|

) <

The University of Osaka
Institutional Knowledge Archive

Tale Toward determination of the singular fibers of
minimal degeneration of surfaces with k=0

Author(s) |Ohno, Koji

Osaka Journal of Mathematics. 1996, 33(1), bp.

Citation 235-305

Version Type|VoR

URL https://doi.org/10.18910/4927

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Ohno, K
Osaka J. Math.
33 (1996), 235-305

TOWARD DETERMINATION OF THE SINGULAR
FIBERS OF MINIMAL DEGENERATION OF
SURFACES WITH k=0

Kot OHNO

(Received December 21, 1994)

1. Introduction

Let f: X—D be a projective surjective morphism from a complex normal
3-fold X to a disk D : ={z€C; |2/<1}. Assume that f is a minimal degenera-
tion of surfaces, i.e., X has only Q-factorial terminal singularities with nef canoni-
cal divisor Kx, and that general fibers are smoooth minimal surfaces with x=0.
The standard way for studying this degeneration is to use the so called semistable
reduction, but it is impracticable in general. Another way was suggested by Y.
Kawamata in [7], which may be called a log minimal reduction and explained as
follows. Put ®: =/*(0)req, take a log resolution for the log pair (X, @), u«
(Y, Oy)—(X, ©)and apply the log minimal model program for (Y, Oy). Then
after shrinking 2 with a pI‘O_]CCthC surjective morphism f: X—>D, where X is
normal Q-factorial 3-fold, (X @) is strlctly log terminal in the sense of [20] and
K3+ is f-nef. We note here that X\Supp & is smooth, and Supp ®=Supp

7*(0). We call this new degeneration a log minimal degeneration. Log minimal
degenerations can be studied in the same way as usual semistable degeneration, for
example, irreducible components of the special fiber are normal and cross normally
(see [20], Corollary 3.8). We should note that the theory of the log minimal
degeneration was predicted in [18], (8.9). The aim of this paper is to determine (up
to flops) the singular fiber of a minimal degeneration of surfaces with x =0 of type
IT (see Definition 4.1) in the special case as explained in the statement of Theorem
4.3 and of type I (see Definition 5.1) under the condition that an associated log
minimal degeneration has an irreducible component which is a vo-log surface of
abelian type (see Definition 5.3) by the above method. In the section 2, we firstly
review degenerations of elliptic curves as warming-up. We classify vo-log surfaces
of type II in the section 3 and apply these results to degenerations of type II in the
section 4. In the section 5, we classify v-log surfaces of abelian type which is an
ideal generalization of a log Enriques surface whose log canonical cover is an

*This work is partially supported by the Fujukai Foundation.
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abelian surface in the sense of D.-Q. Zhang [25] and apply these results to a
classification of degenerations of type I associated with ve-log surfaces of abelian
type in the section 5. So far our list in this section does not cover litaka-Ueno’s
work on the first kind of degenerations of principally polarlized abelian surfaces
[23], [24], but out statement is made under weaker assumptions on the general
fible, which is important for applications to 3-folds. Our method is simple but
powerful, so we expect that this method would work in any characteristic.

NoTATIONS and CONVENTIONS

In what follows we shall use the following notations.

An,q: A surface singularity which is defined by the automorphism of C? o:
(x, ¥)—(&x, ¢%) were n, gEN and ¢ is thee primitive #-th root of unity is called
the quotient singularity of type An,q.

(1/n)(w1, w2, ws): A 3-dimensional singularity which is defined by the
automorphism of C?, ¢: (x, vy, 2)—(&*'x, &£*%y, £*3z) where n, w:EN for i=1,
2, 3 and ¢ is the primitive #-th root of unity is called the quotient singularity of
type (1/%)(w1, w2, ws).

By (Cs, {xy=0})/Zx(1, 1, 1) for instance, we mean a pair ;

(C*/o>, {(x, ¥, 2E C?; xy=0}/<)),
where ¢ acts on C® such that ¢*(x, v, 2)=(—x, —y, —2).

214 : Hirzebruch surface of degree d. oo-section : A section on X with
self-intersection number d.

n-section : An irreducible curve on a ruled surface whose intersection number
with a fibre of the ruling is #.

(—n)-curve : A smooth connected rational curve on a surface with self inter-
section number (—#), where #EN.

~: linear equivalence.

~num : numerical equivalence.

| 4] : reduced part of the boundary 4.

{4} : fractional part of the boundary 4.

Xtop : topological Euler characteristic.

yv: X*—X : The normalization of a scheme X.

We use terminology such as strictly log terminal, purely log terminal and so on
freely. For definition of these terminology, we refer the reader to [20] or [10].

ACKNOWLEDGMENT. The author would like to express his gratitude to Prof.
Y. Kawamata for initiating him into the “Philosophy of log”, to Prof. N.Na-
kayama for pointing out several gaps and giving him useful advice, to Profs. S.
Tsunoda, A. Fujiki, K. Oguiso, M. Kobayashi, R. Goto for valuable discussions, to
Prof. M. Miyanishi for correcting inacuracies of the first version of this article and
for warm encouragement, to Prof. S. Mori for informing him about [1], Lemma 6.
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2 and to the referee for correcting typographical errors and simplifying the part of
the proof of Theorem 5.1 in the cases that Cartier indices are 3 and 5.

2. Degeneration of elliptic curves

Firstly, let us work log minimal degeneration of elliptic curves as warming-up.
The log minimal reductions of minimal degeneration of elliptic curves are well
known. Conversely, we can classify log minimal degeneration of elliptic curves by
using the adjunction theory, the classification of surface log cononical singularities
and [5], Lemma 6.1 as follows. We note that this gives another easy proof of [5],
Theorem 6.1.

Proposition 2.1. Letr f: S—O be a proper surjective morphism from a
normal surface S onto a disk . Assume that general fibers of f are smooth
elliptic curves and (S, 0) is weak Kawamata log terminal and Ks+ @ is f-nef,
where @ : F*(0)rea. Then the special fiber So: = f*(0) is classified as follows.
We note that they all exist.

mlotog So=mB. where mEN and O is a smooth elliptic curve.

nloiog: So is the singular fiber of a degeneration obtained by blowing up succes-
sively some singular loci of the support of the singular fibre of a minimal
degeneration of type mly(b=2).

Iotog : §o=2@, where @ is an irreducible smooth rational curve on which lie four
singular points of type Aa,.

I¥og: So, is the singular fiber obtained by blowing up singular points of the
support of the singular fiber of a log minimal degeneration g: (S, &)—
D.  So: =g*0)=2%20,(b=1), where O. are irreducible smooth
rational curves and O;* @.=1 for 0<i<b—1, @;-©;=0 otherwise.
And on each O, O, lie two quotient singular points of S of type As,.
Other singular points of S do not lie on 0;1<i<b—1.

ITog: So=60, where @ is an irreducible smooth rational curve on which lie three
quotient singular points of S of type As1,Az1, As, respehtively.

I §o=6@, where @ is an irredufible smooth rational curve on which lie three
quotient singular points of S of type Ass, Asi, Asz respectively.

Hlog: So=40, where @ is an irreducible smoooth rational curve on which lie
three quotient singular points of S of type As, Asi, Aay respectively.

Il : So=4 @, where @ is an irredlicible smooth rational curve on which lie three
quotient singular points of S of type Aus, Asy, Aus respectively.
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IVieg : §o=3@, where @ is an irredzicible smooth rational curve on which lie three
quotient singular points of S of type As,.

IVige §o=3@, where @ is an irreducible smooth rational curve on which lie three
quotient singular points of S of type Ass.

Proof. Take any irreducible component O of 6. Let {P:; i€1} be all
singular points of S which lie on . Put m; : ZJWeil(@f, #)|(=the order of the
Weil local class group of Os p) and 7#(@p) : =(O— @p)+ @y. Then

0=(Ks+6)- Gr=29(60)—2+ F 2L+ (6y),

where g(6y) is the genus of @y (see [20] or [10]). From the above formula, we can
derive g(@o)<1. When g(@o)=1, S is smooth and singular fiber is of type nfo,og.
So we may assume g(@o)=0 in what follows. Because we have n(@o)£2, we divide
the proof into three cases 7(6o)=0, 1, 2.

Case 7(6y)=0. In this case we have Xic/(m:—1)/m:=2, hence (m;; icl)=
(2,2,2,2),(2,3,6), (24, 4), (3, 3, 3).

Subcase (m;; i1€1)=(2, 2, 2, 2). In this case, we can deduce that the singular
fibre So is of type Iifos.

Subcase (m;; {€1)=(2, 3, 6). When the three singularities are of type Aa,1,
As,1, As, respectively, the strict transform @% of @ on the minimal resolution M
is a (—1)-curve. After blowing down (—1)-curves, we get a singular fiber of type
Iloe. When the three singularities are of type Asz,1, As,z2, As,1 respectively, we have
Ku+@i=—(2/3), which is contradiction. When the three singularities are of type
Asy, Asy, Ass respectively, we have Ku-@i=—(1/3), which is contradiction.
When the three singularities are of type A1, Asz2, Ass respectively, the strict
transform 6 is a (—2)-curve, of type A1, Asz, Ass respectively, the strict trans-
form @ is a (—2)-curve, so we get a singular fiber of type II*. Hence multiplicity
of @ in the singular fiber is 6 and we obtained a singular fiber of type [lidg.

Subcase (m:; i€1)=(2, 4, 4). When the three singularities are of type Az,
Au,1, Aa respectively, the strict transform 6% of @ on the minimal resolution is a
(—1)-curve and after blowing down (—1)-curves we get a singular fiber of type III.
Hence rultiplicity of @o in So is 4 and we obtain a singular fiber of type [ics.
When the three singularities are of type Az,1, As,1, Ass respectively, we have Ky 64
=—(1/2), which is a contradiction. When the three singularities are of type Az,
Aus, Aas respectively, the strict transform @ of G on the minimal resolution is a
(—2)-curve and we get a singular fiber of type III. Hence the multiplicity of @ in
So is 4 and we obtain a singular fiber of type IIL%.

Subcase (m;; 1E1)=(3, 3, 3). When the three singularities are of type As,1,
As,1, As, respectively, the strict transform @5 of @, on the minimal resolution is a
(—1)-curve and after blowing down the (—1)-curve, we get a singular fiber of type
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IV. Hence the multiplicity of @ in So is 3, so we obtained a singular fiber of type
IViee. When the three singularities are of type As,1, As,1, As,2 respectively, we have
Ky 0= —(2/3), which is a contradiction. When the three singularities are of type
Asy, Asz, Asz respectively, we have K+ @,=—(1/3), which is a contradiction.
When the three singularities are of type As,, the strict transform 6 is a (—2)-curve,
so we get a singular fiber of type /V*. Hence multiplicity of @ in the singular fiber
is 3 and we obtain a singular fiber of type /Vid.

Case n(@o) 1. In this case we have (m,; (€)= (2 2), so two singularities
of type Az, lie on @o. O has a unique component of So, say_ 6., which has non
empty intersection with @. O, has the same type as @o or n(@)=2. Thus we get
a chain of rational curves @o, @1, . @n and S has only four singularities of type
Aa,1, each two of which lie on @o, On respectively. After taking the minimal
resolution, this chain must be blown down to a singular fiber of type /. So we
obtain a singular fiber of type . Ios.

Case 7(@o)=2. Assume So is not a singular fiber of type I30s. Then we have
a cycle of rational curves, which must be blown down to a singular fiber of type n/s.
Thus we obtained a singular fiber of type nls,oe. [ |

3. Classiffication of vo-log surfaces of type II

Let f: (X, 6> be alog minimal degeneration of surfaces with x=0 and
let @; be any irreducible component of ®@. Then (O;, Diffs:(®— 7)) is a vo-log
surface in the following sense (see [20], (3.2.3)).

DEFINITION 3.1. A normal surface with a boundary (S, 4) is called a vo-log
surface, when the following conditions (1), (2), (3), (4) are satisfied.

(1) (S, 4) is weak Kawamata log terminal.
(2) Ks+4 ~num0,where ~num is the numerical equivalence.

(3) Suppl 4] NSupp{d}=0, where | 4] is the reduced part of 4 and {4} is
the fractional part of 4.

(4) All coefficients of 4 are elements of {(m—1)/m|meE N U{o}}

It is important to classify vo-log surfaces and the following is a key lemma to study
Vo-log surfaces which is proved essentially in the proof of Proposition 2.1.

Lemma 3.1. Let (S, 4) be a vo-log surface. Then a connected component
D of | 4] and the singularities of S in its neighborhood are one of the
following 7 types.

Lwg: D is a smooth elliptic curve and S is smooth in its neighborhood.
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Iojog: D=22%-1 C{(b=2), where C:’s form a cycle of rational curves forming a
cycle and S is smooth in its neighborhood.

Itheg: D is a smooth rational curve on which lie 4 quotient singularities of type
Az

I¥wg: D is a linear chain of rational curves, i.e., D=2% C{(b=1), where C:’
s are irreducible smooth rational curves an Ci+Ci11=1(0<:<b—1), C:*C;
=() otherwise, and each of edge curves Co, C, contains two singular points
of S of type As,..

Ileg: D is an irreducible smooth rational curve on which lie three quotient
singular points of S of type As, (or Ass), Az, Asy (or Asyz), respectively.

Illog: D is an irreducible smooth rational curve on which lie three quotient
singular points of S of type A1 (or Asz), Asx (or Asz), Az, respectively.

IVig: D is an irreducible smooth rational curve on which lie three quotient
singular points of S of type Asy or Aspa.

In what follows we shall classify vo-log surfaces in certain cases.

Lemma 3.2. (cf. [2], Lemma (6.1)) Let (S, 4) be a vo-log surface.

(1) Assume that there is a connected reduced curve CoC| 4] of type Ipie (b
<2) as in Lemma 3.1. Then 4=Co, O s(Ks+4)~0Os, S is rational and (S,
0) is canonical.

(2) Assume that there is a component of type log as in Lemma 3.1,i.e., a
smooth elliptic curve CoC| 4] . Then S is rational or birationally elliptic
ruled and (S,4) satisfies one of the following :

(@) A4=Co and (S, 4) is cononical.

(b) A=Co+ Cy, where C: is a smooth elliptic curve. Os(Ks+4)~0s, S is a
birationally elliptic ruled surface and (S, 4) is canonical.

(¢) 4=Co+(1/2)Ci+(1/2)Cs, where Ci, C. are smooth elliptic curves, S is
birationally elliptic ruled, (S, 4) is canonical and S is smooth in a
neighborhood of Supp 4.

(d) 4= Co+(1/2)C,, where Ci is an irreducible curve. S is birationally elliptic
ruled, (S, 4) is canonical and S is smooth in a neighborhood of Supp 4.

DEFINITION 3.2. A wv-log surface (S, 4) is called a vo-log surface of type 11,
11, 11, II,, II., Il;, when the conditions in (1), (2), (2-a), (2-b), (2-¢), (2-d) of
Lemma 3.2 are satisfied respectively.

Proof. First we note that S is rational or birationally ruled.
(1) Assume 42'(0s)>0. Let #: M—S be the minimal resolution and 7:
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M—N a birational morphism to a relatively minimal model N. N has a
P'-bundle structure p: N—1I" over a smooth curve of genus 4#'(Os). The assump-
tion implies that there is a rational irreducible component of z4xx*Co which
dominates I" or zxu*Co turns out to be a fibre of p, though both cases are absurd.
Hence S is rational. From an exact sequence :

0"@5("[ AJ )—’OS""@LAJ_)Oy

we have the following exact sequence :

HYO s ——H0| 4 )= HAO(~| 4] )0 (%)

Since S is rational, we have an injection H*(O| 4 )=>H*(Os(—| 4] )). On the
other hand, we have 1=4*(0¢,)<h'(O\ 4). Hence W*(Os(—| 4] ))>0. By the
Serre duality theorem, we get

W(O(=L 4] )=r"Fom(Os(—=| 4] ), ws)).
Since HKom(Os(—| 4] ), ws) is torsion-free, we have an injection
HO(%OM(@s(_L AJ ), ws))QHO(@s(KS‘H_ AJ ))

Hence #°(Os(Ks+| 4] ))>0. Since Ks+ d~num 0, for an ample divisor H on S,
we have

(Ks+| 4] )-H=—{4}-H
and
(Ks+| 4] )-H={4}-H=0.
Thus
{4}=0, Os(Ks+4)=0Os.

From Lemma 3.1, we can deduce that any connected component of L 4] other
than D is of type Io,og or Is105 (6=2), but since #'(O( 4 )=1, we have | 4] =C,,
i.e., 4=Co. S has only quotient singularities which are all Gorenstein, so (S, 0)
1s canonical.

