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Abstract
The mapping class group of a genusg surface6g,1 with one boundary compo-

nent is known to have a simple yet infinite presentation with generators given by
elementaryWhitehead moveson marked bordered fatgraphs. In this paper, we in-
troduce an algorithm calledfatgraph Nielsen reductionwhich, from the action of a
mapping class' 2 MCg,1 of 6g,1 on the fundamental group�1(6g,1) of 6g,1, de-
termines a sequence of Whitehead moves representing' beginning at any choice of
marked bordered fatgraph. The algorithm utilizes a reduction of bordered fatgraphs
to linear chord diagrams, where the desired sequence is given in terms of elementary
chord slide moves which continuously decrease someenergy function. As a con-
sequence, this leads to an algorithm which factors any mapping class given by its
action on� (6g,1) in terms of any convenient generating set forMCg,1.

1. Introduction

The combinatorial description of the mapping class group ofa surface6 in terms
of ideal triangulations of6 has a long history, going back to Whitehead who proved
that any two ideal triangulations are related by a sequence of elementary “diagonal ex-
change” moves. Later, inspired by the geometric insights ofThurston and Mumford,
this combinatorial description became more firmly established in the hyperbolic setting
by Penner’s decorated Teichmüller space [7] and in the conformal setting by Harer’s
utilization of Strebel’s results on quadratic differentials [4, 10]. In these settings, the
Poincaré dual viewpoint gained prevalence, where diagonalexchanges on ideal triangu-
lations gave way to elementary moves called Whitehead moveson marked fatgraphs:
vertex-oriented graphs embedded in6 as a spine. In particular, any mapping class of6 can be represented by a sequence of Whitehead moves, and thissequence is unique
up to certain well-known relations.

The mapping class groupMCg,1 of a surface6g,1 with one boundary component
has particularly nice properties. Algebraically, it is classically known thatMCg,1 is
a subgroup of the automorphism of a free group via its action on the fundamental
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group of 6g,1. Combinatorially, the mapping class groupMCg,1 admits another re-
lated combinatorial description in terms of elementary moves called chord slides on
a special type oflinear fatgraph [1, 2] which have coincidentally been studied exten-
sively in other contexts under the name oflinear chord diagrams. We will choose to
use this later terminology in this paper. Moreover, there exists a precise chordslide–
Whitehead move correspondence which relates these two types of elementary moves.
This “linear” variation of the theme appears to have some advantages. In particular,
every marked linear chord diagram canonically determines aset of generators for the
free group� WD �1(6g,1) of 6g,. We call a generating set arising in this fashion a com-
binatorial generating set, or simply CG set. Each CG set satisfies certain constraints
dictated by the form of the linear chord diagram from which itarises, a special case of
which is the well known condition that a standard set of symplectic generators{�i ,�i }

satisfies the relation
Qg

iD1[�i , �i ] D �6g,1.
While every mapping class' 2 MCg,1 has a description in terms of elementary

moves on fatgraphs, algorithms currently available for determining such a sequence
have the disadvantage that they depend on resolving intersections of arcs or closed
curves in the surface6g,1 [6, 8]. For many reasons, it would be desirable to construct
such a sequence from purely algebraic information, such as the action of' on the fun-
damental group� of 6g,1. In this paper, we present just such an algorithm, which we
call fatgraph Nielsen reduction.

To define this algorithm, we introduce anenergy functionk � k on CG sets which
is derived from a lexicographical ordering on� extending the usual word length func-
tion with respect to some set of generators for� . In fact, each marked linear chord
diagramG ,! 6g,1, which can be considered as a choice of “basepoint in decorated
Teichmüller space” (see Section 7 or [1]), determines its own energy function. By the
correspondence between marked linear chord diagrams and CGsets, we can equiva-
lently consider this energyk � k as a function on marked linear chord diagrams, and
the main result of this paper can be stated as follows:

Theorem 1.1. Let k � k denote the energy function with respect to a fixed“base-
point” G ,! 6g,1. Given any marked linear chord diagram G0, there exists a sequence
of energy decreasing chord slides

G0 ! G1 ! � � � ! Gk, kGi k < kGi�1k
with Gk D G.

