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1. Introduction

Let /: X^>£) be a project!ve surjective morphism from a complex normal

3-fold X to a disk Sΰ : = {z^ C UI<1}. Assume that / is a minimal degenera-
tion of surfaces, i.e., X has only Q-factorial terminal singularities with nef canoni-
cal divisor Kx, and that general fibers are smoooth minimal surfaces with # = 0.

The standard way for studying this degeneration is to use the so called semistable
reduction, but it is impracticable in general. Another way was suggested by Y.
Kawamata in [?], which may be called a log minimal reduction and explained as

follows. Put Θ : =/*(0)red, take a log resolution for the log pair (X, Θ), μ:
(Y9 Θγ)-+(X, Θ) and apply the log minimal model program for ( Y 9 &γ). Then
after shrinking 3) with a projective surjective morphism / : X—+3), where X is

normal Q-factorial 3-fold, (X, Θ) is strictly log terminal in the sense of [20] and
Kχ+Θ is /-nef. We note here that X\Supp Θ is smooth, and Supp Θ = Supp

/*(0). We call this new degeneration a log minimal degeneration. Log minimal

degenerations can be studied in the same way as usual semistable degeneration, for

example, irreducible components of the special fiber are normal and cross normally

(see [20], Corollary 3.8). We should note that the theory of the log minimal
degeneration was predicted in [18], (8.9). The aim of this paper is to determine (up

to flops) the singular fiber of a minimal degeneration of surfaces with # = 0 of type

II (see Definition 4.1) in the special case as explained in the statement of Theorem
4.3 and of type I (see Definition 5.1) under the condition that an associated log

minimal degeneration has an irreducible component which is a fo-log surface of

abelian type (see Definition 5.3) by the above method. In the section 2, we firstly

review degenerations of elliptic curves as warming-up. We classify Vo-log surfaces
of type // in the section 3 and apply these results to degenerations of type // in the
section 4. In the section 5, we classify Vo-log surfaces of abelian type which is an

ideal generalization of a log Enriques surface whose log canonical cover is an

*This work is partially supported by the Fiίjukai Foundation.



236 K. OHNO

abelian surface in the sense of D.-Q. Zhang [25] and apply these results to a

classification of degenerations of type / associated with Vo-log surfaces of abelian

type in the section 5. So far our list in this section does not cover litaka-Ueno's

work on the first kind of degenerations of principally polarlized abelian surfaces
[23], [24], but out statement is made under weaker assumptions on the general

fible, which is important for applications to 3-folds. Our method is simple but

powerful, so we expect that this method would work in any characteristic.

NOTATIONS and CONVENTIONS
In what follows we shall use the following notations.
An,q : A surface singularity which is defined by the automorphism of C2, β :

(x, 3>)~K(X ζqy) were n, q^N and ζ is thce primitive n-th root of unity is called
the quotient singularity of type An,q.

(l/n)(wι, W2, Ws) : A 3-dimensional singularity which is defined by the
automorphism of C3, a : (x, y, z)^(ζwlxy ζw2y, ζw3z) where n, Wt^N for i = l,
2, 3 and ζ is the primitive n-th root of unity is called the quotient singularity of

type (l/n)(wι, w2, w3\

By (Cs, {xy = Q})/Z2(l, 1, 1) for instance, we mean a pair

, {(x, y, ^)eC3; xy=0}/<σ>\

where a acts on C3 such that 0*(x, y, z) = (—χ, —y, —z).

Σrf : Hirzebruch surface of degree d. oo_section : A section on Σd with
self-intersection number d.

^-section : An irreducible curve on a ruled surface whose intersection number
with a fibre of the ruling is n.

(~n)-curvQ : A smooth connected rational curve on a surface with self inter-
section number (~n), where n^N.

~ : linear equivalence.

~num : numerical equivalence.
L Δ\ : reduced part of the boundary Δ.
{Δ} : fractional part of the boundary Δ.
Xtop : topological Euler characteristic.

v : XV^>X : The normalization of a scheme X.

We use terminology such as strictly log terminal, purely log terminal and so on
freely. For definition of these terminology, we refer the reader to [20] or [10].

ACKNOWLEDGMENT. The author would like to express his gratitude to Prof.
Y. Kawamata for initiating him into the "Philosophy of log", to Prof. N. Na-

kayama for pointing out several gaps and giving him useful advice, to Profs. S.
Tsunoda, A. Fujiki, K. Oguiso, M. Kobayashi, R. Goto for valuable discussions, to
Prof. M. Miyanishi for correcting inacuracies of the first version of this article and
for warm encouragement, to Prof. S. Mori for informing him about [l], Lemma 6.
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2 and to the referee for correcting typographical errors and simplifying the part of

the proof of Theorem 5.1 in the cases that Cartier indices are 3 and 5.

2. Degeneration of elliptic curves

Firstly, let us work log minimal degeneration of elliptic curves as warming-up.
The log minimal reductions of minimal degeneration of elliptic curves are well
known. Conversely, we can classify log minimal degeneration of elliptic curves by
using the adjunction theory, the classification of surface log cononical singularities
and [5], Lemma 6.1 as follows. We note that this gives another easy proof of [5],
Theorem 6.1.

Proposition 2.1. Let f : S—>£) be a proper surjective morphism from a
normal surface S onto a disk UU . Assume that general fibers of f are smooth
elliptic curves and (S, Θ) is weak Kawamata log terminal and K§+Θ is f-nef,
where Θ : f *(0)red. Then the special fiber So : = / *(0) is classified as follows.
We note that they all exist.

mlo,iog : So=mΘ. where m^N and Θ is a smooth elliptic curve.

m/6,iog : So is the singular fiber of a degeneration obtained by blowing up succes-
sively some singular loci of the support of the singular fibre of a minimal
degeneration of type mh(b>2\

/o*og : So = 20, where Θ is an irreducible smooth rational curve on which lie four
singular points of type Au.

/*iog : So, is the singular fiber obtained by blowing up singular points of the
support of the singular fiber of a log minimal degeneration g : (S, Θ)— >
3). S0: =g*(0) = Σ^o2<9z (6^>l), where Θi are jrreducible smooth
rational curves and Θi Θi+ι = l for G<i<b — 1, Θi Θj=Q otherwise.
And on each (9o, Θb lie two quotient singular points of S of type Aι,\.
Other singular points of S do not lie on Θi,l<i<b — l.

7/iog: So = 6(9, where Θ is an irreducible smooth rational curve on which lie three
quotient singular points of S of type Aβ^A^i, As,ι respehtively.

//iJg: So =6 (9, where Θ is an irreducible smooth rational curve on which lie three

quotient singular points of S of type Ae.s, Au, As,2 respectively.

///ιog: So =4(9, where & is an irreducible smoooth rational curve on which lie
three quotient singular points of S of type A4,ι, A4,ι, A^\ respectively.

///log : So— 4(9, where Θ is an irreducible smooth rational curve on which lie three

quotient singular points of S of type A4,s, A2,ι, A4,3 respectively.
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IViog : So =3 (9, where Θ is an irreducible smooth rational curve on which lie three
quotient singular points of § of type Au.

IViog : So =3 (9, where & is an irreducible smooth rational curve on which lie three
quotient singular points of S of type As,2.

Proof. Take any irreducible component Θo of Θ. Let {Pi /€Ξ/} be all
singular points of S which lie on Θo. Put mi : =|Weil(0s,Λ )l(=the order of the
Weil local class group of 0s, A ) and n(Θo) : = (Θ — Θo) Θo. Then

0=(/G+Θ) Θo=2g(Θo)-2+Σ
' /

where g(Θo) is the genus of Θo (see [20] or [10]). From the above formula, we can
derive g(Θ0)^l. When g(Θo) — 1, S is smooth and singular fiber is of type m/o,iog.
So we may assume g(Θo) — 0 in what follows. Because we have n(Θo)<2, we divide
the proof into three cases n(Θo) = Q, 1, 2.

Case n(Θo) = 0. In this case we have Σ*e/(wz — l)/Wί = 2, hence (mz ί'e/) =
(2, 2, 2, 2), (2, 3, 6), (2, 4, 4), (3, 3, 3).

Subcase (m, i^I) = (2, 2, 2, 2). In this case, we can deduce that the singular
fibre So is of type /o*og.

Subcase (wz /^/) = (2, 3, 6). When the three singularities are of type A2,ι,
As,ι, Ae,ι respectively, the strict transform Θό of Θo on the minimal resolution M
is a ( — l)-curve. After blowing down ( — l)-curves, we get a singular fiber of type
7/iog. When the three singularities are of type A^\, As,2, Ae,ι respectively, we have
KM' Θό — —(2/3), which is contradiction. When the three singularities are of type
Az,ι, As,!, AG,S respectively, we have KM' Θό= — (1/3), which is contradiction.
When the three singularities are of type A2,ι, A3,2, A6,5 respectively, the strict
transform Θό is a ( — 2)-curve, of type A2,ι, ^3,2, A^ respectively, the strict trans-
form Θό is a ( — 2)-curve, so we get a singular fiber of type //*. Hence multiplicity
of Θo in the singular fiber is 6 and we obtained a singular fiber of type //log.

Subcase (mi /^/) = (2, 4, 4). When the three singularities are of type A^i,
At,ι, AU respectively, the strict transform Θό of Θo on the minimal resolution is a
( — l)-curve and after blowing down ( — l)-curves we get a singular fiber of type ///.
Hence rultiplicity of Θo in So is 4 and we obtain a singular fiber of type ///log.
When the three singularities are of type ^2,1, AA,I, A^s respectively, we have KM'Θό
= —(1/2), which is a contradiction. When the three singularities are of type ^2,1,
Aι,3, A4,3 respectively, the strict transform Θό of Θo on the minimal resolution is a
( — 2)-curve and we get a singular fiber of type ///. Hence the multiplicity of Θo in
So is 4 and we obtain a singular fiber of type ///ιίg.

Subcase (mz &'£:/) = (3, 3, 3). When the three singularities are of type As,ι,
A3,ι, A3,ι respectively, the strict transform Θό of Θo on the minimal resolution is a
( — l)-curve and after blowing down the ( — l)-curve, we get a singular fiber of type
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IV. Hence the multiplicity of Θo in So is 3, so we obtained a singular fiber of type
IViog. When the three singularities are of type Az,i, Aa,ι, A$,2 respectively, we have
-Kif 06= — (2/3), which is a contradiction. When the three singularities are of type
As,!, As,2, Az,2 respectively, we have KM Θo=— (1/3), which is a contradiction.
When the three singularities are of type ^3,2, the strict transform Θό is a ( — 2)-curve,
so we get a singular fiber of type IV*. Hence multiplicity of Θo in the singular fiber
is 3 and we obtain a singular fiber of type IV\*g.

Case n(Θo) — 1. In this case we have (wit &"€Ξ/) = (2, 2), so two singularities
of type Az,! lie on Θo. Θ has a unique component of So, say Θi, which has non
empty intersection with Θo. Θi has the same type as Θo or n(Θι) = 2. Thus we get
a chain of rational curves Θo, Θi, ..., Θn and S has only four singularities of type
ΛZ.I, each two of which lie on Θo, Θn respectively. After taking the minimal
resolution, this chain must be blown down to a singular fiber of type /*. So we
obtain a singular fiber of type 7*,iog.

Case n(Θo) = 2. Assume So is not a singular fiber of type I*,iog. Then we have
a cycle of rational curves, which must be blown down to a singular fiber of type mh.
Thus we obtained a singular fiber of type mlb,\os.

3. Classification of Vo-log surfaces of type II

Let / : (X, Θ)-^S be a log minimal degeneration of surfaces with x = Q and
let Θi be any irreducible component of Θ. Then (Θz, Diff@z(0— Θi)) is a Vo-log
surface in the following sense (see [20], (3.2.3)).

DEFINITION 3.1. A normal surface with a boundary (S, Δ) is called a lΌ-log
surface, when the following conditions (1), (2), (3), (4) are satisfied.

(1) (S, Δ) is weak Kawamata log terminal.

(2) Ks + Δ ~numO, where ~num is the numerical equivalence.

(3) SuppL Δ\ ΠSupp{J} = (/, where L Δ\ is the reduced part of Δ and {Δ} is
the fractional part of Δ.

(4) All coefficients of Δ are elements of {(m — l)/w|weJVU{°o}}

It is important to classify lΌ-log surfaces and the following is a key lemma to study

yo-log surfaces which is proved essentially in the proof of Proposition 2.1.

Lemma 3.1. Let (S, Δ) be a Vo-log surface. Then a connected component
D of |_ Δ\ and the singularities of S in its neighborhood are one of the
following 7 types.

/o.iog : D is a smooth elliptic curve and S is smooth in its neighborhood.
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/6,iog: D = *ΣΪ=ι d(b>2], where d's form a cycle of rational curves forming a
cycle and S is smooth in its neighborhood.

/o*og : D is a smooth rational curve on which lie 4 quotient singularities of type

/*,iog: D is a linear chain of rational curves, i.e., /)=Σ?=o d(b>l), where d'
s are irreducible smooth rational curves an CΊ Ct+ι = l(Q<i<b — 1), d Cj
= 0 otherwise, and each of edge curves Co, Cb contains two singular points
of S of type A2,ι.

7/iog : D is an irreducible smooth rational curve on which lie three quotient
singular points of S of type A>,ι (or As.s), Az,ι, As,ι (or ^3,2), respectively.

///log : D is an irreducible smooth rational curve on which lie three quotient
singular points of S of type AU (or ^4,2), AU (or ^4,2), ^2,1, respectively.

IViog : D is an irreducible smooth rational curve on which lie three quotient
singular points of S of type Λ3,ι or As,2.

In what follows we shall classify Vo-log surfaces in certain cases.

Lemma 3.2. (cf. [2], Lemma (6.1)) Let (S, A) be a Vo-log surface.
(1) Assume that there is a connected reduced curve CoC|_ Δ\ of type /&,iog (b

<2) as in Lemma 3.1. Then Z/=C0, 0S(KS + Δ}^ Os, S is rational and (S,
0) is canonical.

(2) Assume that there is a component of type Io,\os as in Lemma 3.1,/.e., a
smooth elliptic curve CoC|_ Δ\ . Then S is rational or birationally elliptic
ruled and (S,Δ) satisfies one of the following :

(a) Δ=CQ and (S, Δ) is cononical.
(b) Δ=Co+Cι, where Ci is a smooth elliptic curve. Os(Ks + Δ) — Os, S is a

birationally elliptic ruled surface and (S, Δ) is canonical.
(c) zίz=Co + (l/2)CΊ + (l/2)C2, where Ci, C-i are smooth elliptic curves, S is

birationally elliptic ruled, (S, Δ) is canonical and S is smooth in a
neighborhood of Supp Δ.

(d) zJ=Co + (l/2)CΊ, where C\ is an irreducible curve. S is birationally elliptic
ruled, (S, Δ) is canonical and S is smooth in a neighborhood of Supp Δ.

DEFINITION 3.2. A y0-log surface (5, Δ) is called a Vo-log surface of type ///,
//, //α, Πb, //c, Πd, when the conditions in (1), (2), (2-a), (2-b), (2-c), (2-d) of
Lemma 3.2 are satisfied respectively.

Proof. First we note that 5 is rational or birationally ruled.
(1) Assume hl(0 s)>0. Let μ: M-*S be the minimal resolution and τ:
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M^>N a birational morphism to a relatively minimal model N. N has a
/^-bundle structure p : N—+Γ over a smooth curve of genus hl(0 s). The assump-
tion implies that there is a rational irreducible component of r*μ*Co which
dominates Γ or r*μ*Co turns out to be a fibre of p, though both cases are absurd.
Hence S is rational. From an exact sequence :

(-L Δ\
we have the following exact sequence :

H\ 0 *)— #'( 0 L jj H # 2( 0 s( - L Λ J )M) ( * )

Since S is rational, we have an injection Hl(0^A\ }^>H2(0 s(~[_ Δ\ )). On the
other hand, we have l = hl(0 cQ}<h\Ov^}. Hence h\0 S(~V Δ\ ))>0. By the
Serre duality theorem, we get

W(-L Δ\ )) = h\^om(0s(-l Δ\ ), ωs)).

Since Xom(0 s( — L ^J ), &>s) is torsion-free, we have an injection

H°(lβom(0s(-l Δ\ ), ωs)}^H\0 S(KS + L ^J )).

Hence λ°(0sCKs + L ^J ))>0. Since Ks + Z/^num 0, for an ample divisor H on 5,
we have

(Ks + V Δ\ } H=-{A} H

and

CfiΓs + L Δ\ } H={A} H=Q.

Thus

From Lemma 3.1, we can deduce that any connected component of L Δ\ other
than D is of type /o,u>g or 7&,ι0g (δ^2), but since hl(O^A\ ) = 1, we have L Δ\ =Co,
i.e., A=CQ. S has only quotient singularities which are all Gorenstein, so (S, 0)
is canonical.

(2) First we note that hl( 0 s) ̂  1. For if h\ 0 s) > 0, Co dominates Γ for which
we used the same notation as in (1). From (*), we have the following exact
sequence :

O^Im a-^H\O^^H2(Os(-V Δ\ ))->0.

We note that dim Im a<\. First assume that dim Im tf=0. In this case we have
an injection H\0 L Δ\ )^H2(0 s(~ L Δ\ )). In the same way as in the argument in
(1), we can deduce that J=Co, 0S(KS + Δ}— Os and (S, 0) is cononical. So we

are in the case (2-a). In what follows we assume that dim Im α=l. Then, S is
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birationally elliptic ruled and we have hl(0i*\
Case k1(0ijj)=2; In this case, we have (J}=0, Gs(Ks + d)^Gs. Each

connected component of [_ Δ\ is of type /o.iog or 7&,iog (b>2), but from (1), there
are no components of type Ib,\og(b>2). Hence ^/=Co+Cι, where Ci is a smooth
elliptic curve and we are in the case (2-b).

