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Abstract

The mapping class group of a gengssurfaceXy 1 with one boundary compo-
nent is known to have a simple yet infinite presentation wiémegators given by
elementaryWhitehead movesn marked bordered fatgraphs. In this paper, we in-
troduce an algorithm callethatgraph Nielsen reductiomvhich, from the action of a
mapping classp € MCqy 1 of 41 on the fundamental group:(Xg41) of g1, de-
termines a sequence of Whitehead moves represeptibgginning at any choice of
marked bordered fatgraph. The algorithm utilizes a reductf bordered fatgraphs
to linear chord diagrams, where the desired sequence is giveerms of elementary
chord slide moves which continuously decrease soereergy function. As a con-
sequence, this leads to an algorithm which factors any mapplass given by its
action onx (X4 1) in terms of any convenient generating set MiCyg 1.

1. Introduction

The combinatorial description of the mapping class group surfaceX in terms
of ideal triangulations of has a long history, going back to Whitehead who proved
that any two ideal triangulations are related by a sequeh@&ementary “diagonal ex-
change” moves. Later, inspired by the geometric insight§lurston and Mumford,
this combinatorial description became more firmly esthlglisin the hyperbolic setting
by Penner's decorated Teichmiller space [7] and in the covdbsetting by Harer’s
utilization of Strebel’s results on quadratic differeigig4, 10]. In these settings, the
Poincaré dual viewpoint gained prevalence, where diagexetianges on ideal triangu-
lations gave way to elementary moves called Whitehead mowemarked fatgraphs:
vertex-oriented graphs embedded3nas a spine. In particular, any mapping class of
3 can be represented by a sequence of Whitehead moves, argktpience is unique
up to certain well-known relations.

The mapping class groumMC, ; of a surfaceXy; with one boundary component
has particularly nice properties. Algebraically, it is sdacally known thatMCy; is
a subgroup of the automorphism of a free group via its actionttee fundamental
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group of X4;. Combinatorially, the mapping class groldCgy 1 admits another re-
lated combinatorial description in terms of elementary esoealled chord slides on
a special type ofinear fatgraph [1, 2] which have coincidentally been studied exte
sively in other contexts under the name lofear chord diagrams We will choose to
use this later terminology in this paper. Moreover, therestexa precise chordslide—
Whitehead move correspondence which relates these twe typelementary moves.
This “linear” variation of the theme appears to have someaathges. In particular,
every marked linear chord diagram canonically determinegtaof generators for the
free groupr = m1(Xg,1) of Xg. We call a generating set arising in this fashion a com-
binatorial generating set, or simply CG set. Each CG sesfgegi certain constraints
dictated by the form of the linear chord diagram from whiclarises, a special case of
which is the well known condition that a standard set of sygofit generators$y;, i}
satisfies the relatiof [7_,[«i, Bi] = 9Zg.1.

While every mapping clasg € MCqy 1 has a description in terms of elementary
moves on fatgraphs, algorithms currently available foredaining such a sequence
have the disadvantage that they depend on resolving icteyss of arcs or closed
curves in the surfac&y1 [6, 8]. For many reasons, it would be desirable to construct
such a sequence from purely algebraic information, suchasttion ofp on the fun-
damental groupr of Xg 1. In this paper, we present just such an algorithm, which we
call fatgraph Nielsen reduction

To define this algorithm, we introduce a@mergy function|| - || on CG sets which
is derived from a lexicographical ordering anextending the usual word length func-
tion with respect to some set of generators far In fact, each marked linear chord
diagramG — X4, which can be considered as a choice of “basepoint in desmbrat
Teichmuller space” (see Section 7 or [1]), determines it® @nergy function. By the
correspondence between marked linear chord diagrams andge®( we can equiva-
lently consider this energy - | as a function on marked linear chord diagrams, and
the main result of this paper can be stated as follows:

Theorem 1.1. Let | - || denote the energy function with respect to a fiXedse-
point’ G — X4 1. Given any marked linear chord diagrampGhere exists a sequence
of energy decreasing chord slides

Go— G1— -+ = Gy, [Gi]l < [Gi-ll
with Gy = G.