The proof of this theorem relies on the combinatorics of linear chord diagrams and
elementary cancellation theory.

Since there is a canonical sequence of Whitehead moves which“linearizes” a given
bordered fatgraph (given by the greedy algorithm of [1]) andevery chord slide of a linear
chord diagram can be described in terms of Whitehead moves, we obtain the following
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Corollary 1.2. There exists an explicit algorithm which from the action of amap-
ping class' 2 MCg,1 on � determines a sequence of Whitehead moves representing',
beginning at any“basepoint” marked bordered fatgraph G,! 6g,1.

Moreover, since there is a map from Whitehead moves to mappingclasses inMCg,1

(see [1]) with finite imageGg, we have the following

Corollary 1.3. Given any generating setS for MCg,1 described in terms ofGg,
there is an algorithm for decomposing any mapping class' 2 MCg,1 into a product of
generators inS.

2. Combinatorial generating sets

Let 6g,1 be a genusg surface with one boundary component, and let� denote
its fundamental group� WD �1(6g,1, p) with respect to a basepointp 2 �6g,1. It is
well known that� is isomorphic to a free group on 2g generators, and an explicit iso-
morphism is equivalent to a choice of an ordered set of generators for � . For a given

set of 2g generatorsX D {xi }
2g
iD1, we define the corresponding set ofletters {xi , Nxi }

2g
iD1

to be the set containing each elementx 2 X and its inverseNx.
We define astandard symplectic set of generatorsfor � to be one of the form

S D {�i , �i }
g
iD1 such that the element of� corresponding to the boundary�6g,1 is

represented by the word�6g,1 D Qg
iD1[�i , �i ], where the bracket [x, y] denotes the

commutatorxy Nx Ny. Again, we let Nx denote the inverse of an elementx. Note that each
letter of the generating set is used once in this product.

More generally, we make the

DEFINITION 2.1. An ordered set of generatorsX for � is a combinatorial gen-
erating set, or CG set, if the boundary element�6g,1 2 � can be written as a reduced
word using each letter ofX exactly once. Two CG sets are equivalent if their corres-
ponding sets of letters are the same.

We remark that not all generating sets are CG sets, and not allCG sets are (equiva-
lent to) standard symplectic generating sets. Topologically, an equivalence class of CG
sets corresponds to (an isotopy class of) a collection of 2g arcs based atp which de-
compose the surface6g,1 into a (4gC 1)-gon, and a CG set itself corresponds to a la-
beling and choice of orientation for each such arc. However,we will find it more useful
to consider the picture which is Poincaré dual to this, whichwill involve linear chord
diagrams.

The mapping class groupMCg,1 of the surface6g,1 is typically defined as�0(Diff(6g,1, �6g,1)), the group of components of the group of self-diffeomorphisms
of 6g,1 which fix the boundary pointwise. By a classical result usually attributed to
Dehn and Nielsen (see [11]),MCg,1 has an equivalent algebraic definition as the group
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of automorphisms of� which fix the word representing the boundary�6g,1. Equiva-
lently, but more in line with our viewpoint, we can define the mapping class group
MCg,1 in the following way: mapping classes inMCg,1 are exactly the automorphisms
of � which take standard symplectic generating sets to standardsymplectic generating
sets, and there is a (non-canonical) one-to-one correspondence between (equivalence
classes of) standard symplectic generating sets and elements of MCg,1.

We now introduce the chord slide groupoid, which is a subgroupoid of the Ptolemy
groupoid of6g,1 (see Section 7 or [3]) and should be thought of as a groupoid “con-
taining” the mapping class groupMCg,1. Recall that a groupoid can either be de-
scribed as a set with a partial composition operation with inverses, or as a category
all of whose morphisms are isomorphisms.

DEFINITION 2.2 (cf. Theorem 3.1). Fix a CG setXi in each equivalence class,
and let X D {Xi } denote the set of all representatives. Thechord slide groupoidis
defined as the category whose objects are copies of� , precisely one for everyXi 2 X,
and whose morphisms are the homomorphisms i , j W � ! � which take one CG set to
another i , j W Xi 7! X j .