Case tΐ(Qι Δ\ ) = 1 Let μ : M-*S, τ : M^N, p : N^Γ be as in the proof of
(1). Since 5 has only rational singularities and Γ is an elliptic curve, there is a
morphism π : S— >Γ such that p°τ=π°μ. Let

be the decomposition of Δ, where C is a reduced curve and C(

v

l} (/^/)(resp. Cij)

( G/)) are irreducible curves which are vertical (resp. horizontal) with respect to
π. Let / be a general fibre of π. Then we have

from which we can deduce that G4)(w, ; ;'e/)=(2, 2), C /=0, Co / = l, C, / =
!(; = !, 2), where C, : =a/> or (β)(n^ e/)=(2), C /=0, Co / = l, d /=2,
where Ci : =CF
or (C) /=0, C 1=0, Co 1=2 since C does not contain any reduced curve of type

/o.iog or /6>ιog (6^2) in Lemma 3.1. Since μ is a minimal resolution, there is an
effective Q-divisor D such that KM+D=μ*(Ks+/}). Put D : r*Z). Then we can

write

fα+(l/2)Cί + (l/2)α + F, Case (A)

D=\ C6+(l/2)Cί + F, Case (B)
I Cί+F, Case (C)

where Co, Cί, C2 are the strict transform of Co, Ci, Ci respectively and F is an
effective Q-divisor composed of fibres of p. Note that and KN + D ' = τ*(Km + D) ~
num 0. Theref re, we have

, Case (A)
(KN + Cί>) Cό+(l/2)CΊ G>+Cί> F, Case (B)

[ (K,r+CS)'Cί+Cί F. Case(C)

In the case (Λ)(resp. (B)), since Co is a section of p, we have Cί Cό=0 (z'=
1, 2)(resp. Cί Ci=0) and F=0. In the case (C), let v: Cί" -» Co be the
normalization of Co. Since
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we can deduce that F=0 and Co is a smooth elliptic curve. Since Cί, €2 are
smooth in the case (A) and Cί is a 2-section (i.e., intersection number with a fibre
of p is 2) in the case (B), we can see that (TV, Z)) is canonical. So we can write

where E is an effective Q-divisor which is r-exceptional. Since

where

where

is the horizontal component of Δ, and

0 ~ num-Ks + Δ ~ num/^*^ + A,

is the vertical component of Δ, we have μ*E = Q. Hence

ίC0 + (l/2)Cι + (l/2)C2,
Δ=\ C0 + (l/2)Cι,

I Co,

Case(Λ)
Case(β)
Case(C)

and

Write

(**)

where {£/ /e/} are all //-exceptional divisors and #*'s are non-negative rational
numbers for /€Ξ/. Since

we have Σze/βzτ*JEz =
lO. This implies that if /^(£'z )Πsupp/ί^0 or ^(^ ) is a

singular point of 5 other than a rational double point, then α z >0 and £z is
r-exceptional. So there is an open subset t/ClS such that the rational map a:
τ°μ~l is a morphism on U and S\C7 consists of rational double points of 5 which
do not lie in Supp Δ. Put V : =μ~1(U). From (**), we have

and

This implies # z<0 if μ(Ei)^ U. Thus we get <2Z=0 for all /€Ξ/, hence (S, Z/) is
canonical and S is smooth in a neighborhood of suPPZ/. In the case (A), Ci, Cz are
smooth elliptic curves and we are in the case (2-c). In the case (β)(resp. (C)), we
know that we are in the case (2-rf)(resp. (2-<2)).
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Definition 3.3. Let (5, Δ) be a iΌ-log surface of type Πc (resp. type Πd). If (S,

Δ) is terminal in a neighborhood of Supp {Δ}, we call (S,//), a special Vo-log

surface of type II c (resp. of type lid).

DEFINITION 3.4.

(a) A log surface (5,J) is called an elliptic singular Vo-log surface of type Ih

(resp. Πc.resp. Πd) if 5 has only one simple elliptic singular point P^S and

(5, A§) is a ^o-log surface of type Ih (resp. //c, resp. Πd), where μ : S— »S is
the minimal resolution of

(b) Let 5 be a reduced irreducible surface which is Cohen-Macaulay and let Δ be

a boundary on 5. We call (5, Δ) a degenerate VoΊog surface of type Ih (resp.
Ih, resp. Πd), if (S,A) is semi-canonical and (Sv, Θ) is a Vo-log surface of type
Ih (resp. Ih, resp. Πd), where v : S"—>S is the normalization of 5 and Θ is
defined by Ks»+Θ = v*(Ks + Λ)(¥oτ the definition of "semi-canonical", see
[10] or [9].).

(c) A log surface (5, Δ) is called a quasi K3 surface if S has only two simple
elliptic singular points Pi, Pz^S and (S, Δ§) is a Vo-log surface of type Ih,
where μ : 5^5 is the minimal resolution of Pi,

(d) Let S be a reduced irreducible surface which is Cohen-Macaulay and let Δ
be a boundary on 5. We call (5, Δ) an elliptic singular degenerate Vo-log

surface if 5 has only one simple elliptic singular point P^S, (S\{P), Δ) is
semi-canonical and (5, Θ§) is of type Ih, where Θ is defined as above and μ :
S— »SV is the minimal resolution of P.

4. Degeneration of type II

DEFINITION 4.1. A minimal degeneration of surfaces with x = Q f : X~^>$) is
said to be of type // i f / has a log minimal reduction / : (X, (9)—><£) such that
there is at least one irreducible component Θi of & such that |_ Diff@,(@— Θi)\
contains a connected component of type /o.iog as in Lemma 3.1.

From the results in the previous section, we obtain the following theorem.

Theorem 4.1. Let (X, Θ) be a normal log ?>-fold such that (X, Θ) is strictly
log terminal, [_ Θ\ =Θ, Supp Θ is connected and Sing XcSupp (9. Assume

that (Kχ+Θ)\Θ^num 0 and that there is at least one irreducible component Θi of
Θ such that |_ Diff@, (Θ — Θi)] contains a connected component of type 7o,iog as

in Lemma 3.1. Let Θ = Σ?=ι Θί δ^ the irreducible decomposition. Then one of
the following holds.

(1) X has only terminal singularities. (Θi, Diff @, (Θ — Θi)) is a Vo-log surface
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of type Πb for all i. ®, Π Θ, =£0 if \i-j\ = l or (i, ;) = (!, *) and ΘίΠ Θ,=
i,j)*(l, b).

(2) X has only canonical singularities and X\Supp {Diff ©(0)} has only termi-
nal singularities. (Θi, Diff &,(Θ— Θί)) is a Vv-log surface of type lib for 2<
i<b-l and of type Πa, He or II d for i = I, b. ΘiΓlΘjφQ if \i-j\ = l and
θ{nθj=Q if i-j\>l.

Proof. From the assumption and Lemma 3.2, there is an irreducible compo-
nent Θi of Θ such that (Θi, Diff© t (Θ— Θi)) is a i^o-log surface of type II. Since Θ
is connected, for any component Θi of Θ, (Θί, DiffβXΘ— Θί)) is a lΌ-log surface of
type II. We note that in a neighborhood of UΘ.CΘ Supp |_ Diff©, (Θ — Θ«)J , X is
smooth. For a component Θi of Θ, if (Θί, Diff@, (Θ— Θί)) is not a Vo-log surface
of type //c, we have {Diff<9,(Θ— Θί)} — 0, so (X, Θ) is canonical in a neighborhood
of ΘΛSupp L Diff®, (Θ— Θί)J by the following theorem.

Theorem 4.2. ([lθ], Corollary 17.2) Let (X, S + B) be a normal log 3-fold
with only Q-factorial singularities. Assume that S is reduced, (X, S + B) is log
canonical in codimension 2. Then we have

totaldiscrep (Sv, Diff5*CB))=discrep (Center ΠSΦ0, X, S + B),

where Sv is the normalization of S. For the definition of "totaldiscrep" and
"discrep", see [10].

Since Sing ^cSupp Θ, we can deduce that (X, 0) is terminal in a neighborhood
of ΘΛSupp [ Diff ©, (Θ— Θί)J . From the following lemma, we get the desired
result.

Lemma 4.1. Let X be a normal Q-factorial complex 3-fold and let S be a
reduced irreducible surface on X. Assume that (X, S) is purely log terminal,
Sing XdS, (5, Diffs(O)) is canonical and all coefficients of the components of
Diffs (0) are 1/2. Then X has only canonical singularities.

Proof. Let μ\ : XC^>X be the canonical blowing up, i.e., μ\ is a projective
birational morphism from a normal 3-fold Xc with only canonical singularities to
X and Kxc is μi-ample. Let μi : Y~+XC be a Q -factorization of Xc, i.e., μ2 is a
projective birational morphism from a normal Q-factorial 3-fold Y with only
canonical singularities to Xc and μι is isomorphic in codimension 1. Put μ : =
μ\°μ2. Then we can write

where 5 : =^*1S, the Ej (/^/) are all /^-exceptional divisors and the a, and the
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TJ (/€=/) are positive rational numbers. From the above, we have

and we can show that (Y, S) is purely log terminal, in particular, 5 is normal.
Taking the adjunction of the above equality, we get

Since (S, Diffs(O)) is canonical, we have *Σjej(aj+rj)Ej\s=Q. By the Q-
factoriality of Y, we can deduce that (\JjejE j)Γ\ S— $ which implies J=tf and X
has only canonical singularities.

Starting with Theorem 4.1, we can have insight into the minimal degenerations
of type //.

Theorem 4.3. Let f : X—*dO be a minimal projectile degeneration of
surfaces with x = 0 and let f : (X, Θ)— »<?) be a log minimal reduction of f with
& shrunk if necessary. Assume that there is at least one irreducible component
Θi of Θ such that [_ Diffg, (Θ + Θ, )J contains a connected component of type
/o.iog as in Lemma 3.1 and that & does not contain non-special Vo-log surfaces.
Then after flopping X over 3ΰ if necessary, the singular fibre /*(0) has one of
the following types.

I : f*(Q) = mΘ, where m^N and Θ is an irreducible reduced surface such that
the non-normal locus of S is a smooth elliptic curve C and (Θυ, v~l(C}} is
a VQ-log surface of type lib, where v : ΘV-*Θ is the normalization of Θ.

//: /*(0) = Σί=ι mθi, where m^N, (Θi, Σ^zΘjU) is a Vo-log surface of type
lib for all i, θiΓlθjΦV if \i-j\>l and (i, ;)=Kl, b\

III: /*(0) = Σί=ι mθi, where m^N. If b>2, (Θi, Σ, *. Θ, k) is a vQ-log surface
of type lib for 2<i<b~l and (Θi, Σ./** Θj\«*)(/=!, b} is either a Vo-log
surface of type Πa or an elliptic singular or degenerate Vo-log surface of type
lib. θiΓlθjΦV if \i-j\ = l. θiΓlθj=V if \i-j\>l. If 6 = 1, Θi is either
a quasi K3 surface or an elliptic singular or degenerate ι>o-log surface.

IV:

fΣ?=ι 2mΘι f, + Σ?=ι mθ2j, Case (a),
, Case(β\

whero m^N and the @2j are elliptic ruled surfaces. In the case (a\ if b
<2, (Θi.ί, Σz*ίΘι,ί + (l/2)Σ?=ι 02j|0i(l) is a special Vo-log surface of type Πc

for 3 = 1, of type IIb for 2<i<b — l and for i=b, a Vo-log surface of type
Πa or an elliptic singular or degenerate Vo-log surface of type lib. Θι,z Π ΘU
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Φψ if \i-j\ = l. 0ι,, n0u=0 if |z-;|>l. Moreover, if έ = l, (0U,
(l/2)Σ?=ι 02,j|βι,ι) & an elliptic singular or degenerate v^-log surface of type
Πc. In the case (/?), b>2 and (0M, Σ/*ί 0ι./ + (l/2)Σ5-2-02jUM) & a v«-log
surface of type lib for 2<i<b — l, a special Vo-log surface of type IIc for
i=l,b. SinSjΦtf if i-j\ = l and 0ι fίΓΊ0ι,./=0f if \i-j\>l.

V:
Σi=ι 2m&ιti + m&2, Case (a),

, Case (/?),

, the 02 and 02j are ruled surfaces. In the case (a), if b>2,
(0ι,« ,Σ/*/0u + (l/2)Σ3=ι 02,.;Uι.ι) is # special Vo-log surface of type IL for
i=l, of type lib for 2<i<b — l and for i=b, a Vo-log surface of type Πa

or an elliptic singular or degenerate Vo-log surface of type //fr 0ι,, ΓΊ 0ι,ί=£0
if \i—j\ = l and θιfίΓΊΘι,., =0 if \i—j\>l. Moreover, if b = l, (Θu,
(l/2)Σ?=ι 02j|0i,i) is an elliptic singular or degenerate Vo-log surface of type
Πd. In the case (β\ b>2 and (0ιfί, Σ^ί βι,/ + (l/2)Σ5=ι &u\&^ is a Vo-log
surface of type Ih for 2<i<b — l, a special Vo-log surface of type Πd for

i=l, b. βMnβιj=#=g( if \i-j\ = l and θι f ίnβu=fl( if \i-j\>l.

VI:

/*(0)=Σ 2wβM+Σ mθ2j,
i=l j=l

where m^N, Θ2,ι, ©2,2 are elliptic ruled surfaces, ©2,3 is a ruled surface and
(θι.i, ΈiΦi βι,/ + (l/2)Σ3=ι Θ2j\θj is a vo-log surface of type IIb for 2<i<
b — 1, a ^o-log surface of type lie for i=l, of type Πd for i=b. Θι,zΠ &2j

*$ if Iz-/Hl and θMnβu=fl( // \i-j\>l.

EXAMPLE. There is a minimal degeneration whose special fibre has simple
elliptic singularities even if the total space is smooth. For example, let X be a
hypersurface in P3xS) which is defined by the equation X*+ Y4 + X2Y2 + Z2W2

+ t(Z4+ W4), where X, Y, Z, W are homogeneous coordinates of P3 and <0 : =
{t^C |ί|<l/2}. Let / : X—*£) be the morphism induced by the natural projec-
tion p: P3X<2)—»c2). Then, it is easy to verify that X is smooth and has trivial
canonical bundle, Xt '. — /*(0 is a smooth quartic surface for ^0 and that Xo is
normal and has only two simple elliptic singularities of type E7 as its singularites
(see [19]).

Proof of Theorem 4.3. If (Θz, Diff@, (&— <9, )) is not a Vo-log surface of type
Πc or Ih for any irreducible component &ι of (9, / : X—»$ can be obtained from
/ : J?—»<£) by running the minimal model program (^shrunk if necessary). Let
Θ be the strict transform of Θ on X, then, there is a positive integer m such that
/*(0) = w(9 since some multiples AΆ and KX + Θ are multiples of/*(0). If / : =
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(i 0C(9, (θ, , Diffa(@— Θz )) is a special Vo-log surface of type //c or Πd } is not
empty, then |/| = 1 or 2 and (X, 0) is terminal outside of Z : = tΛe/Supp{Diff<9,(Θ
— <9ί)}. We can show that the singularities of X in a neighborhood of Z is /Ui

X Z by the following lemma.

Lemma 4.2. Lei (p^X,S) be a germ of 3-dίmensίonal purely log terminal
singularity, where S is a Q- Carrier prime divisor. Assume that p^S, X\S is
smooth and that (p^S, Diff5(0)) is terminal. Then p^X is a smooth point of
X or there is a positive integer m such that X is isomorphic to C3/Zm(l, <?, 0) near

and Q^C3/Zm(l, q, 0), where q is a positive integer such that (m, q) = l.

Proof of Lemma 4.2. Assume first that p^X does not lie on the support of
Diffs(O). From [10], Corollary 17.12, (X, S) is canonical outside the support of
Diffs(O). Since Sing XcS, (p^X, 0) is terminal but by the proof of Lemma
5.3 in [10], p^X is in fact smooth because p^S is smooth. Assume that p^
Supp Diffs(O). Let Diff5(0) = Σf{(wz -l)/mJΓz be the irreducible decomposition,
where the mz are integers which are equal to or larger than 2. Since (p^S,
Diffs(O)) is terminal, we have ΣKw, — l)/Wί<l, whence 1 = 1. So we may write
Diffs(0) = {(w — Ti)/m}Γ, where m>2. Take the log canonical cover π : X^>X
with respect to Kx + S and put S : = π~1(S). Let mr be the local Cartier index
of Kx + S at p, where r is a positive integer, and assume that r<l. From [10],
Lemma 16.13, (X, 5) is purely log terminal, hence canonical. So S is a disjoint
union of r-irreducible components, but this is absurd. Thus, we get r = l and S
is irreducible. Since Sing Xd S, (X, 0) is terminal, We have

and the proof of Corollary 2.2 in [20] shows that S is smooth. We can also check
this directly. Hence X is smooth and X must be a cyclic quotient singularity.
Thus the lemma follows from [6] , Lemma 9.9.

