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Introduction

Let G be a reductive algebraic group over the complex number field C and let

0 be its Lie algebra. The quantized coordinate algebra Aq(G) of G is constructed as

a certain dual Hopf algebra of the quantized enveloping algebra £7^(0) of 0. The Hopf

algebras £7^(0) and Aq(G) over C(q) tend to the ordinary enveloping algebra £7(0) and

the coordinate algebra A(G) respectively when the parameter q tends to 1 in a certain

sense (Drinfeld [1], Jimbo [3]).

Let us consider what object we should regard as a quantum deformation of an

affine variety X with G-action.

An affine variety X is endowed with an action of G if and only if its coordinate

algebra A(X) is equipped with a right A(G)-comodule structure

τ : A(X) -* A(X) ® A(G)

which is simultaneously an algebra homomorphism. By the duality between £7(0) and

A(G) we obtain a locally finite left £7(0)-module structure

A(X) -> A(X)

given by

(**) τ(n) = Pπ/ ® /• => γ(u ® n) = Γ(w, /J)n/,

where ( , ) : £7(0) x A(G) -> C is the dual pairing. Since τ is an algebra homomor-

phism, we have

(* * *) u e ί/(0), m, n e A(X),

where Δ : £7(0) -> £7(0) ® £7(0) is the coproduct. Then the action of G on X is

uniquely determined by the infinitesimal action γ. Moreover, for a locally finite left
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f/(g)-module structure (*) on A(X) satisfying (* * *) and a certain condition on irre-
ducible (/(β)-modules appearing as submodules of A(X), there exists a unique action

of G on X whose infinitesimal action is given by γ.
Now we define the notion of a quantum deformation of an affine variety X with

G-action as follows. A (not necessarily commutative) C(#)-algebra Aq(X) endowed
with a locally finite left Uq(o)-module structure

q (X)

is called a quantum deformation of X if Aq(X) and γq tend to A(X) and γ : U($) 0

A(X) -> A(X) respectively when q tends to 1 and if it satisfies

u G Uq(&), m, n e Aq(X), Δ(w) = M/ <8> υ/ =ϊ u(mn) = (ϊi//π)(υ/n).

It seems to be an interesting problem to determine in which case X admits a
quantum deformation. In this paper we consider the problem when X is a preho-
mogeneous vector space, that is, when X is a vector space with a linear G-action
containing an open G-orbit. Such a quantum deformation was intensively studied in
the case where G = GLm(C) x GLn(C) and X = Afmπ(C) (see Taft-Towber [10],
Hashimoto-Hayashi [2] and Noumi-Yamada-Mimachi [7]), and also in the case where

G = GLΛ(C) and X is the set of skew symmetric matrices of degree n (see Strickland

[8]).
In our previous paper [4] we gave a general method to construct quantum defor-

mations of prehomogeneous vector spaces of parabolic type. Moreover, for each non-
open G-orbit C on X, we have shown that the defining ideal of the closure C and
its canonical generators admit quantum deformations inside Aq(X). It includes the ex-
istence of the quantum deformation of the irreducible relative invariant when X is a
regular prehomogeneous vector space. Indeed, the canonical generator of the defining
ideal of the closure of the one-codimensional orbit is nothing but the irreducible rela-
tive invariant.

Quantum deformations of prehomogeneous vector spaces of commutative parabolic
type associated to classical simple Lie algebras are intensively studied in Kamita [5].
In this paper we shall deal with the remaining two cases

(I) G = C* x Spin(10, C), X = C16, the scalar multiplication and the half-spin rep-
resentation,

(II) G = Cx x £5, X = C27, the scalar multiplication and the 27-dimensional irre-
ducible representation of E^

which naturally arise from the exceptional simple Lie algebras of type Eβ and Eη re-
spectively using the method in our previous paper [4]. In Introduction we shall only
state the results in case (II).

Let QEΊ be a simple Lie algebra of type Eη over C and let fj be its Cartan subal-
gebra. We shall use the labelling of the vertices of the Dynkin diagram 1 .
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Dynkin diagram 1.

Set /o = (1, 2, . . . , 7}, / = /o \ {!}. Let Δ c f)* be the root system of type EΊ. We

denote the set of simple roots by {α, }, €/0 and the set of positive roots by Δ"1". Let

( , ) : f j* x f)* -> C be a standard symmetric bilinear form. Set D = Δ+ \ £f€/ Zα/.

Then we have (JD = 27. Set Λ = {1, 2, . . . , 27}, and fix a bijection Λ B j \-+ β} , e D

such that βk - βj € Σ/€/0Z>oα/ implies j < k, where Z>0 = (n € Z | n > 0}.
Set 5 = 3c*ι + 4«2 + 5o?3 + 6014 + 3c*5 + 4a^ + 2a-j. For each n e A there exist ex-

actly five pairs (/, j) e Λ2 such that ft + βj = δ - ft,, i < j. We denote them

by (iΐJVΛiϊJP'WJP'WJP'W'W e Λ2 where ί» < if < ι» < i
Let Kfl,Ei,Fi (i e /o) be the canonical generators of t/9(fl£7), and set ί/
(AΓf3, Kf\Ej,Fj \ j e I) C Uq($Eη). Then t^(fl) is isomorphic to the ten-

sor product of C(q)[K, K~l] and the quantized enveloping algebra of type E& where
V —Λ —

< if.

Theorem 0.1. A quantum deformation of the 27 -dimensional irreducible preho-

mogeneous vector space X of G = Cx x E$ is given by the following.

(a) Aq(X) is an associative C(q)-algebra defined by the following generators and

fundamental relations:

Generators: YI with ί = 1, . . . ,27.