Note that by the Hopfian property of� , the  i , j are necessarily isomorphisms.
Also note that there is a unique morphism between each pair ofobjects, so that this
groupoid is equivalent to a trivial groupoid (in the category-theoretic sense), and that
up to isomorphism, this definition does not depend on the choice of representatives.

3. Linear chord diagrams

A linear chord diagram is a combinatorial object best described as a graphG im-
mersed in the plane: thecore of G consists of the (connected subgraph consisting of)
edges ofG embedded in the real line, and the remaining edges, thechordsof G, are
immersed arcs in the upper half plane with their endpoints attached at distinct points
of the core. We call the attaching points thechord endsof G, and require that they
correspond to integer points of the real line. (See [2] for a more thorough description.)
For a given chord endv, we let Nv denote the opposite end of the chord attached atv.

There is a natural linear chord diagram associated to every CG set, but before we
describe this association, we first develop some notation concerning CG sets. Given a

CG setX D {xi }
2g
iD1 for � , let

CX D {c j }
4g
jD1, c j D x

" j

i j

denote the (unique) ordered set of letters corresponding toX , ordered such that

4gY
jD1

c j D 4gY
jD1

x
" j

i j
D �6g,1
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Fig. 3.1. A symplectic CG set and linear chord diagram.

with "i D �1. (The reason for the appearance of�6g,1 rather than�6g,1 in the above
formula will be discussed in Section 7.) For example, for a standard symplectic CG
set {�i , �i }

g
iD1, the corresponding letters arec1 D �g, c2 D �g, c3 D N�g, etc. Finally,

we define integersl i and r i for i D 1, : : : , 2g by

cl i D x�1
i , cr i D x�1

i , l i < r i .

Note that the set{cl i }
2g
iD1 of “left ends” gives a canonical representative for the equiva-

lence class containingX , as does the set{cr i }
2g
iD1 of “right ends”.

Given a CG setX for � , we construct a linear chord diagram, denotedGX , as
follows. The core ofGX is taken to be the interval [1, 4g] of the real line, the chords
of GX correspond to the generators ofX , and the ends of a chord corresponding to
xi 2 X are prescribed byl i and r i . Using this correspondence, we will often abuse
notation slightly and refer to the generatorsxi as chords and the lettersc j as chord
ends. See Fig. 3.1 for the linear chord diagram associated to a standard symplectic
set of generators. By the uniqueness of reduced words in� (see [1]), the linear chord
diagramGX is uniquely determined by the CG setX . We call a linear chord diagram
arising from a CG set for� a genus gchord diagram. By amarked linear chord
diagram, we shall mean a linear chord diagramGX together with a labeling of its
chord ends by the lettersCX of the CG setX . By abuse of notation, we shall denote
this marked linear chord diagram also byGX .

We now describe the elementary move on linear chord diagrams, the chord slide.
Let v be a chord end which is not farthest to the right of a linear chord diagramG.
The chord slide ofv to the right results in a new linear chord diagramG0 obtained by
“sliding v over” the chord to its right, thus relocatingv to a new position along the
core (and isotoping chord ends so that they lie at distinct integer points). The chord
slide to the left is completely analogous. See Fig. 3.2.

We can extend chord slides so that they act on the setX of (representatives of) CG
sets in a natural way. This action is most easily described pictorially by the action of a
chord slide on the chord ends associated to a CG set. There arefour possible types of
chord slides, and we illustrate the action of each in Fig. 3.2, where all chord ends not
depicted in the figure are understood to be fixed by the chord slide. While not explicitly
needed, we note that the resulting effect on a CG setX takes the following form up to
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Fig. 3.2. Two slides to the right and two slides to the left.

permutation, which is a (composition of) Nielsen transformation(s) for the free group� :

x j 7! x�1
j , j ¤ i

xi 7! (x�1
i x�1

k )�1, for some k ¤ i ,

where xi 2 X is the generator corresponding to the chord which a chord endis slid
over, and the exact form depends on the choice of representative CG sets.