We blow-up these singularities to obtain a : X^>X, where (X, 0) is terminal.
Let 02j(j^J) be exceptional divisors of σ and put Θ : =σ^1Θ + Σ t j ^ j ( l / 2 ) Θ 2 j .
Then we have Kχ+Θ = σ*(Kχ+Θ) and /: Jf— »<2) can be obtained from f°σ:
(X, <9)— ><Z) by running the minimal model program with shrunk if necessary. Let
Θ be the strict transform of Θ on X. Then some multiples of Kx + Θ and Kx are
multiples of /*(0) and there is a positive integer m such that /*(0) = 2wΘ. In the
course of applying the minimal model program, we have to care about divisorial
contractions which might produce bad degenerations. We know that irrational
surfaces are not contracted to points by the contraction associated with an extremal
ray.

Claim 1. If (Θi, (Θ— Θι)U) is a special iΌ-log surface of type Πc or Πd, Θι is
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not contracted in the course of running the minimal model program.

Proof of Claim 1. Let /(0 : X(i)-+& be a 3-fold over 3) which is obtained
from X by divisorial contractions and flips. Let p : χ(l^χ(l+v be a divisorial
contraction which contracts Θί°, where Θί° is the strict transform of Θi on X(ί\
First suppose that there is an irreducible component Θlz) of |_ Θ ( z )J other than
Θίz) which has non-empty intersection with 01°, where Θ(z) is the strict transform
of Θ on X(z). Let W i , n-i be multiplicities of Θίz), Θί° respectively, and let / be a
general fibre of the ruling of Θ[l\ Since we have (/£>« + Θ(z)) / = 0, we have (9ίz) /
= -Kχ^l-2. Since //X<^>(x)0 0 = 0 and /CReg J?(ί), we have -K# > l = l
and βί° •/ = — !. From this, we get

which is a contradiction. If there is no irreducible component of |_ <9<OJ , then
Kx™ is numerically trivial over 3) and this leads to a contradiction.

Claim 2. The divisorial contraction of a Vo-log surface of type lib does not
change singularities locally on neighbouring surfaces.

Proof of Claim 2. Let p : X(t) ^>X(l+1} be a divisorial contraction associated

with an extremal ray which contracts Θίz) to a curve, where (Θί°,(<9ω— Θίz))U<") is
a i^o-log surface of type //&, and let / be a general fiber of the ruling of Θίz). Let
Θlz) be one of the neighbouring surfaces. Since we have (— Θlz) — K χ«>) / = 0,
— Θί£) — A>«> is p-trivial, hence /?1p*0^("("®ίί)) = 0 and OΘΪ+»-P*OΘ^, where
Θ^+1) = p*Θ^). So p induces an isomorphism Θί°— Θί£+1).

Claim 3. When a ^o-log surface of type Πa is contracted to a point by a
divisorial contraction, this contraction produces a simple elliptic singularity on a
neighbouring surface.

Proof of Claim 3. Let p : χ(z)— >χ(z+1) be a divisorial contraction of an

extremal ray which contracts <9ίz) to a point, where (Θίz), (Θ(0— Θί°)U(ί)) is a Vo-log
surface of type Πa. Let 6^z) be a neighbouring surface. Since — Θί°— Θiz) — /£"#'>
is p-trivial, Rlp*0 χ«> (— Θι(0— w)) = 0. So we have a surjection

''+«». (4.1)

From an exact sequence

0^ 0 Λ«( - Θ^H 0 ft"+»r-> 0 ,,̂ 0,

we have the following exact sequence

> p*G ΘΓ-*R1P*0 β< »(

Put Γ : =6te*'V. Since Γ is irreducible, we have an injection Hl(Ow(-Γ)Y+

Hl(0^). But since Θίz) is rational, we deduce that Rlρ*0®4- &P = H\Gw
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( — 7^)) = 0. So we have a surjection

P* 0 $r>+8'r->p* 0 ^ί". (4.2)

From (4.1) and (4.2), we deduce that G &+» — p*G w and Γ is contracted to a simple

elliptic singularity on <9|Z+1).

Claim 4. When a ^o-log surface of type Πa is contracted to a curve by a
divisorial contraction, this contraction produces non-normal singularities on the

neighbouring surfaces, but these singularities are Cohen-Macaulay and semi-

canonical.

Proof of Claim 4. Let p : χ(l^χ(i+1) ^e a divisorial contraction of an

extremal ray which contracts Θίz) to a curve, where (Θ(l\ (Θ ( l )— Θίl))|βί") is a Vo-log
surface of type Πa. Let <9i° be a neighbouring surface. As in the above argument,
we have a surjection

G&«r-+p*Gw+&>. (4.3)

Let π : J2(^^1)HΘ^'+1) be the S2-infication of Θ2

i+1) and put & : =Θx *«>
^2(Θ^+1)), where Θ : =Θίί)+Θίί). Let π' : 0'->Θ be the first projection and let

p' \ &— »jJ2(Θlz+1)) be the second projection,

Ί
Since TT is finite and isomorphic in codimension 1, π' is finite, birational on

each component and isomorphic on the generic point of the double locus. So π'
is also isomorphism in codimension 1 and 0 & — π'*Q& since Θ is Cohen-

Macaulay. Thus πf is an isomorphism. From (4.3), the natural inclusions

0 &^π* 0 u&^πtp'* 0 Θ'-P* 0 fl-

are surjective. Therefore <9|z+1) satisfies Serre's condition 82 i.e., Θlz+1) is Cohen-
Macaulay. Since the normalization of the new singularity of Θlz+1) coincides with

Θlz), it is easy to see that (9iz+1) is semi-canonical.

Claim 5. Any degenerate Vo-log surface of type lib is not contracted by a
divisorial contraction.

Proof of Claim 5. Let p : χ(l^χ(l+v be a divisorial contraction associated

with an extremal ray which contracts Θί°, where (<9ίl>, (Θ ( I )— <9ίl))Uί<}) is a degener-

ate Vo-log surface of type lib. Since h\G $'>)=£(), p(Θίz)) is not a point, but a curve.
Let / be a general fibre of p\&»: Θ[ί)^p(Θ(ί}} and let Θ|z+1) be a neighbouring
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surface. Then since K# > l=-l and Θί° / = l, we have Θii} l = (K
+ 0ί° / = l, we have 0ί'M = (tf#o+0ί'HΘH •/ = (), which is a contradiction.

By the following lemma, we can see that essentially new singularities do not
appear after flips and flops.

Lemma 4.3. Let φ (resp. φ+): X(resp. X+}-^Z be a projective birational
morphίsm from a normal complex 3-fold X (resp. X+) to a normal 3-fold Z, such
tiat φ (resp. φ+) is an isomorphism in codimension 1, (X, ti)(resp. (X+, 0)) is
Kawamata log terminal and —Kx (resp. Kχ+) is φ-nef (resp. φ+-nef\ Further-
more, let S be a reduced surface on X such that (X, 5) is log canonical and Kx
-\-s is φ-numerically trivial. Assume that any irreducible component of the
exceptional locus of φ is not contained in the non-normal locus of S. Let S+

be the strict transform of S on X+. In the above situation, if S is Cohen-
Macaulay, S+ is Cohen-Macaulay, too.

Proof. We have Os — φ*0s by the vanishing theorem, where S : = φ*S.
Let π: S2(S)-+S be the S2-ification of S and let S f : SXsΛ2(S). Let π f :
S'—>S be the first projection and let φ': S'-^Λ2(S) be the second projection,

S' —> 5

Ί
S,(S) —

Since π is finite and isomorphic in codimension 1, π' is finite and birational on
each component. By the assumption, π' is also an isomorphism in codimension 1.
In the same way as in the proof of Claim 4, we can see that π' is an isomorphism
and 5 is Cohen-Macaulay. Let ττ+ : ^2(S+)—*S+ be the S2-ification of 5+. From
an exact sequence

where N is a sheaf such that dim Supp 7K — 0, we have the following exact sequence

We note that the last term of the above exact sequence is 0, because Rlφ*G
and R2φ*Ox+(-S+)=Q. Since S is Cohen-Macaulay, we have 05- φ*π*0
So we have the inclusions

0 s— > φ* 0 s+-> φl πl 0 ^2( <n,

hence yΓ = 0, which implies that 5+ is Cohen-Macaulay.
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Claim 6. The non-normal locus of a degenerate ^o-log surface is not con-

tracted by a flipping (or flopping) contraction.

Proof of Claim 6. Let φ : X(ί)-*X(ί+l} be a flipping (or flopping) contraction

of an extremal ray which contracts the non-normal locus, say C, of Sω, where
(Sω, (Θω— Sω)|s<") is a degenerate Vo-log surface. From an exact sequence;

0-> 0 <?<"-> y* 0 s<--> 0 c^O,

we have an exact sequence

R1 φ* 0 s"-^Rl φ*( v* 0 $«»)->/? V* 0 c,

where the last term is 0 since C is a rational curve. We can show that the first term
is also 0 since R1φ^O^=R2φ^O^(-S(i}) = 0. Hence Rlφ*(v*0 §««) = $. Let
φυ : S <'>-» sί +D" be the morphism induced by φ. Since

we have -/?V*Os")" = 0, which is a contradiction because φυ contracts an elliptic
curve.

Flips and flops may produce new non-normal singularities, but if the non-
normal locus contains a curve, we can show that this assumption leads to a
contradiction by the classification of Vo-log surfaces. Recalling that Serre's condi-
tions £2 and Ri are equivalent to the normality, we can deduce that new non-
normal points do not appear. We note by easy observation that the speciality of
i Ό-log surfaces is preserved under flips but not under flops. Thus we have proved
Theorem 4.3.

5. Classification of Vo-log surfaces of abelian type

Let / : (X, (9)— »<SO be a log minimal degeneration of surfaces with x = Q and
assume that Θ is irreducible. Then (Θ, Diffg(O)) is a ivlog surface of type / in the
following sense.

DEFINITION 5.1. Let (S, Δ) be a Vo-log surface. (5, Δ) is called a Vo-log
surface of type /, if [_ Δ\ =0.

We note that a Vo-log surface of type I is a Log Enriques surface in the sense of
De-Qi Zhang [25], if J = 0 and tf(S) = 0.

DEFINITION 5.2. Let (5, Δ) be a i/o-log surface of type I. A number defined
by
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CI(S, A): =Min{n^N; n(Ks + Λ)is Cartier}

is called the Cartier index of (S, A).
Let (5, Δ) be as above and let r the minimum value such that r(Ks + A)~~Q. We
define the log canonical cover of (5, Δ) as

π: S: =Specsθί=0

10s(L -i(

where the 0 s-algebra structure of ΘΓ=o 0 s(\_ — i(Ks+Δ)\ ) is given by a nowhere
vanishing section of 0 s(r(Ks + Λ)). This definition does not depend on the choice
of the nowhere vanishing sections up to isomorphisms. By the definition and [20] ,
Corollary 2.2, 5 is a normal surface with only rational double points and has
trivial canonical bundle. So S is a K3 surface with only rational double points or
an abelian surface by the classification theory of surfaces.

DEFINITION 5.3. Let (S,Λ) be a ^o-log surface of type I, and π : S1— »S be the
log canonical cover. When S is K3 surface with only rational double points (resp.
abelian surface), (5, Δ) is called Vo-log surface of type K3 (resp. Vo-log surface
of abelian type).

The next lemma gives us a hope of classifying ivlog surfaces. We refer the reader
to [16] Theorem 3.1 or [25] Lemma 2.3

Lemma 5.1. Let p be the Picard number of the minimal resolution of the log
canonical cover 5 and let φ be the Euler function. Then φ(CI(S, Z/))|(22 — p) if
(S, Δ) is a Vo-log surface of type K3 and φ(CI(S, Z/))|(6— p) under the assumption
that (5, Δ) is a lΌ-log surface of abelian type and that CI(S,

In what follows, we mean by writing Sing S — *Σn,qmn,qAn,q, that the singular
locus of S is composed of mn,q singular points of type An,q.

Theorem 5.1. Vβ-log surfaces of abelian type (S, Δ) can be classified as
follows. In the list below, we mean by writing C , the strict transform of a curve
CcS on the minimal resolution of S.

I : S is an abelian surface or a hyperelliptic surface and Λ = Q.

II : S-PE(Oε®<£), where E is a smooth elliptic curve and £^Pic°E.
Moreover, Supp Δ is smooth and Δ has one of the following types.

Πa: zJ = Σl(l/2)Cz, where d is a section and C? = 0 for every i.

Πβ\ Δ — Σ?(l/2)Cί, where C\ is a ^-section and Cz is a section, d is a
smooth elliptic curve and C? = 0 for every ί.

H7\ J = Σf(l/2)Cz, where d is a 2-section which is a smooth elliptic curve
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and C2i — Q for every ί.

Us : ^J = Σ?(l/2)d, where C\ is a 2-section which is a smooth elliptic curve,
d is a section for i = 2, 3 and Cΐ=Q for every L

Πε : ^J = (1/2)C, where C is a ^-section which is a smooth elliptic curve and
C2=0.

///*: S^PE(OE®£\ where E is a smooth elliptic curve and £(ΞPic°E.
Moreover, ^ = Σ?=3(2/3)d, where dO" = l, 2, 3) are sections with self-
intersection number 0 and they are disjoint from each other.

ΠIβ\ S — PE(OE®£\ where E is a smooth elliptic curve and £^Pic°E.
Moreover, ^ = Σ?=ι(2/3)d, where C\ is a 2-section which is a smooth
elliptic curve and €2 is a section. Moreover, Ci(i = l, 2) are disjoint from
each other and have self-intersection number 0.

IΠr : S^PE(OE®£\ where E is a smooth elliptic curve and £^Pιc°E, and Δ
— (2/3)C, where C is a ^-section which is a smooth elliptic curve and C2

= 0.

Ills : S is a normal rational surface with p(5)— 4, SingS^ΘΛs.i and Δ = Q. The
minimal resolution M of S is obtained by blowing up Σd (rf<3).

IVa : S^PE(GE@£\ where E is a smooth elliptic curve and £<^Pic°E, and Δ
= ΣLι(3/4)df. + (l/2)C2, where d,«, C2 are sections with self-
intersection numbers 0.

IVβ : S^PE(OE®£\ where E is a smooth elliptic curve and £<^Pic°E, and Δ
=r(3/4)Cι + (l/2)C2, where C\ is a 2-section which is a smooth elliptic
curve, Cz is a section and C?=0 for i = l, 2.

IV7: S is normal rational surface with p(S) = 2 and Sing 5 — 8A2,ι. The
minimal resolution M of S is obtained by blowing up Σd(z^4).
Moreover, Z/ = Σ?=ι(l/2)C2,z, where €2,1 is a smooth elliptic curve with
C£=0, C^-P1 with C£i=-2for i=2, 3, and C^ΠSing S=4A2,ιfor
ι = l, 2.

IVs : S is a normal rational surface with p(S) = 2 and Sing S = 8^2,1. The
minimal resolution M of S is obtained by blowing up *Σd(d<4}.
Moreover, J = Σ?=ι(l/2)C2,ί, where C2,i-Pl with C%i=-2 for i=l, 2,
and C^ nSing S=4A2,ι for i=l, 2.

V : S is a rational surface with p(S) = 2, Sing 5— 5A5,2 and Δ=Q. The minimal
resolution M of S is obtained by blowing up *Σd(d<3).

Via : S^PE(GE®£), where E is a smooth elliptic curve and £<^Pic°E, and Δ
= (5/6)Cι + (2/3)C2 + (l/2)C3, where d(/=l, 2, 3) are sections with
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self-intersection number 0 and disjoint from each other.

VIβ\ S^P^P1 and J = Σ?=ι(2/3)C2i< + Σί=ι(l/2)C3j> where C2M = l, 2, 3)
are fibres of the first projection S—+P1 and C3,// = l, 2, 3, 4) are fibres
of the second projection S^P1.

VIΎ\ S is a rational surface with p(S) = 2, and Sing S = ZA^,\-\-ZA^2. The
minimal resolution M of S is obtained by blowing up ΣdO'^4).

2

Furthermore, /ί=Σ(l/2)C3,z , where C3,ι is a smooth elliptic curve with
i=l

self-intersection number 0, C3,2 — P1 with C?,2=—2, Cs.iΠSing 5=0, C3,2
nSing 5=3A3,2 and C3,ιίΊC3,2=0.

V7a : S is a rational surface with p(5) — 2, #«ύf Sing 5 = 3A3,ι-f 3A3,2. The
minimal resolution M of S is obtained by blowing up *Σd(d<4).
Furthermore, J = (1/2)C3, where Cs^P1 with C?=~2, C3,2nSing 5 =
3A*,2 and C3,ιnC3,2=0.

XIL: S^P^
= 1, 2)
3) are

, where CiM
C3 are ^&re5 o/ the first projection S^P1 and C2,// = l, 2,
of the second projection S-+P1.

XΠβ\ S is a normal rational surface with p(S) = 2 and Sing S =4^2,1. The
minimal resolution M of S is obtained by blowing up *Σd(d<6).
Furthermore, Z/-Σ?=ι(2/3)C2,z + Σ?=ι(l/2)C3J, where C2,, , Czj-P\ C
S!ι = C3?2=C?ι=-l α«rf C3?3=C2?2^0. Γ/ze configuration of Supp zJ

Λe singular loci of S are given as follows.

C2,ι C2.2 C2.3

/ (-D
C'3.1

Proof. Let M—*S be the minimal resolution and let π : S—>S be the global
log canonical cover with respect to the pair (S, Δ). By (7, we signify a generator
of the covering transformation group Gal (5/5). Put p = p(S}. We fix these
notations in what follows. From Lemma 5.1, the possible value of CI (5, Δ) is 1,
2, 3, 4, 5, 6, 8, 10 or 12. We may assume that CI (5, Z/)^2.