Fundamental relations: For i < j

Y Y -Itlj -

YjYi if βi + βj does not have another decomposition β + βf, β, β' e D,

if there exist k e I, a, b e A such that βa = βι + ak, βb = βj - <**,

otherwise.

(b) The action γq : Uq(o) ® Aq(X) ->> Aq(X) is given by the following.

For2<k<Ί, 1 < m < 1

YJ if there exists j such that βj = ft
Λ

0 otherwise,

YJ if there exists j such that βj = βi — α*,
.

0 otherwise,

(c) quantum deformation of the irreducible relative invariant of X is given by
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π€Λ

where \β\ = J^m, (β = Σίe/0 "-«.). Vθ, = ϊί ϊ). - qYPJa +

The author expresses gratitude to Professor Noriaki Kawanaka and Professor
Toshiyuki Tanisaki.

1. Preliminaries

Let 0 be a simple Lie algebra of type E6 or E7 over the complex number field
C, and let f) be a Cartan subalgebra of 0. Let Δ c f)* be the root system, and let
W C GL(f)) be the Weyl group. We denote the set of positive roots by Δ* and the set
of simple roots by {<*/ }/€/0, where /o is an index set. For i e /o we denote the simple
reflection corresponding to α, by j/ e W. Let ( , ) : 0 x 0 -> C be the invariant
symmetric bilinear form such that (α,α) = 2 for any a e Δ. Set β/7 = (α/,αy). The
matrix (α//)ι,y€/0 is called the Cartan matrix of type E6 or E7. For α € Δ we denote
the corresponding root space by gα. Set n+ = φα€Δ+ 0α, n~ = φα€Δ+ 0-α. For a subset
/ C /o we define

!€/

We set

αeΔ+\Δ/

Let G be a connected algebraic group with Lie algebra 0. We denote by L/ the
subgroup of G corresponding to I/. Then L/ acts on nf via the adjoint action.

The quantized enveloping algebra ί/^(0) (DrinfeΓd [1], Jimbo [3]) is an associ-
ative algebra over the rational function field C(<?) generated by the elements £/, F/,
Ki, K^~l (i € /o) satisfying the following fundamental relations:

K l Kj = K. j K i τ Λ i Λ = Λ ^ Λ i = 1 ,

JSΓ,-^ = q vEjKi, KiFj = q—'FjK,,

f F f f - X K' ~ ι̂
β/fy — fyβj - d, y - — ,

9-9

EiEj = EjEi (ijj, α,v=0),

iEjEi + E j E f = 0 (i J j, a tj = -I),

(ijj, βy=0),

FjFi + FjF?=0 (i J j, α,, = -1).
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A Hopf algebra structure on Uq(%) is defined as follows. The comultiplication

Δ : Uq(&) — > Uq(&) <8> Uq(g) is the algebra homomorphism satisfying

Δ(AΓ, ) = KI ® AT, , Δ(£, ) = Ei ® AΓf1 + 1 Θ £/, Δ(F, ) = F, <g> 1 + AT/ 0 F/.

The counit € : Uq($) -+ C(q) is the algebra homomorphism satisfying

The antipode 5 : ί/^(0) ->> ί/^(0) is the algebra antiautomorphism satisfying

S(Ar, ) = AΓf 1 , S(ES) = -EM, S(Fi) = -AΓΓ1*}.

Using the Hopf algebra structure, we define the adjoint action of Uq($) on

ollows. For x,y e Uq($) write Δ(JC) = Σkxl ®xl anc* set ad( c)^ = ΣΛ ̂

Uq(o)

^Λ)-
Uq(&)

as follows

Then ad : Uq(&) -> Endc^)(ί/^(0)) is an algebra homomoφhism. For x,y,z e

we have ad(*Xyz) = Σ^(ad(^)y)(ad(^2)z), where Δ(JC) = Σkxk ® *ϊ
We define subalgebras i/^(n~) and ί/^(ί/) for / c /o by

E/,(ιΓ) = (fi 1 1 € /o), t/,(ί/) = (Eh fl, AΓ 7 > AT/1 | i e /, y € 70>.

For / € /o we define an algebra automorphism 7} of ί/^(0) by

( « = j)
(i J j, an = 0)

j - q~lEjEi (i i j, atj = -1),

Ei (i = 7)

(see Lusztig [6]). For w € W choose a reduced expression w = $/, j/r and set Γ^ =

7/, 7}Γ. It is known that 7^ does not depend on the choice of a reduced expression.

We shall use the following later (see Lusztig [6]).

Lemma 1.1. If ty(a/) = a/ for w eW and ί, j e 7o, ίΛβn w^ have Γw(F/) = F/.

For 7 c 7o let u;/ be the longest element of W/ and let U Q be the longest element

of W. Choose a reduced expression tu/wo = £/, ί/r of w /iϋo and set

l (of f.), Yj = 7Λ = Ttl - - ^._, (F/;
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for 1 < j < r. Then it is known that {βj \ 1 < j < r] = Δ+ \ Δ/. Set

Then {yj*1 - y* I dj e Z>0, 1 < j < r} is a basis of Uq(nJ) and Uq(nJ) is a subal-
gebra of ί/^(n~). we have

tW) = t/,(tΓ) Π Γ'/^OO

and Ug(nJ) does not depend on the choice of a reduced expression of tu/wo (see
Lusztig [6]).

If n+ J {0}, [n|, n+] = {0}, then y^ for β e Δ+ \ Δ/ does not depend on the
choice of a reduced expression of W/WQ (see [4]). In this case we denote the C(q)-
algebra Uq(n^) by Aq. We can regard it as a quantum deformation of the coordinate
algebra A = C[n|] of nj as explained in [4].