Note that under obvious conditions, chord slides on CG sets can be composed,
thus they generate a groupoid. In fact, by their actions on (equivalence classes of) CG
sets, chord slides can be considered as elements (i.e., morphisms) of the chord slide
groupoid, and we now recall the main result of [2]:

Theorem 3.1 ([2]). The chord slide groupoid is generated by chord slides on CG
sets, and all relations are compositions of five explicit ones(which we do not list here).

The importance of this theorem is that it yields a combinatorial presentation of the
mapping class groupMCg,1. More precisely, the action of the mapping class group
MCg,1 on � extends to an obvious action on the setX of (equivalence classes) of CG
sets, and letting'(X ) denote the image ofX under' 2 MCg,1, the theorem states that' can be represented by a sequence of chord slides

GX ! GX1 ! � � � ! G'(X )

on marked linear chord diagrams, unique up to some known relations. The main result
of this paper is an algorithm which will determine such a sequence. Note that as a
consequence, we arrive at another proof that the chord slidegroupoid is generated by
chord slides.

4. The length and energy functions

We now introduce the length and energy functions that we willuse to develop our
algorithm. For the rest of the paper, we assume that the genusg is fixed, and we fix
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a (not necessarily standard symplectic) CG setS D {si }
2g
iD1 for � with corresponding

lettersCS D {� j }
4g
jD1 so that

Q4g
jD1 � j D �6g,1.

Firstly, we recall the standard word length function with respect toS, which we
denote byj � j. For an elementw 2 � , we definejwj D k if w is written as a reduced
word w DQk

iD1� ji usingk (possibly repeating) letters ofCS . We also setjidj D 0. For
any CG setX D {xi } with corresponding chord endsCX D {c j }, we define the length
of X by

jX j WD 2
2gX

iD1

jxi j D 4gX
jD1

jc j j.
Note thatjX j D 4g if and only if X is equivalent toS (i.e., CX D CS ) by the unique-
ness of reduced words. We also define the length function of a marked linear chord
diagramGX by jGX j WD jX j.

We shall also require a refinement of the above word length function, which we
call the energy function. This energy function is derived from a lexicographical order-
ing for � , and we begin by defining the value of the energy function on the letters in
CS . We set

k� j k D j .

We then define the energy of a reduced wordw DQk
iD1 � ji 2 � by

kwk D kX
iD1

(4gC 1)k�i k� ji k.
For example, the wordw D �2 N�1 D �2�7 has energykwk D 25 with respect to the
standard symplectic generating set{�i , �i }

2
iD1 for the genus two surface. Note that this

function defines a well-ordering on elements of� . Moreover, this extends the word
length function since by the definition, we have

(4gC 1)jwj�1 � kwk < (4gC 1)jwj
so that

jwj < jvj, implies kwk < kvk.
Finally, for any CG setX D {xi } with corresponding chord endsCX D {c j }, we define
the energy ofX to be

kXk D 4gX
jD1

kc j k.
Similarly, we define the energy of a marked linear chord diagram GX by kGX k WD kXk.

As a final remark, we state the easy
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Lemma 4.1. If p, q 2 � with kpk < kqk, and w 2 � is written as a reduced
word w D qx with jqj � jxj, then

kpxk C k Nx Npk < kqxk C k Nx Nqk.
Proof. Lettingk D jxj, we have

k Nx Npk � k Nx Nqk D k Npk � kNqk < (4gC 1)k,

while

kqxk � kpxk D (kqk � kpk)(4gC 1)k � (4gC 1)k,

and the result follows.

5. Some cancellation theory

Recall that we have fixed a “basepoint” CG setS D {si }
2g
iD1 with corresponding

lettersCS D {� j }
4g
jD1 and length and energy functionsj � j and k � k.

Now, consider an arbitrary CG setX D {xi }
2g
iD1 with corresponding chord ends

CX D {c j }
4g
jD1 and linear chord diagramGX . For a given chord endc j 2 CX with

j > 1, let l (c j ) denote the amount of cancellation ofc j on the left, meaning the number
of letters that get cancelled when reducing the wordc j�1c j . More precisely,

(1) l (c j ) D 1

2
(jc j�1j C jc j j � jc j�1c j j).