The proof of this theorem relies on the combinatorics ofdinehord diagrams and
elementary cancellation theory.

Since there is a canonical sequence of Whitehead moves Wihielarizes” a given
bordered fatgraph (given by the greedy algorithm of [1]) axdry chord slide of a linear
chord diagram can be described in terms of Whitehead movespbtain the following
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Corollary 1.2. There exists an explicit algorithm which from the action ahap-
ping classp € MCqy; on 7 determines a sequence of Whitehead moves represemting
beginning at any'basepoint marked bordered fatgraph G- Xg ;.

Moreover, since there is a map from Whitehead moves to mampasges irMCy 1
(see [1]) with finite image®y, we have the following

Corollary 1.3. Given any generating s&b for MCy 1 described in terms o,
there is an algorithm for decomposing any mapping class MCy 1 into a product of
generators inG.

2. Combinatorial generating sets

Let X4, be a genusy surface with one boundary component, and #etlenote
its fundamental groupr := 71(Xq1, p) With respect to a basepoimt € 0%4;. It is
well known thatz is isomorphic to a free group org2Zyenerators, and an explicit iso-
morphism is equivalent to a choice of an ordered set of gémardor 7. For a given
set of 3y generatorst = {xi}izil, we define the corresponding setlefters {x;, Xi}izil
to be the set containing each elemen¢ X and its inversex.

We define astandard symplectic set of generatdie = to be one of the form
S = {aj, ,Bi}?:l such that the element of corresponding to the boundadXg is
represented by the worbtlXgy, = H?:l[ai, Bil, where the bracketx, y] denotes the
commutatorxyxy. Again, we letx denote the inverse of an element Note that each
letter of the generating set is used once in this product.

More generally, we make the

DEFINITION 2.1. An ordered set of generatais for 7 is a combinatorial gen-
erating set or CG set, if the boundary elemediEy; € 7w can be written as a reduced
word using each letter oft exactly once. Two CG sets are equivalent if their corres-
ponding sets of letters are the same.

We remark that not all generating sets are CG sets, and nGGakets are (equiva-
lent to) standard symplectic generating sets. Topoldgicah equivalence class of CG
sets corresponds to (an isotopy class of) a collectiongofzs based ap which de-
compose the surfacEg; into a (4 + 1)-gon, and a CG set itself corresponds to a la-
beling and choice of orientation for each such arc. Howewerwill find it more useful
to consider the picture which is Poincaré dual to this, whigh involve linear chord
diagrams.

The mapping class groupMCgy 1 of the surfaceXy: is typically defined as
mo(Diff( Xg,1, 0Xg,1)), the group of components of the group of self-diffeomaspts
of Xg1 which fix the boundary pointwise. By a classical result ulyuattributed to
Dehn and Nielsen (see [11]MCg 1 has an equivalent algebraic definition as the group
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of automorphisms ofr which fix the word representing the boundei}y ;. Equiva-
lently, but more in line with our viewpoint, we can define thepping class group
MCgy,1 in the following way: mapping classes MCgy 1 are exactly the automorphisms
of = which take standard symplectic generating sets to starglamgplectic generating
sets, and there is a (non-canonical) one-to-one corregpordbetween (equivalence
classes of) standard symplectic generating sets and elern&MCy ;.

We now introduce the chord slide groupoid, which is a subgoail of the Ptolemy
groupoid of X4 1 (see Section 7 or [3]) and should be thought of as a groupaa-‘c
taining” the mapping class groumMC,y ;. Recall that a groupoid can either be de-
scribed as a set with a partial composition operation witleriges, or as a category
all of whose morphisms are isomorphisms.

DEFINITION 2.2 (cf. Theorem 3.1). Fix a CG sét in each equivalence class,
and letX = {Xj} denote the set of all representatives. Tdierd slide groupoidis
defined as the category whose objects are copies, girecisely one for everyt; € X,
and whose morphisms are the homomorphisims: = — = which take one CG set to
anothery; j: A — AXj.