(2) First we note that #'(Os)<1. For if #'(Os) >0, Co dominates I" for which
we used the same notation as in (1). From (%), we have the following exact
sequence :

0—=Im a—H' (0, 4 )= H*(Os(—| 4] ))-0.

We note that dim Im @<1. First assume that dim Im @=0. In this case we have
an injection H'(0| 4))>H*(Os(—| 4] )). In the same way as in the argument in
(1), we can deduce that 4=Co, Os(Ks+4)>~0Os and (S, 0) is cononical. So we
are in the case (2-a). In what follows we assume that dim Im ¢=1. Then, S is
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birationally elliptic ruled and we have (0| 4)<2.

Case %Y(O| 4 )=2; In this case, we have {4}=0, Os(Ks+4)~0O0s. Each
connected component of | 4 | is of type Jo,ios or Ip0e (6=2), but from (1), there
are no components of type Is,10s(5=2). Hence 4= Co+ Ci, where C; is a smooth
elliptic curve and we are in the case (2-0).

Case (O 4)=1; Let u: M—S, t: M—N, p: N—I be as in the proof of
(1). Since S has only rational singularities and I” is an elliptic curve, there is a
morphism 7 : S—I such that per=mopu. Let

A=Cot C+3 7= il ooy z ”Jn C¥)
be the decomposition of 4, where C is a reduced curve and C%” (1€I)(resp. C¥’
(JEJ)) are irreducible curves which are vertical (resp. horizontal) with respect to
7. Let / be a general fibre of 7. Then we have

0=(Ks+d)-I==2+Co I+ C I+ Z ”fn_ CP-1

from which we can deduce that (A)(n;; j€J)=(2, 2), C-1=0, Co+I=1, C;+I=
1(G=1, 2), where C;: =C¥ or (B)(n;; €])=(2), C-1=0, Co+I=1, Ci-1=2,
where Ci: =C%”

or (C) J=(, C+1=0, Co+ =2 since C does not contain any reduced curve of type
Iojog Or Ipiog (6=2) in Lemma 3.1. Since # is a minimal resolution, there is an
effective Q-divisor D such that Ky +D=p*(Ks+4). Put D : t«D. Then we can
write

D= Ci+(1/2)Ci+F, Case (B)

1C6+(1/2)C{+(1/2)CQ+F, Case (A)
Ci+F, Case (C)

where Cs, Ci, C; are the strict transform of Co, Ci, C: respectively and F is an
effective @-divisor composed of fibres of p. Note that and Kv+ D= (K + D)~
num 0. Theref re, we have

0=(KN+D)‘ s
{(KN+C6)~ Cs+(1/2)(C{+ C3): Co+ Co+ F, Case (A)

(Knv+Co)- Cs+(1/2)Ci+ Co+ Cs+ F, Case (B)
(Kn+C§)-Cé+ Ci+ F. Case (C)

In the case (A)(resp. (B)), since Co is a section of p, we have C;* Co=0 (1=
1, 2)(resp. Ci*Co=0) and F=0. In the case (C), let v: Co¥ — Co be the
normalization of Co. Since

Bt CO-Co 4= o) +dim v4Ocol O,
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we can deduce that =0 and Cp is a smooth elliptic curve. Since Ci, C: are
smooth in the case (A) and Ci is a 2-section (i.e., intersection number with a fibre
of p is 2) in the case (B), we can see that (N, D) is canonical. So we can write

Ku+1'D=1*(Ky+D)+E,
where E is an effective Q-divisor which is r-exceptional. Since

Ks+ 4= ps(Ku + %D
=uxt*(Kn+ D)+ u«E,

where 4 is the horizontal component of 4, and
0~numKs+4 ~num#*E+Av,
where 4, is the vertical component of 4, we have uxE=0, 4,=0. Hence

Co+(1/2)Ci+(1/2)Ce, Case(A)

4= Co+(1/2)Ci,  Case(B)
Co, Case(C)
and
Ks+d=pt*(Kv+D). (* %)
Write

D:ﬂ;ld‘f‘ ;IaiEi,

where {E:; i€} are all y-exceptional divisors and a.’s are non-negative rational
numbers for i€1. Since

0~ numKn +D= Z'*(KM+/1;IA) ~num %aiT*Ei,

we have X;ec/aitxE:=0. This implies that if #(E:)Nsuwpd*+0 or u(E:) is a
singular point of S other than a rational double point, then a;>0 and E: is
T-exceptional. So there is an open subset U CS such that the rational map o:
rou~ is a morphism on U and S\ U consists of rational double points of S which
do not lie in Supp 4. Put V: =g (U). From (* %), we have Ks+ 4|v=0*(Ky
+ D) and

Ku+ T;lEleKM“{'ﬂ;1A|V=(TlV)*(KN +E)_ %diEihl.

This implies a:<0 if #(E;)€ U. Thus we get a;=0 for all /€1, hence (S, 4) is
canonical and S is smooth in a neighborhood of suppd. In the case (A), Ci, C; are
smooth elliptic curves and we are in the case (2-¢). In the case (B)(resp. (C)), we
know that we are in the case (2-d)(resp. (2-a)). | |
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Definition 3.3.  Let (S, 4) be a vo-log surface of type II: (resp. type IIa). If (S,
4) is terminal in a neighborhood of Supp {4}, we call (S,4), a special v-log
surface of type Il (resp. of type Il.).

DEFINITION 3.4,

(@) A log surface (S,4) is called an elliptic singular vo-log surface of type I,
(resp. Ilc,resp. Ila) if S has only one simple elliptic singular point PE S and
(S, 4ds) is a w-log surface of type II, (resp. II., resp. Il.), where 4 : S—Sis
the minimal resolution of PES.

(b) Let S be a reduced irreducible surface which is Cohen-Macaulay and let 4 be
a boundary on S. We call (S, 4) a degenerate vo-log surface of type I, (resp.
11, resp. I1,), if (S,4) is semi-canonical and (S*, ©) is a w-log surface of type
II, (resp. I, resp. IIs), where v: S*—S is the normalization of S and @ is
defined by Ksv+ ®@=v*(Ks+ d)(For the definition of “semi-canonical”, see
[10] or [9].).

(¢) A log surface (S, 4) is called a quasi K3 surface if S has only two simple
elliptic singular points P, €S and (S, 4s) is a vo-log surface of type IIs,
where #: S—3S is the minimal resolution of P, P.ES.

(d) Let S be a reduced irreducible surface which is Cohen-Macaulay and let 4
be a boundary on S. We call (S, 4) an elliptic singular degenerate vo-log
surface if S has only one simple elliptic singular point PE S, (S\{P}, 4) is
semi-canonical and (S, @s) is of type II,, where O is defined as above and x :
S—S¥ is the minimal resolution of P.

4. Degeneration of type II

DEFINITION 4.1. A minimal degeneration of surfaces with x=0 f: X—D is
said to be of type II if f has a log minimal reduction f : (X, @)— such that
there is at least one irreducible component @; of @ such that | Diffs(&—0,)]
contains a connected component of type Joog as in Lemma 3.1.

From the results in the previous section, we obtain the following theorem.

Theorem 4.1. Let (X O) be a normal log 3-fold such that (X, @) is strictly
log terminal, | @] =6, Supp O is connected and Sing X CSupp 6. Assume
that (Kx+ 0)|6~num 0 and that there is at least one irreducible component @; of
O such that | Diffs, (@—6;)] contains a connected component of type loog as
in Lemma 3.1. Let O=2%%, O; be the irreducible decomposition. Then one of
the following holds.

(1) X has only terminal singularities. (@;, Diff 6 (B—6,)) is a vo-log surface
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of type I, for all i. ©:N@;#0 if |i—jl=1 or (i, )=(1, b) and 6:N §;=
0 if li—j1>1 and (i, )*Q, b).

(2) X has only canonical singularities and X\Supp {Diff ¢(0)} has only termi-
nal singularities. (@, Diff 5(@— 0,)) is a w-log surface of type II, for 2<
i<b—1 and of type Ila, II. or Il; for i=1, b. 6:NO,;+( if |i—j|=1 and
O:N @j:q if li—j|>1.

Proof. From the assumption and Lemma 3.2, there is an irreducible compo-
nent 6 of @ such that (@, Diffs, (@ @1)) is a vo-log surface of type II. Since 6
is connected, for any component @; of @, (0, Diffs(O— 6,)) is a vo-log surface of
type II. We note that in a neighborhood of Ue.cs Supp | Diffs (0—6,)] , X is
smooth. For a component @; of 8, if (@;, Diffs, (@— 6,)) is not a ve-log surface
of type II., we have {Diffs(@— 6,)}=0, so (X, O) is canonical in a neighborhood
of @ \Supp | Diffs, (§—6.)] by the following theorem.

Theorem 4.2. ([10], Corollary 17.2) Let (X, S+ B) be a normal log 3-fold
with only Q-factorial singularities. Assume that S is reduced, (X, S+ B) is log
canonical in codimension 2. Then we have

totaldiscrep (S*, Diffs«(B))=discrep (CenterN S+, X, S+ B),

where S” is the normalization of S. For the definition of ‘‘totaldiscrep” and
“discrep”, see [10].

Sincg Sing XCSupp (’?, we can deduce that (X, 0) is terminal in a neighborhood
of ®;\Supp | Diffs, (0—©;)] . From the following lemma, we get the desired
result.

Lemma 4.1. Let X be a normal Q-factorial complex 3-fold and let S be a
reduced irreducible surface on X. Assume that (X, S) is purely log terminal,
Sing X CS, (S, Diffs(0)) is canonical and all coefficients of the components of
Diffs (0) are 1/2. Then X has only canonical singularities.

Proof. Let t1: X°>X be the canonical blowing up, i.e., (4 is a projective
birational morphism from a normal 3-fold X° with only canonical singularities to
X and Kxc is mm-ample. Let 12: Y—X° be a Q-factorization of X¢ ie., w2 is a
projective birational morphism from a normal @-factorial 3-fold Y with only
canonical singularities to X° and 4 is isomorphic in codimension 1. Put ¢: =
1oz, Then we can write

Ky+ ;j djEj=/l*KX, #*S=§+ gj VjEJ

where S : =u5'S, the E; (GE]) are all g- exceptional divisors and the @, and the



246 K. OHNO

7; (JE€J) are positive rational numbers. From the above, we have

Ky + §+ g](dj"’ Tj)Ej':ﬂ*(KX'l"S)

and we can show that (Y, S ) is purely log terminal, in particular, S is normal.
Taking the adjunction of the above equality, we get

Since (S, Diffs(0)) is canonical, we have Z‘.jef(aj—i— 7;)E;ls=0. By the Q-
factoriality of Y, we can deduce that (U;e;E;) N S =0 which implies /=0 and X
has only canonical singularities. |

Starting with Theorem 4.1, we can have insight into the minimal degenerations
of type II.

Theorem 4.3. Let f: X—0 be a minimal projective degeneration of
surfaces with x=0 and let (X , 6) D be a log minimal reduction of f with
D shrunk if necessary. Assume that there is at least one irreducible component
O; of O such that | Diffs, (O+ 8:)] contains a connected component of type
Ioog as in Lemma 3.1 and that 6 does not contain non-special vo-log surfaces.
Then after flopping X over D if necessary, the singular fibre f*(0) has one of
the following types.

I: 7*(0)=m®, where mEN and O is an irreducible reduced surface such that
the non-normal locus of S is a smooth elliptic curve C and (0%, v'(C)) is
a w-log surface of type Il,, where v:. ©@*— @ is the normalization of ©.

II: f¥(0)=22%-1 m®,, where mEN, (O;, 2;+:05le,) is a vo-log surface of type
II, for all i, ©:NO;*( if |i—j|>1 and (i, 7)*(1, b).

I : £*(0)=X%-1 mO;, where meN. If b=2,(0;, X;+: Ojle,) is a vo-log surface
of type Il for 2<i<b—1 and (O;, X;+: Oile.)(i=1, b) is either a v-log
surface of type Il, or an elliptic singular or degenerate vo-log surface of type
II,. ©:NO;+0if |i—jl=1. 0:;:NO;=( if |i—j|>1. If b=1, O, is either
a quasi K3 surface or an elliptic singular or degenerate vo-log surface.

1V .
201 2mOy i+ 2% mBq,;, Case (a),

*(()) —
f (0)_{ ?:1 27}’L@1,z’+23’=1 m®2,j, Case (:8),

whero mEN and the ©.,; are elliptic ruled surfaces. In the case (a), if b
<2, (O1i, 212:01,0+(1/2)2%-1 Os5l6.,) is a special vo-log surface of type II.
Sfor i=1, of type Il, for 2<i<b—1 and for i=0b, a vo-log surface of type
11, or an elliptic singular or degenerate vo-log surface of type Il,. ©1,:N 6,
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*=( if li—jl=1. 0.,;NO,;=0 if |i—j|>1. Moreover, if b=1, (Or,,
(1/2)22-1 Os,5]0.,) is an elliptic singular or degenerate vo-log surface of type
II.. In the case (B), b=2 and (O1,;, 21+: O, +(1/2)2%=2 Osjl6..) is a vo-log
surface of type Il, for 2<i<b—1, a special w-log surface of type Il. for
i=1,b. SiNS;*=0 if |i—jl=1 and O1:NO;=0 if |i—j|>1.

S, 2mBy i+ mB,, Case (),

7=, 2mOui+ T3 mBys, Case (B),

where mEN, the O, and ©,; are ruled surfaces. In the case (a), if b=2,
(01,5,214:01,,+(1/2) 2% Os,5l0.,) is a special vo-log surface of type Ils for
i=1, of type Il, for 2<i<b—1 and for i=>, a w-log surface of type Il,
or an elliptic singular or degenerate vo-log surface of type Il G, @y, +(
if li—jl=1 and 6.:N6,;=0 if |i—j|>1. Moreover, if b=1, (O,
(1/2)2%, Os,j]0.,) is an elliptic singular or degenerate vo-log surface of type
Il,. In the case (ﬂ), b=2 and (@1,1‘, Diei On,,+(1/2)22, @1,j|9u) is a w-log
surface of type Il, for 2<i<b—1, a special w-log surface of type Il for
izl, b @1,1‘0 @1,,':":0 lf |i—j|=1 and @uﬂ @l,qu lf |i—j|>1.

VI -
b 3
f*(O)zlgl 2m6,; + g.‘.l Wl@z,j,

where mEN, 0,1, O are elliptic ruled surfaces, @3 is a ruled surface and
(O1,1, Diei O, +(1/2)28, @2,jl9”) is a w-log surface of type Il for 2<i<
b—1, a vw-log surface of type Ilc for i=1, of type Ils for i=>b. 61,:N O,
+0 if li—jl=1 and 0N O;=( if |i—j|>1.

ExaMPLE. There is a minimal degeneration whose special fibre has simple
elliptic singularities even if the total space is smooth. For example, let X be a
hypersurface in P*X 2 which is defined by the equation X*+ Y*+ X?Y?*+Z*W?
+H+(Z*+ W*), where X, Y, Z, W are homogeneous coordinates of P*and 0 : =
{teC; |t|<1/2}. Let f: X— be the morphism induced by the natural projec-
tion p: P*XD—. Then, it is easy to verify that X is smooth and has trivial
canonical bundle, X;: =f*(¢) is a smooth quartic surface for ##0 and that Xo is
normal and has only two simple elliptic singularities of type E- as its singularites
(see [19]).

Proof of Theorem 4.3. If (O;, Diffs, (@— @z)) is not a ve-log surface of type
II. or II, for any irreducible component 8; of @, f : X— can be obtained from
f : X— by running the minimal model program (Dshrunk if necessary). Let
@ be the strict transform of ® on X, then, there is a positive integer m such that
f%(0)=m0 since some multiples Kx and Kx+ @ are multiples of /*(0). If I : =
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{i; @CO, (0, Diffs(O— 6)) is a special vo-log surface of type II. or Il } is not
empty, then |7|=1 or 2 and (X, 0) is terminal outside of Z : = U:e;Supp{Diffs(O
—:)}. We can show that the singularities of X in a neighborhood of Z is Az
X Z by the following lemma.

Lemma 4.2. Let (p=EX,S) be a germ of 3-dimensional purely log terminal
singularity, where S is a Q-Cartier prime divisor. Assume that pES, X\S is
smooth and that (pE S, Diffs(0)) is terminal. Then pE X is a smooth point of
X or there is a positive integer m such that X is isomorphic to C*|Zx(1, q,0) near
pEX and 0€ C?/Z,(1, q, 0), where q is a positive integer such that (m, q)=1.