Case CI (5, A) = 2. After taking an etale cover of 5, we may assume that 2(Ks
0 since the etale quotient of an elliptic ruled surface is also an elliptic ruled
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surface. Let p€ΞS be any fixed point of under the action of Gal (5/5). The
generator a of Gal (5/5) acts on mp/m2p in such a way that a*(x, y) = (,r, — y) for
a suitable basis x, y. Therefore 5 is a smooth surface with q = \ and ̂  = (1/2)C,
where C is a not necessarily connected smooth curve. Thus S — Pε(θE®£),
where E is a smooth elliptic curve and <£^Pic°E (see [17], 4.2.1 or [l], Lemma

6.2).
Case CI (5, Z/) = 3. If 5 is not rational, we are in one of the cases ///*, ////?

or IΠγ. Assume that 5 is rational.
Take p^S as above. Then (ά)σ*(x, y) = (ζx, y}, (b)(ξx, ζ2y} or (c)(ζx, ζy]

for a suitable basis x, y of mp/m2p, where ζ is a primitive cubic root of unity. But
the case (a) is excluded from the assumption that 5 is rational and (b) is also
excluded since Ks is Cartier at π(p). Therefore we are in the case (c). Put 5 =
V/L, where V= T§,p and L is a rank 4 free Z-module. Since the action of <tf> on
L is faithfull and torsion free and Z[(ay] — Z [ ξ ] is a principal ideal domain, we

have L — Z[ξ]®2 as Z[f]-module. From the assumption that a*(x, y) = (£r, ζy\
V is unique as the 2-dimensional eigen vector space of T§,p®T§,p — Z[ζ]®2®C
associated with the eigen value ζ under the action of ζ®id. Therefore V/L and
the action of <<7> is unique up to isomorphism. Hence S — EζXEζ, where Eζ =
C2/Z+ζZ and σ([z, w)] = [ξz, ζw] for [z, w](ΞEζxEζ. Thus 5 has 9 singular
points of type Au and J=0. Let Z : =Sing 5. Since π\s\π-w : S\π~l(Z)-*S\
Z is etale, we have

*top(5)-9=3(*top(M)-18). (5.1)

Nothing that ^toP(5) = 0 and that ;ftoP(M) = 2 + p + s, we obtain that p=4. Thus we
are in the case His.

Case CI (5, zί)— 4. If 5 is not rational, we are in the case IVa or IVβ. Assume

5 is rational. Let p^S be as above. Then (a)0*(x, y) = (</—lx, y),(b)(<J—lx,

/— Ty), (c)( — χ, /— Ty) or (d)( — •/— 1x, /—Ty) for a suitable basis x, y of
mp/m2p. But case (a) is excluded by the assumption that 5 is rational and cases (b)
and(<3?) are also excluded since 2Ks and Ks are Cartier at π(p) respectively.
Therefore all singular points of 5 are of type Au and Δ can be written as Δ —
(1/2)C, where C is a smooth reduced curve such that Sing 5cSupp C. Let μ :
M^>S be the minimal resolution and put C : =μ*lC. Since π svr'(supP j) : 5\

J)— »5\Supp Δ is etale, we have

(5.2)

where Z : —Sing 5 and s is the number of the singular points of 5. Since
= 0, χίo»(π-l(C\Z)) = 2χίoP(C\Z)=-2(KM C+Cf2}-2s and ̂
we obtain that

(5.3)
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On the other hand, we have

#M + (l/2)C' + (l/4)£~numO, (5.4)

where E : = Σf=ι£, and Ej(l<j<s) are (~2)-curves. From (5.4), we get Kί

+ (l/2)/&rC'=0 and K* C' + (l/2)C'2 + (l/4)s = 0. Hence KM Cf=2p + 2s-20

and C"2=40 —4p —(9/2)s, since KM=\§ — p — s. These two equations plugged into

(5.3) yield s = 8. Let d be any irreducible component of Supp Δ. Since π~\Cϊ)

is a disjoint union of elliptic curves, d is (1) an elliptic curve or (2) isomorphic

to P1, and the number of singular points of 5 which is contained in d is 4. In

the case (1), we have C2 = 0and in the case (2), C?= — 2. Assume that there are two

or more elliptic components of C. Let τ : M—*N be a birational morphism from

M to a relatively minimal model N and let C : = r*C and £ : = r*E. If N — P2,

then C is a union of two smooth cubic curves and E = 0. If TV— Σd, then C is a

union of two smooth elliptic curves and £ = 0. Hence E — 0 and this is a contradic-

tion. So we are in the cases IV7 or 7F*.

Case CI (5, Zί) = 5. If 5 is not rational, then S is an elliptic ruled surface. Let

/ be a fibre of the ruling. Then we have CKs + (4/5)C, /) = 0, hence C /=5/2,

which is absurd. Assume 5 is rational. Let pt= be as above. Then (ά)0*(x, y}

= (&c, y\ (b)(ζx, ζy\ (c)(ξx, ζ2y} or (d)(ζx, ?y) for a suitable basis x, y of

wiplwfp, where f is a primitive fifth root of unity. But the case (a) is excluded by

the assumption that S is rational and the case (d)is also excluded since Ks is

Cartier at π(p). Put S= V/L, where V= T§,p and L is a rank 4 free Z-module.

Since the action of <tf> on L is faithfull and torsion free and Z[(ay] — Z[ζ] is a

principal ideal domain, we have L — Z[ζ] as Z[£]-module. Assume we are in the

case (b). Then the eigen vector space of T§,p — Z[ζ]®C associated with the eigen

value ξ under the action of ζ®id has dimension 1, which is absurd. Hence we are

in the case (c). From the assumption that 0*(x, y} = (ζx, ζ2y}, V is unique as the

direct summand of the two eigen vector spaces of T §,p@T §,p—Z[ζ\®C associated

with the eigen values ζ and ζ2 under the action of ζ®id. Therefore V/L and the

action of <tf> is unique up to isomorphism. Hence S—C2/L, where L: ={(n\

+ ζnt + (ζ+ζ3)n4,n2 + (ζ+ζ3)n3-ζ4n4)\ni^Z(i=l, 2, 3, 4)} and σ([z, w]) = [(ζ*

+ ζ)z+w, -ζ*z] for [z, w]<ΞC2/L(see [23]). Thus S has 5 singular points of

type A,2 and J = 0. Let Z : =Sing 5. Since π\s\,-w : S\π~l(Z)-*S\Z is Stale,

we have

Ztop(5)-5-5(^top(M)-15). (5.5)

Since ^toP(S) = 0 and XtOP(M) = p + I2, we obtain that p = 2. Thus we are in the case

V.
Case CI(S, Δ} = §. If 5 is not rational, we are in the case V7«. Assume that

S is rational. Let p(Ξ§ be as above. Then (a)0*(x, y) = (ζx, y\ (b)(ζ3x, ζ2y\

(c}(ζ2x, ζ*y] for a suitable basis x, y of mp/m2p. In the same way as in the

argument in the case CI(S, A)=4, we can exclude the case (a). Therefore Δ can
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be written as J = (2/3)Cι + (l/2)C2, where C« (z = l, 2) is smoothe reduced curve
such that Ci and €2 meet transversely and singular points of S are of type Aa,ι.
Moreover, if p^S is a singular point of type A&,\ (resp. ^3,2), then ^CSupp Z/(resp.
/>eC2\Cι). PutC : =^ϊ1Cί(ί = l, 2), Z: -Sing SUSing Supp Δ. Let 5 (resp.
52) be the number of the singular point of S of type A3,2 (resp. Au) and 53 be the
intersection number of Ci and C2. Since τr\§\π-\z) : S\π~1(Z)-^S\Z is etale, we
have

= 6(#top( Af ) ~ χtap( Cι\μ~lZ} - χt0p( C2\μ~lZ)

— 351 — 252 — 53), (5.6)

Since *toP(S) = 0, ^top(^"1(Ci\Z))-2^toPCi\Z)- -2(KM Cί + Cί2)-253,
1(C2\Z))-3%top(C2\Z)--3(KM Cί + Cί2)-35ι-353 and
52, we obtain that

-12. (5.7)

On the other hand, we have

numO, (5.8)

where Ek : =ΣUι£*.f(* = l, 2), Ekfί(l<j<Sι) are (~2)-curves, £3 : =Σ?iι£sj(l
<;<52) are (-S)-curves. Form (5.8), we get /a+(2/3)/iCif Cΐ + (l/2)/Gί C2

2 = 0, hence

60, (5.9)

since /£&= 10 — 25ι~ 52 — p. And we have

= -(1/2)53, (5.10)
?= -(l/3)5ι(2/3)53. (5.11)

Let //ιCGal(S/S) be the subgroup of order 3 and put Si: =S/Hι. Let ΛΊ :
Si— ̂ S be the induced morphism. Define the boundary Δ\ on Si such that Ksι + Δ\
= π*(Ks + Δ). Then (Si, Λ) is a ixo-log surface of abelian type with CI(Sι, Z/ι) =
3. Since π\l(C\) is a disjoint union of smooth elliptic curves, we have

=0 (5.12)

by the Hurwitz formula. By the same argument as above, we have

KM* C2+C2

2 + (2/3)(5ι + 53) = 0. (5.13)

From (5.10), (5.11), (5.12) and (5.13), we have

KM CI = - (1/2)53, Cί2=0, K* C2=-(2/3)s3, C?= -(2/3)5ι. (5.14)

From (5.9) and (5.14), we obtain
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2(35ι + 52 + 53)=3(10 -p), (5.15)

hence 2\p. Since p<p(S) and p(S) = 2 or 4, we have p = 2 or 4. Noting that si
ΞΞθ(mod 3) and 53=0(mod 12) from (5.14) and the fact that KM CΊ + C2=()(mod
2), we have the following possibilities (1) p = 2 and 5ι = 52 = 3, 53 = 0, (2) p = 2 and
5ι = 0, 52 = 12, 53 = 0, (3) p = 2 and 5ι = 52 = 0, 52 = 12, (4) p=4 and 5ι = 3, 52 = 53 = 0,
(5) p=4 and 5ι = 0, 52 = 9, 53 = 0. On the other hand, from (5.7) and (5.14), we have

25ι + 252 + 53=3p + 6, (5.16)

hence the cases (2) and (4) are excluded. Let τ : M-*N be a birational morphism
fromMtoΛ^Σd. For ί=l, 2, Put C, : = r*Cί, E, : = r*E{ and Ci-
where θ is a section such that #2<0 and / is a fibre of TV. We note that
<12 and 4/ι + 3/2<6^ + 12 from JfGv + (2/3)Cι + (l/2)C2~numO. Assume that we
are in the case (1). Let ffιCGal(S/S) be the subgroup of order 3 and put Si: =
S/Hi. We note that (Si, (2/3);rf ̂ i) is a i/o-log surface of abelian type with CI(S,
(2/3)^Γ1Cι) = 3, where π\: Si—»S is the induced morphism. If CΊΦO, then Si is
an elliptic ruled surface, which contradicts 52=3. Hence Cι = 0. Assume that Cz
contains at least two elliptic components. Since τ?2^4, we have C2=C2,ι+C2,2,
where C2f,-(/ = !, 2) is a 2-section. Put C2,i~2θ + I2,if for z = l, 2. Since π(C2,i) =
/2i ί-i-l^l(i=l, 2) and 3/2=3(/2,ι + /2,2)<6d/ + 12, we have Ej=0 for/=!, 2, 3
and €2,1 is an elliptic curve for i = l, 2. Hence Ej = 0 for /=!, 2, 3, which is absurd.
Nothing that KM €2+ C%= — 2, we conclude that we are in the cases VI7 or Vis.
Assume that we are in the case (3). Since 4m+ 3^2 = 12, we have (3-fl)wι = 3, H2=
0 or (3 6)»ι = 0, n2=4. Consider the case (3-0). From the equation /& C2+CI
= —8, we have /2=4 and /ι = (3/2)rf. On the other hand, we have l\>2d by the
assumption, hence lι = d = Q and Ci ^ = 0. Thus we are in the case VIβ. Under the
assumption in the case (3-6), we conclude that we are also in the case VIβ by the
same way as above. Assume that we are in the case (5). If C2=0, then 3(Ks + ̂ ί)
is Cartier, which contradicts the assumption. Let //2^Gal(S/S) be the subgroup
of order 2 and put S2: = S/H2. We note that (S2, (1/2) s"̂ ) is a Vo-log surface
of abelian type with CI(S2, (1/2)7Γ2~

1C2) = 2, where πι\ 82-^8 is the induced
morphism. Let ̂ ^S be a singular point of S and put fi : =7ΐ2l(p\ Let L be the
fibre of the ruling on S2 which goes through the point fi. By construction, we have
a faithful and fixed point free group action on the set TΓ2~1(C2)ΠL but this set is
composed of exactly four points, which is absurd.

Case CI(S, ^f) = 8. We claim that this case does not occur. Decompose Δ as
J = (7/8)Cι + (3/4)C2 + (l/2)C3, where d(i=l, 2, 3) is a reduced curves. If S is
not rational, then S is an elliptic ruled surface. Let / be a fibre of the ruling of
S and put », : =(G, /), then we have 7m-h6^2 + 4n3 = 16, hence Wι = 0 and 4CίG
+ /J) is Cartier, which is absurd. Assume that S is rational. Let p€Ξ S be as above.
Then (ά)σ*(x, y) = (ζx, y\ (b}(ζx, ζ2y\ (c}(ζ2x, ζ*y\ or (d)(ζx, ?yl where ζ
is a primitive eighth root of unity, for a suitable basis x, ° of mp/m2p. Therefore
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Supp Δ is smooth and all singular points of S are of type A4,ι, A4,s or Aι,\ and if
p^S is a singular point of S, then p€Ξ €2 and p is of type A^i or p€= Cs and p is
type AM, A4,s or A2,ι. We can get Cι = 0 by the same way as in the argument in
the case CI(S, Z/)=4. Let #ιCGal(S/S) be the subgroup of order 2 and put Si:
= S/Hi. Let τrι: Si—»S be the induced morphism and define the boundary Δ\ on

Si such that K§l + Δ\ = π\(Ks+A). Then (Si, ^Ji) is a i^o-log surface of abelian
type with CI(Sι, Δ\) = 2. Let p£Ξ Si be a fixed point of the action of o2 on Si and
L be the fibre of the ruling on Si which passes through p. Since the cyclic group
of order four acts on the set L Π Supp Δ\ which is composed of exactly four points,
this set decomposes to a disjoint union of orbits whose cardinality is 1, 1, 1, 1 or
1, 1, 2 respectively. But in the first case, a2 acts trivially on L and in the second
case, tf4 acts trivially on L, which is absurd.

Case CI(S, ^) = 10. We claim that this case does not occur. We may assume
that 10(/& +J)~0. Let #ιCGal(S/S) be the subgroup of order 2 and put Si: =
S/Hi. Let π\: Si—^S be the induced morphism and define the boundary Δ\ on Si
such that Ksι + Δ\ = π?(Ks + Δ). Then (Si, Δ\) is a Vo-log surface of abelian type
with CI(Sι, ^ίι) = 2. σ2 acts on Si, hence on Alb Si, but since it is well klown that
group action of order 5 on an elliptic curve is trivial or fixed point free, the action
of a2 on Si is fixed point free, which contradicts the assumption.

