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Introduction

Let G be a reductive algebraic group over the complex number field C and let
g be its Lie algebra. The quantized coordinate algebra A,(G) of G is constructed as
a certain dual Hopf algebra of the quantized enveloping algebra U,(g) of g. The Hopf
algebras U,(g) and A,(G) over C(q) tend to the ordinary enveloping algebra U(g) and
the coordinate algebra A(G) respectively when the parameter ¢ tends to 1 in a certain
sense (Drinfeld [1], Jimbo [3]).

Let us consider what object we should regard as a quantum deformation of an
affine variety X with G-action.

An affine variety X is endowed with an action of G if and only if its coordinate
algebra A(X) is equipped with a right A(G)-comodule structure

T:A(X) > AX)® A(G)

which is simultaneously an algebra homomorphism. By the duality between U(g) and
A(G) we obtain a locally finite left U(g)-module structure

(*) v : U ® AKX) > A(X)
given by
(x%) M=) m®fi = yu®n) =y (u, fim,

1 1

where (, ) : U(g) x A(G) — C is the dual pairing. Since 7 is an algebra homomor-
phism, we have

(% * %) uel(g), mneAX), Aw) = Zu,- ® v; = u(mn) = Z(u,-m)(vin),

where A : U(g) — U(g) ® U(g) is the coproduct. Then the action of G on X is
uniquely determined by the infinitesimal action y. Moreover, for a locally finite left
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U(g)-module structure (x) on A(X) satisfying (% * ) and a certain condition on irre-
ducible U(g)-modules appearing as submodules of A(X), there exists a unique action
of G on X whose infinitesimal action is given by y. .

Now we define the notion of a quantum deformation of an affine variety X with
G-action as follows. A (not necessarily. commutative) C(g)-algebra A,(X) endowed
with a locally finite left U,(g)-module structure

Yq : Uqg(9) ® Ag(X) = Ay(X)

is called a quantum deformation of X if A,(X) and y, tend to A(X) and y : U(g) ®
A(X) > A(X) respectively when g tends to 1 and if it satisfies

ueUyg), mneA,X), A=Y u;®v = u(mn)=Y (uim)vin).

It seems to be an interesting problem to determine in which case X admits a
quantum deformation. In this paper we consider the problem when X is a preho-
mogeneous vector space, that is, when X is a vector space with a linear G-action
containing an open G-orbit. Such a quantum deformation was intensively studied in
the case where G = GL,,(C) x GL,(C) and X = M,,,(C) (see Taft-Towber [10],
Hashimoto-Hayashi [2] and Noumi-Yamada-Mimachi [7]), and also in the case where
G =GL,(C) and X is the set of skew symmetric matrices of degree n (see Strickland
[8D).

In our previous paper [4] we gave a general method to construct quantum defor-
mations of prehomogeneous vector spaces of parabolic type. Moreover, for each non-
open G-orbit C on X, we have shown that the defining ideal of the closure C and
its canonical generators admit quantum deformations inside A,(X). It includes the ex-
istence of the quantum deformation of the irreducible relative invariant when X is a
regular prehomogeneous vector space. Indeed, the canonical generator of the defining
ideal of the closure of the one-codimensional orbit is nothing but the irreducible rela-
tive invariant.

Quantum deformations of prehomogeneous vector spaces of commutative parabolic
type associated to classical simple Lie algebras are intensively studied in Kamita [5].
In this paper we shall deal with the remaining two cases
(I) G =C* x Spin(10, C), X = C'S, the scalar multiplication and the half-spin rep-

resentation,
() G =C* x Eg, X = C?, the scalar multiplication and the 27-dimensional irre-
ducible representation of Eg,
which naturally arise from the exceptional simple Lie algebras of type E¢ and E; re-
spectively using the method in our previous paper [4]. In Introduction we shall only
state the results in case (II).

Let gg, be a simple Lie algebra of type E; over C and let h be its Cartan subal-

gebra. We shall use the labelling of the vertices of the Dynkin diagram 1.
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1 2 3 4 6 7

Dynkin diagram 1.

Set Iy = {1,2,...,7}, I = Iy \ {1}. Let A C b* be the root system of type E;. We
denote the set of simple roots by {a;}ics, and the set of positive roots by A*. Let
(,):b*xbh* > C be a standard symmetric bilinear form. Set D = A*\ 3, Za;
Then we have 1D = 27. Set A ={1,2,...,27}, and fix a bijection A > j > B; € D
such that 8, — B; € Z,-E,O Zsoa; implies j < k, where Z>p = {n € Z | n > 0}.
Set § = 3a; + 4oy + Sa3 + 6a4 + 35 + dag + 207. For each n € A there exist ex-
actly five pairs (i, j) € A? such that 8; + Bi = 8 — Bn, i < j. We denote them
by (7, jf), (3, j3), (G5, j3), (3, J3), (5, j§) € A? where ii <iy <if <iy < if.
Let K,-i’, E;, F; (i € Ip) be the canonical generators of U,(gg,), and set U,(g) =
(Ki?, KF'.E;,Fj | j € I) C U,(gk,). Then Uy(g) is isomorphic to the ten-
sor product of C(q)[K K~!] and the quantized enveloping algebra of type E6, where
K = K}K}K;KSK2KEK?.

Theorem 0.1. A quantum deformation of the 27-dimensional irreducible preho-
mogeneous vector space X of G =C* x Eg is given by the following.
(@ Ay (X) is an associative C(q)-algebra defined by the following generators and
fundamental relations:
Generators: Y; withi=1,...,27.
Fundamental relations: For i < j

qY;Y; if Bi + B;j does not have another decomposition B+ ', B, B’ € D,
Y;Yi +qYyYa — q 'Y, Y,
if there exist k € I, a,b € A such that B, = Bi + ok, By = Bj — o,

Y;Y; otherwise.