2. Case of type E6

Let g be a simple Lie algebra of type E&. We shall use the labelling of the ver-
tices of the Dynkin diagram 2.

1 2 3 5 6

*4
Dynkin diagram 2.

Hence we have /o = {1, 2, 3, 4, 5, 6}. Set / = {2, 3, 4, 5, 6}. In this case we have n| ̂
{0}, [n|, Π;] = {0}. Then (/ is isomorphic to C 0 o(10, C) and nj is a 16-dimensional
irreducible prehomogeneous vector space. There are three L/ -orbits {0}, CQ, O on nj
satisfying {0} C Co C O. Let /c0 C C[n|] be the defining ideal of the closure of Co,
and let J®Q denote the subspace of 7c0 consisting of the polynomials in /c0

 with ho-
mogeneous degree 2. Then J®Q is a ten-dimensional irreducible I/ -module, and it gen-

erates the ideal /c0

We fix a reduced expression

of WJWQ and define the elements Yl (i e Λ = {1, 2, . . . , 16}) as in Section 1.
Set /<; = {1, 2, 3, 4, 5}, /' = {2, 3, 4, 5}, Λ' = {1, 2, . . . , 8}. Then {a/}/€/i is a set of

simple roots of type D5. Let &' be the simple subalgebra of Q corresponding to /Q. We
choose a reduced expression wj>w^ =^152^3^4^5^352^1 of w/'W^. The elements F/ (i €
Λ') can be computed inside Uq(%').

Let βj = Σί€/
 m/α' an(* set m7 = (mι : > » W6) ^or ^ G ^ Then we have
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m
1
 = (1 , 0, 0, 0, 0, 0), m

2
 = (1, 1, 0, 0, 0, 0), m

3
 = (1, 1 , 1, 0, 0, 0),

m
4
 = (1, 1, 1, 1, 0,0), m

5
 = (1, 1, 1, 0, 1,0), m

6
 = (1, 1, 1, 1, 1,0),

m
7
 = (l,l,2, 1,1,0), m

8
 = (l,2,2, 1,1,0), m

9
 = (1, 1, 1, 0, 1, 1),

m
10
 = (1,1,1,1,1,1), m

π
= (1,1, 2, 1,1,1), m

12
 = (1, 2, 2, 1, 1, 1),

m
13
 = (l,l,2, 1,2, 1), m

14
 = (l,2,2,l,2, 1), m

15
 = (1, 2, 3, 1, 2, 1),

m
l6
 = (l,2,3,2,2, 1).

If (βj, cek) = -l for j e Λ and k € /, then sk(βj) = βj + α* £ Δ+. Since k J 1 and

m\ = 1, we have βj + ak £ Δ/. Therefore there exists / € Λ satisfying βj + ak = βi

Conversely if βj + ak = βι (7, / € Λ, k e /), then we have (βj,ak) = -1, sk(βj) = βι.

There exist 20 triplets (k, j, /) e I x A x A satisfying βj + otk = ft. The triplets

are the following: (2,1,2), (3,2,3), (4,3,4), (5,3,5), (5,4,6), (4,5,6), (3,6,7),

(2, 7, 8), (6, 5, 9), (4, 9, 10), (3, 10, 11), (2, 11, 12), (5, 11, 13), (5, 12, 14), (2, 13, 14),

(3, 14, 15), (4, 15, 16), (6, 6, 10), (6, 7, 11), (6, 8, 12).

For k e /, j e Λ, we have βj - 2α*, βj + 2ak £ Δ+ \ Δ/.

Lemma 2.1. Let β, β' e Δ+ \ Δ/ satisfying β + otk = β' (k e /). Then we can

choose a reduced expression W/WQ = si{Si2 - - s/16 and p e A satisfying

β = j/, j/2 - ••$/„_,(«/,), β' = s^Si, - - - V.M<Vi)' K>' °Vι) = -1'

Proof. Among the 20 triplets (k, j, /) satisfying βj+ak=βι (k e /, 7, k e Λ), the

12 triplets satisfy / = j + 1, (α/7, α/;+1) = — 1. Therefore it is sufficient to deal with the

remaining 8 cases. In the cases (k, 7, /) = (5, 3, 5), (5, 4, 6), (5, 11, 13), (5, 12, 14), the

reduced expression

of W/WQ with p = 3, 5, 11, 13 respectively satisfies the required properties. In the cases

(A:, 7, /) = (6, 5, 9), (6, 6, 10), (6, 7, 1 1), (6, 8, 12), the reduced expression

= S \S2S3S4SsS6S3SsS2S3S \S2S4S3SsS6

of WIWQ with p = 5, 7, 9, 11 respectively satisfies the required properties. D

It is known that Uq(\\+j)1 = 0^+ ,̂ C(q)Yβ is an irreducible ί/^(l/)-module. (see

[4])

Lemma 2.2. For k e I, j e A, we have

YI if there exists I e A such that βι = βj + otk,

0 otherwise,



392 Y MORITA

ί YI if there exists I e Λ such that βι = βj - otk,
aά(Ek)Yj = I

I 0 otherwise.

Proof. Since φy€Λ C(q)Y} is a ί/^(ί/)-module, we have ad(FΛ)r, = 0 if βj+ak i

Δ+ \ Δ/, and we have &d(Ek)Yj = 0 if βj - otk φ Δ+ \ Δ/.