Case CI(S, Z/) = 12. If S is not rational, then S is an elliptic ruled surface and
Supp Δ is a disjoint union of smooth elliptic curves. Let /4 = (ll/12)CΊ + (5/6)C2
+ (3/4)Cs + (2/3)C4 + (l/2)Cs be the decomposition of Δ and / be a fibre of the
ruling of S. Put nf: =(C, , /). We have ll«i + 10w2 + 9«3 + 8w4 + 6w5=24 from
the assumption, hence («< l<z<5) = (0, 1, 0, 1, 1), (0, 0, 2, 0, 1), (0, 0, 0, 0, 4) or
(0, 0, 0, 3, 0) and ±(KS + A) or b(Ks + A) is Cartier, which is absurd. Therefore S
is rational. Let π : S—>S and p^ S be as above. We have (a)a*(x, y} = (ζx, y\
(b}(?x, ?y\ (c)(?x, ?y\ (d)(ξx, ?y\ (e)(ζ*x, ?y\ (/)(&, ?y\ where ξ is
a primitive twelfth root of unity, for a suitable basis x, y of mp/m2p. Therefore, d
is smooth for l<z<5, Supp CίΠSupp Cj=0 for i<j except for (/, /) = (3, 4), (4,
5) and each components of Cs and Ct, C± and Cs intersect transversely. If p is any
singular point of S, then p is of type Aa.i and ^^S\SuppZ/ or p£ϊ Cs, of type A3,2
and p^ Cs, of type Aβ,5 and p^ Cs, of type Aι,\ and p^ Cs or pGΞ Cz. Let 5ι be the
number of the singular points p^S of type Au such that p^ Ci, 82 be the number
of the singular points $^S of type Aa,ι such that p^Cs, Ss be the number of
singular points p^S of type A2,ιsuch that p^C4Γi Cs, 54 be the number of the
singular points of />€Ξ S of type Ae,s such that p^. Cs, 5s be the number of the
singular points p£= S of type As,2 such that p^ Cs, SG be the number of the singular
points of p^S of type A2,ι such that p€Ξ C\C^ s? be the number of the point p€Ξ
S such that p^ Cs Π C4, 5s be the number of the point p^ S such that p€Ξ C4 Π Cs
and S is smooth at p and 59 be the number of the singular points p^S of type A3,ι
such that ^^Supp/ί. Let /AcGal (S/S) be the subgroup of orber 6 and put Si:
= S/Hι and let π\: Si^S be the induced morphism. Assume that Ci^O or C2=£
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0. Define the boundary Δ\ as

We note that K§l + 2lι = π*(Ks + Λ) and (Si, A) is a Vo-log surface of type Via by
construction. The induced group action on Si has fixed point p^ Si by assump-
tion. Let L be the fibre of the ruling on Si which passes through p. Since the sets
LΠ πϊ\Cι U C2), LΠ πϊ l(d) and LΓΊ ;rf *( C3U C5) are Gal (Sι/S)-invariant, Gal
(Si/S) acts on L trivially, which is absurd. Thus we get CΊ = 0, €2 — ̂  and 5ι = 0.
Assume that 52^0. Then there is a singular point p^S of type Aa,ι such that p^
Cs. Let £/2^Gal(S/S) be the subgroup of order 4 and put £2 :=S/H2 and let πι :
§2—>S be the induced morphism. Define the boundary ZΪ2 as Δi : = (3/4);rf ^Ca)
+ (l/2)πΓ1(C5). We note that K^+Δι=π$(Ks + Δ) and (S2, Λ) is a ^o-log surface
of type /Fα or IV β by construction. The induced group action on S2 has a fixed
point $^ft2l(p). Let L be the fibre of the ruling on S2 which passes trough fi.
Since the sets LΓ\πi1(Cs) and LΠ^XCs) is Gal (S2/S)-invariant, the action of
Gal (Sa/S) on L has three fixed points, hence trivial,which is absurd. Therefore we
obtain S2=0. Put Z: = Sing Supp Z/U Sing S, Cί : = //ϊ1C«(3^/^5). Since
π|sv-'(supp/fusing s) : S\π~l(Suvp Δ U Sing S)^S\(Supp Δ U Sing S) is etale, we
have

5
J3 ^topίΛ 'KCΛ^))""^ — 54 — 25s — 35β — 2Sβ — 459

(M) - Σ ^top( Cί\μ'lZ) - 25s - 654 - 355 - 25e - 57
ί=3

-58- 259). (5.17)

Since we have ^top(S) = 0,

Xtop(π~l( Cs\Z)) = 6χtop( Cs\Z) = G(χtoP( C5) ~ 53 ~ 54 ~ Ss - 56 - 58)

and

Xtop(M) = 2 + p + 53 + 554 + 25s + 55 + 59,

we obtain

9(κM C3- + a2) + 8(/& a + cf) + 6(κM a + α2)
24. (5.18)

On the other hand, we have

num 0, (5.19)
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where £ι: = ΣSι£ι(/X E2j : = Σ£ι E2j(i) (l</<5), E3J : = Σfti E3M) O'=l,
2), E4: = Σίiι£4(/X £5: = Σftι£6(ίX £ι(0 (l^/^saX £2j(i) (1<^*<5
5), £3,ΛO (l<z<55, 7 = 1, 2) and £4(z) (l<z<56) are (-2)-curves and £

are ( — 3)-curves. From (5.18), we have

Gί (5.20)
(5.21)
(5.22)

and

^ C5 + (2/3)α2 + (7/12)53 + (5/12)54 + (l/3)55 + (l/4)56 + (2/3)58=0. (5.23)
Since we have

KSί= 12 - χtop(M) = W-p-ss-5s4- 2^5 -SB- 59, (5.24)

we get

= 12/o - 120 + 125s + 6054 + 2455 + 1256 + 859. (5.25)

Let π2 : 82— *S as above. Since π 2 1 ( C s ) is 0 or a disjoint union of elliptic curves,
we have

KM Cί+C? + (2/3)57=0. (5.26)

Let //3<^Gal(S/S) be the subgroup of order 3 and put Ss := S/Hs and let π$ :
83-^8 be the induced morphism. Define the boundary Δ?> as Δ* \ = (2lί)τci~l(C^).

We note that K§>+2*=π*(Ks+d) and (53, A) is a ^o-log surface with CI(S3,
Z/3) = 3. Since 7Γ3~1(C4) is 0 or a disjoint union of elliptic curves, we have

ίG/ C4+C42 + (3/4)53 + (3/4)57 + (l/2)58=0. (5.27)

Let //4dGal(S/S) be the subgroup of order 2 and put £4 := S/ί/4 and let π± :
84-^8 be the induced morphism. Define the boundary Δι as Δ\\ =

(1/2)Λ4-1(C3UC5X We note that Ks.+ ^πfdCs+d) and (54, J4) is a y0-log
surface with CI(54, A^) = 2. Since ^fK^) is 0 or a disjoint union of elliptic
curves, we have

. (5.28)

From (5.18), (5.26), (5.27) and (5.28), we obtain

(5.29)

From (5.21) and (5.26), we get
/&rCί=-(2/3)s>, G2=0. (5.30)

From (5.22) and (5.27), we get
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K* Cί=-(l/4)ss-(3/4)s>-(l/2)sβ, Cf= -(1/2)53. (5.31)

From (5.23) and (5.28), we get

Kar Cέ=-(l/3)s3-(2/3)s8, α2=-(l/2)s3-(5/6)s4-(2/3)55-(l/2)56. (5.32)

From (5.25), (5.30), (5.31) and (5.32), we obtain

5 + 356+357 + 258 + 259=3(10- p). (5.33)

Since 4|6-p(S), we have p(S) = 2, hence p<p(S) = 2. From (5.29) and (5.33),
we get p = 0 (mod 2), hence p = 2 and

) = 24, 54=0, 59=55. (5.34)

We note that since KM Ca, Cf, KM C^Z and KM Cί+ Cί2=0 (mod 2), we have

57-0 (mod3), (5.35)
53=0 (mod 2), (5.36)

+ 258=0 (mod 8) (5.37)

and

53 + 258=0 (mod3) (5.38)

from (5.30), (5.31) and (5.32) and that in fact, we have

57=0 (mod6), (5.39)

from (5.35), (5.36) and (5.37). From (5.34), (5.36), (5.37), (5.38) and (5.39), we
obtain that (1) 55=59=3, 5Z =0 for z = 3, 6, 7, 8, (2) 58=12, s, =0 for z = 3, 5, 6, 7,
9, (3) 533=56=2, 58=5, 5Z =0 for ί = 5, 7, 9, (4) 57=6, 58=3, 5Z =0 for z=3, 5, 6, 9
or (5) 56=8, 5;=0 for ί=3, 5, 7, 8, 9.

Case (1). If C3 = 0, then §(Ks-\-A) is Cartier, which is absurd. Therefore, we
have Cs^O and (£2, Δ^) is a Vo-log surface of type IVa or IVβ. Let p^S be a
singular point of S such that ί^ΞCs and L be a fibre of the ruling on Si which
passes through ^^π^1(p). By construction, LΠ^KCs) admits fixed point free
action of Gal ( 82/8), which is absurd since LΠ πϊ\C$) is composed of exactly two
points and the order of Gal (82/8) is three.

Case (2). If Cs^O, then Cs is a disjoint union of elliptic curves. But since (Si,
Δ\) is a ^o-log surface of type V7/s, each component of πΓl(Cs) is a rational curve,
which is absurd. Therefore Cs = 0 and 6(/G + /i) is Cartier. Thus we get a
contradiction.

Case (3). From the assumption, ( Si, Δ\) is a Mrlog surface of type Vlβ. Since
each component of Supp zJi^TΓf^Supp }̂) is a rational curve, we have C3 = 0 and
each components of C* and Cs is a rational curve. Since KM' C±-\-C¥=— 4 and
KM C5+C52=— 6, we have irreducible decompositions of C4 and Cs, C4=C4,ι
+ C4,2 and C5=C5,ι + C5,2+C5,3, where C4,z , Csj-P1 for z = l, 2, ; = 1, 2, 3. Let
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Sa 4'0 be the number of the singular points p^ S of type Au such that p^ C4,z Π C5,
s£J) be the number of the singular points p^S of type Az,ι such that £eC4lΊ Csj,

5l4fί) be the number of the points p^ C4,t Π C5 such that 5 is smooth at p, sk*J) be

the number of the points p^ C4 ΓΊ C5j such that S is smooth at p, skj) be the number
of the points p& C5j such that p^S is a singular point of type Au. In the same

way as above, we have

and

where Cί,i : = //*1C4,z and Csj "

(5.40)

(5.41)

4'0

Since we have C4

2= — 1, we obtain

4'1'

From (5.40), we have

, 4, 0) or (2, 1, -1).

fi) = (0, 4, 0),

and

From (5.41), we have

Since we have KmΛCί—— 4 and

1, 1, -1), (0, 4, 0, -2) or (0, 0, 3, 0).

s2^— 2, we obtain

5̂ ) = (l, 1, 1, -1) for / = !, 2

and

(s4B 8), s43), 5|5'3), Cί5,) = (0, 0, 3, 0).

For any z, , we have (;r*C4,*, ΛΊ*C5.j) = l, 2 or 4, hence (C4,z , C5, J )
 = l/2, 1 or 2.

Thus we conclude that we are in the case XΠβ.
Case (4). Since 5 is nonsingular and p — 2, we have 5 — Σd for some d>0.

We note that #s C3=-4, C3

2=0, #s C4=-6, Cl=0, Ai C5=-2, C5

2-0 by

assumption. Assume that d^niθ + lif for z = 3, 4, 5, where ^ is a section such
that ι92<0 and / is a fibre of the ruling on 5. Since we have 9^3 + 8^ + 6^5 = 24,
we have (»3, «4, Ws) = (2, 0, 1), (0, 3, 0) or (0, 0, 4). If («3, n4, Ws) = (2, 0, 1), then

we have (/3, /4, /δ) = (rf, 3, (l/2)rf). Since (Cs, ^)>0 or (C5, ^)>0, we have h =
ls = d = Q. Thus we are in the case XΠβ. If («3, m, Ws) = (0, 3, 0), then we have (/a,
/4, /s) = (2, (3/2)rf, 1). Since k>2d, we have U = d = Q. Thus we are in the case

X/fr again. If (w3, «4, w5) = (0, 0, 4), then we have (/3, /4, /5) = (2, 3, 2ί/-3) but we
have ls>3d, which is absurd.

Case (5). Since we have C4^0 by assumption, (Si, Δ\) is a Vo-log surface of
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type Vlβ, which is absurd.
EXAMPLES. (1) Put Eζ :=C/Z+ζZ, where ξ is a primitive third root of unity

and A: = EζXEζ. Consider the action a on A defined as tf([£ι], [32]) = ([f232],

[&ι]) for (UL UJ)e A Put 5 :=A/<a> and Δ : = (l/2){([*], [ξz])\z^ C}. This
log surface (5, Δ) gives an example of Vo-log surface of type Πe.

(2) Let ξ and £? be as is (1). Consider the action a on Eζ X P1 such that σ([z],

[wii W2\) = ([ξzl [ξwi: UK]). Put S: = EζxP1/<σ> and Δ : = (l/2)£cx{[l : 0],

[ξ2 : 1], [ζ : 1], [1 : l]}/<0>. This log surface (S, J) gives an example of ivlog
surface of type VIγ.

(3) Examples of Vo-log surface of type IV7, Vis and XII β are known. We refer
the reader to [23] .

6. Degeneration of type I associated with Vo-log surface of abelian type

DEFINITION 6.1 A minimal degeneration of surfaces /: X-^ϊb with κ = 0 is
said to be of type / i f / has a log minimal reduction / : (X, (9)— »<2) such that (0,

Diff 0(0)) is a yo-log surface of type /.

In this section, we study the singular fibres by using the results in the previous
section.

Theorem 6.1. Let f : (X, 0)— >£) be a projectίve log minimal degeneration
of surfaces with x = ϋ and assume that (Θ, Diffβ(O)) is a Vo-log surface of
abelian type then the generic fibre is an abelian or hyperelliptic surface and there
is a projective degeneration f : X— »<ίD which is bimeromorphically equivalent to
f : X-^S) (we shrink £) if necessary) such that X is a normal Q- factorial
3-fold with only terminal singularities and one of the following holds.

I : X is smooth and /*(0) = wΘ, Θ is an abelian surface or a hyperelliptic
surface.

: X is smooth and /*(0) = 2mΘo + Σ)=ι mθιti, where m<^N, (9ιff is an elliptic
ruled surface for any i. Θι,, Θo is a section whose self-intersection number
0 on each of the two components for i>l. Θι,iΓ\Θιj— β for i>j>l.

X is smooth and /*(0) =2mΘo + Σ?=ι mΘι f l , where m^N, Θo and &\,ί are
elliptic ruled surfaces for i=I,2,Θι,2 Θo is a ^-section on Θo which is a
smooth elliptic curve with the self-intersection number 0 and is a section on
Θι,2, Θι,2 Θ is a section whose self-intersection number 0 on each of the two

components. Θi./IΊ Θu= 0 for

II7 : X is smooth and /*(0)=2w00 + Σ?=ι w0ι,z, where m<^N, 0ι,z is an elliptic
ruled surface for z = 0,1,2. 0ι,z 0o is a 2-section on 0o which is a smooth
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elliptic curve with the self-intersection number 0 and is a section on Θι,i for

i=l,2. θι.iΓ\θιj=tlfor 2>/>l.

IIδ : X is smooth and /*(0) = 2w©o + Σ?=ι w©ι,, , where m^N, Θo and θι,, are
elliptic ruled surfaces for any i. Θi.i Θo is a 2-section on Θo which is a
smooth elliptic curve with the self-intersection number 0 and is a section on
Θι,2 ©i.z ©o is a section whose self-intersection number 0 on each of the two
components. Θι,z ΓΊ θι,, =0 for i>j>l.

Πε : X is smooth and f*(Q) = 2mΘo + mΘι, where m^N, Θi is an elliptic ruled
surface for 2 = 0,1, Θi Θo is a 4-section on Θo which is a smooth elliptic curve
with the self-intersection number 0 and is a section on Θi.

ΠIa-1: X is smooth and /*(0)=3w©o + ΣLι(2w©ι,, fι + w©ι f ί ,2), where m^N,
Θo and Θι,ij are elliptic ruled surfaces for any 2, j. ©ι,t ,ι Θo and ©1,1,2' Θι,ij
are sections with the self-intersection number 0 on each of the two compo-
nents for z = l,2,3. ΘM,, nΘι,*,z=0 if i*k and ΘM,2Π Θ0=0 for ^ = 1,2,3
(see Figure ΠIa-l).

IΠa-2 : X is smooth and /*(0) = Σ?=ι wΘi.ί, where m^N, Θι,z is an elliptic ruled
surface for 2 = 1,2,3. ©ι,ι ©ι,2=©ι,2 ©ι,3=©ι,3 ©ι,ι is a smooth elliptic curve
which is a section on each Θι,z (see Figure IΠa-2).

IΠβ l: X is smooth and /*(0)=3w©0 + ΣLι(2w©ι,u + w©ι f ί ,2), where
Θo and Θι,ij are elliptic ruled surfaces for any 2, j. Θι,ι,ι Θo is a 2-section
on Θo which is a smooth elliptic cusve with the self intersection number 0 and
is a section on Θι,ι,ι. Θι,2,ι Θo and ©1,1,2 '©1,1,1 are sections with the self-
intersection number 0 on each of the two components for 2 = 1,2. ©ι,t jΠ
Θι,*,z=0 // i=f=k and Θι,z,2n Θ0=0 for 2 = 1,2 (see Figure ΠIβ l).

IIIβ-2 : X is smooth and /*(0) = Σ?=ι wΘι,z, where m^N. There is a projective
birational morphίsm μ\ Y^X from a smooth 3-fold Y such that /*(0) =
3mΘo + wΘι,ι + mΘι,2, where f :=f°μ, Θi : = μ*1Θl for 2 = 1,2. Θι,z is an
elliptic ruled surface for 2 = 0,1,2. Θι,ι Θo is a 2-sectίon on Θo which is a
smooth elliptic curve with the self-intersection number 0 and is a section on
©1,1. Θι,2* Θo is a section whose self-intersection number 0 on each of the two
components. ©1,1 Π ©1,2 =0 (see Figure IIIβ-2).

IIIγ-1 : X is smooth and /*(0)=3wΘo + 2wΘι,ι-f wΘι,2, where m^N, Θι,z is an
elliptic ruled surface for any i. Θi.i Θo is a ^-section on Θo which is a smooth
elliptic curve with the self-intersection number 0 and is a section on Θι,ι.
©1,2 '©1,1 is a section with the self-intersection number 0 on each of the two
components. ΘoΠ Θι,2 = $ (see Figure ΠI7-1).

///7-2: X is smooth and f*(Q) = mΘ, where m^N. There is a projective bir-
ational morphism μ : -+X from a smooth ?>-fold Y such that f *(0) = 3wΘo
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+ m&\, where f :=f°μ, Θι: = μ^1Θι. Θi is an elliptic ruled surface for i
= 0, 1. 0ι 0o is a ^-section on 0o with the self-intersection number 0 which
is a smooth elliptic curve (see Figure IΠ7-2).

Ills: /*(0) = 3<9o + Σί=ιΘι,ί, where 0o is a normal rational surface with p(Θo):=
4 + f and Θι,i^P2 for i>l. Sing ΘQ={pi l<i<s}, where ^ e00(l<f<
s) are singular points of type Au and s : = 9— f. θι,« 0o & tf ( — 3)-cwrve 0«
0o tffltff is 0 7//ιe on Θι,i for i>l. If {pi l<z<s} :=Sing 00, then Sing X
= {pi', l<i<s} and analytic locally around pi, (pί^X, 0) is isomorphic to
(0<ΞC3, {2 = 0})/Z3(1, 1, 2). Moreover, if Xt is an abelian surface for
then t = Q or 9 (see Figure Ills).

