have:

3.12. Theorem. Theorem 3.10 is valid in the case n=2.

3.13. According to Russell [10], a polynomial f in k[x, y] is said to be a good
field generator if there exists a polynomial g in k[x, y] such that k(x, y)=k(f, g);
otherwise, f is said to be a bad field generator. The observations in §§2, 3
imply the following:

Theorem. Let f be a generically rational polynomial of simple type in
k[x,vy]. Then there exists a generically rational polynomial g with at most two
places at infinity such that k(x, y)=k(f, g). In particular, f is a good field generator.

We note that a field generator is not necessarily good. An example of a
bad field generator was given in [10].
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