We shall show adίF*^ = Yβ> for £, 0' € Δ+ \ Δ/ and k e I satisfying β' =

β +<Xk- By Lemma 2.1 we can choose a reduced expression of W/WQ = SjlSi2 •••Jί l6

satisfying 0 = silsi2 - •$/,_, («/„), β' - si}si2 - -^..^(α/^,), («/,, α, ̂ ,) = -1. Then we

can write fy = Tί.T/, •• Tip,{(Fip), Yβ, = TJ.T , - - - Tip_Jip(Fip+l). Since (α, ,f α lVl) = -1,

we have Tip(Fip^) = F/p+1F/p -qFipFip+l. Moreover, since α* = ̂ ,^2 5/p_1(α/^l), we

have 7/,7f 2 Tip_{(Fip+l) = Fk by Lemma 1.1, and hence

Yβ'^T^ . T^T^J
= Γίt Γ/2 - - Tip_,(Fip+l Fip - qFipFip+[) = FkYβ - qYβFk.

Since (β, cek) = -1, we have aά(Fk)Yβ = FkYβ-qYβFk. Hence we have aά(Fk)Yβ = F^.

Let us show aά(Ek)Yβ = Yβ> for j3, /?' € Δ+ \ Δ/ and ^ e I satisfying β' = β - α*.

By the above argument we have fy = ad(Fk)Yβ' = FkYβ> -qYβ'Fk. Since β' -ctk = β -

2αk φ Δ+ \ Δ/, we have ad(E*)fy = 0, and hence Ejt^' = YβΈk. Since (jβ', α^) = -1,
we have KkYp =qYβ'Kk. Hence we have

aά(Ek)Yβ = (EkYβ - YβEk)Kk = (£ft(F4r^ - qYpFk) - (FkYβ, - qYβfFk)Ek)Kk

D

Next we shall consider quadratic fundamental relations among the elements y/.

Since we have

we can write

^ ϊ>= Σ α%r'γ<

for i > 7 (see [4]). Hence if jβ, +/fy does not have another decomposition β+β' (β, β' G

Δ+ \ Δ/, A + βj f = /9 + /βO then we have K/K, = α/^T/y; for some α/,y € C(q). We
denote the set of weights of the ten-dimensional irreducible highest weight [/-module
/£o with highest weight -β{ - β% by Γ. For β, β' e Δ+ \ Δ/ a weight 0 + 0' has

another decomposition if and only if we have — (β + β') 6 Γ. We fix a bijection
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{1,2,... , 10} 3 n ι-> -δn € Γ such that if 8m - 8n e Σίe/0

z>oαό then n < m.
For each n there exist exactly four pairs (/, 7) e Λ2 such that i < 7, βι + β, = <$„. We

denote them by (if, jj1), (/;, $), (ιj, ./J), (^,74) € Λ2 where /J < ij < i j < ιj. Set

A(π) = (/J, ίj, /J, i f , yj1, y2

n, 7*3, 74") 6 Λ8 (1 < n < 10). Then we have

A(l) = (1, 2, 3, 4, 5, 6, 7, 8), A(2) = (1,2, 3,4, 9, 10, 11, 12),

A(3) = (1, 2, 5, 6,9, 10, 13, 14), A(4) = (1, 3, 5, 7, 9, 11, 13, 15),

A(5) = (2, 3, 5, 8,9, 12, 14, 15), A(6) = (1,4, 6, 7, 10, 11, 13, 16),

A(7) = (2, 4, 6, 8,10, 12, 14, 16), A(8) = (3,4,7, 8, 11, 12, 15, 16),

A(9) = (5, 6, 7, 8, 13, 14, 15, 16), A(10) = (9, 10, 11, 12, 13, 14, 15, 16).

We denote the set [i%, i j, ij, i j , jj1, y'£, y£, 7^} by |A(n)| for 1 < n < 10. For any

i, j e Λ there exists n satisfying /, j e |A(n)|.

Set

A = {(&, n, n') e I x Λ x Λ | δn + ctk = δn>}.

Then

A = {(6, 1, 2), (5, 2, 3), (3, 3,4), (2,4, 5), (4,4, 6),

(2, 6, 7), (4, 5, 7), (3, 7, 8), (5, 8, 9), (6, 9, 10)}.

For any n e {2, 3,... , 10} we can take a sequence ((k\, n\, n\),... , (ks, nsι n's)) of A

satisfying n\ = 1, ris = n, n^ = n7+ι (1 < j < s — 1).

For (k, n, n') e .4 and m € {1, 2, 3, 4}, we have either

or
(j9/π, αjt) = — 1, ̂ v = jβ/ + «jt, (βj», «Jt) = 0, 7^ = 7^.

Proposition 2.3. For αnv i, 7 6 Λ satisfying i < j, we have

(Q6)

n such that i I = /", j ' = j",

Yj*Yi* +(q - q~l)Yi»Yj" if there exists n such that i = ϊj, j = 7*2 >

if there exist n, m e {3, 4} such that i = ι'£, 7 = 7 ,̂

otherwise.

Proof. Since there exists some n satisfying i, 7 e |A(n)| for any i, j e Λ, it is

sufficient to show that for any 1 < n < 10 the elements Y / « , Yjn (1 < m < 4) satisfy
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(Rn)
y/,y/2 =

(Λ, /2 € 2, (/i, (C> #) 0 < w < 4)) (Rii, 3)

When Λ = 1, the elements y/ (1 < i < 8) satisfy the same relations as those for type
D5, hence the relations (Rl) hold.

For any m > 1 there exists a sequence ((k\,n\^n\), ... , (ks, ns, n's)) of A satisfy-
ing n\ = \,ris - m, n'j = HJ+\ (1 < j < s — 1), and hence it is sufficient to show the
relations (R«') for (k, n, ri) € A assuming the relations (Rn).