IVa-l: X is smooth and /*(0)=4m0o + Σ?=ι(3m0ι,ίM + 2m0ι,
+ 2w02, where 0o, Θι,ij, 02 #re elliptic ruled surfaces. 0ι,*,ι 0o (/ = !, 2),
02 0o, 0ι,z,3*0ι,z,2 #«£/ <9ι,ί,2 Θi.ί.i ^^ sections of with the self-intersection
number 0 0« eαc/z 6>/ ίAe ίwo components. Θι,tjΓ\Θι,k,ι=tf if i=f=kt ©1,1,3 Π
Θι,z,ι = 5' for / = !, 2 β«rf 02 (Ί Θι,ij = y for any i, j (see Figure IVa-l).

IVa-2: X is smooth and /*(0)=wΘιfι + wΘιf2, w/zere m^N, Θi is an elliptic
ruled surface for i = l, 2. Θι,ι Θι,2 = 2Γ' where Γ is a section with the
self-intersection number 0 on each of the two components (see Figure IVa-2).

IVβ-1: X is smooth and /*(0)=4m0o + 3m0ι,ι + 2m0ι,2 + m0ι,3 + 2m02, where
m^N, Θι,i and 02 are elliptic ruled surfaces for any ί. 0ι,ι 0o is a 2-section
with the self-intersection number 0 which is a smooth elliptic curve and is a
section on 0ι,ι. 02 0o, 0ι,2 0ι,ι and 03*02 are sections with the self-
intersection number 0 on each of the two components. 0ι,ι (Ί 01,3 = 0, 0o(Ί 0ι,z

= 0 for ί=2, 3 and θ2Γ\θιti=Q for /=!, 2, 3 (see

IVβ-2 : X is smooth and /*(0) = m0, w/ze/ β m^N and 0 is irreducible, there is
a projective birational morphism μ : Y—+X from a smooth 3-/0W Y such
that f *(ϋ)=4mΘo + mΘι,ι + mΘι,2, where f :=f°μ, Θι,i is an elliptic ruled
surface, Θι,ι = μ*1Θ. 0ι,ι 0o is a 2-section with the self-intersection number
0 on 0o which is a smooth elliptic curve and is a section on &\,\ 0ι,2* 0o is
a section with the self-intersection number 0 on each of the two components.
0ι n Θι,2 = 0 (see Figure IVβ 2).

IV7: /*(0)-40o + ΣLι20ι,z + Σ?=ιΣj;=ι0(^ ), where 0o and 0u are normal
rational surfaces with p(0o)=2 + h + £2 and p(Θι,i)=2 for i=l, 2, 0ι,3 is an
elliptic ruled surface and Θa,*) — Σz. ίi=0 or 2 or 4 /o/ /=2, 3 #«£/ 5 : = 8
— Σ?=ι ίί. 0ι,3 0o is a smooth elliptic curve whose self intersection number
0 on each of the two components. The strict transform of 0ι,z 0o is a ( —
2)-curve on the minimal resolution of 0o and is a ((l/2)ti — 2)-curve on the
minimal resolution ofΘ\,i for i = l, 2. Θaj^ Θo is a ( — 2)-curve on 0o and is
a fibre of the ruling on Θajt) for any (i, /,-). 0(^v)* 0ι,z is a G-curve on &\ti
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and is a ( — 2)-curve on <9(I f Λ) for i=l, 2, 1</Z <^ . 0ι,z Γl Θιj = ψ for i>j,
0(z,Λ )ΓΊ 01,* = $ if i=^k and Θaj^'s are disjoint from each other. Putting
Sing βo={/>ίίie0M 0</z <8-^ /=!, 2)} and Sing 0ι., = {/>ίl Ml; 0<
ί^β-ff (/=1,2)}, we Aαv* Sing XHM1 £& 0</z <8-^ (z = l, 2)} a/itf

analytic locally around each pfy, (pfy^X, 0) is isomorphic to (O^C3, {.ry
= 0})/Z2(1, 1, 1), αrow/ίέ/ each p£L (pfy^X, 0) is isomorphic to (OeC3, {*
= 0})/Z2(1, 1, 1). Moreover, if Xt is an abelian surface for t<^$)*, then (ίi,
fe) = (0, 0), 0r (4, 4) (se

IV9: /*(0)=4θo + Σ?=ι2βM + Σ?=ιΣΛ=ιβ ( ί f Λ ), wAw 0o
rational surfaces with /o(Θo) = 2+fr + fe #«£/ p(Θι,i) = 2 for i=l, 2
-Σ2. ί/ = 0 or 2 or 4 /<?/• i = 2, 3 α«ί/ 5 : = 8-Σ?=ι ί. . Γ/z^ jίπcί transform
of Θi.ί Θo is β ( — 2}-curve on the minimal resolution of Θo β«ί/ is α((l/2)ί,
— 2)-cwrve 0« ί/ze minimal resolution of Θ\,ί for i=l, 2. Θa^ Θo is a
( — 2) -curve on Θo and is a fibre of the ruling on Θa,*) for any (/, ./,).
Θ(i,M) Θιti is a 0-curve on Θι,i and is a ( — 2)-curve on Θa,*) for i=l, 2, 1<
jί<ti. Θι,ι Π Θι,2=0. Θ( ,λ)Γl0ι,*=0 (Γ 2=^=^ ««^ Θdj^'s are disjoint from
each other. Putting Sing Θo={/>ίίir^Θι,ί 0</z <8-^ (/=l, 2)} α«rf Sing

8— ίd(/=l, 2)} α«ί/ analytic locally around each pfy, (pfyξΞX, 0) is isomor-
phic to (O^C3, {ry = 0})/Z2(l,l,l), α/Όw«ί/ ^c/z Mίir, (Mίir^-X", 0) /^ iso/wor-
phic to (O^C3, {Λ: — 0})/Z2(1, 1, 1). Moreover, if Xt is an abelian surface for

*, then (h, fe) = (0, 0), or (4, ϊ)(see Figure IV9).

V-l: X is smooth and /*(0) = 5Θo + Σ?=ι(βι,» + 2Θ2,«), where 0o is a smooth
rational surface with p(0) = 12, 0ι,z-Σs and Θ2,i-P2 for l<z'<5. ΘijΓi
Θk,ι = 0 if /=£/. 0ι,z 02,z is α ( — S)-curve on 0ι,z β«ί/ is a line on 02,z.
0o 0ι,z is α ( — 2}-curve on 0o α«^/ is a fibre of the ruling on 0ι,z. 0o 02,f
is # ( — 3)-cwrv^ o« 0o and is a line on 0ι,z (see Figure V-l).

V-2: /*(0) = 5Θ, wAere Θ is a normal rational surface with p(Θ)=2
yϊve quotient singularities [pj l</<5} o/ Γμpe As,2. Sing X={pj l<y<5}

around each pj, (pj^X, 0) /.s isomorphic to (OeC3, {^=0})/Z5(1, 2, 3).

V-3 : X /.s smooth and /*(0) = Σ?=ι Θι f», wA^r^ 0ι,z is <2 smooth rational surface
for l<i<5 and Σ?=ι /o(Θι,ί) = 20. ΓA^re is projective birational morphism μ :
Y^X from a smooth 3-fold Y to X such that g*(0) = 5Θo + Σ?=ι Θι,», wAe/ e

g /.s the induced morphism from Y to Ά and 0o — Σd (d<3\ 0ι,z : μ*lΘι,ι,
is a smooth rational surface which is obtained by blowing up ^2 for l<i<
5. 0o 0ι,z is a section on Θo and is the strict transform of a fibre of the
ruling on 0ι,z for l<z<5. For i>j>l, Θι,ί ΘιfJ = Σ?=ι m(ι,j\ k)Γk, where
{Γk; l<k<5} are rational curves which are disjoint from each other such
that Θo Γ* = l for all k. Σ»>, ΣA m(i, jj k) = 20 and either (1) m(i, j k)
= 1, / A is a ( — \}-curve on 0ι,z (or on Θij) and ( — 2}-curve on Θu (or on



MINIMAL DEGENERATION OF SURFACES WITH *=0 269

Θι,0 or (2) m(i, / ; &) = 2, Γk is a ( — ί)-curve on ©ι,z and ΘU (see Figure
V-3).

Vla-l: X is smooth and /*(0)
3, where m^N, ©o, Θij and ©3 are elliptic

ruled surfaces for any i, j. ©o Θί,ι(ί = l, 2), Θij ©ι,z +ι(l</<4), ©2,ι ©2,2
and ©o ©3 are sections with the self-intersection number 0 on each compo-
nent. ΘijΓ\Θk,ι=β if i±k or i=k=l and |;-/|>1, © 3ΓlΘ, j=0 for any
i, j and ΘoΓlΘij if i=j=2 or i=l, j>2 (see Figure Vh-l).

VIa-2 : X is smooth and /*(0) = w©, where @υ is an elliptic ruled surface. The
non-normal locus of Θ is an smooth elliptic curve (say Γ) and around any
point ί^Sing ©, Θ is defined by the equation y2 — x3 = Q analytic locally.
v~lΓ is a section of ®υ with the self-intersection number 0 (see Figure VIa-2).

Vlβ-l : X is smooth and

where Θo — P1XP1, ©ι,z ,ι — Σ2, ©1,1,2 — Σ4, ©2,j is- a smooth rational surface
with p(Θ2,j) = llforj = l,2,3and Θ(k,i)-P2for l<k<3, l</<3. Θu.i Θo
is a fibre of the first projection Θo-^P1 for i = l, 2, 3 and ©2,j ©o is a fibre
of the second projection Θo-^P1 for j = l, 2, 3. ©1,1,1 ©1,1,2 is a section on
©ι,ί,ι which is disjoint fromthe negative section and is a ( — £) -curve on ©ι,z,2
for i = l, 2, 3, Θι,ij Θ2,k is a fibre of the ruling on ©ι,ί,j and is a ( — 2)-curve
on Θz,k for any i, j, k and ©2,* •©(*,*) is a ( — 3)-curve on 02,ι and is a line

on ©(A i /) ©ι f ί f jΠ©ι > ί o '
=0 if i^i', ©ι,«,jΠ Θ(k;i)=0 for any i, /, k, /,

©2,j ©(A,z)=0 // j^lj [Θ(k,i)}k,ι are disjoint from each other (see Figure
VIβ-l).

VIβ-2: /*(0) = 2 ΘU + 2Θι,2 + 2 ©1,3, where ©ι,z is a normal rational surface with
p(©ιfί) = 2 such that Sing ©i,/=6Az fi. ©ιfι ©ι,2=βι,2 ©ιf3=Θι,3 ©u = : Γ
and the strict transform of Γ on the minimal resolution of each component
is a ( — 2) curve for any f, j. The singular locus of X consists of the points
p^Γ (i=l, 2, 3) and the points p^^Θι,k\Γ (J = l, 2, 3, k = l, 2, 3) and
analytic locally around pit (pi^X, ©)-(OeC3, {xy(χ-y) = Q})/Z2(l, 1, 1)
for /=!, 2, 3, around p(f\ (pf^X, ©MOeC3, {z=Q})/Zz(l, 1, 1) for any
j, k (see Figure VIβ-2).

VIγ-1 : X is smooth and

where ©o is a smooth rational surface with p(©0) = ll, Θι — Pl*Pl, ©2 is an
elliptic ruled surface, ©i.z .i — Σ2, ©ι,z ,2 — Σ4 for i — \, 2, 3 and Θs,i — P2 for i
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= 1, 2, 3. Θi Θo is a ( — 2)-curve on Θo and is a fibre of the first projection
Θi-^P1, 02 Θo is an elliptic curve with the self-intersection number 0 on each
component, Θι,ij Θo is a ( — 2)-curve on Θo and is a fibre of the ruling on
Θι,ij for z'— 1, 2, 3, /=!, 2, Θa.z Θo is a ( — 3)-curve on Θo and is a line on
Θ3,, /0r z = l, 2, 3. Θi Π Θ2=flf, ΘiΓΊ ΘM,2=(X ΘifΊ Θ3,, =(/, Θ2Π Θi, ,-,.,• =0 c/irf
02 Π Θ Ϊ,J=$ for any i, j, Θι,ijΓ\ ΘW=$ for any i, j, ir (see Figure VIΎ-l).

VI7-2 : /*(0)=:6Θo + 3Θι + 3Θ2, where Θi is a normal rational surface with p(Θi)
= 2 such that Sing Θ ^SAu + SAu for z'=0, 1 and 02 is- an elliptic ruled
surface. The strict transform of Θi Θo is ( — 2) -curve on the minimal
resolution of Θo, ( — I) -curve on the minimal resolution of Θ\, 02*0o is an
elliptic curve with the self-intersection number 0 on each component. 0ι ΓΊ 02
= 0. The singular locus of X is consists of the points pt^ΘiΓi Θo (i— 1, 2,
3) and the points p(/^Θj\(Θι^ΘQ} (/=!, 2, 3, ;=0, 1) UTK/ analytic locally
around pif (pi^X, 0)^(θeC3, {^=0})/Z3(1, 2, 2) /or / = !, 2, 3,
= 0} corresponds to Θo and {^=0} corresponds to 0ι, around p(ϊ*\
0)^(O^C3, U=0})/Z3(1, 1, 2), αwι//ιrf Mυ, (^^X, 0)^(OeC3, {x =

1, 2) /or i = l, 2, 3 (̂  F/gwr^ V77-2).

-l: X is ^mooί/z and /*(0) = 6
0o ϊs a smooth rational surface with p(0o) = ll, Θι — P1XP1, Θιtl ,ι — Σz,
0ι,z,2-Σ4/or z = l, 2, 3 α/irf &2Λ-P2 for i = l, 2, 3. Θi Θo & a (~2)-curve
on Θo and is a fibre of the first projection Θi— >PX, Θι,ij Θo is a ( — 2)-curve
on Θo, a fibre of the ruling on Θ\tij for z = l, 2, 3, /=!, 2, 02,r0o fe β
( — 3)-cwrve o« Θo and is a line on 02, i for i = l, 2, 3. ΘiΠ Θι,i,2=ψ, ΘiΓΊ @2j
= ft Θι,ijΓ\Θ2,i'=Qfor any i j, ir (see Figure VIs-l).

VIs-2: /*(0)=6Θo + 3Θι, wAere Θz /5 a normal rational surface with p(Θί) = 2
such that Sing Θ, = 3 Au + 3 A3,2 /or /=0,1 ΓAe jί/ίcί transform of Θi Θo is
a ( — 2}-curve on the minimal resolution of Θo and is a ( — l)-curve on the
minimal resolution of Θi. The singular locus of X consists of the points pi

Θo (ί=l, 2, 3) and the points /^eθΛίθiΠ βo) (ί=l, 2, 3, ; = 0, 1)

/—I, 2, 3, >vAere {Λ: = O} corresponds to Θo and {£=0} corresponds to Θi,
flwι//iέ/ M0), (P(?}<ΞX, Θ)^(OeC3, {^=0})/Z3(1, 2, 2), around p?\ (p
Θ)^(θeC3, (Λ: = 0})/Z3(1, 2, 2) /or ί = l, 2, 3 ( see Figure VIs-2).

XΠa-l : X is smooth and

ί=l

+ 603+ Σ (5β(iJ.l) + 2θ(<J.2)+ θ(W.8))+ Σ β(3J),
'

ί=l, 2, 6>2,, ,ι
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smooth rational surface with p(02j,i) = l2, &2j,2 is a smooth rational surface
with p(02j,2)=6/or/=l, 2, 3, 03-Σ2, βί^.υ-Σ* 0(^ ,2)-Σι, 0(^,3)-Σ2

and 0(3,,)-Σ2/or ί = l, 2, ;' = !, 2, 3. 0M,ι 00 (*'=!, 2) α/irf 03 0o are fibres
of the first projection Θo~^Pl and is a ( — 2)-curve on Θι,i,ι O'=l, 2) ( resp.
on 0s), 02j,ι Θo is 0 yi&re o/ ίλe second projection Θo-^P1 and is a
( — 2}-curve on &2j,ι for j = !9 2, 3. 0ι,z,ι 0ι,z ,2 is # ^-section on 0ι,z ,ι #«£/
is α (—4)-cwrv£ o# 0ι,z ,2, 0ι,z,2 0ι,z,3 is α ^-section of Θι,i,2 and is a
( — ti)-curve on 0ι,z,s /or / = !, 2. @2j,i9 @2j,2 is 0 (~l)-curve on each
component for /=!, 2, 3. Θι,i,k Θ2j,ι (resp. 03 02,j,ι) is # ( — 2)-cwrv^ o«
02,j,ι α«rf is α ^zfeA e of the ruling on Θ\,i,k (resp. Θs) for i = l, 2, j = l, 2, 3,
k = l, 2, 3. Θ(ij,i) Θ(ij,2) is a ( — 2)-curve on &a,j,\) and is a fibre of the
ruling on ΘUJΛ, &aj.2Γ Θaj,u is a ( — 2}-curve on Θaj,*) and is a fibre of the
ruling on ΘajM, &(ij,v&2j,i is a ( — ̂ )-curve on 02j,i and is a ^-section on
Θ(ί,j,i). Θ(ij,i) Θ2j,2 is a ( — 2)-curve on 02j,2 and is a fibre of the ruling on
Θ(ij,v, Θdj,2) Θ2j,2 is a ( — ί)-curve on 02j,2 and is a ( — ί)-curve on Θaj,2),
Θ(ij,3) Θ2j,2 is a ( — 2)-curve on 02j,2 and is a fibre of tee ruling on Θaj,3)
for i = l, 2, /=!, 2, 3. Θs 02j,ι is a (~2}-curve on@2j,i and is a fibre of the
ruling on Θs. ©2 ,̂1 Θ(sj) is a ( — 2}-curve on 02j,i and is a fibre of the ruling
on Θ(3,j) Θ2,j,2 Θ(3j) is ( — 2)-curve on Θ&j) and is a Q-curve on Θ2j,2forj=
1,2,3. Θ 0nΘι f, f *=0/0r/=!, 2, A?=2, 3. ΘoΠ 02^,2=0 for ; = 1, 2, 3. ΘoΠ
θaj.k)=βfor ί=l, 2,;, k=l, 2, 3. ΘoΠ Θ(sj)=0 for j=l, 2, 3. βU i*nθι f2 f*'
=0 // kΦk'. θι,i,ιnθι.itB=βfor i=l, 2. 02j,2n0M,β=0/0/ i=l, 2,;, * =
1,2,3. β3nθM.Λ=0/orί=l,2,A = l,2>3. Θ3n Θ2j f2=0/ory=l, 2, 3. 0MiA

Π Θ(i'j',i)=β for any i, k, i', /, /. θι ff,*Γ! Θ(s,j)=0 /or α/ij; i, k, j. 02j,kΓ\
Θ(ί,j',n=0 if ;=*=/'. β2j.*n Θ(3jo=0 ϊ/ ^/ β(w.*)Π β(rj^)=0 ι/ (i, ;)
(ιv, /) or (*, *0 = (1, 3).
; = 1, 2, 3 (Λ?