Proof of Lemma 4.2. Assume first that pE X does not lie on the support of
Diffs(0). From [10], Corollary 17.12, (X, S) is canonical outside the support of
Diffs(0). Since Sing XCS, (p€ X, 0) is terminal but by the proof of Lemma
5.3 in [10], p€ X is in fact smooth because p=S is smooth. Assume that p<
Supp Diffs(0). Let Diffs(0)=22{(m:—1)/m.}I: be the irreducible decomposition,
where the m; are integers which are equal to or larger than 2. Since (pE S,
Diffs(0)) is terminal, we have XX m:—1)/m:<1, whence [=1. So we may write
Diffs(0)={(m—1)/m}I", where m=2. Take the log canonical cover w: X—X
with respect to Kx+S and put S : =n7%S). Let mr be the local Cartier index
of Kx+S at p, where r is a positive integer, and assume that »r<1. From [10],
Lemma 16.13, (X, S) is purely log terminal, hence canonical. So Sisa disjoint
union of r-irreducible components, but this is absurd. Thus, we get ¥=1 and S
is irreducible. Since Sing XC S, (X, 0) is terminal, We have

Ks=(al9)*(Ks+24T)

and the proof of Corollary 2.2 in [20] shows that S is smooth. We can also check
this directly. Hence X is smooth and X must be a cyclic quotient singularity.
Thus the lemma follows from [6], Lemma 9.9. [ |

We blow-up these singularities to obtain o : )Z—»X’, where (X, 0) is terminal.
Let @:;(jEJ) be exceptional divisors of ¢ and put @: =05'0+3;c,(1/2)Gs,;.
Then we have Kx+@=0*(Ks+ @) and f: X—D can be obtained from foo:
(X, 6)-D by running the minimal model program with shrunk if necessary. Let
O be the strict transform of @ on X. Then some multiples of Kx+ ® and Kx are
multiples of 7*(0) and there is a positive integer » such that /*(0)=2m®. In the
course of applying the minimal model program, we have to care about divisorial
contractions which might produce bad degenerations. We know that irrational
surfaces are not contracted to points by the contraction associated with an extremal
ray.

Claim 1. If (@), (B— 6))|s) is a special v-log surface of type I or Il, O, is
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not contracted in the course of running the minimal model program.

Proof of Claim 1. Let 7?: X be a 3-fold over & which is obtained
from X by divisorial contractions and flips. Let p: X®— X% be a divisorial
contraction which contracts @f”, where @{” is the strict transform of @ on X,
First suppose that there is an irreducible component @§” of | @®] other than
Of? which has non-empty intersection with @, where 6” is the strict transform
of @ on X®. Let m1, 72 be multiplicities of @{”, @5 respectively, and let / be a
general fibre of the ruling of @{”. Since we have (K zo+ 6¥)- /=0, we have O+
=—Kxo+l—2. Since H(wz®0;)=0 and /CReg X®, we have —Kxo+l=1
and @f?-]/=—1. From this, we get

0=F9%0): [ =m O |+ no+m=no,

which is a contradiction. If there is no irreducible component of | @] , then
K %o is numerically trivial over £ and this leads to a contradiction. |

Claim 2. The divisorial contraction of a vo-log surface of type II, does not
change singularities locally on neighbouring surfaces.

Proof of Claim 2. Let o: X®— XV be a divisorial contraction associated
with an extremal ray which contracts @§" to a curve, where (01",(8— @5")|4p) is
a vo-log surface of type II,, and let / be a general fiber of the ruling of @f”. Let
65" be one of the neighbouring surfaces. Since we have (— G5 — K z)- =0,
— 08— Ko is p-trivial, hence R'0x0 xo(—05)=0 and O g»= pxO gw», where
OF*V=p405". So p induces an isomorphism @5~ @V, [ ]

Claim 3. When a v-log surface of type Il is contracted to a point by a
divisorial contraction, this contraction produces a simple elliptic singularity on a
neighbouring surface.

Proof of Claim 3. Let p: X®— X" be a divisorial contraction of an
extremal ray which contracts Of” to a point, where (O{", (6" — @{")|¢s) is a vo-log
surface of type Il.. Let 05" be a neighbouring surface. Since — O — 08— K g0
is o-trivial, R'040 z» (— 6, — @é“)=0. So we have a surjection

O 65— 0% 0 gp+ap. 4.1
From an exact sequence ;
0— 0 g — ééi))_’ O e+ae— 0 60,
we have the following exact sequence
Ox O 6+ 0% @ é{”—’Rlp* 0 @{"( - @éi))-

Put I': =680 Since I' is irreducible, we have an injection H1(~0 e(— 1))
H'Y(Oev). But since O is rational, we deduce that R0 go(— O5'=H (O gp
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(—I))=0. So we have a surjection

0x0 ap+a0— 0% O gp. (4.2)
From (4.1) and (4.2), we deduce that O ay»= px O g and I is contracted to a simple
elliptic singularity on @§*". [ |

Claim 4. When a w-log surface of type Il, is contracted to a curve by a
divisorial contraction, this contraction produces non-normal singularities on the
neighbouring surfaces, but these singularities are Cohen-Macaulay and semi-
canonical.

Proof of Claim 4. Let p: X®— XD be a divisorial contraction of an
extremal ray which contracts @4 to a curve, where (O, (@) — Of")|sp) is a vo-log
surface of type Il.. Let 05 be a neighbouring surface. As in the above argument,
we have a surjection

O 62— 0% O 61+ 1. (4.3)

Let 7: S ééijl))—’ @}”1) be the Sz-infication of 6§ and put @ : =@ X g
B2 OF), where @ : =60+ 5. Let 7' : ©'— 6 be the first projection and let
0 1 O'—B8(O5*P) be the second projection,
& .
o 0

Sz(S§i+l)) LN @'éi+l)

Since 7 is finite and isomorphic in codimension 1, 7’ is finite, birational on
each component and isomorphic on the generic point of the double locus. So 7’
is also isomorphism in codimension 1 and Os=7'+xO¢ since @ is Cohen-
Macaulay. Thus 7’ is an isomorphism. From (4.3), the natural inclusions

O 66> 7% O sa6 > Tx 0% O 6= 0% O g0

are surjective. Therefore @ satisfies Serre’s condition S; i.e., @ is Cohen-
Macaulay. Since the normalization of the new singularity of 5" coincides with
O45?, it is easy to see that @§*" is semi-canonical. |

gi+D (i+D)

Claim 5. Any degenerate vo-log surface of type II, is not contracted by a
divisorial contraction.

Proof of Claim 5. Let po: X®— XD pe a divisorial contraction associated
with an extremal ray which contracts @f”, where (6{?, (8 — @{")|a) is a degener-
ate vo-log surface of type II,. Since #*(0 ¢0)#0, 0(G{?) is not a point, but a curve.
Let / be a general fibre of plsw: Of'—p(6f”) and let OF*V be a neighbouring
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surface. Then since K g +/=—1 and @~§i)~'l=1, we have O{+]=(K zo+ 6"
+ @57 [=1, we have O ]=(Kzo+ O+ O§”)+ [ =0, which is a contradiction.
[ |

By the following lemma, we can see that essentially new singularities do not
appear after flips and flops.

Lemma 4.3. Let ¢ (resp. ¢*): X(resp. X*)—>Z be a projective birational
morphism from a normal complex 3-fold X (resp. X*) to a normal 3-fold Z, such
tiat ¢ (resp. ¢*) is an isomorphism in codimension 1, (X, 0)(resp. (X*, 0)) is
Kawamata log terminal and — Kx (resp. Kx-) is ¢-nef (resp. ¢*-nef). Further-
more, let S be a reduced surface on X such that (X, S) is log canonical and Kx
+s is ¢-numerically trivial. Assume that any irreducible component of the
exceptional locus of ¢ is not contained in the non-normal locus of S. Let S*
be the strict transform of S on X*. In the above situation, if S is Cohen-
Macaulay, S* is Cohen-Macaulay, too.

Proof. We have Os=¢xOs by the vanishing theorem, where S: =¢4S.
Let n: Si(S)—S be the S:-ification of S and let S’: SXs8xS). Let n':
S'—S be the first projection and let ¢’ : S— 82(S) be the second projection,

s s 3
(4 14

SZ(S—) T S

Since 7 is finite and isomorphic in codimension 1, 7’ is finite and birational on
each component. By the assumption, 7" is also an isomorphism in codimension 1.
In the same way as in the proof of Claim 4, we can see that 7’ is an isomorphism
and S is Cohen-Macaulay. Let 77 : J5(S*)—S™ be the Se-ification of S*. From
an exact sequence

0— 0 s—7% 0 s N0,
where A is a sheaf such that dim Supp 4/ =0, we have the following exact sequence
0= 9% 0 55 k% 0 uis > P3N R 9% O se.

We note that the last term of the above exact sequence is 0, because R' @30 x+=0
and R?¢%0 x+(—S*)=0. Since S is Cohen-Macaulay, we have O s> @§7%0 .5
So we have the inclusions

05— 050 s 05O 557,

hence /=0, which implies that S* is Cohen-Macaulay.
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Claim 6. The non-normal locus of a degenerate w-log surface is not con-
tracted by a flipping (or flopping) contraction.

Proof of Claim 6. Let ¢ : X®“— X“*V be a flipping (or flopping) contraction
of an extremal ray which contracts the non-normal locus, say C, of S‘”, where
(SO, (09— S5Y)|su) is a degenerate vo-log surface. From an exact sequence ;

0— 0 s> vx O s50—0 c—’O,
we have an exact sequence )
R'¢40 55— R @s4(v5 0 50)=> R 94O c,

where the last term is O since C is a rational curve. We can show that the flrst term
is also 0 since R'ox0 z0=R%040 zo(—S?P)=0. Hence R'ox(v+0s»)=0. Let
@Y SWY—SE*DY be the morphism induced by ¢. Since

0:R1¢*(V*@ s‘““)=R1(¢° V)*@ s‘szl(W ¢>y)*@ gox
=vxR'0% 0 s,

we have R'¢%0 s»-=0, which is a contradiction because ¢” contracts an elliptic
curve.

Flips and flops may produce new non-normal singularities, but if the non-
normal locus contains a curve, we can show that this assumption leads to a
contradiction by the classification of ve-log surfaces. Recalling that Serre’s condi-
tions S: and R are equivalent to the normality, we can deduce that new non-
normal points do not appear. We note by easy observation that the speciality of
vo-log surfaces is preserved under flips but not under flops. Thus we have proved
Theorem 4.3. |

5. Classification of vo-log surfaces of abelian type

Let f : g)Z, 0)—D be a log minimal degeneration of surfaces with x=0 and
assume that @ is irreducible. Then (&, Diffs(0)) is a ve-log surface of type I in the
following sense.

DEFINITION 5.1. Let (S, 4) be a vo-log surface. (S, 4) is called a v-log
surface of type I,if | 4] =0.

We note that a vo-log surface of type I is a Log Enriques surface in the sense of
De-Qi Zhang [25], if 4=0 and ¢(S)=0.

DEFINITION 5.2. Let (S, 4) be a vo-log surface of type I. A number defined
by
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CI(S, 4): =Min{nEN ; n(Ks+d)is Cartier}

is called the Cartier index of (S, 4).
Let (S, 4) be as above and let 7 the minimum value such that »(Ks+4)~0. We
define the log canonical cover of (S, 4) as

7: S: =Specs®Z O —i(Ks+4)] )-8,

where the O s-algebra structure of @23 Os(L —i(Ks+4)] ) is given by a nowhere
vanishing section of O s(7»(Ks+4)). This definition does not depend on the choice
of the nowhere vanishing sections up to isomorphisms. By the definition and [20],
Corollary 2.2, S is a normal surface with only rational double points and has
trivial canonical bundle. So S is a K3 surface with only rational double points or
an abelian surface by the classification theory of surfaces.

DEFINITION 5.3. Let (S,4) be a vo-log surface of type I, and 7: S—S be the
log canonical cover. When S is K3 surface with only rational double points (resp.
abelian surface), (S, 4) is called vo-log surface of type K3 (resp. vo-log surface
of abelian type).

The next lemma gives us a hope of classifying vo-log surfaces. We refer the reader
to [16] Theorem 3.1 or [25] Lemma 2.3

Lemma 5.1. Let 0 be the Picard number of the minimal resolution of the log
canonical cover S and let ¢ be the Euler function. Then ¢(CI(S, 2))|(22— p) if
(S, 4) is a w-log surface of type K3 and ¢(CI(S, 4))|(6— ) under the assumption
that (S, 4) is a vo-log surface of abelian type and that CI(S, 4)(Ks+4)~0.

In what follows, we mean by writing Sing S=21,¢#n,eAn.q, that the singular
locus of S is composed of #n,q singular points of type An,q.

Theorem 5.1. vo-log surfaces of abelian type (S, 4) can be classified as
follows. In the list below, we mean by writing C', the strict transform of a curve
CCS on the minimal resolution of S.

I: S is an abelian surface or a hyperelliptic surface and 4=0.

II: S=Py(ODL), where E is a smooth elliptic curve and £ < Pic’E.
Moreover, Supp 4 is smooth and 4 has one of the following types.

II.: 4=32%1/2)C:, where C; is a section and Ci=0 for every i.

II;: 4=X%1/2)C., where C: is a 3-section and C: is a section. C: is a
smooth elliptic curve and Ci=0 for every i.

I, : 4=3%1/2)C;, where C; is a 2-section which is a smooth elliptic curve
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and C?=0 for every i.

II;: 4=2%1/2)C:, where C: is a 2-section which is a smooth elliptic curve,
C: is a section for i=2, 3 and C?=0 for every i.

II.: 4=(1/2)C, where C is a 4-section which is a smooth elliptic curve and
C*=0.

: S=Pc(O:DPL), where E is a smooth elliptic curve and £ E Pic°E.

Moreover, 4=235-5(2/3)C;, where C:(i=1, 2, 3) are sections with self-
intersection number 0 and they are disjoint from each other.

S=P(O:®L), where E is a smooth elliptic curve and £ < Pic’E.
Moreover, 4=2X%-1(2/3)C., where C: is a 2-section which is a smooth
elliptic curve and C, is a section. Moreover, C(i=1, 2) are disjoint from
each other and have self-intersection number 0.

S=P(0:DL), where E is a smooth elliptic curve and £ < Pic°E, and 4
=(2/3)C, where C is a 3-section which is a smooth elliptic curve and C*
=0.

S is a normal rational surface with o(S)=4, SingS=9As1 and 4=0. The
minimal resolution M of S is obtained by blowing up >4 (d <3).

S=Pe(O:DL), where E is a smooth elliptic curve and £ < Pic°E, and 4
=2%-1(3/4)C1,i+(1/2)Co, where Cii, C» are sections with self-

intersection numbers 0.

S=P(O:®DL), where E is a smooth elliptic curve and £ < Pic’E, and 4
=(3/4)C1+(1/2)C,, where Ci is a 2-section which is a smooth elliptic
curve, Cy is a section and C}=0 for i=1, 2.

S is normal rational surface with o(S)=2 and Sing S=8A,:. The
minimal resolution M of S is obtained by blowing up Za(i<4).
Moreover, 4=2323_,(1/2)Cs,:, where Cs, is a smooth elliptic curve with
CA=0, Co,:=P" with C#;=—2 for i=2, 3, and C,,:NSing S=4A,, for
=1, 2.

: S is a normal rational surface with o(S)=2 and Sing S=8A.:. The

minimal resolution M of S is obtained by blowing up Za(d<4).
Moreover, 4=32%-1(1/2)Cs.i, where Ca:=P" with C#i=—2 for i=1, 2,
and C;:NSing S=4A,, for i=1, 2.

V : S is a rational surface with o(S)=2, Sing S=5As2 and 4=0. The minimal

Vi,

resolution M of S is obtained by blowing up >l4(d <3).

: S=Pe(OcDL), where E is a smooth elliptic curve and £ < Pic°E, and 4

=(5/6)C1+(2/3)C+(1/2)Cs, where Ci(i=1, 2, 3) are sections with
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self-intersection number O and disjoint from each other.

VIp: S=P'XP" and 4=23-1(2/3)Cs,i+23-1(1/2)Cs,;, where Ca:(i=1, 2, 3)
are fibres of the first projection S— P and Cs;(j=1, 2, 3, 4) are fibres
of the second projection S— P'.

VI,: S is a rational surface with o(S)=2, and Sing S=3As1+3As2. The
minimal resolution M of S is obtained by blowing up 2a(i<4).

2
Furthermore, 4 :Zi(l/ 2)Cs,:, where Cs, is a smooth elliptic curve with

self-intersection number 0, Cs 2= P' with C#,=—2, Cs,NSing S=0, Cs,
N Sing S:3A32 and Ca,l N Cs,zzﬂ.

VIs: S is a rational surface with o(S)=2, and Sing S=3As1+3As2. The
minimal resolution M of S is obtained by blowing up Za(d<4).
Furthermore, 4=(1/2)Cs, where Cs=P* with C¥#=—2, C3;NSing S=
3A3,2 and Ca,lm Ca,zzﬂ.