Y.Y;=

(b)  The action y, : Uy(8) ® Ag(X) = Ay4(X) is given by the following.
For2<k<7,1<m<17

Y; if there exists j such that B; = B; + a,
Vo(Fe®Y) =1’ , T
0 otherwise,

Y; if there exists j such that B; = B; — ay,
YoEx®Y) ={ ’ . T
0 otherwise,

Ye(Km ® i) = =Py,

(c) The quantum deformation of the irreducible relative invariant of X is given by
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= Z(—Q)'ﬂ”'_'YnVIn,

neA

where |B| = Y ic,mi (B = Y i midi), ¥n = Ya¥ir — qYu¥n +q*YuYj —
Yy Y +q"Ya Yy

The author expresses gratitude to Professor Noriaki Kawanaka and Professor
Toshiyuki Tanisaki.

1. Preliminaries

Let g be a simple Lie algebra of type E¢ or E; over the complex number field
C, and let h be a Cartan subalgebra of g. Let A C h* be the root system, and let
W C GL(bh) be the Weyl group. We denote the set of positive roots by A* and the set
of simple roots by {a;}ics,, Where Iy is an index set. For i € I, we denote the simple
reflection corresponding to «; by s; € W. Let (, ) : g x g — C be the invariant
symmetric bilinear form such that (a, @) = 2 for any a € A. Set a;; = (a;, aj). The
matrix (a;j)i jes, is called the Cartan matrix of type E¢ or E7. For @ € A we denote

the corresponding root space by g,. Set n* = @, c+ 8a» 0~ = Pyea+ §—ao- For a subset
I C Iy we define

Ar=ANY Za;, Wi=(sl|iel.
iel

We set

I:=b$(@ga), = P g = P s

@€ aeA*\Ag aeA*\A;

Let G be a connected algebraic group with Lie algebra g. We denote by L, the
subgroup of G corresponding to [;. Then L; acts on n,i via the adjoint action.

The quantized enveloping algebra U,(g) (Drinfel’d [1], Jimbo [3]) is an associ-
ative algebra over the rational function field C(q) generated by the elements E;, F;,
K;, K ,.'1 (i € Iy) satisfying the following fundamental relations:

KKi=KiK;, KK '=K'K;=1,
K,'Ej =q“iijKi, K,'Fj =q_a‘ijKi,

K, — K
E;Fj — FE; = §;;————,

q9—9q
E,'Ej=EjE,' E#J, aij=0)s
E?E; —(q+q )E,E;E;+E;E}=0 (i #j, a;j =—1),
F;Fj=F;F; i #j, aij=0),

F}Fj —(q+q WF,F;Fi+ F;F}=0 (i #j, ajj=—1).
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A Hopf algebra structure on U,(g) is defined as follows. The comultiplication
AU (g) = Uy(g) ® Uy(g) is the algebra homomorphism satisfying

AKK)=K; ®K;, AE)=E; @K '+1®E;, A(F)=F,®1+K;®F,.
The counit € : Uy(g) — C(q) is the algebra homomorphism satisfying
€Ki)=1, €(E)=¢€(F)=0.
The antipode S : U,(g) — U,(g) is the algebra antiautomorphism satisfying
S(K)=K;', S(E)=-EKi; S(F)=-K'F.

Using the Hopf algebra structure, we define the adjoint action of U,(g) on U,(g)
as follows. For x,y € U,(g) write A(x) = Y, x} ® x? and set ad(x)y = Y, x} yS(x?).
Then ad : U,(g) — Endc()(Uy(g)) is an algebra homomorphism. For x,y,z € U,(g)
we have ad(x)(yz) = Y_,(ad(x})y)(ad(x?)z), where A(x) =Y, x} ® x2.

We define subalgebras U,;(n™) and U,(l;) for I C Iy by

U, =(F; liek), Ug)=(E,F.K;,K;'liel, jel).

For i € Iy we define an algebra automorphism T; of U,(g) by

Ti(K;) = K;K; ™,

i

—FiK; =)

T:(Ej) = { Ej (i+#j, aij=0)
EiEj —q7'E;E; ( #j, aij=—1),
-K'Ei (=)

T:(Fj) = { F; i #j, aij=0)
FjFi —qFF; (i #j, aij=-1)

(see Lusztig [6]). For w € W choose a reduced expression w =s;, ---s;, and set T, =
T;, ---T;. It is known that T,, does not depend on the choice of a reduced expression.
We shall use the following later (see Lusztig [6]).

Lemma 1.1. If w(e;)=«aj for we W and i, j € Iy, then we have T, (F;)=F;.

For I C Ip let w; be the longest element of W; and let wy be the longest element
of W. Choose a reduced expression wywg = s;, -+ -5;, of wywo and set

r

Bj = sisiy - -si;_(@i;), Yj=Ypg =T, ---T;_(F;)
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for 1 < j <r. Then it is known that {8; |1 < j <r}=A"\ A;. Set

U(p) =Y C@Yy v
d,«zO

Then {Y,d' ---Y,‘" | dj € Z>o, 1 < j <r}is a basis of Uy(n;) and U,(n;) is a subal-
gebra of U,(n™). we have

U,ny) = U,(n")N T, Ug(n)

and U;(n;) does not depend on the choice of a reduced expression of wj;wqp (see
Lusztig [6]).

If nj # {0}, [n},n}] = (O}, then Yg for B € A*\ A; does not depend on the
choice of a reduced expression of w;wy (see [4]). In this case we denote the C(q)-
algebra U,(n;) by A,. We can regard it as a quantum deformation of the coordinate
algebra A = C[n}] of n} as explained in [4].

2. Case of type Eg

Let g be a simple Lie algebra of type E¢. We shall use the labelling of the ver-

tices of the Dynkin diagram 2.
| 2 3 5 6

o o

.