-X7Λ-2:

where Θo^P'xP1, Θι,z ,ι-Σι,Θι,z ,2-Σ2, Θi.^-Σs for /=!, 2, Θ2J is a
normal rational surface with p(02j) = !Q which has only one singular point pj
oftypeA.1 for; = l, 2, 3, βs^Σi, Θ(ίj^P2. SmgX={pj-9 1^;<3) and
analytic locally around pj, (pj<ΞX, Θ)^(θeC3, {z=Q})Z2(l, 1, 1)/or /=!,
2, 3. Θι,ίfι Θo(/=l, 2) α«ί/ Θ3 Θo & a fibre of the first projection Θ0—

><P1,
02,j 0o is ύf yϊ&re 0/ ίA^ second projection Θo—^P1 for j = l, 2, 3. 0ι,z,ι 0ι,z,2
is 0 co-section on 0ι,z,ι #«£/ /5 α ( — 2)-cwrve on 0ι,z,2, 0ι,z,2-0ι,z,3 fc α
^-section on 0ι,z,2 α«fi? £y a (~3)-curve on 0ι,z,3/or z = l,2. 0ι,z,6 02j
03'02j) is α ( — 2}-curve on Θ2j and is a fibre of the ruling on Θιf, ,Λ

03) /or ι = l, 2, ; = 1, 2, 3, k = l, 2, 3. θuj) θ2j is a (~ϊ)-curve on Θ2j and
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is a line on Θ(tj) for i=l, 2, j=\, 2, 3. Θ0Γ\ 6>ι,/,*=0 for i=l, 2, k=2, 3. <9o
n<9(! ,Λ*)=r for ί=l, 2,;, k=l, 2, 3. 6>on<9<, ,, )=0 /or i=l, 2, j=l, 2, 3.
Θu,* n Θι,2,*'= 0 // &=£&'. 6>ι,i,ιΠ Θι,ί,3=0/0r z = l, 2. ΘsΠ 0ι,ί,*=0/0r / =
1, 2, £= 1, 2, 3. 6>M>*n 6W,=0 /or a«y ί, &, /', ". ftuΠ 6W)=0 i/ JΦ

I β(W)=0/or ί = l, 2, 7 = 1, 2, 3 (aee

X/7β-3 :

. - Σ 3βι.+ + Σ (8βzj.1+4 θw.2) + 6 <93 + Σ 203,, ,
ί = l .7 = 1 .7 = 1

0o — P^P1, 0ι,χ is 0 normal rational surface with p(0ι,z ) — ί
ίAree singular points {pji} 1<;<3} o/ fy/re Au /or z = l, 2, 02,,,ι-Σι,

02,,,2-Σ2/or ; = 1, 2, 3, 03 is # smooth rational surface with p(Θ3) = ll, 0s,,
— P2 for y=l, 2, 3. SingX={iy) l</<2, l<y<3} #«£/ analytic locally
around pjf\ (pΫ^X, 0) —(O^C3, {̂  = 0})/ 3̂(1, 1, 2) for i — 1, 2, y = l, 2, 3.
0ι,z 0o(z = l, 2)(resp. 03 0o) is a fibre of the first projection Θϋ-^P1 and is
a (~2)-curve on 0ι,z (res£. 03). 02,, 0o is fl /fere o/ ίAe second projection
0o~^P1 #«£/ is Λ ( — ί)-curve on 02,, /or y = l, 2, 3. 02,,,ι 02,,,2 is # ^-section
on 02,,,ι β«rf is « ( —2)-cwrve o« 02,,,2 /or j — 1, 2, 3. 0ι,z 02j,k(resp.
03 02,,,A) is <2 ( — 2)-c«rve o« 0ι,z (resp. 03) #«£/ is α /fere o/ the ruling on
02,,,* /or z = l, 2, /=!, 2, 3, A=l, 2. 03,, 03 is « ( —3)-cwrve o« 03 α«ί/ is
a line on 03,, /or ; = 1, 2, 3. 0oΠ 02,,,2=0 /or ; = 1, 2, 3. 00Π 03,,=0 /or /
= 1, 2, 3. 0ι,ι Π 0ι,2-0. 03n0M=0/or ί=l, 2. 0ι,zΠ 03,,-0/or α«^ /, .
02,,,/jΠ 03,j'=0 /or β«^ , y, .̂ 03,,Π 03,^=0 // y^=y'. (̂ ^ Figure XIIa-3).

XΠa-4 :

/*(0)-1200+Σ 3βιfί+ Σ 402,, + 603,ί=l J=l

wAere Θo — P1XP1, 0ι,z — Σi/or / = !, 2, 02,, is # normal rational surface
with p(02,,) = 5 which has two singular points [p^ l<f<2}o/ (y/?e Aι,3 β«ί/
o«e singular point p^j) of type A2,ι for j = l, 2, 3, 03 —Σi. Sing X={p{j) 1
</<3, l<y<3} and analytic locally, (p(/^X, 0)^(OeC3, {z=0})/Z4(l9 3,
1) /or /=!, 2, ; = 1, 2, 3 a«rf (ptf^X, 0)^(0e C3, U=0})/Z2(1, 1, 1) for j
= 1, 2, 3. Θi.x Θo(/ = l, 2) (re5/7. 03 0o) is fl /fere o/ ίAe first projection
θo—^P1 α«rf /5 a ( — l)-curve on θι,z (resp. Θ3). 02,, 0o is α /fere o/ /Ae
second projection Θo—^P1 and is a ( — ϊ)-curve on 02,,/or y = l, 2, 3. 0ι,z 02,,
is <2 ( —4)-cwrve o« 02,, and is a fibre of the ruling on 0ι,z for /=!, 2, y =
1, 2, 3. Θ3 02,, is α ( — 2)-curve on 02,, β«ύf is tf /fere o/ ίAe ruling on 03

/or ; = 1, 2, 3. βuΠ 01.2=0. 03Π βι.ί = $ for ί=l, 2.

XIIβ-1: X is smooth and
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f(.Σes2©(^)

+ Σ3(3 ©(I,,') + β(3 J. 1) + 2 0<3 ,, ,2) + 3 0(3 J,3> + 7 ©(3,5,1)),

: = {(2, 1), (2, 2), (1, 3), (2, 3), (3, 3)}, ©o is a smooth rational surface
With p(0θ) = 6, ©1,1,1 — Σ2, ©1,1,2 — Σ4, ©1,2,1 — Σl, ©1,2,2— Σs, ©2J /.S # SmOOth

rational surface with p(Θ2j) = 8 for /=1, 2, ©2,3 is # smooth rational surface
with p(02.3) = ll, ©(ij)-Σ2/0r/=l, 2, Θ(ίJ)^P2for (i, ;)ej, ©(3,, ,i)-Σ4,
©(3,j,2) — Σ2, Θ(3j,3) — P1XP1 and Θ&j,4) is a smooth rational surface with
p(Θ(3j,4))=4. ©o* ©1,1,1 is # 0-cwrve 0« ©o α«rf is a ( — 2)-curve on
©1,1,1 *©o ©1,2,1 is a ( — l)-curve on ©o #«£/ is a ( — ί)-curve on ©1,2,1. Θo Θ2j
is a ( — ί)-curve on ©o and is a ( — ί)-curve on Θ2j for j=l, 2. ©o ©2,s is a
Q-curve on ©o and is a ( — 2}-curve on ©2,3. ©o ©d,j) is a ( — 2)-curve on ©o
and is a fiber of the ruling on ©uj) for ; = 1, 2. ©0 Θ®j,4) is a (~2}-curve
on ©o and is a 0-curve on Θ&j^ for j—1, 2. ©1,1,1'©1,1,2 is a °°-section on
©1,1,1 tfwrf is α (—4)-curve on ©1,1,2. ©1,2,1 ©1,2,2 is a ^-section on ©1,2,1 and
is a ( — 3)-curve on ©1,2,2. Θι,ι,k Θ2j is a ( — 2) curve on Θ2j and is a fibre
of the ruling on ΘI.I.A for j, k = l, 2. ©I,I,Λ ©2,3 are ίwo disjoint ( — 2) curves
on Θ2j and are two fibres of the ruling on ©1,1,k for k=l, 2. ©1,2,*' ©2,3 is
a ( — 2) cwrve on ©2,3 #«*/ is fl fibre of the ruling on Θι,2,k for k — \, 2.
Θ2j Θ(ij) is a (~2}-curve on &(\j) and is a 0-curve on Θ2j for j=1, 2.
Θ2j Θ(ij) is a ( — 3)-curve on Θ2j and is a line on Θaj) for (i, j}^^>.
Θ2j Θ(3j,k) is a ( — 2)-curve on Θ2j and is a fibre of the ruling on Θ(3j,k)for
/, k=l9 2. ©2,j" ©(3,j,3) is a ( — \}-curve on Θ2j and is a fibre of the first
projection Θ(zj,3)—*P1 for ; = 1, 2. ©2j ©(3j,4) is a ( — 3)-cwrve on Θ2j and is
a l-curve on ©oj,4)/or j=1, 2. ©(SSJ.D ©(3j,2) is α (—4)-cwrve o« ©(3,j,υ α«rf
is a ^-section on ©(3,j,2), ©o,^)*©(3,j,3) is α ( — 2)-curve on ©(3,^,2) α«ί/ is a
fibre of the second projection Θ&jjr^P1, &OJA) is a fiber of the second
projection Θ^j^Γ^P1 and is a ( — 2}-curve on Θ(3j,4)for ; = 1, 2. ©ι,2,A'©oj,4)
is a ( — 2) α/rve o« ©(3,j,4) and is a fibre of the ruling on Θι,2,k for j, k — \,
2. ©0Π Θι,i,2=$ for /=!, 2. ©0Π Θ(3j,k)=$ for j=l, 2, k=l, 2, 3. ©i.i^Π
θιM>=Qfor any k, kf. ©2,,-Π θ2j> = V if j*f. θιMnθ2j = Vfor j, k = l, 2.
©i.i.ftΠ Θ(3,j,k')=ψ for any k k'. Θι,2,kΓιΘ(3j,k')=ψ except if &'=4. Θaj)Γ\

)=tf for (/, y)^^5. ©d,j)n(©\(©2,^U Θo))=$ for j—1, 2

/*(0)-12©o+Σ(8©ι,z ,ι+4©ι,z ,2)+Σ6©2,J + Σ 2©(Z ,,)+Σ
' ' J = l

: = {(2, 1), (2, 2), (1, 3), (2, 3), (3, 3)}, ©0 is a normal rational surface
with p(Θo)=2 which has four singular points {p{J\ q(j} j=l, 2} of type A2,ι,
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©1,1,1 —Σ2, Θι,ι,2 —Σ4, 0ι,2,ι fc a normal rational surface with p(0ι,2,ι) —2
which has four singular points {q[j} / = !, 2, j = l, 2} of type A2,ι, ©1,2,2 is a
normal rational surface with p( 01,2,2)=2 Wπcλ λαs /0«/- singular points
[q\j} / = 2, 3, / = !, 2} 0/ fy/?e A,i, 02,j is a normal rational surface with
p(©2,, ) = 8 which has five sdngular points {p%\ qV} 1<£<2, l</<3} <?/
type A2,ι for j=l, 2, 02,3 is a smooth rational surface with p(02,3) = ll, Θaj)
^P2 for any i, j. SmgX={p%\ q\ό} 1<:£<2, l</<3, l<j<2} and
analytic locally, (pij\ qP^X, 0) = (C3, {xy=0})/Z2(l9 1, 1), (ί^X ©) =
(C3, {*=0})/Z2(1, 1, 1) and (tf^X, Θ} = (C\ {xyz=0})/Z2(l, 1, 1) for k=
1, 2, /—I, 2. 0o 0ι,ι,ι /s α Q-curve on 0o #«*/ & a (~2}-curve on 0ι,ι,ι. ΓAe
strict transform of 0o 0ι,2,ι /^ a ( — Ϋ)-curve on the minimal resolution of 0o
and is a ( — 2}-curve on on the minimal resolution of ©1,2,1. The strict
transform of 0o 02j is a ( — ϊ)-curve on the minimal resolution of 0o and
is a (~2}-curve on the minimal resolution of &2j for j=l, 2. 0o ©2,s is a
0-curve on ©o and is a ( — 2)-curve on ©2,3. ©1,1,1* ©1,1,2 is a °°-section on
©1,1,1 and is a (—£)-curve on ©1,1,2. The strict transform of ©1,2,1 ©1,2,2 is a
0-curve on the minimal resolution of ©1,2,1 and is a ( — 3)-curve on the
minimal resolution of ©1,2,2. ©1,1,* -©2,, is a ( — 2) curve on Θ2j and is a fibre
of the ruling on ©1,1,k for /, £ = 1, 2. ©1,1,* ©2,3 are two disjoint ( — 2) curves
on 02j and are two fibres of the ruling on Θι,ι,* for k = l, 2. The strict
transform of Θι,2tk &2j is a ( — 2) curve on the minimal resolution of 02j
and is a ( — Ϋ)-curve on the minimal resolution of ©1,2,* for k=l, 2, /—I, 2.
©ι,2,* ©2,3 is a ( — 2) curve on ©2,3 and is a fibre of the ruling on ©1,2,^ for
k=l, 2. ©2,j ©(f,j) is a ( — 3)-curve on 02j and is a line on Θaj)^Λ.
&2j Θ(3j) is a ( — 6)-curve on 02j and is a line on Θ(3j)for j = l, 2. ©0Π ©ι,z,2
=0/o/ ί=l,2. θι.ι,kΓ\θι.2.k'=βforanyk,k'. ©2,, n ©2,^=0 if
n(©\©2,,)=0 for any i, j (see Figure XΠβ 2).

where ©o is a normal rational surface with p(©o)=4 which has two singular
points {p{j) / = !, 2} o/ /y/?e ^2,1, ©1,1 is a normal rational surface with
p(θιfι) = 6 w/z/cA has four singular points {q(j} 1<;<4} o/ ίy/?^ AM, ©1,2 /^
α normal rational surface with p(Θι,2)=5 which has three singular points
{rι\ 1 = 1, 2, 3}, ne©1>2 is of type A^ for 1 = 1, 2 and r3<Ξ©ι,2 is of type
Az,ι. 02j is a normal rational surface with p(02j)=2 which has two
singular points {p^ l<k<2} of type Λ2,ι for j = l, 2, ©2,3 —Σi and Θ(2j) —
Σ>2forj=l,2. SmgX={pV; 1<;<2, !<^<2)U{^ω l<;<4}U{r/; 1
</<3} and analytic locally, (p{J)<ΞX, β) = (C8, {^y=0)}/2T2(l, 1, D and
analytic locally around p^j\l<j<2}y #ω(l</<4), r3, (X, ©) ίy isomorphic



MINIMAL DEGENERATION OF SURFACES WITH #=0 275

to the germ of the origin of (C\ {z=Q})/Z2(l, 1, 1) and (
C\ U=0})/Z4(3, 1, 1) /or / = !, 2. ©0 ©ι,ι & a Q-curve on ©0 α«rf is a
( — 2}-curve on ©1,1,1 ©o ©1,2 is α (~ΐ)-curve on ©0 UTM/ ©1,2. Γλe .tf/ fcί
transformof ©o ©2,j & 0 ( — ί)-curve on the minimal resolution of ©o fl«*/
ίλe minimal resolution of &2j for 7 = 1, 2. Θo ©2,3 is a Q-curve on Θo and is
a ( — ί)-curve on ©2,3. ©u •©2,j is a ( — 2) cwrve o« Θι,ι #«*/ is 0 0-c«rve on
02 j for 7 = 1, 2. ©1,1 '©2,3 <zre ίwo disjoint ( — 2) curves on &\,\ fnd are two
Q-curves on ©2,3. Θ\,2 Θ(2j) is # (—4) cwrve o# ©1,2 α«rf is a °o -section of
Θ(2j) for j = I, 2. Θι,2φ 02,3 is a ( — 2) curve on ©1,2 and is a fibre of the ruling
on ©2,3. 02j 0(2j) is a Q-curve on 02,j and is a ( — 2}-curve on Θ(2j) for j —
1,2. 01.1(101.2=0. 02jn02,, '=0 i/ Φ/. βι.ιnβ(2j)=0/or; = l, 2. 0(2,, )
n(β\(βoUβι.2Uβ2j))=S /or ; = 1, 2 (see Figure XΠP-3).