Similarly, definer (c j ) to be the number of cancellations on the right, so thatr (c j ) D
l (c jC1) with 1� j < 4g. We also formally setl (c1) D r (c4g) D 0.

We begin by stating the obvious

Lemma 5.1. If l (c j ) > jc j j=2 for some j> 1, then the chord slide of cj to the
left results in a new CG setX 0 with jX 0j < jX j. Similarly, if r (c j ) > jc j j=2 for some
j < 4g, the slide of cj to the right reduces the length of the CG set.

Proof. The slide ofc j to the left replaces the chord endsc j�1 and Ncj�1 with
c j�1c j and Nc j Ncj�1 respectively and leaves the others unchanged (up to permutation).
Thus, if l (c j ) > jc j j=2, then jc j�1c j j < jc j�1j by (1), so the result follows. The argu-
ment for the slide to the right is analogous.

If we were able to show that every CG set always had an associated chord endc j

with l (c j ) > jc j j=2 or r (c j ) > jc j j=2, then there would always be a chord slide which
reduced the length, and we would obtain our main result Theorem 1.1. However, this is
not always the case, and we will have to make use of a more subtle argument using the
energy functionk � k. Before stating the next Lemma, we develop some more notation.
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Fig. 5.1. A balanced chord end slid to the right.

DEFINITION 5.2. We say that a chord endc j is balancedif l (c j ) D r (c j ) D jc j j=2.

Note that if c j is a balanced chord end corresponding to a CG setX , then sliding
c j in either direction does not change the lengthjX j of the CG set. However, we have
the following

Lemma 5.3. Assume that no chord slide reduces the length of a CG setX . Then,
if c j is a balanced chord end ofCX , either the chord slide of cj to the left decreases
the energy ofX or else the slide of cj to the right does.

Proof. Sincec j is balanced, it can be written (as a reduced word)

c j D pNq
with jpj D jqj. Note that necessarily,p ¤ q. Assume, without loss of generality, thatkpk < kqk. Then we claim that the slide ofc j to the right reduces the energy of the
CG set. (In a completely analogous way, the slide to the left would decrease the energy
if kqk < kpk.) To see this, write

c jC1 D qw.

We know thatjqj � jwj, or else the chord slide ofc jC1 to the left would decrease the
length ofX .

After the slide ofc j to the right, the letters of the CG set get altered (up to per-
mutation) byc jC1 D qw being replaced bypw. See Fig. 5.1. Similarly, the opposite
end NcjC1 D Nw Nq is replaced by Nw Np. The result then follows from Lemma 4.1.

Given a CG setX with chord endsCX D {c j }, consider the unreduced word
Q4g

jD1 c j .

We know that the word reduces to�6g,1, so there must exist

1

2

 X
j

jc j j � 4g

!

many cancellations. Note that a priori there may be different choices of cancellation
“schemes” available. So let us fix one choice of cancellationscheme. We writeWj
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for the subword ofc j which is not cancelled under this process,L j for the subword
cancelled on the left, andRj for the subword cancelled on the right. Thus,

c j D L j Wj Rj , and
4gY
jD1

Wj D �6g,1

with both L1 and R4g the empty word. Note that in general, there is no correlation
betweenl (c j ) and jL j j.

Lemma 5.4. For a given CG setX , assume that no chord slide reduces the lengthjX j of X . Then if there is a cancellation scheme{c j D L j Wj Rj } for the word
Q4g

jD1 c j

with some Wj the empty word, then some chord end ci is balanced.

Proof. Note that it suffices to prove that there is somei with l (ci )C r (ci ) � jci j,
as then eitherl (ci ) D r (ci ) D jci j=2, l (ci ) > jci j=2, or r (ci ) > jci j=2, and the latter two
cases cannot occur due to our assumption that no chord slide reduces the length ofX .