Dynkin diagram 2.
Hence we have Iy = {1,2,3,4,5,6}. Set I ={2,3,4,5,6}. In this case we have n} #
{0}, [n},nj]1={0}. Then [; is isomorphic to C & 0(10, C) and nj is a 16-dimensional
irreducible prehomogeneous vector space. There are three L;-orbits {0}, Co, O on n}
satisfying {0} ¢ Cp C O. Let Jec, C C[nj] be the defining ideal of the closure of Co,
and let Jgo denote the subspace of J¢, consisting of the polynomials in J¢, with ho-
mogeneous degree 2. Then JCO0 is a ten-dimensional irreducible [;-module, and it gen-
erates the ideal Jg,.
We fix a reduced expression

WiWo = 5152535455535251565553525453555¢

of wywy and define the elements ¥; (i € A ={1,2,...,16}) as in Section 1.

Set Iy =(1,2,3,4,5}, I' ={2,3,4,5}, A’ ={1,2,...,8}. Then {ai}ier, is a set of
simple roots of type Ds. Let g’ be the simple subalgebra of g corresponding to ;. We
choose a reduced expression wywy; = 5152535455535251 of wywy. The elements Y; (i €
A’) can be computed inside U,(g'). . _

Let Bj =3, mje; and set m’ = (m{, ... ,mg) for j € A. Then we have
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m! =(1,0,0,0,0,0), m?=(1,1,0,0,0,0, m®=(l,1,1,0,0,0),
m‘=(,1,1,1,0,0, m’=(1,1,1,0,1,0), mé=(1,1,1,1,1,0),
7-(1,1,2,1,1,0, m¥=(1,2,2,1,1,0, m’=(1,1,1,0,1,1),

m 9 b

m°=(1,1,1,1,1,1), m''=(1,1,2,1,1,1), m
m3=(1,1,2,121), m*=(,22,1,21), mb=
m (1,2,3,2,2

If (Bj, o) =—1 for j € A and k € I, then s5¢(B;) = Bj +ax € A*. Since k # 1 and
m{ =1, we have B; + oy ¢ A;. Therefore there exists [ € A satisfying 8; + ox = B.
Conversely if B; +ax =B (j,1 € A, k € I), then we have (8;, ax) = —1, sk(B;) = Bi-

There exist 20 triplets (k, j,I) € I x A x A satisfying B; + ax = B;. The triplets
are the following: (2,1,2), (3,2,3), 4,3,4), (5,3,5), (5,4,6), (4,5,6), (3,6,7),
2,7,8), (6,5,9), (4,9,10), (3,10, 11), (2,11, 12), (5,11, 13), (5, 12, 14), (2, 13, 14),
(3, 14, 15), (4, 15, 16), (6, 6, 10), (6,7, 11), (6, 8, 12).

For k € I, j € A, we have B; — 2ok, Bj +2ax ¢ AT\ A.

Lemma 2.1. Let 8,8 € A*\ A satisfying B+ oy = B’ (k € I). Then we can
choose a reduced expression wiwg = s;,Si, - - Si,, and p € A satisfying

B = 8i Siy - -S,'p_l(d,'p), ﬂ/ =8,8, 's,-p_,sip(aiw), (a,~p, aip+,) =-1,

o = 8i,Si -+ Si,_, (@iyy,)-

Proof. Among the 20 triplets (k, j, 1) satisfying Bj+ax=p; (ke€l, j, k€ A), the
12 triplets satisfy / = j + 1, (e, ;;,,) = —1. Therefore it is sufficient to deal with the
remaining 8 cases. In the cases (k, j,I) = (5, 3,5), (5,4, 6), (5,11, 13), (5, 12, 14), the
reduced expression

WWo = 51525355545352515655535452535556

of w;wy with p = 3,5, 11, 13 respectively satisfies the required properties. In the cases
k, j,1)=(6,5,9), (6,6,10), (6,7, 11), (6, 8, 12), the reduced expression

WiWo = §1525354555653555253515254535556

of wywy with p=5,7,9, 11 respectively satisfies the required properties. O

It is known that U,(n})! = @, ana, C(@)Yp is an irreducible U,(I;)-module. (see
(4D

Lemma 2.2. Forkel, j € A, we have

Y, if there exists | € A such that B = Bj + o,

d(F)Y; =
ad(FoY; 0 otherwise,
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2d(EDY,; = Y if there' exists | € A such that B = B; — ay,
0 otherwise.

Proof. Since ;.4 C(q)Y; is a U,(I;)-module, we have ad(Fy)Y; = 0 if B;+ay ¢
A* \ A’, and we have ad(Ek)Y,- =0 if ﬁj — O ¢ A* \ Al.

We shall show ad(Fy)Yp = Yp for B, B’ € A*\ A; and k € I satisfying B’ =
B + ay. By Lemma 2.1 we can choose a reduced expression of wywg = $;,Si, " * S
satisfying B = s; i, - - - 8i,_, (i, ), B’ = sisi, o 8i, i, (@i, ), (@i, @iy,,) = —1. Then we
can write Ys = T, T;,---T;,_(F;,)), Yp = T,, T, - -- T;, , T, (F;,,.). Since (@;,, @;,,,) = —1,
we have T (F;,) = F,, F;, — qF, F;,, . Moreover, since oy = s;,s;, * - - 8i,_ (¢, ), We
have T, T, - - - T;,_,(Fi,,) = Fx by Lemma 1.1, and hence

Yp =TT, --- T, T; (Fi,,)
=TT, T, (F, F,—qF, F,) = F,Yg — qYgF,.