/*(o)=i2βo+;ΣMβι.<+;2 6θaj+Σ] 3β(u)
t — 1 j — 1 j — 1

where Θo is a normal rational surface with p(Θo)—4 which has two singular
points [q(j} 7 = 1, 2} of type Aι,\, ©1,1 is a normal rational surface with
p(Θι,ι) = 6 which has four singular points [pu) l</<4} of type Az,ι, ©1,2 is
a normal rational surface with ^(©1,2) —5 which has seven singular points q^
(1<7<2, 1<&<3), q(Z\ qφ (l</<2, 1<&<2), <?(3)<Ξ©lj2 are of type Au
and q^ (l</<2)^©ι,2 are of type A*,ι, ©2^ is a normal rational surface
with p(@2j) = 2 which has two singular points [q%} 1<&<2} of type A2,ιfor
7 = 1, 2, ©2,3-Σι and ©(ι,, )^Σ2/or 7 = !, 2. Sing X={pu) 1<7<4}U{^'),
^(3); 1<7<2, 1<^<3) and analytic locally around p(j) (l</^4) and q(3\
(X, ©) is isomorphic to the germ of the origin of (C3, {z=Q})/Z2(l, 1,1), (q\j}

and (q^^X, &} = (C\ U=0})/Z4(1, 1, 3) for j=l, 2. ©0 ©ι,ι is a 0-curve
on Θo and is a ( — 2}-curve on ©1,1. The strict transform of ©0 ©ι,2 is a
( — ί)-curve on the minimal resolution of Θo and is a ( — 2)-curve on on the
minimal resolution of ©1,2. The strict transform of ©o ©2,j is a (~l)-curve
on the minimal resolution otf Θo and on the minimal resolution of &2j for
7 = 1, 2. ©o ©2,3 is a 0-curve on Θo and is a ( — ί)-curve on ©2,3. Θo Θij is
a ( — 2)-curve on Θo and is a fibre of the ruling on θιjforj=l, 2. θι,ι @2j
is a ( — 2) curve on ©1,1 and is a 0-curve on ©2j for 7 = 1, 2. ©1,1 ©2,3 consists
of two disjoint ( — 2) curves on ©1,1 and is two fibres of the ruling on ©2,3.
The strct transform of ©1,2' ©2,j is a ( — 2) curve on the minimal resolution of
©2,2 and is a ( — l)-curve on the minimal resolution of @2j for 7 = 1, 2.
©1,2'©2,3 is a ( — 2) curve on ©1,2 and is a fibre of the ruling on ©2,3.
©2j ©d,j) is a fibre of the ruling on ©2j and is a ( — 2}-curve on Θ(ij) for
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j=l, 2 (see Figure XII β A}.

REMARKO.I. The above degeneration / : X— ><?) is minimal degeneration
except the cases XIL-2, 3, 4, XII β-2, 3, 4.

REMARK 6.2. Let (5, Zί) be a lΌ-log surface of abelian type and π : S— >S be
the global log canonical cover. Let r be the order of Gal ( 5/5). Consider the
action of Gal(5/5) to 5 X<® such that a((p, t)) = (σ(p), ζwt) for any (p, t)^ S
X S), where G is a generator of Gal( 5/5) and ζ is a primitive r-th root of unity.
For an appropriate w^N, f : 5 X<?)/<(7>— »<0/<(7> is a log minimal degenera-
tion. In this way, we can easily construct examples of degeneration except the cases
Πβ9 Πr, I!,, IΠβ-l, 2, 7//r-l, 2, ///* (0>0, s>0), IVβ-l, 2, /Fr (ίi, f2)=Kθ, 0), (4, 4)
and IVδ.

From the above theorem, we can calculate the Euler number of the special
fibre in certain cases.

Corollary 6.1. The Euler number of the special fibre of the above degener-
ation is 0 in the cases I, IIa, Πβ, II7, H9, Πe, ///«-!, 2, ///,-!, 2, IΠ7-l, 2, IVa-l, 2,
IVβ-1, 2 and VL-1, 2, 24 in the cases IΠδ (f =9, 5-0), IV7, IV, (ίι = ί2=4), V77-l,
VIs-l, 34 in the case VΊ, 12 in the case V-3, 42 in the case Vlβ-l, 60 in the case
VΠa-1, 48 in the case XΠβΛ.

REMARK 6.3. The above numbers do not depend on the choice of minimal
models (see [8]).

To prove Theorem 6.1, we prepare the following lemma.

Lemma 6.1. Let f : (X, Θ)— »<Sϋ be a log minimal degeneration such that
Θ is irreducible and suppose that 0g(rCK"g + Diff$(0)))— Os. for r^N. Then we
have 0 x(r(Kχ+Θ}}—0 x after shrinking D // necessary.

Proof. P u t J :=Coker{Ox(rKχ)-^Ox(r(Kχ+Θ}}} a n d U\ = { \ x
(r(Kχ-\-Θ}} is Cartier in the neighborhood of p.}. We note that U is an open
subset of X which has codimension 3. Let j : U-+X be the natural embedding.

Claim Rlj*(ΓlOx(rKχ)}=ΰ.
Proof of the Claim. We may assume that X is affine. Let π : X~^X be the

log canonical cover with respect to Kx, πu be the restriction of π to U : = π~1(U)
and j : U-+X be the natural embedding. We note that X has only Gorenstein
canonical singularities. Since π is finite and X is Cohen Macaulay, we have

0, hence Rlj*(ΓlO χ(iKχ)) = Q for any i<ΞZ.
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Proof of Lemma 6.1 continued. By the above claim, we get 3 =j*j~13' =0 §
and the following exact sequence

The above exact sequence induces the following exact sequence

Since Kx is /-semi-ample, Rl f*0 x(rKχ) is torsion free and 7 is an isomorphism
on £)*. Therefore we have Ker 7=0, hence β is a zero map and a is surjective. Let
θ be a section of H°(Oχ(r(Kx+Θ)) such that a(θ) = l. By construction, we have
dim(Suppdiv #ΠSupp θ)=0, hence Suppdiv #ΠSupp θ=tf since Supp div θ

is Q-Cartier. Thus we get the assertion.

Proof of Theorem 6.1. Firstly, we note that Sing XcSupp Diffg(O) U Sing
θ by [20], Corollary 3.7. Put r : = CI(Θ, Diflk(O)) and Let π :X^X be the global
log canonical cover with respect to (X, Θ). Since (X, Θ) is purely log terminal,
(X, π~lθ) is also purely log terminal by [20], Corollary 2.2 and in fact, canonical,

sdnce Kχ + π~lΘ is Cartier. Taking analytic Stein factorization, we have a

surjective and connected projective morphism / : X—*£) from X to a complex
disk 3) sumh that f°π=τ° /, where τ : £)—*£) is the induced finite morphism.

Put Θ : = π~1Θ. Taking adjunction from Kx + Θ = π*(Kx+ Θ), we have Q^K§ =
Λ *(/fβH~Diffβ(0)), hence π : Θ-+Θ is the global log canonical cover with respect
to (Θ, Diffg(O)). Since Θ is smooth by assumption, X is smooth by [20], Corollary
3.7, hence X has only quotient singularities. Since the support of singular fibre of
/ is an abelian surface, / *( t} is also an abelian surface for t ^<50*, hence f*(t)

is an abelian surface or a hyperelliptic surface for t^£)*. Assume that Θ is

rational. From Lemma 6.1, rKXt — Q for t^όb*. In particular, if r = 5, then Xt is

an abelian surface for t^3)* by the classification of surfaces. Let m be the

multiplicity of Θ. Since /*(0) = rβ from [5], Lemma 6.1, we have rΘ = π*f*(Q)
= /*r*(0)=deg τmΘ. Put / :=Min {n<ΞN ' ; nKXt-0 (t<Ξ$)*)}. Then we have

deg τ=r/l, hence m=l. Annume that Xt is an abelian surface for t^3)*. By the
assumption, / is smooth. Let (T be a generator of Gal(X/X). Choose the basis Cϋi,

(ΰ2 of H°(Θ, £f^)such that σ*ωi=ζWiωi(i=l, 2), where ξ is a primitive r-th root

of unity and Wι, z = l, 2 is a non-negative integer. Since Θ is (7-invariant, we can
write cr* / = ξ'"'3 / , where ^3 is a non-negative integer. Noting that Θ is an abelian

surface, for all fixed point p^Θ under the action of (7, π(p)€ΞX is a quotient

singularity of type (l/r)(wι, W2, ^3), that is, all singularities of images of fixed
points of a are of the same type if the generic fibre is an abelian surface.

Cases where (Θ, Diff *(0)) is of type /, //, ///*, ///,, 7//7, IVa, IVβ or IV a can
be treated in the same way as degeneration of elliptic curves.

Assume that (Θ, Diff @(0)) is of type Ills in Theorem 5.1. Let p^X be a fixed



278 K. OHNO

point of 6. From the above argument, analytic locally around π(p\ (X, Θ} is
isomorphic to the germ of the orign of (1) (C3, {*=0})/Z3(1, 1, 1) or (2) (C3, (z=
0})/Zs(l, 1, 2). We blow up the singular points of type (1) and we are in the case

III s in Theorem 6.1.
Assume that (<9, Diff @(0)) is of type IVγ or IV$ in Theoren 5.1. Let p^X be

a fixed point of a. Then analytic locally around π(p\ (X, 0) is isomorphic to the
germ of the origin of (1)(C3, {*=0})/Z4(1, 2, l) or (2)(C3, {*r=0})/Z4(l, 2, 3). By
taking a crepant blowing-up, we see that we are in the case IV7 or IVs in Theorem

6.1.
Assume that (Θ, Diff @(0)) is of type V in Theorem 5.1. Let p^X be a fixed

point of a. Then analytic locally around π(p\ (X, (9) is isomorphic to the germ
of the origin of (1)(C3, {*=0})/ZB(1, 2, 2) or(2)(C3, {^=0})/ZB(1, 2, 3). (3)(C3, (z
= 0})/Zs(l, 2, 1). From the above argument, all of the singularities of X is of the
same type. In case (1), (resp. (2)), we are in the case V-l (resp. V-2) in Theorem
6.1. Assume that we are in the case (3). Let : Y-+X be the resolution as in the
Figure V-3.1. Then we have

where Θo : = μ^1Θo and Θι,t , 02, ί are /^-exceptional divisors for l<z^5. Since
KY li= — \, where /zC02,e be a line, we can see that {/*•; l<z<5} generate
extremal rays. Let φ\\ Yo:= F— > Yί be the blow down of all of these rays (see
Figure F-3.2) nd put 0έυ \ = φι*Θo, 0$ ~φι*Θι.i. We note that all of the support
of extremal rays are contained in 0<$υ. Let q>2 : Yϊ— » Yz be the contraction of an
extremal ray. Assume first that 04υ is divisorially contracted. By the Q-factoriality
otf Y2, ^2(Θίυ) is a curve. We use the same notation for the induced morphism φ z :
ΘP-*92(ΘPY^P\ For any point pGφ2(θW, φί(p) is written as φ$(p) =
'ΣjMϊjlj, where lj — Pl and \Jjlj is a tree of rational curves. Since we have 1 =
(-KYί, φ*(p)) = Σ>jmj(-KYί, lj) and 2(-KYl, lj)^N for any j, φί(p) is one of
the following (1) φ*(p)=l, where / — Pl and Θίυ is smooth in the neighborhood
of /, (2) φί(p)=lι + h9 where Ij^P1 for ; = 1, 2 and (Λ, /2) = 1. θίυ has two
singular points &(} = !, 2) of type ^2,1 on Supp ?>*(/>) such that Qj€Ξlj\lιΓ\ h(j—
1, 2), (3) φ* (p) = 2l, where / — P1 and Θίυ has one singular point <7 of type A2,ι
on Supp φ$(p) or (4) φ*(p) = l\ + k, where 6-P1 for 7 = 1, 2 and l\ and /2 = 1
intersect at one point q. Θίυ has one singular point ^ of type A2,ι on Supp φ*(p).
The cases (2) and (3) are excluded by trivial reason. Put C$ : = θ{i

1ί|βί» and let /
be a general fibre of φz : ΘP-^P\ Since we have ΣLiCCίίί, /) = 5 and (Cί.V, /)
>0 for any ί by the Q-factoriality of F2, we get (C$, /) = ! for any /. Let ̂ ^Θ

ill- be any point described as in (4). If C[}} does not pass through q, then we may
assume that (<9$, /ι) = l and (<9$, /2) = 0. Since $?2 is an extremal contraction, we
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get a contradiction. Therefore, for any z, C{}} passes through q, but which is
absurd. Thus we conclude that ψi is a small contraction. Let C be an irreducible
curve which is contained in the exceptional locus of 92. From [13] , we can see that
C — P1 and C passes through only one singular point of Yί. Put Cίί? :=&$}\w and
C$ := Θ£l\ey» for l<z<5. Let C be the strict transform of C on Θί0). Since we
have (-/fy l9 C) = l/2, we have

Cίϊί, C' = g Cί?ί, C' + ( l/2)g α°J, C

Noting that KY and #y + Θo + (l/5)Σ?=ι Θι,ί + (3/5)Σ?=ι Θ2,i is relatively numer-
ical equivalent over 3), we see that (F2, Θ<$2) + (l/5)Σ*=ι βίf.O is divisorially log
terminal, hence Θi2) is normal and (Θί2), (l/5)Σ?=ι CίfD is also divisorially log
terminal by [20], (3.2.3), where &ί?} : = φ2*Θίΐ\ Θ$—φ2*θί*l and Cl?}: = 0>2*
C$. Thus we conclude that (ΣLi Cί?i, C'))=2 and (ΣLi C$, C') = l- Moreover,
since we have K*- C'=(-(2/5)ΣLι Cί?]-(l/5)ΣLι Cί?}, C')=-l and C'2<0,
we get C/2<0, we get C'2= — 1. We can get the flip of C by blowing-up along C"
and contract the exceptional divisor which is isomorphic to P1 X P1 along the other
ruling (see Figure F-3.2 and F-3.3). By the same way as above, we carry out flips
four more times and we get the model as in Figure F-3.4. The strict transform of
Θo on this model is isomorphic to a Hirzebruch surface and after contracting this
component along fibres of the ruling, we get a minimal model as described in
Theorem 6.1 V-3.

Assume that (0, Diffg(O) is of type Vlβ in Theorem 5.1. Lep p^X be a fixed
point of a. We see that analytic locally around π(p)9 (X, &) is isomorphic to the
germ of the origin of (1) (C3, (xr=0})/Z6(3, 2, 1) or (2) (C3, fc=0})/Z6(3, 2, 5). We
resolve these singularities and calculate the intersection number with the special
fibre of the induced fibration and the strict transform of an irreducible component
of Diffβ(O) whose coefficient is 1/2 to see that for all of the fixed points p^X of
(7, π(p) has the same type described as above. Thus we are in the case Vlβ-l or
Vlβ-l or VIβ-2 in Theorem 6.1.

Assume that (Θ, Diflfe(O)) is of type VIr or VI 9 in Theorem 5.1. Let p^X be
a fixed point of a. We can see that analytic locally around π(p), (X, &) is
isomorphic to the germ of the origin of (1) (C3, {£=0}/Z6(2,5,5)) or (2) (C3, [z=
0}/Zθ(2, 5, 1)). We resolve these singularities and calculate the intersection number
with the special fibre of the induced fibration and the strict transform of an
irreducible component of Diffβ(O) whose coefficient is 1/2 to see that for all of the
fixed point p^X of σ, π(p) has the same type described as above. From the proof
of Theorem 5.1, & has a structure of /^-fibration all of whose fibres are irreducible.
Take an irreducible reduced curve Γ which is contained in a fibre and passes
through the singular points of Θ. We resolve X and calculate the intersection
number with the special fibre of the induced fibration and the strict transform of
Γ to see that analytic locally around all the other singular points of X, (X, Θ) is
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isomorphic to the germ of the origin of (C3, {z=0})/Zs(l, 1, 1) in the case (1) and
(C3, te=0})/Z3(l, 1, 2) in the case (2). Thus we are in the case V77-l, FΛ-1, VIr-2

or Vh-2 in Theorem 6.1.

Assume that (Θ, Diff@(0)) is of type XIIa in Theorem 5.1. Let p^X be a fixed
point of <7. From the above argument, analytic locally around π(p\ (X, Θ) is

isomorphic to the germ of the origin of (1) (C3, {z=Q})/Zι2(4, 3, 5) or (2) (C3, {z

= 0})/Zι2(4, 3,1). (3) (C3, {*=0})/Zι2(4, 3,11), (4) (C3, {*=0})/Z12(4, 3, 7). In the

same way as above, we see that for all of the fixed points p^X of (7, π(p) has the

same type described as above and we are in the cases XΠa-l, 2, 3, 4 in Theorem 6.
1.

Assume that (β, Dfflfe(O)) is of type X7//? in Theorem 5.1. Let p^X be a fixed
point of σ. From the above argument, analytic locally around 7ΐ(p), (X, Θ) is
isomorphic to the germ of the origin of (1) (C3, {^=0})/Zι2(2, 3, 7) or (2) (C3, [z

=0})/Zι2(2, 3, 1). (3) (C3, {*=0})/Zι2(2, 3, 5), (4) (C3, {*=0})/Zι2(2, 3,11). In the
same way as above, we see that for all of the fixed point p^X of (7, ττ(p) has the

same type described as above and we are in the cases XII/?-!, 2, 3, 4 in Theorem 6.

1.
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FigureV'-3.4
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FigureVIβ-2
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FigureV17-1
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FigureXΠβ-3
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FigureXIIβ-4
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