Choose a cancellation scheme{c j D L j Wj Rj } and assume thatWj is the empty
word for some 1� j � 4g. If j D 1 or j D 4g, then the chord slides ofc1 to the right
or c4g to the left respectively decrease the length ofX , so assume that 1< j < 4g.
Let I D [m, n] \ Z D {m, mC 1, : : : , n} be the maximal index interval containingj
such that for alli 2 I , Wi is the empty word. In other words, the product

(2) W D Rm�1

 
nY

iDm

ci

!
LnC1 D nC1Y

iDm

Ri�1L i

reduces to the identity element in� .
We now assume thatl (ci )C r (ci ) < jci j for all 1� i � 4g and derive a contradic-

tion. Define a new factorization of eachci with m� i � n by

ci D LiWiRi with jLi j D l (ci ), jRi j D r (ci ), jWi j > 0.

Similarly, write Rm�1 DWm�1Rm�1 and LnC1 D LnC1WnC1 with jRm�1j D r (cm�1) andjLnC1j D l (cnC1). Note that without our assumptionl (ci ) C r (ci ) < jci j, the existence
of such a factorization is not guaranteed.

With this new factorization, the productW of (2) can be written as

W DWm�1Rm�1

 
nY

iDm

LiWiRi

!
LnC1WnC1,

which reduces to

W0 D nC1Y
iDm�1

Wi , jW0j > 0
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by the definitions of the numbersl (ci ) and r (ci ). However, the definitions ofl (ci ) and
r (ci ) also ensure thatW0 cannot be reduced any further, while on the other hand, we
know that W0 reduces to the empty word. Thus, we have our contradiction and the
lemma is proved.

In the opposite direction, we finish this section with our final lemma. Before we
state it, we introduce some helpful terminology. Given a word w D Qk

iD1 xi , we call
the subwords Y

i�k=2 xi and
Y

i�k=2 xi

the left half and right half of w respectively.

Lemma 5.5. Assume that there is no length reducing chord slide for a given CG
setX . If for some cancellation scheme{c j D L j Wj Rj } there is no i with Wi the empty
word, then Wj D � j for all 1� j � 4g. Moreover, in this case, if c j D � j for some j,
then no chord end other than cj contains the letter� j .

Proof. We begin with some observations. First of all, since
P4g

jD1jWj j D j�6g,1j D
4g, it is immediate that if noWj is the empty word, thenjWj j D 1 for all j . In fact,
it is clear that we must haveWj D � j for all j and thatRj D NL jC1 for 1 � j < 4g.
Second, using Lemma 5.1, the condition that no length reducing chord slide exists forces��jL j j � jRj j�� � jWj j for all j , which in our case gives

��jL j j � jRj j�� � 1, meaning each
Wj lies “near the middle” ofc j . As a consequence, any letter�i ¤ � j appears in the left
half of c j if and only if it appears inL j , and it appears in the right half if and only if it
appears inRj .

Now assume that for somej we havec j D � j and that the letter� j appears in the
chord endck with k¤ j . Since�k ¤ � j , � j appears in eitherLk or Rk, and we assume
without loss of generality that it appears inLk, in which case,k must be greater than 1.
Then N� j must appear inRk�1. Let ck1 be the opposite end ofck�1 so that we have� j

appearing inck1. Note that we cannot havek1 D j since jck1j > 1D jc j j. Since N� j lies
in the right half ofck�1, � j must lie in the left half ofck1. SinceWk1 ¤ � j , � j must
appear inLk1. Similarly, we see thatN� j appears inRk1�1, thus � j appears in the left
half of the opposite end ofck1�1. Continuing in this way, we eventually see that either� j lies in L1 or L j , or that N� j lies in Rj or R4g (see the last section where we discuss
the boundary cycle of a fatgraph), which gives us a contradiction since eachL1, R4g,
L j , and Rj is the empty word.

6. Main result

Again, we fix a basepointS and corresponding length functions. We now present
our main theorem:
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Fig. 6.1. The casejR1j D 1.

Theorem 6.1. Given a CG setX not equivalent toS, there is some chord slide
which reduces the energykXk of X .

Proof. If any chord slide reduces the word length ofX , then we are done, so
assume otherwise. Also, if under any cancellation scheme{c j D L j Wj Rj } there is
some chord endc j with Wj the empty word, we are done by Lemmas 5.3 and 5.4, so
assume that this is not the case.