Let (k, n , n f ) e A. Assume that the relations (Rn) hold.
We first show that the relation (Rn',1) holds. If the condition (P|) is satisfied, then

we have Yif = y, , FkY^ = y/ F*. Yjf = aά(Fk)Yjn = FkYK-qYKFk. Since Y^YK =
F y/s we have

If the condition (Pp is satisfied, then we can prove the formula (Rn',1) similarly.
Next we prove the formula (Rn',2). Assume the condition (P*) is satisfied, then

we have

= FkYjiYίi-qY&FllYl.

l KC_, - qYji^ Y,^ Fk)

If the condition (P^.j) is satisfied, then we have

and if the condition (P~_t) is satisfied, then we have

Hence we have Yin>Yin' = Yin>Yin' +qY;n' Yίn> -Q~λΎ.n> Ύ .n> . The formula (Rn',2) is
'/« Λι Jm lm Ί 7m_| ϊw ί_| Ί ίm_! Λn-1

proved. When the condition (P~) is satisfied, we can prove it similarly.
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Finally we prove the formula (Rn',3). Let l\,Γ2 e |A(π')| satisfying l( < Γ2 and

M) ¥ (tf , Λ') for 1 < m < 4. When l'p = # e |A(n')| (resp. l'p = jn

m\ we denote

in

m € |A(n)| (resp. ft) by lp for p = 1,2. Since /i < /2 and (/ι,/2) ^ (ι£,./£) for
1 < m < 4, we have Y^Yι2 = qYι2Yιr We have the following possibilities:

(1) /; = / ι , / £ = /2, (A, , «*) = 08/2, «t) = 0,
(2) / ; = / ! , (A,, a*) = 0, βι>2=βι2+ak9 (A2, **) = -!,

(3) ft; = ft, + a*, (ft, , «4) = -1, Γ2 = /2, (ft2, a*) = 0,

(4) ft; = ft, +a f t, ft; = βh +ak9 (βlltak) = (βι2,cίk) = -1.
In the case (1) the formula (Rn',3) is obvious.

In the case (2) we have FkYtl = Yi} Fk, F/j = ad(FΛ)y/2 = F^y/2 - ^y/2FΛ. Hence we

have

y/; r/; = y/,(F*y/2 - ^y/2F,) = q(Fkγ,2 - qYι2Fk)Yh = qγvγl( .

In the case (3) we can prove it similarly to the case (2).

In the case (4) we have Ύ\ p = FkYip - qYιpFk for p = 1,2. Since βι>p + ak =

βιp +2ak φ Δ + \ Δ / and (βι>p,ak) = 1, we have ad(F*)y/;, = FkYVp - q'λYvpFk = 0

for p = 1, 2. Hence we have' FkFkYίp - (q + q~l)FkYιpFk\ YιpFkFk = 0, F*V/pF* =

, + Yιp FkFk) for /? = 1, 2. By these formulas we have

y/;y/2 = (F,y/, -^y/.F.XF.y/, -qγ,2Fk)

q+q l q+q

Similarly we have

Since y/,y/2 =qYι2Yιl9 we have y/j ί/ j =97/^/5. D

By [4] and Proposition 2.3 we obtain the following:

Theorem 2.4. The formulas (Q6) give fundamental relations for the generator

system {y/}, €Λ of the algebra Aq = Uq(nJ).

We shall construct a quantum deformation of the lowest degree part /£o of the

defining ideal Jc0 and we shall give canonical generators of a quantum analogue of
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Set

for 1 < n < 10. Recall that A(n) = (i^i^i^ilJΐJ^J^JS^ Usinβ the formulas

(Rn,l), (Rjι,2), we can write ψn = K/ ϊ j - f-'yyjϊί +^~2^^ - ί"3^r^Γ

Lemma 2.5. Hfe

ad(Ek)ψn =

for k € /,

^π' */ there exists n' such that δn +&k = <$πs

0 otherwise,

Ψn' if there exists n' such that 8n — ak = <$„',
.

0 otherwise

Proof. Let (k,n,ri) e Λ We shall show ad(Fk)ψn = Vv If the condition

is satisfied, then we have ad(F*)y/s = 0, ̂  = *•-, ad(AΓfc)yf« = ϊ .

Hence

If the condition (P~) is satisfied, then we have ad(F*)y,« = Yg, ad(F/t)y/« = 0. Hence

ad(Fjk)(y; . y/-) = y/«;y^ similarly. Therefore we have ad(F*)V^ = ̂ «'
Next we prove Bd(Ek)ψn> = ψn. We have ad(£*)y,v = 0, ad(Efc)yy,,' = Yjllt if the

condition (P£) is satisfied, and we have 3d(Ek)Y^ = y/« , ad(Kj~l)Yj;s = Y^, j£ = j£,

ad(Ek)Yjn> = 0 if the condition (P~) is satisfied. Hence we have

for 1 < m < 4. Therefore we have ad(E*)Vv = Ψn
In other 50 cases, where δn +αk £ {<5/ | 1 < / < 10}, we can check ad(Fk)ψn = 0

by a case-by-case consideration as follows.
In the 10 cases where there exists n' satisfying ad(Fk)ψn' = ψn, ((k,n) = (6,2),

(5,3), (3,4), (2,5), (4,6), (2,7), (4,7), (3,8), (5,9), (6,10)), we have ad(F*)y/. =
ad(Fk)Yjn = 0 for 1 < m < 4, and hence the assertion is obvious.