XII,: S=P'X P! and 4=2%1(3/4)Cy,:+23-1(2/3) Co,;+(1/2) Cs, where C1,:(i
=1, 2) and C; are fibres of the first projection S— P" and C.;(j=1, 2,
3) are fibres of the second projection S— P'.

XlIls: S is a normal rational surface with o(S)=2 and Sing S=4A,.. The
minimal resolution M of S is obtained by blowing up Xa(d<6).
Furthermore, A=2%=1(2/3)CZ,1‘+2?:1(1/2)63,;‘, where Cz,i, C3,j2P1, C
#1=C=Ch=—1 and C#=C:=0. The configuration of Supp 4
and the singular loci of S are given as follows.

Cz1 Cz2

A2 A2l

—— ]

A2 ® AP

Proof. Let M—S be the minimal resolution and let 7: S—S be the global
log canonical cover with respect to the pair (S, 4). By o, we signify a generator
of the covering transformation group Gal (S/S). Put o=p(S). We fix these
notations in what follows. From Lemma 5.1, the possible value of CI (S, 4) is 1,
2,3,4,5,6,8,10 or 12. We may assume that CI (S, 4)=2.

Case CI (S, 4)=2. After taking an étale cover of S, we may assume that 2(Ks
+4)~0 since the &tale quotient of an elliptic ruled surface is also an elliptic ruled
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surface. Let p€ S be any fixed point of under the action of Gal (S/S). The
generator o of Gal (S/S) acts on mp/m3 in such a way that 6*(x, y)=(x, —y) for
a suitable basis x, y. Therefore S is a smooth surface with ¢g=1 and 4=(1/2)C,
where C is a not necessarily connected smooth curve. Thus S=Pz(O:DL),
where E is a smooth elliptic curve and &£ EPic’E (see [17], 4.2.1 or [1], Lemma
6.2).

Case CI (S, 4)=3. If S is not rational, we are in one of the cases IIl., IIl;
or III,. Assume that S is rational.

Take p€ S as above. Then (a)o*(x, y)=(&z, v), (b)(&x, £2y) or (c)(&x, &y)
for a suitable basis x, y of mp/m%, where § is a primitive cubic root of unity. But
the case (a) is excluded from the assumption that S is rational and (&) is also
excluded since Ks is Cartier at 7(p). Therefore we are in the case (¢). Put S=
V/L, where V="Ts, and L is a rank 4 free Z-module. Since the action of <o) on
L is faithfull and torsion free and Z[<o>]=~Z[¢] is a principal ideal domain, we
have L=Z[¢]® as Z[¢]-module. From the assumption that o*(x, ¥)=(&x, {y),
V is unique as the 2-dimensional eigen vector space of T's,BTs,~Z[{]*QC
associated with the eigen value { under the action of {®id. Therefore V/L and
the action of <¢? is unique up to isomorphism. Hence §2Eg><E;, where E:=
C*/Z+Z and o([z, w)]=[¢z, tw] for [z, wlEE;X E;. Thus S has 9 singular
points of type As: and 4=0. Let Z: =Sing S. Since 7lswiz: S\77(Z)—S\
Z is €tale, we have

200(.S) —9=3(xtop( M) —18). (5.1)

Nothing that xiw0p(S)=0 and that yip(M)=2+ 0+s, we obtain that 0=4. Thus we
are in the case I1I;.

Case CI (S, 4)=4. If S is not rational, we are in the case IV, or IVs. Assume
S is rational. Let p€ S be as above. Then (a)o*(z, y)=(/—1z, v),(b)(V—1z,
J=1y), (c)(—x, v—1y) or (d)(—v—1x, Y—1y) for a suitable basis x, ¥ of
myp/m%. But case (@) is excluded by the assumption that S is rational and cases (b)
and(d) are also excluded since 2Ks and Ks are Cartier at 7(p) respectively.
Therefore all singular points of S are of type Az1 and 4 can be written as 4=
(1/2)C, where C is a smooth reduced curve such that Sing SCSupp C. Let x:
M—S be the minimal resolution and put C': =ux'C. Since T|suswpan: S\
7~ (Supp 4)—S\Supp 4 is étale, we have

xtop( §) - Xtop(ﬂ'_l(c\Z)) -S :4(XLOP(M) - Xtop( C’) —2s+ 5), (5-2)

where Z : =Sing S and s is the number of the singular points of S. Since top(S)
=0, xop(77(C\Z))=22100(C\Z)=—2(Kn+ C'+ C?*) —2s and xip(M)=2+p+s,
we obtain that

Ku-C'+C?*=(1/2)s—20—4. (5.3)
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On the other hand, we have
Ku+(1/2)C +(1/4)E ~ num0, (5.4)

where E: =2{-,E; and E;(1<;<s) are (—2)-curves. From (5.4), we get Ki
+(1/2)Ku+C'=0 and Ku+C'+(1/2)C?*+(1/4)s=0. Hence Ku*C =2p+25—20
and C*=40—40—(9/2)s, since K=10— p—s. These two equations plugged into
(5.3) yield s=8. Let C: be any irreducible component of Supp 4. Since 77'(C;)
is a disjoint union of elliptic curves, C; is (1) an elliptic curve or (2) isomorphic
to P', and the number of singular points of S which is contained in C; is 4. In
the case (1), we have C?=0and in the case (2), C?=—2. Assume that there are two
or more elliptic components of C. Let 7: M—N be a birational morphism from
M to a relatively minimal model N and let C: =7«C and E: =14xE. If N=~P?,
then C is a union of two smooth cubic curves and E=0. If N=3), then C is a
union of two smooth elliptic curves and £=0. Hence E=0 and this is a contradic-
tion. So we are in the cases IV, or IV5.

Case CI (S, 4)=5. If S is not rational, then S is an elliptic ruled surface. Let
f be a fibre of the ruling. Then we have (Ks+(4/5)C, f)=0, hence C-f=5/2,
which is absurd. Assume S is rational. Let pE be as above. Then (a)o*(x, ¥)
=(&x, v), (b)(&x, ty), (c)(&x, &%y) or (d)(&x, &'y) for a suitable basis x, y of
myp/m%, where ¢ is a primitive fifth root of unity. But the case (a) is excluded by
the assumption that S is rational and the case (d)is also excluded since Ks is
Cartier at 7(p). Put S=V/L, where V=T5s, and L is a rank 4 free Z-module.
Since the action of <¢> on L is faithfull and torsion free and Z[<o>]>~Z[{] is a
principal ideal domain, we have L=Z[¢] as Z[{]-module. Assume we are in the
case (b). Then the eigen vector space of 75,~Z[{]® C associated with the eigen
value ¢ under the action of {&7d has dimension 1, which is absurd. Hence we are
in the case (¢). From the assumption that 6*(x, y)=({x, {%y), V is unique as the
direct summand of the two eigen vector spaces of 7 5,P Ts,~Z[¢]Q® C associated
with the eigen values ¢ and &? under the action of {&Qid. Therefore V/L and the
action of <o) is unique up to isomorphism. Hence S= C?/L, where L: ={(m:
+ s+ (E+ ) ma,ma+(E+ ) ms— Cna)m:€Z(i=1, 2, 3, 4)} and o([z, w])=[(¢®
+&z+w, — 2] for [z, w]e C?/L(see [23]). Thus S has 5 singular points of
type As; and 4=0. Let Z: =Sing S. Since 7|sv-: S\1(Z)—S\Z is étale,
we have

Xtop( §) _SZS(XtOP(M)_ 15)- (5-5)

Since Xtop( §)=0 and xwp(M)=p+12, we obtain that o=2. Thus we are in the case
V.

Case CI(S, 4)=6. ~If S is not rational, we are in the case VI,. Assume that

S is rational. Let pE S be as above. Then (a)o*(x, yv)=(&x, y), (b)(Lx, Ey),

(c)(&x, £Py) for a suitable basis x, y of myp/m5. In the same way as in the
argument in the case CI(S, 4)=4, we can exclude the case (@). Therefore 4 can
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be written as 4=(2/3)C1+(1/2)Cs, where C:(i=1, 2) is smoothe reduced curve
such that Ci and C; meet transversely and singular points of S are of type As,1.
Moreover, if pE S is a singular point of type As,1 (resp. As,z2), then p& Supp A(resp.
pEC\CY). Put Ci: =pux'Cii=1,2), Z: =Sing SUSing Supp 4. Let s (resp.
s2) be the number of the singular point of S of type As, (resp. As,1) and ss be the
intersection number of C; and Cz. Since 7|swz: S\7(Z)—>S\Z is étale, we
have

Xtop(g) - Xtop(ﬂ'_l(C1\Z)) - Xtop(ﬂ'—l(cz\Z)) — 81— 282 S3
=6(Xtop(M) - Xtop( C;\ﬂ-IZ) - Xtop( Cé\/l_lz)
—331_282—83), (5.6)

Since Xtop(§)=0, Xtop(ﬂ-—l(C]\Z))zzxtopCI\Z)=—Z(KM'C;"{"C;Z)—ZS:;,
Xtop(ﬂ_l(C2\Z)):3Xtop(C2\Z)= —3(KM’ Ci+ Ciz)—331—383 and Xtop(M):2+ 1Y
+2s1+ 52, we obtain that

4(Ku+ Ci+ CR+3(Ky- Cot+ CA=2s1+4s5,—255—60—12. (5.7)
On the other hand, we have
Ku+(2/3)Ci4(1/2)Ca+(1/3)E1+(1/6) E2+(1/3) Es~ num0, (5.8)

where E,: =284 E. k=1, 2), Er(1<j<s1) are (—2)-curves, Es: =252, F; (1
<j<s;) are (—3)-curves. Form (5.8), we get Ki+(2/3)Ku*Ci+(1/2)Ku-C:
+(1/3)s2=0, hence

4Ky Ci+ 3Ky Co=12s1+4s:+60—60, (5.9

since K#=10—2s1—sz—p. And we have
Kn-Ci1+(2/3)C2=—(1/2)ss, (5.10)
Ku-Ci+(1/2)Ct=—(1/3)s1(2/3)ss. (5.11)

Let H,CGal(S/S) be the subgroup of order 3 and put Si: =S/H.. Let m:
S1—S be the induced morphism. Define the boundary £ on S; such that Ks, +
=n*(Ks+4). Then (S, 4) is a ve-log surface of abelian type with CI(S;, )=

3. Since 7 '(Cy) is a disjoint union of smooth elliptic curves, we have

Ku- Ci+CE+(1/2)s5=0 (5.12)
by the Hurwitz formula. By the same argument as above, we have
Ky Co+ CZ+(2/3)(s1+ 53)=0. (5.13)
From (5.10), (5.11), (5.12) and (5.13), we have
Ky-Ci=—(1/2)ss, C%=0, Ku+ C3=—(2/3)ss, C£=—(2/3)s1. (5.14)

From (5.9) and (5.14), we obtain
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2(3s1+ s2+53)=3(10— p), (5.15)

hence 2|p. Since p<0o(S) and o(S)=2 or 4, we have p=2 or 4. Noting that s,
=0(mod 3) and ss=0(mod 12) from (5.14) and the fact that Ky Ci+ C*=0(mod
2), we have the following possibilities ; (1) 0=2 and si1=s.=3, s$s=0, (2) o=2 and
s1=0, s2=12, s3=0, (3) o=2 and s1=s:=0, s2=12, (4) po=4 and $1=3, s2=s3=0,
(5) =4 and s1=0, s2=9, s3=0. On the other hand, from (5.7) and (5.14), we have

231+232+33=3p+6, (516)

hence the cases (2) and (4) are excluded. Let 7: M—N be a birational morphism
from M to szuz. For i=1, 2, Put C_i . =Z'*C;', Ei : =7xFE; and Ci'\’ %z'(9+lif,
where @ is a section such that <0 and f is a fibre of N. We note that 4%+ 3%
<12 and 44 +3L<6d+12 from Ky+(2/3)Ci+(1/2)C*~ num0. Assume that we
are in the case (1). Let HiCGal(S/S) be the subgroup of order 3 and put S;: =
S/H,. We note that (S, (2/3)77C)) is a vo-log surface of abelian type with CI(S,
(2/3)77'C1)=3, where m: Si—S is the induced morphism. If Ci=0, then S\ is
an elliptic ruled surface, which contradicts s2=3. Hence Ci=0. Assume that C,
contains at least two elliptic components. Since #2<4, we have Co=Co+ Cap,
where Cp,:(i=1, 2) is a 2-section. Put Cz,i~20+ b,:f for i=1, 2. Since 7(Ca,:)=
Li—i—121(i=1, 2) and 3L=3(l21+ lo2) <6d +12, we have E;=0 for j=1, 2, 3
and C,,; is an elliptic curve for =1, 2. Hence E;=0 for j=1, 2, 3, which is absurd.
Nothing that Ky* C:+ C3=—2, we conclude that we are in the cases VI, or VIs.
Assume that we are in the case (3). Since 471+ 3%2=12, we have (3-a)m=3, n,=
0 or (3-6)m1=0, no=4. Consider the case (3-a). From the equation K5+ C>+ C}
= —8, we have =4 and /1=(3/2)d. On the other hand, we have /1>2d by the
assumption, hence i=d =0 and C:*-8=0. Thus we are in the case VI;. Under the
assumption in the case (3-b), we conclude that we are also in the case Vs by the
same way as above. Assume that we are in the case (5). If C.=0, then 3(Ks+4)
is Cartier, which contradicts the assumption. Let H>C Gal( §/S) be the subgroup
of order 2 and put Sz: =S/H,. We note that (Sz, (1/2)75'C;) is a vo-log surface
of abelian type with CI(S,, (1/2)m5C;)=2, where m: S»—S is the induced
morphism. Let pES be a singular point of S and put 5 : = '(p). Let L be the
fibre of the ruling on Sz which goes through the point J. By construction, we have
a faithful and fixed point free group action on the set 7 '(C2)N L but this set is
composed of exactly four points, which is absurd.

Case CI(S, 4)=8. We claim that this case does not occur. Decompose 4 as
A=(7/8)C:1+(3/4)C2+(1/2)Cs, where Ci(i=1, 2, 3) is a reduced curves. If S is
not rational, then S is an elliptic ruled surface. Let f be a fibre of the ruling of
S and put #:: =(C;, f), then we have 7#1+6#n2+4713=16, hence #:=0 and 4(Ks
+4) is Cartier, which is absurd. Assume that S is rational. Let p= S be as above.
Then (@)o*(x, y)=(8x, v), (b)(¢x, Ly), (c)(&x, &%), or (d)(&x, &'y), where ¢
is a primitive eighth root of unity, for a suitable basis x, ° of m,/m5. Therefore
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Supp 4 is smooth and all singular points of S are of type As,1, Ass or Az and if
pES is a singular point of S, then pE C; and p is of type Az, or pECs and P is
type As1, Aus or Az1. We can get Ci=0 by the same way as in the argument in
the case CI(S, 4)=4. Let HiCGal(S/S) be the subgroup of order 2 and put S, :
=S/H,. Let m: Si—S be the induced morphism and define the boundary Zy on
Si such that Ks+di=nr*(Ks+4). Then (Sy, 4) is a vo-log surface of abelian
type with CI(S,, Z1)=2. Let pE S\ be a fixed point of the action of ¢ on S, and
L be the fibre of the ruling on Siwhich passes through . Since the cyclic group
of order four acts on the set L N\ Supp Ay which is composed of exactly four points,
this set decomposes to a disjoint union of orbits whose cardinality is 1, 1, 1, 1 or
1,1,2 respectively. But in the first case, 0° acts trivially on L and in the second
case, 0* acts trivially on L, which is absurd.

Case CI(S, 4)=10. We claim that this case does not occur. We may assume
that 10(Ks+4)~0. Let HiCGal(S/S) be the subgroup of order 2 and put_ Si: =
S/H.. Let m: Si—S be the induced morphism and define the boundary Z; on S
such that Ks,+A1—7[1*(Ks+A) Then (S1, 41) is a vo-log surface of abelian type
with CI(S}, 41)=2. ¢® acts on Si, hence on Alb S}, but since it is well klown that
group action of order 5 on an elliptic curve is trivial or fixed point free, the action
of 6% on S, is fixed point free, which contradicts the assumption.