Since (B, ax) = —1, we have ad(F;)Yg = FyYg—qYgF;. Hence we have ad(F;)Yp =Yg

Let us show ad(Ey)Yp = Yg for B, ' € A*\ A, and k € [ satisfying B’ = B — ax.
By the above argument we have Yg = ad(Fy)Yp = FiYp —qYp Fy. Since ' —oy = —
20 ¢ AT\ A, we have ad(E)Yp =0, and hence EYp = Yp Ei. Since (B, ay) = —1,
we have K;Yp = qYp K;. Hence we have

ad(Ex)Yp = (ExYp — YgEx)Ki = (Ex(FiYp — qYp Fi) — (FiYp — qYp Fi)E) K

Ky — K[! K, — K}
= (L_—J_Yﬂ'_qyﬂ’#) Ki=(YpK; YK, =Yp. O

Next we shall consider quadratic fundamental relations among the elements Y;.
Since we have

Y Cv.y; = PC@r.y,

i,jeA s<t

we can write

YYi= Y aiivy @i ecCq))

Bi+Bj=Bs+Pr

for i > j (see [4]). Hence if B;+B; does not have another. decomposition S+8’ (B, B’ €
A*\ A;, Bi+Bj = B+ ') then we have Y;Y; = a; ;Y;Y; for some a;; € C(q). We
denote the set of weights of the ten-dimensional irreducible highest weight [;-module
.Igo with highest weight —8;, — Bs by I'. For 8,8 € A*\ A; a weight 8 + 8’ has
another decomposition if and only if we have —(8 + B’) € I'. We fix a bijection
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{1,2,...,10} > n —» =48, € T such that if §, — 8, € ):,.e,ozzoai, then n < m.
For each n there exist exactly four pairs (i, j) € A% such that i < j, B; + Bj =8,. We
denote them by (if, ji), (i3, j3), (5, j3). (i3, j§) € A? where iy <ii <iy < if. Set
A(n) = (if,i%,i5,i%, ji, j3. j5. j8) € A® (1 < n < 10). Then we have

A(1)=(1,2,3,4,5,6,7,8), A2)=(1,2,3,4,9,10, 11, 12),
A(3)=(1,2,5,6,9,10,13,14), A4)=(1,3,5,7,9,11,13,15),
A(B)=(,3,5,8,9,12,14,15), A(6)=(1,4,6,7,10,11,13,16),
A(7)=(2,4,6,8,10,12,14,16), A(8)=(3,4,7,8,11,12,15,16),
A(9)=(,6,7,8,13,14,15,16), A(10)=(9, 10, 11, 12, 13, 14, 15, 16).

We denote the set {ij, i3, i3, 7, jT', j;, j3, ji} by IA(n)| for 1 < n < 10. For any
i, j € A there exists n satisfying i, j € |A(n)|.
Set

A={k,n,n'yeI x AxA|6b +ay=38y}.
Then

A={6,1,2),(5,2,3),3,3,4),(2,4,5),4,4,6),
2,6,7),(4,5,7),3,7,8),(5,8,9), (6,9, 10)}.

For any n € {2,3, ..., 10} we can take a sequence ((ki,ny,n)), ..., (ks, ns, ny)) of A
satisfying n; = 1, n, =n, n’j =njg(1<j<s-1.
For (k,n,n') € A and m € {1, 2, 3, 4}, we have either
®r) B ) =0,in =ir, (Bjn, ) = —1, Bjw = Bjn +
or

Pr)  (Bin,ou) =—1, Biw = Bin + 0, (Bjn, ) =0, jr=je.
Proposition 2.3. For any i, j € A satisfying i < j, we have

Y;Y; if there exists n such that i =i{, j = j{,
YinYin +(q —q~")YinYjn if there exists n such that i =i, j = j3,
Q6)  Yi¥j=Yp¥y+q¥p Yo —q7'¥a Y

if there exist n, m € (3,4} such that i =i}, j = jn,

qY;Y; otherwise.

Proof. Since there exists some n satisfying i, j € |A(n)| for any i, j € A, it is
sufficient to show that for any 1 < n < 10 the elements Yin,Yin (1 < m < 4) satisfy
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the following relations.

Ya¥jpr =YY (Rn, 1)
Yo Yju=YpuYu +qYp Yo —q 'Yp Yp (2<m=<4) (Rn,2)

m—1
Yll Y12 = quYll
UL elAM L < b, (h, L) #(p, ju) (1 =m <4)) (Rn,3)

(Rn)

When n = 1, the elements Y; (1 <i < 8) satisfy the same relations as those for type
Ds, hence the relations (R1) hold.

For any m > 1 there exists a sequence ((ky,ny,n}), ..., (ks, ns, ny)) of A satisfy-
ing ny=1,n, = m,n’j =nj, (1 <j <s—1), and hence it is sufficient to show the
relations (Rn’) for (k,n,n’) € A assuming the relations (Rn).

Let (k,n,n’) € A. Assume that the relations (Rn) hold.

We first show that the relation (Rn’,1) holds. If the condition (P}) is satisfied, then
we have Yi,l,' =Y, FkY,'ll' = Y,-;'Fk, Yj:.' = ad(Fk)ij = Fij;' —qu;'Fk. Since Y,'II' Yj;' =
Y;»Yn, we have

Yi,l,' Yj;.' Y,"{ ad(Fk)ij = Y,'II'(Fijln - qu:' Fk)

(Fij;t - quf Fk)Y,ﬂll = Yj:.' Yi{" .