In the 8 cases (k,ri) = (5,1), (6,3), (6,4), (6,5), (6,6), (6,7), (6,8), (5,10),

we have ad(FΛ)yi- = 3d(Fk)Yjί = 0 for m = 3,4, ad(F*)y/; = y/-, 3d(Fk)Yj* = 0,
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ad(F*)y/; = Kg, ad(F*)l> = 0, and hence 3d(FkKYr2Yj;) =
Yj*Yjf. Thus we have ad(Fk)ψn = q\Yj*Yj« - qYj Yj*) = 0 by Proposition 2.3.

In the remaining 32 cases there exists m' e {2, 3, 4} such that ad(F*)y/j» = 0 (m

F;» = 0 (m ̂ m' - 1),

. Then we have

,-, *
The weight βft+βj* does not depend on m. Hence we have ad(Kk)ψn = q~(δn'ak)ψn

where <$„ = $« + )8/« .

Finally we show ad(£jt)^n = 0 if 8n - ctk φ {<$/ \ 1 < / < 10}. We can check
ad(Ek)ψι = 0 for any k = 2, 3, . . . , 6 directly. It follows that J^ C(q)ψn = Uq(iι)ψ\

and hence Σi^ C(q)ψn is an adt/(7(l/)-stable subspace with weights in {— <$/ | 1 < / <

10}. Therefore we have ad(F^)^Λ = 0 if δn - ak φ {ί/ | 1 < / < 10}. Π

Proposition 2.6. Σi=ι &(q)Ψn ύ an irreducible highest weight Uq ({^-module
with highest weight vector ψ\.

Proof. By Lemma 2.5 Σ=ι ^(q)Ψn is a finite dimensional ί/^(l/)-submodule
generated by a highest weight vector ^i with highest weight —δi. Thus it is irre-
ducible. D

By [4] and Proposition 2.6 we obtain the following:

Theorem 2.7. A quantum analogue of the defining ideal JCQ of the closure of

the non-trivial non-open orbit Co is given by the two-sided ideal of Aq generated by
Wn\\<n< 10}.

3. Case of type EΊ

Let g be a simple Lie algebra of type Eη. We shall use the labelling of the

vertices of the Dynkin diagram 1. Hence we have /o = {1,2,3,4,5,6,7}. Set / =
{2, 3, 4, 5, 6, 7}. In this case we have nj i {0}, [nj, nj] = {0}. Then I/ is isomorphic to

C θ 0£6, where g#6 is a Lie algebra of type E$ over C, and nj is a 27-dimensional

irreducible prehomogeneous vector space. There are four L/-orbits {0},Cι,C2, O on

nj satisfying {0} C C[ C C^ C 7). Let JCl C C[nJ] be the defining ideal of the clo-
sure of Ci, and let /^ denote the subspace of /c, consisting of the polynomials in

/c, with homogeneous degree 2. Then J^ is a 27-dimensional irreducible [/-module,

and it generates the ideal /c, - Let Jc2 C C[n| ] be the defining ideal of the closure of
C2, and let J%2 denote the subspace of Jc2 consisting of the polynomials in Jc2 with
homogeneous degree 3. Then j£2 is a one-dimensional irreducible ί/ -module generated

by the irreducible relative invariant, and it generates the ideal Jc2.
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We fix a reduced expression

of W/WQ and define the elements Yί (i e Λ = {1, 2, . . . , 27}) as in Section 1.

Set 7£ = {1, 2, 3, 4, 5, 6}, /' = {2, 3, 4, 5, 6}, Λ7 = {1, 2, . . . , 10}. Then {a/}/€/i is
a set of simple roots of type D$. Let g' be the simple subalgebra of Q corresponding

to 70. We choose a reduced expression wj>w^ = si^-^^^o^^^i °f WI'WΓQ The
elements 7/ (/ e Λ') can be computed inside Uq(tf).

Let ft = Σ/e/o m/α/ anci set m7 = (mι> » Ή?) for j £ Λ Tnen we have

m1 =(1,0, 0, 0, 0, 0, 0), m2 = (1, 1, 0, 0, 0, 0, 0), m3 = (1,1, 1,0, 0, 0, 0),

m4 = (1, 1, 1, 1, 0, 0, 0), m5 = (1, 1, 1, 1, 1, 0, 0), m6 = (1, 1, 1, 1, 0, 1,0),

m7 = ( l , l , 1, 1,1,1,0), m8 = (l, 1,1,2,1, 1,0), m9 = (1, 1, 2, 2, 1, 1,0),

m10 = (1, 2, 2, 2, 1, 1, 0), m11 = (1, 1, 1, 1, 0, 1, 1), m12 = (1, 1,1,1, 1, 1, 1),

m13 = (1, 1, 1, 2, 1, 1, 1), m14 = (1, 1, 2, 2, 1, 1, 1), m15 = (1, 1, 1, 2, 1, 2, 1),

m16 = (1, 1, 2, 2, 1, 2, 1), m17 = (1,1, 2, 3, 1, 2, 1), m18 = (1, 1, 2, 3, 2, 2, 1),

m19 = (1, 2, 2, 2, 1, 1, 1), m20 = (1,2, 2, 2, 1, 2, 1), m21 = (1,2, 2, 3, 1, 2, 1),

m22 = (1, 2, 2, 3, 2, 2, 1), m23 = (1, 2, 3, 3, 1,2, 1), m24 = (1, 2, 3, 3, 2, 2, 1),

m25 = (1, 2, 3, 4, 2, 2, 1), m26 = (1,2, 3, 4, 2, 3, 1), m27 = (1, 2, 3, 4, 2, 3, 2).