Case CI(S, 4)=12. If S is not rational, then S is an elliptic ruled surface and
Supp 4 is a disjoint union of smooth elliptic curves. Let 4=(11/12)C:+(5/6)C:
+(3/4)C3+(2/3)Cs+(1/2) Cs be the decomposition of 4 and f be a fibre of the
ruling of S. Put #n;: =(C;, f). We have 1121+ 10%2+9%3+8%n4+6715=24 from
the assumption, hence (%:; 1<:<5)=(0, 1, 0, 1, 1), (0, 0, 2, 0, 1), (0, 0, 0, 0, 4) or
(0,0, 0, 3, 0) and 4(Ks+4) or 6(Ks+4) is Cartier, which is absurd. Therefore S
is rational. Let 7: S—S and pE S be as above. We have (a)o*(x, y)=(&x, v),
(b)(&x, &), (e)(&x, §y), (d)(&x, &), (e)(&x, §'y), (/) (Ex, £°y), where § is
a primitive twelfth root of unity, for a suitable basis x, y of m,/m3. Therefore, C:;
is smooth for 1<7<5, Supp C:NSupp C;=0 for < except for (z, 7)=(3, 4), (4,
5) and each components of C; and Cs, Cs and Cs intersect transversely. If p is any
singular point of S, then p is of type As1 and p€ S\Suppd or pE Cs, of type As2
and pE Cs, of type Ass and pE Cs, of type Az,1 and pE Cs or pE Co. Let 1 be the
number of the singular points pE S of type Az, such that pE (s, sz be the number
of the singular points pES of type As: such that pE (s, ss be the number of
singular points pES of type Azisuch that p&€ CsN Cs, ss be the number of the
singular points of pES of type Ass such that pE Cs, ss be the number of the
singular points pE S of type As, such that p& Cs, s be the number of the singular
points of pE S of type Az, such that p= C\Cy, s7 be the number of the point pE
S such that p&€ CsN Cs, ss be the number of the point pE S such that p€ CiN Cs
and S is smooth at p and Sy be the number of the singular points pE S of type As,1
such that p&Suppd. Let HiCGal (S/S) be the subgroup of orber 6 and put S; :
= S/H, and let m : Si1—S be the induced morphism. Assume that C1%0 or Co+
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0. Define the boundary 4, as
A~1 12(5/6)72'1_1((:1 U Cz)+(2/3)7(1_1(C4)+(1/2)7tf1(C3U Cs).

We note that Ks,+Ji=nr*(Ks+4) and (Si1, 4°) is a vo-log surface of type VI. by
construction. The induced group action on S: has fixed point pE S, by assump-
tion. Let L be the fibre of the ruling on S\ which passes through p. Since the sets
LN (CiUCo), LN 7 (Cy) and LN 2 ( CsU Cs) are Gal (S1/S)-invariant, Gal
(S1/S) acts on L trivially, which is absurd. Thus we get Ci=0, C,=0 and s:1=0.
Assume that s;#0. Then there is a singular point pE S of type As, such that pE
Cs. Let H,CGal(S/S) be the subgroup of order 4 and put S2:=S/H, and let 7 :
S-S be the induced morphism. Define the boundary . as J» :=(3/4) 1 (Cs)
+(1/2)7(Cs). We note that K s,+ Jo=m5*(Ks+ 4) and (Sz, 4s) is a vo-log surface
of type IV, or IV by construction. The induced group action on S has a fixed
point pEm(p). Let L be the fibre of the ruling on S, which passes trough 3.
Since the sets LNz (Cs) and LN 75 (Cs) is Gal (S2/S)-invariant, the action of
Gal (S2/S) on L has three fixed points, hence trivial,which is absurd. Therefore we
obtain s:=0. Put Z:=Sing Supp 4USing S, C;:=ux'C:3<i<5). Since
7| s\r-ssump ausing ) = S\ (Supp 4USing S)—S\(Supp 4USing S) is é&tale, we
have

~ 5
me( S)— 123 me(ﬂ'"l(cz'\Z)) — 83— S4_285_386—283—489

5
=12(xtop(M) — Z_‘,a 200l CAU™Z) —253—654— 355 — 256 — S7
— 53— 289). (5.17)

Since we have xtop( §)=0,

20p(TH(C\Z)) =3 xt00( C5\Z) = 3(2t00( Cs) — 51),
Xtop( ﬂ_l( CA\Z)) =4}Ctop( C4\Z) :4(7Ctop( C4) — 83— 87— Ss),
Xtop( ”_1( CS\Z)) ZGXtop( CS\Z) = 6(Xtop( Cs) — 83— 84— S5—Se— Ss)

and
Xtop(M) =2+ 0+ 53+ 554+ 285+ 55+ So,

we obtain

(K- Ci+ C2)+8(Ku+ Cit C2)+6(Kyu - Ci+ CP)
=—3s3+55s+455+356—657—455+8s9—120—24. (5.18)

On the other hand, we have

Ku+(3/3)C5+(2/3)Ci+(1/2)Cs
+(7/12)E1+(5/12) Esn+(1/3) Ezz+(1/4) Ez3+(1/6) Es.q
+(1/12)Es5+(1/3)Es1+(1/6)Es2+(1/4)Es+(1/3)Es

=u*(Ks+ 4)~num 0, (5.19)
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where E :=2fi1 El(i), E,; :=Z?i1 E,;(7) (1<5<5), Es; =238 Es;(7) (=1,
2), E«: =238 Ey(0), Es :=235% Es(7), Ei(2) (1<i<s3), E»;(i) (1<i<sy, 1<5<
5), Es;(7) (1<z<35, j=1,2) and Eu(7) (1<i<ss) are (—2)-curves and Es(z) (1<
1<sy) are (—3)-curves. From (5.18), we have

Ki+(3/0)Ky- Ci+(2/3) K- Ci+(1/2) Ky Ci+(7/12)s2+(1/3)s9=0, (5.20)

K+ Ci+(3/4)C#+(2/3)s:=0, (5.21)
KM‘ C£+(1/3) C£2+(7/12)Ss+(3/4)S7+(1/2)Ss=0, (5.22)
and
Ky Ci+(2/3)C2+(7/12)s5+(5/12)ss+(1/3)ss+(1/4)ss+(2/3) ss=0. (5.23)
Since we have
2=12— x10p(M)=10— 0— 53— 554 — 255 — S — So, (5.24)

we get

9KM' C§+8KM' C«;+6KM' Cé
=120—120+ 1253+ 6054+ 24 55+ 1256+ 8ss. (5.25)

Let m: S2—S as above. Since 75 (Cs) is 0 or a disjoint union of elliptic curves,
we have

Ky Ci+ C2+(2/3)s:=0. (5.26)

Let HsCGal(S/S) be the subgroup of order 3 and put Ss:=S/Hs and let s:
Ss—S be the induced morphism. Define the boundary Js as ds:=(2/3) 75 (Cy).
We note that Ks,+ ds=n#(Ks+4) and (Ss, Js) is a w-log surface with CI(Ss,
ds)=3. Since 75 '(Cy) is 0 or a disjoint union of elliptic curves, we have

Ky« Ci+ C24+(3/4)s3+(3/4)s:+(1/2)ss=0. (5.27)

Let H.CGal(S/S) be the subgroup of order 2 and put S:= S/H4 and let 7 :
Si—S be the induced morphism. Define the boundary di as di:=
(1/2)7[4 l(c:;UCs). We note that K3 + A4—7l'4 (Ks+A) and (54, A4) is a I/o-lOg
surface with CI(Ss, 4,)=2. Since 7 (Cy) is 0 or a disjoint union of elliptic
curves, we have

KM'C&"‘ Céz+(5/6)83+(5/6)S4+(2/3)35+(1/2)SG+(2/3)38=0. (5.28)
From (5.18), (5.26), (5.27) and (5.28), we obtain
453+584+485+ 356+ 357+ 255 +459=6(0+2). (5.29)

From (5.21) and (5.26), we get
Ky Ci=—(2/3)s;, C:*=0. (5.30)

From (5.22) and (5.27), we get
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Ky Ci=—(1/4)ss—(3/4)s:—(1/2)ss, Ci2=—(1/2)ss. (5.31)
From (5.23) and (5.28), we get
Ky Cs=—(1/3)s3—(2/3)ss, C&=—(1/2)s3—(5/6)s4—(2/3)s5—(1/2)se. (5.32)
From (5.25), (5.30), (5.31) and (5.32), we obtain
453+1584+ 655+ 356+ 357+ 258+ 250=3(10— p). (5.33)

Since 4/6—0(S), we have o(S)=2, hence p<0(S)=2. From (5.29) and (5.33),
we get 0=0 (mod 2), hence o=2 and

2(2s3+455+ s8) +3(s6+57) =24, 54=0, s9=s55. (5.34)
We note that since Ku+ Cs, Ci2, Ku+ Cs€ Z and Ku+ Ci+ C£=0 (mod 2), we have
s7=0 (mod 3), (5.35)
53=0 (mod 2), (5.36)
3s3+3s7+2ss=0 (mod 8) (5.37)

and
s3+25s=0 (mod 3) (5.38)

from (5.30), (5.31) and (5.32) and that in fact, we have
s7=0 (mod 6), (5.39)

from (5.35), (5.36) and (5.37). From (5.34), (5.36), (5.37), (5.38) and (5.39), we
obtain that (1) ss=s9=3, s;=0 for =3, 6, 7, 8, (2) ss=12, s;=0 for =3, 5, 6, 7,
9, (3) sss=s6=2, ss=5H, s;=0 for 1=5,7, 9, (4) =6, ss=3, s:=0 for 7=3, 5, 6, 9
or (5) ss=8, s;=0 for =3, 5, 7, 8, 9.

Case (1). If C3=0, then 6(Ks+4) is Cartier, which is absurd. Therefore, we
have C3#+0 and (§z, Zfz) is a Vo-log surface of type IVe or IVs. Let pES be a
singular point of S such that p€ Cs and L be a fibre of the ruling on S which
passes through 7 €7 '(p). By construction, LN 7 (Cs) admits fixed point free
action of Gal (§ 2/S), which is absurd since LN 75 *(Cs) is composed of exactly two
points and the order of Gal (S2/S) is three.

Case (2). If Cs+0, then C; is a disjoint union of elliptic curves. But since ( §1,
A1) is a vo-log surface of type Vs, each component of 7 '(Cs) is a rational curve,
which is absurd. Therefore Cs=0 and 6(Ks+4) is Cartier. Thus we get a
contradiction.

Case (3). From the assumption, (§ 1, d)isa vo-log surface of type VIs. Since
each component of Supp 4= (Supp 4) is a rational curve, we have Cs=0 and
each components of Cs and Cs is a rational curve. Since Ku*Ci+ C2=—4 and
K+ Ci+ C$#=—6, we have irreducible decompositions of Cs and Cs, Cs=Cu,
+ Cy2 and Cs=Cs,1+ Csz+ Cs,s, where Cu,s, Cs,jl’Pl for =1, 2, j=1, 2, 3. Let
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s§*? be the number of the singular points pE S of type Az such that p€ Cy,: N Cs,
5§87 be the number of the singular points pE S of type Az,1 such that p€ CsN Cs,5,
5§ be the number of the points pE Cy,:N Cs such that S is smooth at p, s§>7 be
the number of the points p€ C4N Cs,; such that S is smooth at p, s§” be the number
of the points p& Cs,; such that pES is a singular point of type Az,1. In the same
way as above, we have

K+ Cie=—(1/4)s§—(1/2)s§*?, Citi=—(1/2)s{"? (5.40)
and
Ku+ C=—(1/3)s8"—(2/3)s67, C&=—(1/2)s§"—(1/2)s8”, (5.41)
where Ci,: :=px'Cs: and Ci; :=15'Cs,;. From (5.40), we have
(s#?, sé+9, C£)=(0, 4, 0) or (2,1, —1).
Since we have Ci*=—1, we obtain
(s§*P, s§¥V, CA)=(0, 4, 0),
and
(842, s§*2, CiB)=(2, 1, —1).
From (5.41), we have
(89, s6, s, C&)=(1, 1, 1, —1), (0, 4, 0, —2) or (0, 0, 3, 0).
Since we have Ky*Cs=—4 and C&#=—2, we obtain
(8, s&, s, C&)=(, 1,1, —1) for j=1, 2
and
(s89, 58, 89, C5)=(0, 0, 3, 0).

For any 7, j, we have (7* Cy,, ¥ Cs,;)=1, 2 or 4, hence (Cs,i, Cs, ;)=1/2, 1 or 2.
Thus we conclude that we are in the case XII;.

Case (4). Since S is nonsingular and p=2, we have S=~2>4 for some d =0.
We note that Ks:Cs=—4, Ci=0, Ks-Ci=—6, Ci=0, Ks+Cs=—2, C¢=0 by
assumption. Assume that C;~#n;0+[;f for =3, 4, 5, where € is a section such
that 8°<0 and f is a fibre of the ruling on S. Since we have 973+ 8#n4+6n5=24,
we have (n3, Ns, %5)=(2, 0, 1), (0, 3, 0) or (0, O, 4). If (1’Z3, N4, %5)=(2, 0, 1), then
we have (s, /s, I5)=(d, 3, (1/2)d). Since (Cs, 8)=0 or (Cs, §)=0, we have lz=
ls=d=0. Thus we are in the case XIIs. If (ns, 4, 15)=(0, 3, 0), then we have (/,
ly, I5)=(2, (3/2)d, 1). Since s>2d, we have Ls=d=0. Thus we are in the case
XIIp again. If (ns, n4, 15)=(0, 0, 4), then we have (s, &, ls)=(2, 3, 2d —3) but we
have /s=>3d, which is absurd.

Case (5). Since we have C;+0 by assumption, (§1, 471) is a vo-log surface of
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type Vs, which is absurd.

ExXAMPLES. (1) Put E;:=C/Z+ {Z, where { is a primitive third root of unity
and A:=E:X E;. Consider the action ¢ on A defined as o([z1], [2])=([{?2],
[¢z1]) for ([z1], [22])€A. Put S:=A/<0)> and 4:=(1/2){([z], [¢z])|z€ C}. This
log surface (S, 4) gives an example of vo-log surface of type Ile.

(2) Let ¢ and E; be as is (1). Consider the action ¢ on E¢ X P such that o([z],
[wi: w])=&z], [Ewr: wz]). Put S:=E:XP'/<0> and 4:=(1/2)E:x{[1:0],
[€2:1], [¢:1], [1:1]}/<o>. This log surface (S, 4) gives an example of vo-log
surface of type VI,.

(3) Examples of vo-log surface of type IV,, VIs and XII; are known. We refer
the reader to [23].

6. Degeneration of type I associated with vo-log surface of abelian type

DEFINITION 6.1 A minimal degeneration of surfaces / : X—d with =0 is
said to be of type I if f has a log minimal reduction f : (X, ®)— such that (O,
Diff 4(0)) is a v-log surface of type 1.

In this section, we study the singular fibres by using the results in the previous
section.

Theorem 6.1. Let f : (X, ©)—D be a projective log minimal degeneration
of surfaces with x=0 and assume that (0, Diffs(0)) is a vo-log surface of
abelian type then the generic fibre is an abelian or hyperelliptic surface and there
is a projective degeneration f: X—J0 which is bimeromorphically equivalent to
f: X—>D (we shrink D if necessary) such that X is a normal Q-factorial
3-fold with only terminal singularities and one of the following holds.

I: X is smooth and f*(0)=m®, O is an abelian surface or a hyperelliptic
surface.

I, : X is smooth and f*(0)=2mO,+ 2t mO.,;, where mEN, O.; is an elliptic
ruled surface for any i. ©.:- 0o is a section whose self-intersection number
0 on each of the two components for i=1. @M O;=0 for i>7=1.

II;: X is smooth and f*(0) =2m®@s+ 231 mO,,;, where mEN, Oo and O,,; are
elliptic ruled surfaces for 1=12,012*, is a 3-section on O, which is a
smooth elliptic curve with the self-intersection number 0 and is a section on
012, ©12° O is a section whose self-intersection number 0 on each of the two
components. ©,,:N 01,;=0 for i>;=1.

I, . X is smooth and f*(0)=2m®+ 2%-1 mOs,;, where mEN, O,: is an elliptic
ruled surface for 1=0,12. 6,6 is a 2-section on Oy which is a smooth



266

I[ai

IIe:

11,-

11,-

1I1,-

K. OHNO

elliptic curve with the self-intersection number 0 and is a section on ., for
i=12. 6,,;N6,;=0 for 1>7=1.

X is smooth and f*(0)=2m®+ 23 -1 mO,:, where mEN, Oy and Oy,; are
elliptic ruled surfaces for any i. ©1,1-Oy is a 2-section on ©o which is a
smooth elliptic curve with the self-intersection number 0 and is a section on
612 Oy,: O is a section whose self-intersection number 0 on each of the two
components. 0,:N O;=0 for i>j=1.

X is smooth and f*(0)=2mBo+ mO., where mEN, O; is an elliptic ruled
surface for i=0,1,0:+ 6y is a 4-section on Oy which is a smooth elliptic curve
with the self-intersection number 0 and is a section on O.