If the condition (P}) is satisfied, then we can prove the formula (Rn’,1) similarly.
Next we prove the formula (Rn’,2). Assume the condition (P}) is satisfied, then
we have

YuYjw = Yir (Fi¥jp — qY¥js Fi)
FeYpYin —qYjn FiYin
+q(FYjr Y —qYjpn Yin Fi)

—q ' (FYyp_ Y —qYim Yo Fp).

m—1 m—1

If the condition (P},_,) is satisfied, then we have

EYjr Yo —qYjn Y Fi

FYy Y —a¥y Y Fx

m—1 m—1

Yin ((BYir  —qYiy Fi)=Yw Y ,

m—1 m—1
(FeYip_ —qYin FOYjr =Y Y

n
m-1" Im—1

and if the condition (P,,_,) is satisfied, then we have

Fka»".—I),i:--l - qu:.—|Y",':.—|Fk = (Fijn':—l - qu:’r‘--l Fk)Yi;-l = Yj,:'.l_lyi,'.'.l_ﬁ
FkY"::,qYJ..:—l - in::l—I er:—le = Yil’l’l—l(Fijplp’:-l - qu:.—le) = Yl,',',' Y .

-1 Im—1

Hence we have Yy Yjw = Yy Yiw +qY;w Y — q“Y,.,.f_l - The formula (Rn’,2) is

proved. When the condition (P,,) is satisfied, we can prove it similarly.
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Finally we prove the formula (Rn’,3). Let I],l; € |A(n')| satisfying I; < I, and
(3. 1) # (Gn, jr) for 1 <m < 4. When [, =i € |A()| (resp. I, = j), we denote
in € |A(n)| (resp. jn) by I, for p = 1,2. Since Iy < I and (I1, ) # (ip,, jn) for
1 <m <4, we have Y, Y}, = qY,,Y;,. We have the following possibilities:

1 L=h,L=h, B, ) =B, u) =0,

) hL=h, By, a)=0, By =B, +a, B, u)=—1,

3) By =B+, By, a)=—1,1=h, (B, o) =0,

@) By =B, +ou, By =B, +ax, (B, )= (B, ) =—1.

In the case (1) the formula (Rn’,3) is obvious.

In the case (2) we have FiY), =Y, Fy, Y, = ad(F)Y), = FiY,, — qY,, Fy. Hence we
have

Y Yy, =Y, (FeYy, — qY, Fy) = q(Fe Y, — qY, FOY), =qY, Y.

In the case (3) we can prove it similarly to the case (2).

In the case (4) we have Y,zp = kY, — qY, F for p = 1,2. Since ﬂ,;} + o
ﬁ[p + 2ak ¢ A+\Al and (ﬂ];,dk) = 1, we have ad(Fk)YI; = FkY[; - q"'Ypka =
for p = 1,2. Hence we have FiFiY), — (@ + ¢ )FY, Fy + Y,,F Fi = 0, FY,, Fi
(g+q )N (FFY, + Y, F Fy) for p =1,2. By these formulas we have

o\

Y Y, = (FeYy, — qY, F)(FiY, — qY, Fr)
FY, F Y, — gF Y, Y, Fy — qY), F FlYy, + @Y, Fi Y, Fi

1
F R Y)Y, + ZI—_;_—FYA FeFeYy, — qFY, Y, Fr — qY), FiFi Yy,

qg+q7!
2 q2
+ =Y FcFe Yy, + ——— 1, Y, Fe Fy
q+q q+q
2
= o PR Y — g BT Y Fes #Y:. Y, Fi Fi.

Similarly we have

1 q>
Y, = P FeFYLY, —qFYLY), Fr + q—+‘;_—1leYI. Fy Fy.
Since YY), = qY,,Y),, we have Y, Y, = q¥;,Yy,. O

By [4] and Proposition 2.3 we obtain the following:

Theorem 2.4. The formulas (Q6) give fundamental relations for the generator
system (Y;}icp of the algebra A, = U (n}).

We shall construct a quantum deformation of the lowest degree part Jgo of the
defining ideal Jc, and we shall give canonical generators of a quantum analogue of
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Je,-
Set

Yn =YYy - q¥a¥p +q°Y¥y — @Yy,

for 1 < n < 10. Recall that A(n) = (i}, i3, 3,7, j{, j;+ J3. js)- Using the formulas

(Rn,1), (Rn,2), we can write ¥, = ijY,-: - q—le;Y,‘; +q"2Y,~; Y,';l - q_Bij Y,'f.

Lemma 2.5. We have

ad(F )Y, = Y if there exists n' such that 8, + oy = 8y,
TR 10 otherwise,
ad(E)¥, = U if there exists n' such that 8, — ay = 8y,
e 0 otherwise
for k €1, and
ad(Kp)yY, = q_(an-ak)'/,n
for k € L.

Proof. Let (k,n,n’) € A. We shall show ad(Fy)¥, = ¥,. If the condition (P},)
is satisfied, then we have ad(F;)Y;» =0, Y,-',’.lf =Y, ad(Ki)Yin = Yin ad(Fp)Yjn = Yj’:'.
Hence

ad(Fi)(Yip Yjn) = (ad(Fi)Yin )Y ju + (ad(K) Yz )ad(Fi)Y ) = ¥,

n
m m m m

¥
If the condition (P, is satisfied, then we have ad(Fi)Y;» = Yi','.‘/, ad(F)Y;» = 0. Hence
ad(Fi)(Yip Yjn) = Yo Y similarly. Therefore we have ad(Fy)¥, = ¥
Next we prove ad(E;)y, = ¥,. We have ad(Ex)Yw =0, ad(E)Y = Y;. if the
condition (P,) is satisfied, and we have ad(Ey)Y;y = Yiz, ad(K; )Y v = Yjw, j& = jn,
ad(Ek)le,'" =0 if the condition (P,,) is satisfied. Hence we have
ad(E(Yyy Yjy) = (ad(E)Yyy)ad(Ki )Y i) + Yy ad(EY ) = ¥y

m

Y

for 1 <m < 4. Therefore we have ad(Ey)Y, = ¥,.

In other 50 cases, where &, +a; ¢ {§; | 1 <1 < 10}, we can check ad(Fy)y¥, =0
by a case-by-case consideration as follows.