If (ft,α*) = -1 for y e Λ and k e I , then J*(ft) = ft + α* 6 Δ+ \ Δ/ and
there exists / € Λ satisfying βj + α* = ft. Conversely if ft, ft € Δ+ \ Δ/ satisfying

ft - ft = α* (k € 7), then we have (ft , α*) = -1, j*(ft) = ft.
For jfe G 7, 7 € Λ, we have ft - 2α*, ft + 2otk φ Δ+ \ Δ/.

Set

β = {(*, y, /) € / x A x Λ I ft +αΛ = ft}.

We have

B = {(2, 1, 2), (3, 2, 3), (4, 3, 4), (5, 4, 5), (6, 4, 6), (6, 5, 7), (5, 6, 7), (4, 7, 8), (3, 8, 9),

(2, 9, 10), (7, 6, 11), (7, 7, 12), (7, 8, 13), (7, 9, 14), (7, 10, 19), (5, 11, 12),

(4, 12, 13), (3, 13, 14), (6, 13, 15), (6, 14, 16), (3, 15, 16), (4, 16, 17), (5, 17, 18),

(2, 14, 19), (2, 16, 20), (2, 17, 21), (2, 18, 22), (6, 19, 20), (4, 20, 21), (5, 21, 22),

(3, 21, 23), (3, 22, 24), (5, 23, 24), (4, 24, 25), (6, 25, 26), (7, 26, 27)}.
In particular, we have |β| = 36.

Lemma 3.1. Let β, β' e Δ+ \ Δ/ satisfying β + oek = β' (k e 7). Then we can

choose a reduced expression WJWQ = j,, j/2 s/27 and p e A satisfying

β = stlSi2 -sip_λ(aip), β' = siλsi2 - " S i p _ } s i p ( ( X i p + l ) , (aip, α/p+1) = -1,

«*= i2 V ι » ι )
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Proof. The 21 triplets (k, y, /) in B satisfy / = j + 1, (α, y, α/;>1) = — 1. Therefore
it is sufficient to deal with the remaining 15 cases. In the cases (&,./,/) = (6,4,6),
(6, 5, 7), (6, 13, 15), (6, 14, 16), (3, 21, 23), (3, 22, 24), we can take

with p = 4, 6, 13, 15, 21, 23, and in the cases (k, 7, /) = (7, 6, 11), (7, 7, 12), (7, 8, 13),
(7, 9, 14), (7, 10, 19), we can take

with p = 6, 8, 10, 12, 14, and in the cases (k, y, /) = (2, 14, 19), (2, 16, 20), (2, 17, 21),
(2, 18,22), we can take

WjWQ =

with p = 15, 17, 19,21. D

We can show the following similarly to the case E^. We omit the details.

Lemma 3.2. For k e I, j e A, we have

YI if there exists (k, j, /) e β,
ad(F*)K, = , , .

0 otherwise,

YI if there exists (k, /, j) e B,

0 otherwise.

The {y9([/)-module ®j€^C(q)Yj is an irreducible highest weight module with
highest weight vector Y\ and lowest weight vector ΎΉ. Hence, for any 1 < m < 26,
there exists a sequence ((k\, n\, n\), . . . , (ks, n's, ns)) of B satisfying n\ — 27, n's = m,

n'j =nj+l (1 <j <s- 1).
Next we shall consider relations among the elements F/. We can write

βj+βj=βS+βt

for / > j (see [4]). Hence if βt+βj does not have another decomposition β+βf (β, βf e
Δ+ \ Δ/, βi + βj = )β + ̂ 0 then we have F/Fy = β/^F/y/ for some α/,7 G C(^). Set

5 = 2zzτ! = 3αι+4α2+5α3+6α4+3α5+4α6+2Q?7, where πτι is the fundamental weight cor-
responding to <x\. We denote a set of weights of the 27-dimensional irreducible highest
weight [/-module J®} with highest weight — β\ — β\Q by Γ. Set γn = δ — βn (n e Λ),
and we have Γ = {-/„ | n e A}. For β, β' e Δ+ \ Δ/ a weight β + ̂  has an-
other decomposition if and only if we have — (β + β') e Γ. For each n e A there
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exist exactly five pairs (1,7) 6 Λ2 such that i < 7, βι + βj = γn. We denote them

by 07, 7ΪX O'S Λ"). (/3» >3)> O'J tf). O's Λ") e where '5 < ' < ' < * >
j\ < J2 < JS < J4 < J5> and '?» y'f satίsfy the following condition (P|) or (Pp. Set
B(Λ) = (ij, ij, ij, i£, i f , 7?, 7*2 , J" ' Λπ > 7s ) G Λl° (Λ € Λ) ^̂  we have

B(l)=(10, 19, 20, 21, 23, 22, 24, 25, 26, 27), B(2) = (9, 14, 16, 17, 23, 18, 24, 25, 26, 27),

B(3)=(8, 13, 15, 17, 21, 18, 22, 25, 26, 27), B(4) = (7, 12, 15, 16, 20, 18, 22, 24, 26, 27),

B(5)=(6, 11, 15, 16, 20, 17, 21, 23, 26, 27), B(6) = (5, 12, 13, 14, 19, 18, 22, 24, 25, 27),

B(7)=(4, 11, 13, 14, 19, 17,21,23,25,27), B(8)=(3, 11, 12, 14, 19, 16,20,23,24,27),

B(9)=(2, 11, 12, 13, 19, 15,20,21,22,27), B(10)=(l, 11, 12, 13, 14, 15, 16, 17, 18,27),