1: X is smooth and f*(0)=3mGo+ 23 .2mOy,: 1+ m6,;2), where mEN,
60y and 6,;,; are elliptic ruled surfaces for any i,j. O,:1* @ and O1,:2°O1,;;
are sections with the self-intersection number 0 on each of the two compo-
nents for i1=123. ©1,:;;N\ O, =0 if i*+k and 6O1,:2N =0 for i=12,3
(see Figure Ill,-1).

2: X is smooth and f*(0)=22%-1 mO.,;, where mEN, Oy,; is an elliptic ruled
surface for i1=1,2,3. O1,1° @12= 012 O13= 013+ 01,1 is a smooth elliptic curve
which is a section on each 6.,; (see Figure Il1,-2).

1: X is smooth and F*(0)=3mO+ 221:2m6O,;1+ mBO,,:2), where mEN,
&0 and ©,:,; are elliptic ruled surfaces for any i, j. ©G11,.1° 0o is a 2-section
on Oy which is a smooth elliptic cusve with the self intersection number 0 and
is a section on Or1,1. G121 O and O,z Oy, are sections with the self-
intersection number 0 on each of the two components for i=12. ©1,:,;N
Ore, =0 if i+k and 0.,;2NO=0 for i=1,2 (see Figure 1IIs-1).

III;-2 . X is smooth and f*(0)=2%, m6,;, where m&N. There is a projective

birational morphism p: Y—X from a smooth 3-fold Y such that f*(0)=
3mBo+ m@r1+mbr s, where f :=fou, O;:=us'6O; for i=1.2. 6.: is an
elliptic ruled surface for i=0,12. O.,-@o is a 2-section on @ which is a
smooth elliptic curve with the self-intersection number 0 and is a section on
@1,1. @1,2' 6o is a section whose self-intersection number 0 on each of the two
components. 01,0 O1,=0 (see Figure Ill5-2).

III,-1: X is smooth and f*(0)=3mOo+2m@1+ mO.2, where mEN, O,,; is an

elliptic ruled surface for any i. Oy, is a 3-section on O which is a smooth
elliptic curve with the self-intersection number (0 and is a section on ©,.
012+ 01,1 is a section with the self-intersection number 0 on each of the two
components. ©oN O1.=( (see Figure III,-1).

IIT,-2: X is smooth and f*(0)=wm®, where mEN. There is a projective bir-

ational morphism 1 : —X from a smooth 3-fold Y such that f*(0)=3m®,
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+m6,, where f=fou, 6 :=/§1@1. O: is an elliptic ruled surface for i
=0,1. OOy is a 3-section on Oo with the self-intersection number 0 which
is a smooth elliptic curve (see Figure II1,-2).

7*(0)=360p+2-161,;, where Oy is a normal rational surface with o(6o)=
4+t and 6.,;=P? for i=1. Sing Ov={p:; 1<i<s)}, where p;€O(1<:i<
s) are singular points of type As1 and s :=9—1t O 6o is a (—3)-curve on
6o and is a line on Oy for i=1. If {p:; 1<i<s}:=Sing Oy, then Sing X
={p:; 1<i<s} and analytic locally around p:, (p:E X, O) is isomorphic to
(0e C? {2=0})/Z5(1, 1, 2). Moreover, if X: is an abelian surface for t ED*,
then t=0 or 9 (see Figure IIIs).

1: X is smooth and f[*(0)=4mOo+ Xi=1(3mOr,;1+2mO1,;2+ mBO,,i3)
+2mO,, where Go, O,i;, O, are elliptic ruled surfaces. Oy, 0o (i=1, 2),
Oz 0o, O1,;3° 01,52 and Os,:2° 01,1 are sections of with the self-intersection
number 0 on each of the two components. ©1,:;N\ O, =0 if i#+k 115N
O1,i1=0 for i=1, 2 and @:N Or,:;=0 for any i, j (see Figure IV,-1).

-2: X is smooth and f*(0)=m6O\1+m®O.2, where mEN, O; is an elliptic

ruled surface for i=1, 2. O1°012,=2I" where I' is a section with the
self-intersection number 0 on each of the two components (see Figure [V,-2).

1: X is smooth and F*(0)=4mBo+3mO11+2mO1 2+ mO, 3+ 2mO,, where
mEN, 61,; and O, are elliptic ruled surfaces for any i. Oy, 0, is a 2-section
with the self-intersection number 0 which is a smooth elliptic curve and is a
section on @11. 2@, O12:O1,; and Oz O, are sections with the self-
intersection number 0 on each of the two components. ©1,1N O1,3=0, @M O,;
=( for i=2, 3 and ©:NO;=( for i=1, 2, 3 (see Figure IVj-1).

2: X is smooth and f*(0)=m®, where mEN and O is irreducible. there is
a projective birational morphism 1. Y—X from a smooth 3-fold Y such
that f*(0)=4m®@o+m®@r1+mBO,2, where f :=fou, Oy, is an elliptic ruled
surface, @1,1=#;1@. @1.1' @, is a 2-section with the self-intersection number
0 on @ which is a smooth elliptic curve and is a section on @1,1' @1.2' Oy is
a section with the self-intersection number 0 on each of the two components.
6:N @~1,z=(1 (see Figure 1V;-2).

FX0)=400+2%120,,:+ 251 Zi1 O,s), where @0 and 6y are normal
rational surfaces with 0(@o)=2+ t+t: and p(O.,:)=2 for i=1,2, O3 is an
elliptic ruled surface and O, ;=2 t:=0 or 2 or 4 for i=2, 3 and s:=8
—2% 1t O30y is a smooth elliptic curve whose self intersection number
0 on each of the two components. The strict transform of @@ is a (—
2)-curve on the minimal resolution of ©o and is a ((1/2)t;—2)-curve on the
minimal resolution of®,: for i=1, 2. O,y o is a (—2)-curve on Go and is
a fibre of the ruling on O.;y for any (i, ji). Oy Ov: is a 0-curve on O,
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and is a (—2)-curve on O,y for i=1,2, 1<j;<t;. 01:NOL;=0 for i>},
BN OL=0 if i#+k and O.y's are disjoint from each other Putting
Sing Gy={pih€O,,;; 0<;;<8—1t; i=1, 2)} and Sing @y,:={p, p,; 0<
7i<8—t: (i=1, 2)}, we have SmgX {p 0 0<7:<8— 1 (z—l 2)} and
analytic locally around each pi%, (pi’) EX @) is isomorphic to (0 C®, {xy
=0})/Z:(1, 1, 1), around each p%, (pShE X, O) is isomorphic to (0€ Cs, {x
=0})/Z(1, 1, 1). Moreover, if X; is an abelian surface for tED*, then (4,
t)=(0, 0), or (4, 4) (see Figure IV).

FX0)=4600+2%2126,,:+ 2% Dkt Oy, where ©o and Oy, are normal
rational surfaces with p(0o)=2+ti+t. and o(O1,:)=2 for i=1, 2 and O
~3%. t;=0o0r 2 or 4 for i=2,3 and s :=8—2%-1 t.. The strict transform
of @i+ Oy is a (—2)-curve on the minimal resolution of ©o and is a((1/2)t;
—2)-curve on the minimal resolution of ©: for i=1, 2. Oy O is a
(=2)-curve on @y and is a fibre of the ruling on Oy for any (i, j:).
Oyt Oh,: is a 0-curve on O, and is a (—2)-curve on Oy for i=1,2,1<
Ji<ti G110NO12=0. OunN OL.=0 if i+k and Ou;y's are disjoint from
each other. Putting Sing @y={p%€6,,;; 0<J;<8—t:(i=1, 2)} and Sing
O, ={pti), : 0<7,<8—t(i=1, 2)}, we have Smg X={pl, p; 0<;5:<
8— td(z—l 2)} and analytic locally around each pi%, (pLE X, @) is isomor-
phic to (0€ C3, {xy=0})/Z:(1,1,1), around each p5), (pLE X, O) is isomor-
phic to (0€ C?, {x=0})/Z>(1, 1, 1). Moreover, if X: is an abelian surface for
tED*, then (h, t2)=(0, 0), or (4, 4)(see Figure 1V5).

V-1: X is smooth and f*(0)=500+23-1(61,:+26s,:), where Oy is a smooth

rational surface with p(©)=12, @1,;~33 and 0.:~=P? for 1<i<5. 6;;N
@k,z:ﬂ lf j#l. @1,1"@2,1‘ is a (—3)-curve on @1,i and is a line on @2.;’.
o+ O, is a (—2)-curve on O and is a fibre of the ruling on Oy,;. Op Oy,;
is a (—3)-curve on @y and is a line on O, (see Figure V-1).

V-2: f*(0)=56, where O is a normal rational surface with o(©)=2 and has

five quotient singularities {p,; ; 1<j<5} of type As.. Sing X={p,;; 1<;<5}
and around each p;, (p;= X, O) is isomorphic to (0 C?, {z=0})/Zs(1, 2, 3).

V-3: X is smooth and f*(0)=23-1 O\,:, where O\,; is a smooth rational surface

for 1<i<5 and 33-1 p(6,:)=20. There is projective birational morphism . :
Y— X from a smooth 3-fold Y to X such that g*(0)=5@+ 23, O.,;, where
g is the induced morphism from Y to O and Go>=324 (d<3), O1,;: 1x'6O;,
is a smooth rational surface which is obtained by blowing up 23» for 1<i<
5. @00, is a section on Gy and is the strict transform of a fibre of the
ruling on O, for 1<i<5. For i>j>1, O+ O; =232, m(i, j ; k) s, where
{I.; 1<k<5} are rational curves which are disjoint from each other such
that @o-T.=1 for all k. Xis; 2w m(i, j; k)=20 and either (1) m(i, j; k)
=1, I, is a (—1)-curve on Oy (or on 6.;) and (—2)-curve on @.; (or on
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Ov0) or (2) m(i, j; k)=2, I'v is a (—1)-curve on 6. and 6.; (see Figure
V-3).

1: X is smooth and f*(0)=6mO+5mO1,1+4mO12+3mO3+2m6,
+mO1,s+4mOs,1+2mOs 2+ 3mOs, where mEN, Go, @;; and Os are elliptic
ruled surfaces for any i, j. @0 0:1(i=1, 2), Or;* O1,:11(1<7<4), Oz 012
and Oy O3 are sections with the self-intersection number 0 on each compo-
nent. ©;;NOn,=0if i+k or i=k=1and |j—1|>1, ©®:N O, ;=0 for any
7,7 and GoNOy; if 1=j=2 or i=1, j=2 (see Figure Vl.-1).

2: X is smooth and f*(0)=m®, where ©" is an elliptic ruled surface. The
non-normal locus of O is an smooth elliptic curve (say I') and around any
point pESing O, O is defined by the equation v'—x*=0 analytic locally.
v is a section of O with the self-intersection number 0 (see Figure VIa-2).

1: X is smooth and
3 3
f*(0)=6@o+§(4@;,i,1+2@1,i,2)+j§ 3@2,j+1SES3 @(k,l),

where Qo= P'X P', O1,;1=2, O1,:2>=2, O»; is a smooth rational surface
with 0(0,,;)=11 for j=1,2,3 and Own=P? for ISk<3,1<[<3. O1,;1* O
is a fibre of the first projection @ P' for i=1, 2, 3 and @,;- O is a fibre
of the second projection @y— P' for j=1, 2, 3. @1 O1,:2 is a section on
6,:1 which is disjoint fromthe negative section and is a (—4)-curve on @i
for i=1,2,3, O+ O is a fibre of the ruling on Oy, and is a (—2)-curve
on O, for any i, j, k and @s,* O,y is a (—3)-curve on O, and is a line
on Ow,pn: 61,0 O;=0 if 1#1, 01,,;0 Own=0 for any i, j, k, I,
02 Ow,y=0 if jFI, {Ow.n}e:. are disjoint from each other (see Figure
VI-1).

21 f¥(0)=201,+26,2+20,3, where Oy, is a normal rational surface with

0(61,:)=2 such that Sing 01,;=6A1. O1,1°O12=012°O13=03O1,=: I
and the strict transform of I' on the minimal resolution of each component
is a (—2) curve for any i, j. The singular locus of X consists of the points
p:€T (i=1, 2, 3) and the points P O\I" (=1, 2, 3, k=1, 2, 3) and
analytic locally around p; (p:€X, @)=(0€ C? {xy(x—y)=0})/Z:(1, 1, 1)
for i=1,2,3, around p{¥, (pPE X, 0)=(0€ C?, {2=0})/Z:(1, 1, 1) for any
7, k (see Figure VIg-2).

1: X is smooth and
3
f*(0)=6@0+3@1+3@2+§1(2@1,i,1+@1,:’.2'1'2@3,1’),

where 6, is a smooth rational surface with p(@o)=11, ©:=P'X P, O, is an
elliptic ruled surface, ©1,:1>=2, O1,:2>2 for i=1, 2,3 and ©s:=P? for i
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=1,2,3. 0,0 is a (—2)-curve on Oy and is a fibre of the first projection
01— P', O+ 6y is an elliptic curve with the self-intersection number 0 on each
component, 0y,;;* 0o is a (—2)-curve on @ and is a fibre of the ruling on
Br,i; for i=1,2,3, j=1,2, @s,;+ Oy is a (—3)-curve on @ and is a line on
@3,1' fOI‘ l=1, 2, 3. N @2=0, 6N @1,z‘,2:a, N @3,j=0, ®.N @1,,~,j=(} and
0:N Os;=0 for any i, j, Or:;N Os.=( for any i, j, i’ (see Figure VI,-1).

2: f*(0)=60y+36:+38., where O; is a normal rational surface with o(0;)
=2 such that Sing ©;=3As,1+3Asz for i=0, 1 and O, is an elliptic ruled
surface. The strict transform of 6.+, is (—2)-curve on the minimal
resolution of ©o, (—1)-curve on the minimal resolution of ©1, @ is an
elliptic curve with the self-intersection number 0 on each component. ©:N O,
=(. The singular locus of X is consists of the points p;= 61N Oy (1=1, 2,
3) and the points p¥'E O\(6:N Oy) (i=1, 2, 3, j=0, 1) and analytic locally
around p;, (p:€X, O)=(0€ C?, {xz2=0})/Z5(1, 2, 2) for i=1, 2, 3, where {x
=0} corresponds to @y and {z=0} corresponds to 6., around p*, (PV<€ X,
0)=(0=C?, {z2=0})/Z5(1, 1, 2), around p", (PPeX, O)=0=C? {(x=
0})/Z5(1, 1, 2) for i=1, 2, 3 (see Figure VI,-2).

-1: X is smooth and ¥(0)=60,+360,+23-1(201,:1+ O1,:2+26s,:), where

@o is a smooth rational surface with p(@)=11, @1=P'X P', @1,;,1~=2,
O1,:2=2 for i=1,2,3 and @2, ~P? for i=1,2,3. 61+ is a (—2)-curve
on Gy and is a fibre of the first projection @1— P", Oy,;;* @ is a (—2)-curve
on 6, a fibre of the ruling on Oy;; for i=1, 2, 3, j=1, 2, @2 @ is a
(—3)-curve on @ and is a line on O,,; for i=1,2,3. O1N O:2=0, O1N Os,;
=0, 01,:;N On»=0 for any 1, j, i’ (see Figure VIs-1).

2: f*(0)=60o+36\, where O; is a normal rational surface with o(0;)=2
such that Sing ©;=3As,1+3As;: for i=0,1 The strict transform of 616y is
a (—2)-curve on the minimal resolution of ©o and is a (—1)-curve on the
minimal resolution of ©.. The singular locus of X consists of the points p:
E€60:N6O, (=1, 2, 3) and the points p¥’< OGN ) (=1, 2, 3, 7=0, 1)
and analytic locally around p; (p:€X, @)=(0€ C?, {x2=0})/Z5(1, 1, 2) for
i=1, 2, 3, where {x=0} corresponds to @y and {z=0} corresponds to @,
around PO, (P X, O)=(0=C?, {2=0})/Z:(1, 2, 2), around p*, (PPEX,
0)=(0€ C?, {x=0})/Z5(1, 2, 2) for i=1, 2, 3 ( see Figure VIs-2).