In the 10 cases where there exists n’ satisfying ad(Fy)¥n = ¥n, ((k,n) = (6,2),
(5,3), 3,4, 2,5), 4,6), (2,7), 4.7), (3,8), (5,9), (6,10)), we have ad(Fy)Yi» =
ad(F,)Y n=0 for 1 <m <4, and hence the assertion is obvious.

In the 8 cases (k,n) = (5,1), (6,3), (6,4), (6,5), (6,6), (6,7), (6,8), (5,10),
we have ad(Fp)Yin = ad(F)Y;» = 0 for m = 3,4, ad(F)Y; = Yjr, ad(Fo)Yjr = 0,
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ad(Fk)Y,'f = ng, ad(Fk)Y,-;' = 0, and hence ad(Fk)(Y,-ng;) = erng, ad(Fk)(Y,';'ij) =
Y»Yjr. Thus we have ad(Fi)¥, = ¢*(Y;»Yj» — qYj»Y;») = 0 by Proposition 2.3.

In the remaining 32 cases there exists m’ € {2, 3,4} such that ad(F})Y;» =0 (m #
m'), ad(F)Yjn =0 (m #m' — 1), ad(F )Y, = Yin, , ad(F)Y;, =Y, ad(Ke)Ypn, =
q_lY,-:,_l. Then we have ad(Fk)(Y,-:', Yj:,,) = Y,':],_I Yj:',, ad(Fk)(Y,';,_le,:,‘l) = q—lY,',':',_l
ad(F)¥n = ¢*™ (1 —qq~")Y;,_ Yjn =0.

The weight Bix+B;» does not depend on m. Hence we have ad(Ky)y, = g~ Gy,
where 8, = Bin + Bjn.

Finally we show ad(E )y, = 0 if 8, —ax ¢ {8, | 1 <[ < 10}. We can check
ad(Ey)y¥ = 0 for any k =2,3,...,6 directly. It follows that 312 C(q)¥, = U, (I)¥
and hence }:,',‘_j, C(q)¥n is an ad U,(1;)-stable subspace with weights in {—§; |1 <[ <
10}. Therefore we have ad(Ey)y, =0 if 8§, —ar ¢ {6 | 1 <1 < 10}. O

Yjn ,

Proposition 2.6. Y .0, C(q)y, is an irreducible highest weight U,(l;)-module
with highest weight vector .

Proof. By Lemma 2.5 z,‘,‘;, C(q)¥ is a finite dimensional U,(l;)-submodule
generated by a highest weight vector ¥, with highest weight —§&,. Thus it is irre-
ducible. O

By [4] and Proposition 2.6 we obtain the following:

Theorem 2.7. A quantum analogue of the defining ideal Jc, of the closure of
the non-trivial non-open orbit Cy is given by the two-sided ideal of A, generated by
{¥nl11=<n<10}

3. Case of type E;

Let g be a simple Lie algebra of type E;. We shall use the labelling of the
vertices of the Dynkin diagram 1. Hence we have Iy = {1,2,3,4,5,6,7}. Set I =
{2,3,4,5,6,7). In this case we have nj # {0}, [n}, nj] = {0}. Then [; is isomorphic to
C @ gg,, where gg, is a Lie algebra of type E¢ over C, and nj is a 27-dimensional
irreducible prehomogeneous vector space. There are four L;-orbits {0}, C;, C,, O on
n} satisfying {0} C C,cC, CO.Let Jc, € Cinj] be the defining ideal of the clo-
sure of Cy, and let ng denote the subspace of J¢, consisting of the polynomials in
Jc, with homogeneous degree 2. Then ng is a 27-dimensional irreducible [;-module,
and it generates the ideal J¢,. Let Jc, C C[n}] be the defining ideal of the closure of
C,, and let ng denote the subspace of Jc, consisting of the polynomials in J¢c, with
homogeneous degree 3. Then JC"2 is a one-dimensional irreducible [;-module generated
by the irreducible relative invariant, and it generates the ideal Jg,.
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We fix a reduced expression
WyWo = §15253545556545352515756545355545657525354565554535251

of w;wy and define the elements Y; (i € A ={1,2,...,27}) as in Section 1.

Set Iy = {1,2,3,4,5,6}, I' = {2,3,4,5,6}, A’ = {1,2,...,10}. Then {a;}ics; is
a set of simple roots of type Ds. Let g’ be the simple subalgebra of g corresponding
to I;. We choose a reduced expression w;wy = 515,5354555654535251 of wywy. The
elements Y; (i € A) can be computed inside Uq(g’).

Let B =Y ;; m/e and set m/ = (m{, ... ,m3) for j € A. Then we have

m! =(1,0,0,0,0,0,0), m?’=(1,1,0,0,0,0,0, m’=(,1,1,0,0,0,0),

m*=(,1,1,1,0,0,0, m’=(,1,1,1,1,0,0), mé=(,1,1,1,0,1,0),

m =(1,1,1,1,1,1,0, m®=(1,1,1,2,1,1,0), m®=(1,1,2,2,1,1,0),

m'®=(1,2,2,2,1,1,0), m!'=(1,1,1,1,0,1,1), m'2=(1,1,1,1,1,1, 1),

m®=(1,1,1,2111, m“*=(,1,221,1,1), mP=(,1,1,2,1,21),

m®=(1,1,2,2,1,2,1), m7=(,1,2,3,1,2,1), m®=(,1,2,3,2,2,1),
m?=(1,2,2,2111), m®=(1,2,22,121, m*=(,223,1,21),
m?2=(1,2,2,3,2,2,1), m?*=(,2,3,3,1,2,1), m*=(,2,3,3,2,2,1),
m®=(1,2,3,4,2,2,1), m*®=(1,2,3,4,2,3,1), m?=(1,2,3,4,2,3,2).