B(l 1) = (5, 7, 8, 9, 10, 18, 22, 24, 25, 26),

B(13)=(3, 6, 7, 9, 10, 16, 20, 23, 24, 26),

B(15) = (3, 4, 5, 9, 10, 14, 19, 23, 24, 25),

B(17) = (2, 3, 5, 7, 10, 12, 19, 20, 22, 24),

B(19)=(l, 6, 7, 8, 9, 15, 16, 17, 18, 26),

B(21)=(l, 3, 5, 7, 9,12, 14, 16, 18, 24),

B(23) = (l, 2, 5, 7, 8,12, 13, 15, 18, 22),

B(25)=(l, 2, 3, 6, 7,11, 12, 15, 16, 20),

B(12)=(4, 6, 8,9, 10, 17, 21, 23, 25, 26),

B(14)=(2, 6, 7, 8, 10, 15, 20, 21, 22, 26),

B(16) = (2, 4, 5, 8, 10, 13, 19, 21, 22, 25),

B(18) = (2, 3,4,6, 10, 11, 19, 20, 21, 23),

B(20) = (l, 4, 5, 8, 9, 13, 14, 17, 18, 25),

B(22)=(l, 3,4, 6, 9, 11, 14, 16, 17, 23),

B(24)=(l, 2,4, 6, 8, 11, 13, 15, 17, 21),

B(26)=(l,2,3,4,5, 11, 12,13, 14, 19),

B(27)=(l, 2, 3, 4, 5, 6, 7, 8, 9, 10).
For n G A we denote the set {/£, ijf , ij, ij, if, yj1, y'£, 7*3", yf , y'5"} by |B(/ι)|. For any

i, 7 G Λ there exists w G Λ satisfying i, 7 € |B(n)|.
For (£, nr, n) € β and m € {1, 2, 3, 4, 5}, we have either

(O (A- , «*) = 0, # = C, (ft., α*) = -1, βjtn> = ft.
or

= 0, = jn

m.

Proposition 3.3. For any i, j G Λ satisfying i < j, we have

rjYi if there exists n G Λ such that {i, 7} = {if, j"}t

n E Λ swc/z ίΛaί i' = /J » 7 = 7ι »

n € Λ, m G {3, 4, 5} SMC/I ί/zaί i = i£, 7 =
otherwise.

Proof. Since there exists n € Λ satisfying i, 7 G |B(n)| for any ι, 7 G Λ, it is
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sufficient to show
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!, /2

(Rn,2)

0 < m < 5)) (Rii, 3)

for n e Λ and 1 < m < 5.
When n = 27, the elements Yi (I < i < 10) satisfy the same relations as those for

type Z>6, and hence relations (R27) hold.
Since there exists a sequence ((k\,n\,n\), . .. ,(ks,ris,ns)) of B satisfying n\ =

27, ris = m, n' = HJ+\ (1 < j < s — 1) for any 1 < m < 26, it is sufficient to show
(Rn') for (k, ri , n) e B assuming (Rn). This is proved similarly to Proposition 2.3.
Details are omitted. D

By [4] and Proposition 3.3 we obtain the following:

Theorem 3.4. The formulas (Q7) give fundamental relations for the generator
system {F/}/€Λ of the algebra Aq = Uq(nJ).

We shall construct a quantum deformation of the lowest degree part J® of the
defining ideal /c, and we shall give canonical generators of a quantum deformation of

Jc,
Set

for n e Λ, where B(n) = 0'?, ί'J,/", i?,/", 7", 72, 7?' ^4- ^5)- Usin8 the formulas
(R«,l), (Rn,2), we can write

Similarly to Lemma 2.5 and Proposition 2.6 we can show the following:

Lemma 3.5. We have

ψn> if there exists (k,nf,n) e B,

0 otherwise,

ψn' if there exists (k, n, n') e B,

0 otherwise
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for k € /, and

for k € /o.

Proposition 3.6. ΣneΛ C(q)ψn is an irreducible highest weight Uq(\ι)-module

with highest weight vector 1^27-

By [4] and Proposition 3.6 we obtain the following:

Theorem 3.7. A quantum deformation of the defining ideal Jc{ of the closure of

the non-open orbit C\ is given by the two-sided ideal of Aq generated by (ψn \ n e

A).

Set

where \β\ = Σiei0™i <fi = E/e/o7^).

Proposition 3.8. C(q)φ is a one -dimensional Uq(\ι)-module.

Proof. By Proposition 3.3 we can check that the coefficient a 1,10,27 of Y \Y\oYn

in Ψ - Σi<j<kaiJkYίYjYk is 1 +<?8 + #16. Therefore we have φ ̂ 0.
Let (k,n,ri) e B. Then we have \βn>\ = \βn\ + 1, aά(Fk)Yn = Yn>, ad(Fk)Yn< = 0,

ad(FΛ)^n' = Ψ*> ad(^)^ = 0, (β*,αk) = 1. Hence 3d(Fk)(Ynψn - qYn>Ψn>) = Yn Ψn ~
qq~lYn>ψn =0. Therefore we have ad(Fjt)^ = 0 for any k e /, and similarly we have

aά(Eif)φ = 0 for any k e I. Since γn + βn =8 for any n € Λ, we have ad(ΛΓ^)^ =
for any ^ e /0 jn particular, we have aά(Kk)φ = φ for any k e I, and

The element φ is a quantum deformation of the irreducible relative invariant on

the prehomogeneous vector space.

Theorem 3.9. A quantum deformation of the defining ideal Jc2 of the closure of

the non-open orbit CΊ is given by the two-sided ideal of Aq generated by φ.
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