XIl.-1: X is smooth and

2 3
*(0)=120,+ 2(9 61,:11+661,;2+30,:3) +J§1(8 Or;1+46s,;2)
3
+60:t+ 2 (503,511 2600,+ @(i’j’a))+J§1 0.,

1<i<2,1<;<3

where @y=P'X P', 0,1~ 01,122, Or,:3=2% for i=1,2, On,.1 is a
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smooth rational surface with 0(02,;,1)=12, O,,;2 is a smooth rational surface
with 0(0s,;2)=6 for 1=1,2,3, O3~ Ou;1=22 Ouin=21, Ouin=2s
and @)= for i=1,2,j=1,2,3. Ori1* O (i=1, 2) and Os* O are fibres
of the first projection @ P and is a (—2)-curve on 1.1 (=1, 2) ( resp.
on 0s), O.;1-00 is a fibre of the second projection O P' and is a
(—2)-curve on @s;1 for j=1,2,3. O1:1°Or:2 is a ©-section on Oy, and
is @ (—4)-curve on 6,2 1,203 is a ©-section of 0> and is a
(—6)-curve on O3 for i=1, 2. ©2;1° a2 is a (—1)-curve on each
component for j=1, 2, 3. Oir o1 (resp. Os+Os;,1) is a (—2)-curve on
©.;1 and is a fibre of the ruling on Oy (vesp. ©s) for i=1, 2, j=1,2, 3,
k=1,2,3. Ou;n Oz is a (—2)-curve on O,y and is a fibre of the
ruling on ©i;2), Ou.i2° O.s is a (—2)-curve on @.;3 and is a fibre of the
ruling on 6. ;2, O Oz is a (—4)-curve on ;1 and is a ©-section on
Oi,in. Ouiny Oz is a (—2)-curve on O,z and is a fibre of the ruling on
@(i,j,l), @(z‘,j,Z)'@z,j,z is a (—1)-curve on @2,j,2 and is a (—1)-curve on @(i,j,z),
B3 Oz is a (—2)-curve on Oz and is a fibre of tce ruling on 6,53
for i=1,2,]7=1,2,3. @3B, is a (—2)-curve on®:,;, and is a fibre of the
ruling on @s. Os,;1° O, is a (—2)-curve on O;,1 and is a fibre of the ruling
on Oy Onj2* O,y is (—2)-curve on O, and is a 0-curve on Oa,;2 for j=
1,2,3 @GN O..=0 for i=1,2, k=2,3. ©NOs;2=0 for j=1,2,3. ®N
@(i,j,k):ﬂ for l.—_—‘1, 2, j, kzl, 2, 3. @oﬂ @(3,j)=ﬂ for j:1, 2, 3. @1,1,kﬂ @1,2,k'
=0 if kFFE. O1:1NOi3=0 for i=1,2. 0s;2N Or:6=0 for i=1,2, 7, k=
1,2,3. OsNOix=0 for i=1,2,k=1,2,3. O30 Os,;2=0 for j=1,2,3. O,z
NOwyy=0 for any i, k, 7', 7, . O::NBOsn=0 for any i, k, j. O2;xN
Ou.in=Bif j¥j. Oo;xNOuin=0if j*j. OuiwNOuswm=0if (i, )+
(i/, ]/) or (k, k/)z(l, 3) @(i,j,k)ﬂ @(3,j’)=ﬂ for any i, j, j/. @30 @(3,j)=ﬂ for
7=1, 2, 3 (see Figure XII,-1).

XII,-2

F*0)=126,+ é(9@1,z’,1 +6601,:2+361,:3)+ é 460,;+60;+ X Oy, .
i=1 J=1 1</<21<;<3

where Gp=P'X P! Or,:1=201,01,:2=202, G132 for i=1, 2, @, is a
normal rational surface with 0(@2,,;)=10 which has only one singular point p;
of type Az for j=1, 2, 3, @331, Ou, =P Sing X={p;; 1<;<3} and
analytic locally around p;, (p;€X, 0)=(0€ C?, {2=0})Z,(1, 1, 1) for i=1,
2, 3. O1,:1°00(i=1, 2) and O3+ O is a fibre of the first projection Oy P,
©:,;* 6o is a fibre of the second projection @ P* for j=1,2,3. @116,z
is a co-section on G, and is a (—2)-curve on Oyris OrizOr:s is a
oo-section on Oh,:2 and is a (—3)-curve on Oy, 3 for i=12. Oy.6* Os; (vesp.
Os- O,;) is a (—2)-curve on O»,; and is a fibre of the ruling on O, (vesp.
0s) for i=1,2,7=1,2,3,k=1,2,3. Ouj*0O,;is a (—4)-curve on On; and
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is a line on O for i=1,2,7=1,2,3. @M Oy:,x=0 for i=1,2, k=2,3. 6o
ﬂ@(i,j,k)=)( for i=1, 2,j, k=1, 2, 3. &N @(i,j)zﬂ for izl, 2, j=1, 2, 3.
@1,1,kﬂ@1,2.k'=ﬂ lf k+F. @1,i,1ﬂ@1.i,3=ﬂ for i=1, 2. @3ﬂ @1,i,k:ﬂ fO" 1=
1,2, k=1,2,3 0O.,sNOuin=0 for any i, k, 7', j’. O2;N\ Ouin=0 if j+
7. OunN Ouin=0if G, D+, 7). 05N BOu;=0 for i=1,2,7=1,2, 3 (see
Figure XIl.-2).

X[Ia'3 .

2 3 3
f*(0)=12@o+ El 3@1,+ +j§1(8@2,j,1+4@2,j,2)+6@3‘|’j§1 2@3,;’,

where @y=P'X P', @\, is a normal rational surface with o(6,,:)=8 which
has three singular points {p$”; 1<j<3} of type As: for i=1, 2, O2;1 =2,
02,522 for j=1, 2, 3, Os is a smooth rational surface with p(0s)=11, Os,;
~P? for j=1, 2, 3. SingX={p{"; 1<i<2, 1<;<3} and analytic locally
around P, (pSPE X, 0)=(0€ C?, {2=0})/Z:(1, 1, 2) for i=1, 2, j=1, 2, 3.
O1:+ O(i=1, 2)(resp. O3+ @) is a fibre of the first projection O P and is
a (—2)-curve on Oy,; (resp. ©s). O, 6o is a fibre of the second projection
Oo—P' and is a (—1)-curve on @s,; for j=1,2,3. Oz;1°Os;2 is a ©-section
on ;1 and is a (—2)-curve on Os;2 for j=1, 2, 3. Or:* On;x(resp.
O3+ Os,;,1) is a (—2)-curve on O.,; (vesp. Os) and is a fibre of the ruling on
O2;x for i=1,2,j=1,2,3, k=1,2. O, 03 is a (—3)-curve on O3 and is
a line on Os; for j=1,2,3. @oN Oy;2=0 for j=1, 2,3. G Os,;=0 for |
=1, 2, 3. @1,10 @1,2=ﬂ. @3ﬂ @1,;':@ for i=1, 2. @1.:’0 @3,j=ﬂ for any i, ]
02,;,.N Os5=0 for any j, j', k. Os;N Os,=0 if j+j. (see Figure XIla-3).

XI]a'4 .

F*(0)=120,+ é 36+ zi:1 40,466,

where ©y=P'X P', 61,;~>1 for i=1, 2, ©»; is a normal rational surface
with 0(©2,;)=>5 which has two singular points {p?” ; 1<i<2}of type Ass and
one singular point pS’ of type Az for j=1, 2,3, ©3=211. Sing X={p"; 1
<i<3,1<;<3} and analytic locally, (p’E X, ©)=(0€ C?, {z=0})/Z\(1, 3,
1) for i=1,2, j=1, 2,3 and (p¥’E€ X, O)=(0= C? {2=0})/Z:(1, 1, 1) for j
=1, 2, 3. O+ O(i=1, 2) (resp. Os+Oo) is a fibre of the first projection
O—P' and is a (—1)-curve on Oy (resp. @3). ©s;* 6o is a fibre of the
second projection ©y— P' and is a (—1)-curve on O,,; for j=1,2,3. O, O,;
is a (—4)-curve on ©.; and is a fibre of the ruling on O.,; for i=1, 2, j=
1,2,3. O30y, is a (—2)-curve on O,,; and is a fibre of the ruling on Os
Sfor j=1,2,3. 011N O12=0. O:sNO:;=0 for i=1, 2. (see Figure XII.-4).

X1Is-1: X is smooth and
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2 3
(0)=120,+ E(B@l,i,l +4@1,:;2)+J§1 6@z,j+(“2)3€s 20,5

2
+J§l(3 @(LJ') + @(3,j,1) + 2 @(3,,',2) + 3 @(3,j,3) + 7 @(3,5,1)),

where & :={(2, 1), (2, 2), (1, 3), (2, 3), (3, 3)}, @ is a smooth rational surface
with 0(00)=6, O1,1,1=202, O112=24, O12:=201, Or122=23, Oo; is a smooth
rational surface with 0(02,;)=8 for j=1, 2, O3 is a smooth rational surface
with 0(@s,3)=11, O, ;)= for 1=1, 2, Ou.n=P? for (i, ))E S, Opin=24,
Oui2n=202 Oa;n=P'XP' and O, is a smooth rational surface with
0(O@s0)=4. OO, is a O-curve on 6, and is a (—2)-curve on
G111 0o+ O3, is a (—1)-curve on 6 and is a (—1)-curve on @12:. Oo+ Os;
is a (—1)-curve on @y and is a (—1)-curve on @,; for j=1,2. @y Ossis a
0-curve on @y and is a (—2)-curve on @s3. 6o+ O, is a (—2)-curve on O
and is a fiber of the ruling on Ou,j for j=1,2. @ O, is a (—2)-curve
on @ and is a 0-curve on Ogj4 for j=1,2. O111° 61,12 is a ©-section on
Or11 and is a (—4)-curve on Or12. O121° Orz2 is a ©-section on Oz and
is a (—3)-curve on G122 O On; is a (—2) curve on O; and is a fibre
of the ruling on O for j, k=1,2. @i, O3 are two disjoint (—2) curves
on O,; and are two fibres of the ruling on @1, for k=1, 2. Or2:° O3 is
a (—2) curve on @3 and is a fibre of the ruling on G for k=1, 2.
O2,;* O, is a (—2)-curve on O, and is a 0-curve on ©,; for j=1, 2.
B2 Oy is a (—3)-curve on O.; and is a line on O, for (i, j)E J.
62,5 O,i.x) is a (—2)-curve on O,; and is a fibre of the ruling on Os,;,x) for
J, k=1, 2. 0,03 is a (—1)-curve on O,; and is a fibre of the first
projection O, ;3— P for j=1,2. 01, Ou,;4 is a (—3)-curve on O, and is
a l-curve on @4 for j=1,2. Ouss;1* O,z is a (—4)-curve on O,y and
is a %-section on Oz, Qa2 Ocis is a (—2)-curve on Oz and is a
fibre of the second projection O, P, Ou,u is a fiber of the second
projection @g,;5— P and is a (—2)-curve on Oa,j 4 for ij=1,2. Oz, O,
is a (—2) curve on Oa,;u and is a fibre of the ruling on @iz for j, k=1,
2. @oﬂ @1,i,2=0f0r izl, 2. @oﬂ @(3,j,k)=(1f0r j=1, 2, kzl, 2, 3. @1.1,kﬂ
Or2w=0 for any k k. O2;N\ Ory=0if j*j. O12xN Or; =0 for j, k=1, 2.
@1,1,kﬂ @(3,j,h’)=af0r any k, k. @1,2,hﬂ@(3,j,k’)=q except lf k=4, @(i,j)ﬂ
(6\O:,))=0 for (1, )E L. OunN(O\(O:;UO0)=0 for j=1, 2 (see Figure
XIIs-1).

XIIp-2:

L)€

2 3 2
*(0)=1260,+ §(8@1,i,1+4@1,i,2)+§ 6@2,;"1‘( Zyx 2@(;’,1)4‘];1 Oa,

where J :={(2, 1), (2,2), (1, 3), (2, 3), (3, 3)}, @ is a normal rational surface
with 0(©o)=2 which has four singular points {p, ¢ ; j=1, 2} of type A,



274

K. OHNO

011>, O1,12=2, O121 is a normal rational surface with o(O12:)=2
which has four singular points {q¥”; =1, 2, j=1, 2} of type Az, B2 is a
normal rational surface with p(O122)=2 which has four singular points
{¢¥; 1=2, 3, j=1, 2} of type Az, Os; is a normal rational surface with
0(0.,;)=8 which has five sdngular points {p%, ¢ ; 1<k<2, 1<I<3} of
type Az, for j=1, 2, O3 is a smooth rational surface with 0(®23)=11, O,
~P? for any i, j. Sing X={p¥, q¥; 1<k<2, 1</<3, 1<;<2} and
analytic locally, (), ¢¥’€ X, 0)=(C?, {xy=0})/2:(1, 1, 1), (pY’E X, O)=
(C3, {z2=0}))/Z:(1, 1, 1) and (¢’ X, ©)=(C?, {xyz=0})/Z:(1, 1, 1) for k=
1,2, j=1,2. @y Or,1,is a 0-curve on O and is a (—2)-curve on O,1,. The
strict transform of @ @21 is a (—1)-curve on the minimal resolution of ®,
and is a (—2)-curve on on the minimal resolution of is:. The strict
transform of - @s,; is a (—1)-curve on the minimal resolution of ©o and
is a (—2)-curve on the minimal resolution of @,; for j=1,2. @y O3 is a
0-curve on @ and is a (—2)-curve on @z3. G111+ 01,12 is a ©-section on
Ov1,1 and is a (—4)-curve on Or,,2. The strict transform of Oz, Ohzz is a
0-curve on the minimal resolution of 121 and is a (—3)-curve on the
minimal resolution of @122 G115 Os,; is a (—2) curve on O-; and is a fibre
of the ruling on @y for j, k=1,2. Ov1,x* @23 are two disjoint (—2) curves
on 0.; and are two fibres of the ruling on @1, for k=1, 2. The strict
transform of @iz 0s; is a (—2) curve on the minimal resolution of ©-,;
and is a (—1)-curve on the minimal resolution of Ok for k=1, 2, j=1, 2.
Or2.1° Oz is a (—2) curve on O3 and is a fibre of the ruling on @i, for
k=1, 2. ©s;+Ou; is a (—3)-curve on Os; and is a line on Oy HE J.
02+ O,y is a (—6)-curve on O,,; and is a line on O, for j=1,2. @N Oz
=0 for i=1,2. O11,.N Or2,=0 for any k, k'. @2;N\Osy=0 if jFj'. Ous
N(O\O,,;)=0 for any i, j (see Figure XIIs-2).

XIIs-3

2
f*(0)=1200+i§l 4@1,,-+J§1 ﬁ@z,j-i-g 56,5

where 0, is a normal rational surface with o(©0)=4 which has two singular
points {p”; j=1, 2} of type Aai, @1 is a normal rational surface with
0(01,1)=6 which has four singular points {q"; 1<j<4} of type Az, O is
a normal rational surface with 0(©12)=>5 which has three singular points
{ri; 1=1,2,3}, €O is of type Ass for [=1, 2 and rsE 6Or: is of type
As1. Os; is a normal rational surface with o(©,;)=2 which has two
singular points {p%’; 1<k<2} of type Az for j=1,2, @3~ and O,;)=~
2 for j=1,2. Sing X={p¥; 1<;<2, 1<k<2)U{g"; 1<;<4}U{r:; 1
<I1<3} and analytic locally, (pY’EX, O)=(Cs, {xy=0)}/Zx(1, 1, 1) and
analytic locally around p(1<;j<2), ¢V’ (1<;<4), rs, (X, O) is isomorphic
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to the germ of the origin of (C? {2=0})/Zx(1, 1, 1) and (ri€X, O)=(0€
C? (2=01)/Z.(3, 1, 1) for [=1,2. Bo+O1, is a O-curve on G and is a
(—2)-curve on @111 @y @12 is a (—1)-curve on @y and G The strict
transformof ©o+ Os,; is a (—1)-curve on the minimal resolution of ©, and
the minimal resolution of ©,; for j=1,2. G Oa3 is a 0-curve on @ and is
a (—1D-curve on @s3. O11-6s; is a (—2) curve on @y, and is a O-curve on
©s,; for j=1,2. O, Oa3 are two disjoint (—2) curves on Oy, fnd are two
0-curves on @z3. G2 O,y is a (—4) curve on O.2 and is a -section of
O, for j=1,2. Or2*Ossis a (—2) curve on Oz and is a fibre of the ruling
on Oz3. Os;°Opj is a 0-curve on ©; and is a (—2)-curve on O, for j=
1,2. G1,N6O,2=0. O;N\Or=0 if jF7'. 611N Op,;H=0 for j=1,2. O
N(O\(oU B12U 01,,))=2 for j=1, 2 (see Figure XII4-3).