If (Bj,ax) = —1 for j € A and k € I, then s¢(B8j) = Bj +ax € A*\ A; and
there exists [ € A satisfying B; + ax = B;. Conversely if B;, B € A*\ A, satisfying
B — Bj = o (k € I), then we have (B, ax) = —1, si(Bj) = Bi.

For k € I, j € A, we have B; — 2ax, Bj +2ax ¢ A*\ Aj.

Set

B={(k,j,l)eI x Ax A|B;+a=p).

We have
B={2,1,2),(3,2,3),(4,3,4),(5,4,5),(6,4,6),(6,5,7),(5,6,7), (4,7, 8),(3,8,9),

2,9,10),(7,6,11),(7,7,12),(7, 8, 13), (7,9, 14), (7, 10, 19), (5, 11, 12),
4,12, 13), (3, 13, 14), (6, 13, 15), (6, 14, 16), (3, 15, 16), (4, 16, 17), (5, 17, 18),
(2,14, 19), (2, 16, 20), (2, 17, 21), (2, 18, 22), (6, 19, 20), (4, 20, 21), (5, 21, 22),

(3, 21, 23), (3, 22, 24), (5, 23, 24), (4, 24, 25), (6, 25, 26), (7, 26, 27)}.
In particular, we have |B| = 36.

Lemma 3.1. Let 8,8 € A*\ A, satisfying B+ ay = B’ (k € I). Then we can
choose a reduced expression wjwg = s;,Si, - - - Siy, and p € A satisfying

B =siSiy i, (i), B = siisiy oS, s (@i,,,), (@, e,,) = —1,

O = Si\Si +* + Si,_ (i, )-
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Proof. The 21 triplets (k, j, /) in B satisfy I = j +1, (@, @;;,,) = —1. Therefore
it is sufficient to deal with the remaining 15 cases. In the cases (k, j,1) = (6,4, 6),
6,5,7), (6,13, 15), (6, 14, 16), (3, 21, 23), (3, 22, 24), we can take

WiWo = 51525354565554535251575654555354565752535455565453525]

with p = 4,6, 13, 15, 21, 23, and in the cases (k, j,1) = (7,6, 11), (7,7, 12), (7, 8, 13),
7,9, 14), (7,10, 19), we can take

WiWo = 515253545556575456535452535152555456575354565554535251

with p =6, 8, 10, 12, 14, and in the cases (k, j,l) = (2, 14, 19), (2, 16, 20), (2, 17, 21),
(2, 18, 22), we can take

WiWo = §15253545556545352515756545553525453565457565554535251

with p =15, 17, 19, 21. O
We can show the following similarly to the case E¢. We omit the details.

Lemma 3.2. For ke l, j € A, we have

Y, if there exists (k, j,1) € B,
ad(FOY; = 1 if (k, j, D

0 otherwise,

Y, if there exists (k,1, j) € B,
2d(EY; = | if ‘ k.1, J)

0 otherwise.

The U,(I;)-module P;c, C(q)Y; is an irreducible highest weight module with
highest weight vector Y; and lowest weight vector Y;. Hence, for any 1 < m < 26,
there exists a sequence ((ky, n},ny), ..., (ks, ny, ny)) of B satisfying n; = 27, n, = m,
np=njq (1<j<s—1.

Next we shall consider relations among the elements Y;. We can write

Y,Yi= Y alvY, (a;] €C(g)
48 s
for i > j (see [4]). Hence if B;+B; does not have another decomposition g+’ (B8, B’ €
A*\ A;, Bi + Bj = B+ B') then we have Y;Y; = q; ;Y;Y; for some a;; € C(q). Set
8 = 2w = 3o +4a+5a3+604+3as+4as+2017, where @ is the fundamental weight cor-
responding to «;. We denote a set of weights of the 27-dimensional irreducible highest
weight [;-module JQ with highest weight —g, — Bio by T. Set ¥, =8 — B, (n € A),
and we have I' = {—y, | n € A}. For 8,8 € A*\ A, a weight 8 + B’ has an-
other decomposition if and only if we have —(B8 + B’) € T'. For each n € A there
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exist exactly five pairs (i, j) € A? such that i < j, B + B; = ¥». We denote them
by Gf, JP). G5, J3) G5, J3), Gf, i), (2, j2) € A? where if < i} < i} < if < if,
i < Jj3 <J3 <J;s <lJs,and if, ji' satisfy the following condition (P}) or (P}). Set
B(n) = (i%, i, i3, 15,0V, jI, j3, 3, %, j%) € A'® (n € A). Then we have

B(1)=(10, 19, 20, 21, 23, 22, 24, 25, 26, 27), B(2)=(9, 14, 16, 17, 23, 18, 24, 25, 26, 27),
B(3)=(8, 13, 15, 17, 21, 18, 22, 25, 26, 27), B(4)=(7, 12, 15, 16, 20, 18, 22, 24, 26, 27),

B(5)=(6, 11, 15, 16, 20, 17, 21, 23, 26, 27),
B(7)=(4, 11, 13, 14, 19, 17, 21, 23, 25, 27),
B(9)=(2, 11, 12, 13, 19, 15, 20, 21, 22, 27),

B(6)=(5, 12, 13, 14, 19, 18, 22, 24, 25, 27),
B(8)=(3, 11, 12, 14, 19, 16, 20, 23, 24, 27),
B(10)=(1, 11, 12, 13, 14, 15, 16, 17, 18, 27),

B(12)=(4, 6, 8,9, 10, 17, 21, 23, 25, 26),
B(14)=(2, 6,7, 8, 10, 15, 20, 21, 22, 26),
B(16)=(2, 4, 5, 8, 10, 13, 19, 21, 22, 25),
B(18)=(2, 3,4, 6, 10, 11, 19, 20, 21, 23),
B(20)=(1, 4,5, 8,9, 13, 14, 17, 18, 25),
B(22)=(1,3,4,6,9, 11, 14, 16, 17, 23),
B(24)=(1, 2,4, 6,8, 11,13, 15, 17, 21),
B(26)=(1,2,3,4,5, 11, 12, 13, 14, 19),