With these assumptions, the conditions of Lemma 5.5 are satisfied so that each
Wj is the single letter wordWj D � j . In this case, we know thatc1 D �1R1 and
c2 D L2�2R2 with L2 D NR1, etc. Furthermore, we must havejR1j � 1 otherwise we
could slidec1 to the right and decrease the length ofc2.

Now, if jR1j D 1, then slidingc1 to the right would have the effect of changing
the first letter ofc2 from L2 to �1, changing the last letter ofNc2 from NL2 to N�1, and
keeping all other chord ends unchanged. See Fig. 6.1. Since�1 ¤ NR1 D L2, we would
then have 1D k�1k < kL2k. Thus,

k�1�2R2k C k NR2 N�2 N�1k < kL2�2R2k C k NR2 N�2 NL2k
by Lemma 4.1. In other words, this would reduce the energykXk of X , and we would
be done.

So we are left with considering the case wherejR1j D 0, or in other words, the
case wherec1 D �1. In this case, we must havec2 D �2R2. Lemma 5.5 says thatR2

cannot contain the letter�1. Thus, if jR2j ¤ 0, the same argument as above shows that
the chord slide ofc2 to the right reduces the energy. IfjR2j D 0, then we look atc3,
etc., until we find the minimumj such thatjRj j ¤ 0. Note that a minimumj must
exist sinceX is not equivalent toS. In this case, we havec j D � j Rj with jRj j D 1.
Again, Lemma 5.5 saysRj cannot contain any of the letters�i for i < j so that the
chord slide ofc j to the right reduces the energy.

We note that if we assume our basepoint CG setS to be symplectic in the above
theorem, we can prove slightly more: if no chord slide reduces the word length ofX ,
then some chord end is balanced. Moreover, it is tempting to conjecture that this holds
regardless of our choice of basepointS.

As an immediate consequence of the above theorem, we obtain the



MAPPING CLASS FACTORIZATION 1059

Theorem 6.2. There is an algorithm which from a given marked linear chord
diagram G0 provides a sequence of energy decreasing chord slides

G0 ! G1 ! � � � ! Gk, kGi k < kGi�1k
with Gk D GS . In particular, by applying this to G0 D G'(S) for some' 2 MCg,1, we
obtain an algorithm which factors mapping classes into sequences of chord slides.

Proof. At every step, the existence of an energy reducing chord slide is provided
by Theorem 6.2. That this determines an algorithm is guaranteed by the fact that for
any linear chord diagram, only finitely many chord slides arepossible.

7. Relation to fatgraphs

In this final section, we re-articulate the main result of theprevious section into
statements about factorizations of mapping classes. As thename suggests, the orig-
inal motivation for the fatgraph Nielsen reduction algorithm comes from a desire to
obtain a factorization into sequences of Whitehead moves onfatgraphs, and we begin
this section by briefly outlining how our results on linear chord diagrams transfer to
this fatgraph context. We end the section with a purely mapping class group factoriza-
tion algorithm where a mapping class is factored into a product of certain generators
for MCg,1.

A fatgraph is a finite graph with a cyclic ordering given to the half-edges incident
to each vertex. Given a fatgraphG, we can define the boundary cycles ofG to be the
cyclically ordered sequences of oriented edges where an incoming edge at a vertexv
is followed by the outgoing edge which is next in the cyclic ordering atv. By gluing
a disc onto each boundary component of a fatgraphG, one obtains a closed orientable
surface6G and we define thegenusof the fatgraph to be the genus of the surface6G.
By a genusg bordered fatgraph, we shall mean a genusg fatgraph with one boundary
component with all vertices trivalent except for one which is univalent. We call the
edge incident to the univalent vertex thetail t and give it the orientation that it points
away from the univalent vertex.