XIIﬂ'4 .
2 3 2
f"‘(())=12(‘90-i-i2=1 4@1,i+j2=1 6@2,j+j§1 30a.5

where @y is a normal rational surface with o(@o)=4 which has two singular
points {q¢i”; j=1, 2} of type As., @11 is a normal rational surface with
0(O1,1)=6 which has four singular points {p’ ; 1<j<4} of type Az, O, is
a normal rational surface with p(01,2)=>5 which has seven singular points q5’
(1<7<2, 1<k<3), ¢9, ¢ (1<j<2, 1<k<2), ¢¥ <012 are of type Az
and q¥’ (1<j<2)E .2 are of type A, Os; is a normal rational surface
with 0(©,;)=2 which has two singular points {qf’ ; 1<k<2} of type Az, for
7=1,2, 3= and Ou, ;=2 for j=1,2. Sing X={p""; 1<;<4}U{q¥,
q®; 1<j<2,1<k<3} and analytic locally around p*’ (1<;<4) and ¢q*,
(X, O) is isomorphic to the germ of the origin of (C® {2=0})/Z:(1,1, 1), (¢
€X, 0)=Cs, {xyz=0})/2x(1, 1, 1), (¢’ € X, O)=(C? {xy=0})/Z:(1, 1, 1)
and (¢¥’°€ X, ©)=(C? {2=0})/Z/1, 1, 3) for j=1,2. @p*O1, is a 0-curve
on @ and is a (—2)-curve on ©,1. The strict transform of @O is a
(—=1)-curve on the minimal resolution of © and is a (—2)-curve on on the
minimal resolution of ©... The strict transform of ©o: O,; is a (—1)-curve
on the minimal resolution otf ©, and on the minimal resolution of ©.,; for
7=1,2. @o+ B3 is a 0-curve on O and is a (—1)-curve on @y3. Oo- @1, is
a (—2)-curve on @, and is a fibre of the ruling on O.; for j=1,2. OO,
is a (—2) curve on Oy, and is a 0-curve on ©.,; for j=1,2. @1+ Oqs consists
of two disjoint (—2) curves on @y, and is two fibres of the ruling on O
The strct transform of ©Or2° 0s,; is a (—2) curve on the minimal resolution of
0., and is a (—1)-curve on the minimal resolution of 6.; for j=1, 2.
O12°@n3 is a (—2) curve on O, and is a fibre of the ruling on s,
02,5+ O, is a fibre of the ruling on ©»; and is a (—2)-curve on O,; for
j=1, 2. @1,10 @1,2=q. @z,jﬂ @z,j'=q lf j*]',. @(1,;‘)0(@\(@0U @z,j))=0for
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7=1, 2 (see Figure XlIls-4).

REMARK6.1. The above degeneration f:X—d is minimal degeneration
except the cases X11,-2, 3, 4, X1Is-2, 3, 4.

REMARK 6.2. Let (S, 4) be a vo-log surface of abelian type and 7 : S—S be
the global log canonical cover. Let 7 be the order of Gal (S/S). Consider the
action of Gal(S/S) to S XD such that o((p, t))=(a(p), £*t) for any (p, t)E S
X D, where 0 is a generator of Gal(S/S) and ¢ is a primitive 7-th root of unity.
For an appropriate wEN, f : SXD/<o>—>D /<o) is a log minimal degenera-
tion. In this way, we can easily construct examples of degeneration except the cases
IIp, II,, II,, IIIe-1, 2, II1,-1, 2, IIT; (0>0, s>0), IVs-1, 2, IV, (4, t)=*(0, 0), (4, 4)
and IVs

From the above theorem, we can calculate the Euler number of the special
fibre in certain cases.

Corollary 6.1. The Euler number of the special fibre of the above degener-
ation is 0 in the cases I, Il,, Ilp, II,, IIs, Il III,-1, 2, I1Is-1, 2, II1,-1, 2, IV,-1, 2,
IVe-1, 2 and VI,-1, 2, 24 in the cases III; (t =9, s=0), IV,, IVs (h=t=4), VI,-1,
VIs-1, 34 in the case V-1, 12 in the case V-3, 42 in the case VIg-1, 60 in the case
VII.-1, 48 in the case XIIs-1.

REMARK 6.3. The above numbers do not depend on the choice of minimal
models (see [8]).

To prove Theorem 6.1, we prepare the following lemma.

_ Lemma 6.1. Let f (X, 6)>D be a log minimal degeneration such that
O is irreducible and suppose that 0 o(7(Ks+Diffs(0)))= O 4. for rEN. Then we
have O x(r(Kx+ 0))=Ox after shrinking D if necessary.

Proof. Put ¥ :=Coker{0 2(#K%)— 0 2(r(Kz+®))} and U :={pEX; Ox
(#(K %+ 0)) is Cartier in the neighborhood of ».}. We note that U is an open
subset of X which has codimension 3. Let 7 U— X be the natural embedding.

Claim R'jx(7'0 2(#Kx))=0.

Proof of the Claim. We may assume that X is affine. Let 7: X—X be the
log canonical cover with respect to Kx, 7v be the restriction of 7 to U :=z"(U)
and 7 : U—X be the natural embedding. We note that X has only Gorenstein
canonical singularities. Since 7 is finite and X is Cohen Macaulay, we have
le*(j_lﬂ*@X)=R1f*(7I'U*@ U)=Rl(j°ﬂu)*0 [7=R1(7I'° ;)* O U=7Z'*R1 ;*@ o=
0, hence R'jx(; 710 x(iKx))=0 for any i€ Z.
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Proof of Lemma 6.1 continued. By the above claim, we get F =/xj 'F =034
and the following exact sequence ;

0— 0 2(7Kz2)— 0 x(r(Kz+ @))— 0 60,

The above exact sequence induces the following exact sequence ;
O x(r(Kz+8)>HY0 6)> R F 10 x(rK )5 R 740 2(r(Ks+ 6)).

Since K¢ is f -semi-ample, R' O x(#Kz) is torsion free and 7 is an isomorphism
on O*. Therefore we have Ker =0, hence £ is a zero map and « is surjective. Let
6 be a section of H(O x(7(Kx+ @)) such that a(§)=1. By construction, we have
dim(Supp div 8 NSupp @)=0, hence Supp div 8 NSupp @ =0 since Supp div 4
is @-Cartier. Thus we get the assertion. [ |

Proof of Theorem 6.1. Firstly, we note that Sing X CSupp Diffs(0) U Sing
@ by [20], Corollary 3.7. Put » :=CI(®, Diff5(0)) and Let 7 :X— X be the global
log canonical cover with respect to (X, ). Since (X, 6) is purely log terminal,
(X, 77'0) is also purely log terminal by [20], Corollary 2.2 and in fact, canonical,
sdnce Kz+77'@ is Cartier. Taking analytlc Stein factorization, we have a
SLll‘_]CCthC and connected pI‘OJCCthC morphlsm f:X>D from X to a complex
disk & sumh that fexr=ro f, where 7: D—D is the induced finite morphism.
Put @ :=7"'@. Taking adjunction from Kz+ @ =1*(Kz+ 6), we have 0~ K 5=
7*(K s+ Diffs(0)), hence 7: @— 6 is the global log canonical cover with respect
to (O, Diffs(0)). Since @ is smooth by assumption, X is smooth by [20], Corollary
3.7, hence X has only quotient singularities. Since the support of singular fibre of
f is an abelian surface, f*( f) is also an abelian surface for 565*, hence f*(t)
is an abelian surface or a hyperelliptic surface for tED* Assume that O is
rational. From Lemma 6.1, 7K, ~0 for tE0*. In particular, if » =5, then X is
an abelian surface for tE0* by the classification of surfaces. Let 7 be the
multiplicity of @. Since f*(0)=76 from [5], Lemma 6.1, we have 7= r*f*(0)
= f*7*(0)=deg m6O. Put / :=Min {nEN; nKz~0(tED*)}. Then we have
deg r=7/l, hence =1[. Annume that X is an abelian surface for tED*. By the
assumption, f is smooth. Let o be a generator of Gal(X/X) Choose the basis w1,
w2 of H(O, Q%)such that 0*w;={"wi=1, 2), where { is a primitive 7-th root
of unity and w;, 1=1, 2 is a non-negative integer. Since @ is o-invariant, we can
write 0* f ={** , where ws is a non-negative integer. Noting that @ is an abelian
surface, for all fixed point pE@ under the action of o, ﬂ(p)EX is a quotient
singularity of type (1/7)(w:, w2, ws), that is, all singularities of images of fixed
points of ¢ are of the same type if the generic fibre is an abelian surface.

Cases where (@, Diff 5(0)) is of type I, II, Illa, IIls, IIl,, IVa, IV or IV can
be treated in the same way as degeneration of elliptic curves.

Assume that (0, Diff ¢(0)) is of type IIIs in Theorem 5.1. Let < X be a fixed
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point of 6. From the above argument, analytic locally around 7(p), (X, 6) is
isomorphic to the germ of the orign of (1) (Cs, {z=0})/Zs(1, 1, 1) or (2) (C?, {z=
0})/Z5(1, 1, 2). We blow up the singular points of type (1) and we are in the case
Il in Theorem 6.1. _

Assume that (6, Diff 5(0)) is of type IV; or IV; in Theoren 5.1. Let pE X be
a fixed point of 0. Then analytic locally around 7(p), (X, ©) is isomorphic to the
germ of the origin of (1)(C?, {z=0})/Z\(1, 2, 1) or (2)(C?, {z=0})/Z4(1, 2, 3). By
taking a crepant blowing-up, we see that we are in the case /V; or Vs in Theorem
6.1.

Assume that (@, Diff 5(0)) is of type V in Theorem 5.1. Let p€ X be a fixed
point of 0. Then analytic locally around 7(p), (X , @) is isomorphic to the germ
of the origin of (1)(C?, {2=0})/Z5(1, 2, 2) or(2)(C?, {2=0})/Z5(1, 2, 3). (3)(C?, {2
=0})/Zs(1, 2, 1). From the above argument, all of the singularities of X is of the
same type. In case (1), (resp. (2)), we are in the case V-1 (resp. V-2) in Theorem
6.1. Assume that we are in the case (3). Let: Y— X be the resolution as in the
Figure V-3.1. Then we have

Kr=p*Kz— g(l/s)@l,ﬁrg(z/ 56,
1 0=0v+ 3(1/5)81+ 3(3/5)0h

where @ := 5" 6 and @1,:’, @2,1- are p-exceptional divisors for 1<¢<5. Since
Ky+l;=—1, where /;C 6, be a line, we can see that {/;; 1<i<5} generate
extremal rays. Let ¢1: Yo:=Y— Y1 be the blow down of all of these rays (see
Figure V-3.2) nd put O := 01,65, OfY) := 014 @1,;. We note that all of the support
of extremal rays are contained in O, Let @2: Y1— Y2 be the contraction of an
extremal ray. Assume first that @V is divisorially contracted. By the Q-factoriality
otf Ya, o @3”) is a curve. We use the same notation for the induced morphism ¢z :
O— (6§V)*~P'. For any point pE @2( @), ¢¥(p) is written as ¢F(p)=
>m;l;, where [;=~P" and U,/; is a tree of rational curves. Since we have 1=
(= Ky, 93(p))=22mi(—Ky,, I;) and 2(—Ky,, L;)EN for any j, ¢3(p) is one of
the following ; (1) ¢¥(p)=1, where /= P" and @ is smooth in the neighborhood
of [, 2) e¥(p)=0h+ 1, where ;~P" for j=1, 2 and (4, L)=1. O has two
singular points ¢;(j=1, 2) of type Az, on Supp ¢¥(p) such that ¢;EL,\LN L=
1, 2), (3) ¢f (p)=21, where /=~ P" and O§" has one singular point ¢ of type Az,
on Supp ¢3(p) or (4) ¢3(p)=0+ lo, where ;= P! for j=1, 2 and /, and L=1
intersect at one point q. O§" has one singular point g of type Az1 on Supp ¢5(p).
The cases (2) and (3) are excluded by trivial reason. Put C{}:=@{|ep and let f
be a general fibre of @;: @§’—P. Since we have 25-,(C{%, /)=5 and (C{Y, £)
>0 for any 7 by the Q-factoriality of Y2, we get (C{!}, f)=1 for any 7. Let g€ 6
£} be any point described as in (4). If Cf!} does not pass through g, then we may
assume that (@2, ,)=1 and (6!, 1)=0. Since @ is an extremal contraction, we
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get a contradiction. Therefore, for any 7, C{!} passes through ¢, but which is
absurd. Thus we conclude that ¢: is a small contraction. Let C be an irreducible
curve which is contained in the exceptional locus of ¢2. From [13], we can see that
C=P" and C passes through only one singular point of Yi. Put C{? := @{®)|p and
C? := G| ep for 1<i<5. Let C’ be the strict transform of C on @8. Since we
have (—Ky,, C)=1/2, we have

5/2=<“*<g ciy, c>=(i1 Ci%, C’>+(1/2)<i5§l i), C’>.

Noting that Ky and Ky + @o+(1/5)2%-1 O1,,+(3/5) 221 @s,; is relatively numer-
ical equivalent over 0, we see that (Yz, @ +(1/5)2%.; @) is divisorially log
terminal, hence @§? is normal and (O, (1/5)2%-; C?) is also divisorially log
terminal by [20], (3.2.3), where O := 024 08", G2 := 2. O} and Cf2 := psx
C{). Thus we conclude that (22-; C{?, C))=2 and (2}=: C5}, C")=1. Moreover,
since we have Kg,- C'=(—(2/5)2%.1 C{9—(1/5)23. C, C')=—1 and C’*<0,
we get C?<0, we get C*=—1. We can get the flip of C by blowing-up along C’
and contract the exceptional divisor which is isomorphic to P' X P! along the other
ruling (see Figure V-3.2 and V-3.3). By the same way as above, we carry out flips
four more times and we get the model as in Figure V-3.4. The strict transform of
@, on this model is isomorphic to a Hirzebruch surface and after contracting this
component along fibres of the ruling, we get a minimal model as described in
Theorem 6.1 V-3.

Assume that (8, Diff6(0) is of type VIs in Theorem 5.1. Lep pE X be a fixed
point of 6. We see that analytic locally around 7(p), (X, ©) is isomorphic to the
germ of the origin of (1) (C®, {z2=0})/Zs(3, 2, 1) or (2) (C?, {2=0})/Zs(3, 2, 5). We
resolve these singularities and calculate the intersection number with the special
fibre of the induced fibration and the strict transform of an irreducible component
of Diffs(0) whose coefficient is 1/2 to see that for all of the fixed points pE X of
o, 7(p) has the same type described as above. Thus we are in the case VIs-1 or
VIs-1 or VI-2 in Theorem 6.1.

Assume that (0, Diffs(0)) is of type VI, or VI; in Theorem 5.1. Let p€ X be
a fixed point of 6. We can see that analytic locally around 7(p), (X, 0) is
isomorphic to the germ of the origin of (1) (C?, {z2=0}/Z:(2,5,5)) or (2) (C?, {z=
0}/Zs(2, 5, 1)). We resolve these singularities and calculate the intersection number
with the special fibre of the induced fibration and the strict transform of an
irreducible component of Diffs(0) whose coefficient is 1/2 to see that for all of the
fixed point pE X of o, () has the same type described as above. From the proof
of Theorem 5.1, O has a structure of P'-fibration all of whose fibres are irreducible.
Take an irreducible reduced curve I' which is contained in a fibre and passes
through the singular points of O. We resolve X and calculate the intersection
number with the special fibre of the induced fibration and the strict transform of
I to see that analytic locally around all the other singular points of X, (X, @) is
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isomorphic to the germ of the origin of (C?, {z=0})/Zs(1, 1, 1) in the case (1) and
(C? {2=0})/Z5(1, 1, 2) in the case (2). Thus we are in the case VI,-1, VIs-1, VI,-2
or VIs-2 in Theorem 6.1. N

Assume that (8, Diffs(0)) is of type XII, in Theorem 5.1. Let pX be a fixed
point of 0. From the above argument, analytic locally around x(p), (X', 0) is
isomorphic to the germ of the origin of (1) (C*, {z=0})/Z:.(4, 3, 5) or (2) (C?, {z
=0})/Z12(4, 3, 1). 3) (C3,{z=0})/Z12(4, 3, 11), 4) (C3, {Z=O})/Z12(4, 3, 7). Inthe
same way as above, we see that for all of the fixed points pE€ X of o, 7(p) has the
same type described as above and we are in the cases XII.-1, 2, 3, 4 in Theorem 6.
1.

Assume that (@, Dfffs(0)) is of type X1Is in Theorem 5.1. Let p= X be a fixed
point of 6. From the above argument, analytic locally around 7(p), (X, @) is
isomorphic to the germ of the origin of (1) (C3, {z=0})/Z2(2, 3, 7) or (2) (C?, {z
=0})/Z12(2, 3,1). (3) (C? {2=0})/Z:12(2, 3, 5), (4) (C?, {2=0})/Z:2(2, 3, 11). In the
same way as above, we see that for all of the fixed point pE-X' of o, 7(p) has the
same type described as above and we are in the cases X1Is-1, 2, 3, 4 in Theorem 6.
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