B(11)=(5,7, 8,9, 10, 18, 22, 24, 25, 26),
B(13)=(3,6,7,9, 10, 16, 20, 23, 24, 26),
B(15)=(3,4,5,9, 10, 14, 19, 23, 24, 25),
B(17)=(2,3,5,7, 10, 12, 19, 20, 22, 24),
B(19)=(1,6,7,8,9, 15, 16, 17, 18, 26),
B(21)=(1,3,5,7,9, 12, 14, 16, 18, 24),
B(23)=(1,2,5,7,8,12,13, 15, 18, 22),
B(25)=(1, 2, 3,6,7,11, 12, 15, 16, 20),
B(127)=(1,2,3,4,5,6,7,8,9, 10).

For n € A we denote the set {ig, iy, i3, i3,i{, ji, j3, j§, ji, j¢} by |B(n)|. For any
i, j € A there exists n € A satisfying i, j € |B(n)|.

For (k,n’,n) € B and m € {1, 2, 3, 4, 5}, we have either
() (B ) =0, i =if, (Bjn, ) = —1, B = Bjn +
or
®,) B, ou)=—1, By = Bin + o, Bj, ) =0, ji = jn.

Proposition 3.3. For any i, j € A satisfying i < j, we have

Y;Y; if there exists n € A such that (i, j} = {i{, jT},
YipYi+(q —q " YYaY)r

if there exists n € A such that i =i}, j = j;,
Yir'.'. Yir’r‘: + qu,:—| Y'i::—l - q_l Yi"v'n-l Yj.ﬁ—l
if there exist n € A, m € {3,4,5)} such that i =i, j = j*,

otherwise.

Q) ry;=

qY;Y;

Proof. Since there exists n € A satisfying i, j € |[B(n)| for any i, j € A, it is
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sufficient to show
Ya¥jp =YY (R, 1)
Yi.'.'. Yf,ﬁ = Yfrf'. Yi.'.'. +qur':‘|-lI/‘.:|—l - q_lYi:.-l Yj;’r‘l-l Q=m<3) (Rn, 2)
Yll le = qleYI|
(L e BM|, L <b,{h, L} #{in, jn} (1 <m <5)) (Rn,3)

(Rn)

forneAand 1 <m<S5.

When n =27, the elements Y; (1 <i < 10) satisfy the same relations as those for
type D¢, and hence relations (R27) hold.

Since there exists a sequence ((ki,n},ny),..., (ks,n;, ny)) of B satisfying n; =
27,0, = m,n’j =nj,; (1 <j<s-—1)forany 1 <m < 26, it is sufficient to show
(Rn’) for (k,n’,n) € B assuming (Rn). This is proved similarly to Proposition 2.3.
Details are omitted. O

By [4] and Proposition 3.3 we obtain the following:

Theorem 3.4. The formulas (Q7) give fundamental relations for the generator
system {Y;}icn of the algebra A, = Uy(n)).

We shall construct a quantum deformation of the lowest degree part ng of the
defining ideal J¢, and we shall give canonical generators of a quantum deformation of
Je,.

Set

Yn=YuYjs —qYyYy +q° VY — @*YuYjs +¢*Ya Yy,

for n € A, where B(n) = (i, i},i5,i5,i7, ji, j3. j5. ji» j¢). Using the formulas
(Rn,1), (Rn,2), we can write

Yn = Yj;Yi;' - q‘le;:Y,-g +q_2Yj; Y,'; — q_3Yj;Y,'£' +q-4ij Y,f
Similarly to Lemma 2.5 and Proposition 2.6 we can show the following:

Lemma 3.5. We have

+ if there exists (k,n’,n) € B,
ad(Fk)%:[wnlf ists ( )

0 otherwise,

Y If there exists (k,n,n’) € B,
ad(Ex)Yn = [

0 otherwise



402 Y. MoORITA
for k € 1, and

ad(Ki)yn = ¢~ "y,
for k € I.

Proposition 3.6. Y .\ C(q)¥, is an irreducible highest weight U,(l;)-module
with highest weight vector Yry;.

By [4] and Proposition 3.6 we obtain the following:

Theorem 3.7. A quantum deformation of the defining ideal Jc, of the closure of
the non-open orbit C, is given by the two-sided ideal of A, generated by {y/, | n €
Al

Set

9= (-)" Yy,

neA
where |B| = Zielo m; (B = Zielo m;a;).
Proposition 3.8. C(q)¢ is a one-dimensional U,(l;)-module.

Proof. By Proposition 3.3 we can check that the coefficient a; 19,27 of Y,Y0Y27
in@=3_;4aijxYi¥;Y is 1+q®+q'°. Therefore we have ¢ #0.

Let (k,n,n’) € B. Then we have |By| = |B.| + 1, ad(F})Y, = Y., ad(F,)Y, = 0,
ad(Fi)Yn = Y, ad(F )Y, =0, (By, ax) = 1. Hence ad(Fi)(Y,y¥n — qYu¥w) = Yoty —
qq 'Yy, = 0. Therefore we have ad(Fy)¢ = 0 for any k € I, and similarly we have
ad(Ex)e = 0 for any k € I. Since y, + B, = & for any n € A, we have ad(Ky)p =
q @y for any k € Iy. In particular, we have ad(Ky)¢ = ¢ for any k € I, and
ad(K)p = g7 %¢. O

The element ¢ is a quantum deformation of the irreducible relative invariant on
the prehomogeneous vector space.

Theorem 3.9. A quantum deformation of the defining ideal Jc, of the closure of
the non-open orbit C, is given by the two-sided ideal of A, generated by ¢.
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