Fix a genusg surface6g,1 with one boundary component�6g,1, and letq 2 �6g,1

be a point on the boundary distinct from the basepointp 2 �6g,1. By a marking of
a genusg bordered fatgraph, we shall mean an isotopy class of embedding of G into6g,1 as a spine such that the image of the end of the tail is the pointq. Poincaré dual
to a marking of a bordered fatgraphG ,! 6g,1 is a collection of arcs, which can be
chosen to be based atp. In this way, we get a map from the oriented edges ofG to� D �1(6g,1, p), which we call a�-marking. A �-marking satisfies certain conditions
referred to as orientation and vertex compatibility, surjectivity, and geometricity, the last
of which states that the�-marking of the tail is the inverse of the element representing
the boundary of6g,1, �(t) D �6g,1.
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We can then define the Ptolemy groupoid as the groupoid with one object for each
(isomorphism class of) marked bordered fatgraph and a unique morphism between each
pair of objects. This can be considered as a discrete combinatorial subgroupoid of the
fundamental path groupoid of decorated Teichmüller space given by the 2-skeleten of
the dual fatgraph complex for6g,1, but we will not need this perspective here (for
more details, see for example [7, 1]).

By a Whitehead moveW W G ! G0 on a bordered fatgraphG, we shall mean the
process of collapsing a non-tail edgee of G and expanding the resulting four-valent ver-
tex in the unique opposite way. It is clear that markings, thus also�-markings, evolve
unambiguously under Whitehead moves. Note that under obvious conditions, Whitehead
moves can be composed. There are certain sequences of Whitehead moves called the
involutivity, commutativity, and pentagon relations which always take a marked fatgraph
to itself. As a result of decorated Teichmüller theory or thetheory of Strebel differentials
that the Ptolemy groupoid of6g,1 can be equivalently defined as the groupoid generated
by Whitehead moves and with relations given by the involutivity, commutativity, and
pentagon relations.

7.1. Linear chord diagrams as bordered fatgraphs. Note that the immersion
of a linear chord diagramG in the plane endowsG with the structure of a fatgraph.
Moreover, if G is the linear chord diagram associated to some CG set for� , then G
is a genusg fatgraph with one boundary component. In fact, we can consider G as a
bordered fatgraph by ignoring the bivalent vertex corresponding to the rightmost chord
end and “growing a tail” on the left: for example, by extending the core [1, 4g] 2 R to
the larger interval [0, 4g]. In this way, one can easily show that a marking of a linear
chord diagramG (as described in Section 3) is equivalent to a�-marking of G as a
bordered fatgraph.

As observed in [1], a chord slide on a marked linear chord diagram can be de-
composed as a sequence of two Whitehead moves on the corresponding bordered fat-
graph. In fact, Theorem 6.2 gives an alternate proof of the fact, first proven in [2],
which states that the chordslide groupoid is a subgroupoid of the Ptolemy groupoid.
Moreover, there is an algorithm which takes any bordered fatgraph to its “nearest lin-
ear chord diagram” via the so-called greedy algorithm [1]. Thus, Theorem 6.2 can be
restated as follows:

Theorem 7.1. Given any“basepoint” marked bordered fatgraph G0 ,!6g,1, there
is an algorithm which determines a sequence of Whitehead moves

G0 ! G1 ! � � � ! Gk D '(G0)

representing a mapping class' 2 MCg,1 purely from the action of' on � .
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We note that other algorithms have been previously presented [6, 8] which rely
on representing mapping classes by their action on ideal arcs in 6g,1 and resolving
intersections of such arcs.

Finally, in [1], the so-called chordslide algorithm was discussed and was shown to
give an MCg,1-equivariant map from morphisms of the Ptolemy groupoid of6g,1 (i.e.,
sequences of Whitehead moves) toMCg,1. For any genusg, there are only finitely
many combinatorial types of Whitehead moves (note that thisshows thatMCg,1 itself
is finitely generated) and we denote byGg the finite image of all Whitehead moves
(i.e., generators of the Ptolemy groupoid) under this map.

Theorem 7.2. If the elements of a generating setS for MCg,1 can be explicitly
written as products of elements ofGg, then Theorem 7.1provides an algorithm to de-
compose any mapping class' 2 MCg,1 as a product of elements ofS, purely from the
action of ' on � .
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