Note that by the Hopfian property of, the v;; are necessarily isomorphisms.
Also note that there is a uniqgue morphism between each paibjgfcts, so that this
groupoid is equivalent to a trivial groupoid (in the categtiteoretic sense), and that
up to isomorphism, this definition does not depend on thecehof representatives.

3. Linear chord diagrams

A linear chord diagram is a combinatorial object best désctias a graplc im-
mersed in the plane: theore of G consists of the (connected subgraph consisting of)
edges ofG embedded in the real line, and the remaining edgesciioeds of G, are
immersed arcs in the upper half plane with their endpointached at distinct points
of the core. We call the attaching points thkeord endsof G, and require that they
correspond to integer points of the real line. (See [2] for@erthorough description.)
For a given chord end, we letv denote the opposite end of the chord attached. at

There is a natural linear chord diagram associated to ev&ys€l, but before we
describe this association, we first develop some notatiocerming CG sets. Given a
CG setX = {x}2, for =, let

— [c1%9 C yEi
Cx ={cj}j21, ¢ =X,

denote the (unique) ordered set of letters corresponding,tordered such that

HCJ ZHXHJ =82_g,1

j=1
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By oy 5_g 0y Bg1 g1 Pgo1 g1 B o B on

Fig. 3.1. A symplectic CG set and linear chord diagram.

with & = £1. (The reason for the appearanceid ; rather thand X in the above
formula will be discussed in Section 7.) For example, for @andard symplectic CG
set {«;j, ﬂi}igzl, the corresponding letters amg = By, C; = ag, C3 = Bg, etc. Finally,

we define integer andr; fori =1,...,2g9 by

+1
G =X ¢ =X, li<r.

Note that the setqi}izil of “left ends” gives a canonical representative for the eapui
lence class containing’, as does the se{t:ri}izgl of “right ends”.

Given a CG setX¥ for =, we construct a linear chord diagram, denoteg, as
follows. The core ofGy is taken to be the interval [1g} of the real line, the chords
of Gy correspond to the generators af, and the ends of a chord corresponding to
X; € X are prescribed by; andr;. Using this correspondence, we will often abuse
notation slightly and refer to the generatogs as chords and the lettersc; as chord
ends See Fig. 3.1 for the linear chord diagram associated to rdatd symplectic
set of generators. By the uniqueness of reduced words fgee [1]), the linear chord
diagramG y is uniquely determined by the CG s&t We call a linear chord diagram
arising from a CG set forr a genus gchord diagram. By amarked linear chord
diagram we shall mean a linear chord diagra@®y together with a labeling of its
chord ends by the lettersy of the CG setX’. By abuse of notation, we shall denote
this marked linear chord diagram also By.

We now describe the elementary move on linear chord diagrémeschord slide
Let v be a chord end which is not farthest to the right of a linearr¢haiagramG.
The chord slide ofv to the right results in a new linear chord diagr&n obtained by
“sliding v over” the chord to its right, thus relocatingto a new position along the
core (and isotoping chord ends so that they lie at distintggier points). The chord
slide to the left is completely analogous. See Fig. 3.2.

We can extend chord slides so that they act on thexset (representatives of) CG
sets in a natural way. This action is most easily describetbpally by the action of a
chord slide on the chord ends associated to a CG set. Thefewarpossible types of
chord slides, and we illustrate the action of each in Fig, @/Rere all chord ends not
depicted in the figure are understood to be fixed by the chadd.sWhile not explicitly
needed, we note that the resulting effect on a CGAsetkes the following form up to
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vy 7 2y T Yz zy
)

Fig. 3.2. Two slides to the right and two slides to the left.

permutation, which is a (composition of) Nielsen transfation(s) for the free group:
Xj =X A
X > (xFxEHE,  for some k #1,

where x; € X' is the generator corresponding to the chord which a chordiersid
over, and the exact form depends on the choice of represent@G sets.

Note that under obvious conditions, chord slides on CG sats ie composed,
thus they generate a groupoid. In fact, by their actions guif@lence classes of) CG
sets, chord slides can be considered as elements (i.e.himmg) of the chord slide
groupoid, and we now recall the main result of [2]:

Theorem 3.1([2]). The chord slide groupoid is generated by chord slides on CG
sets and all relations are compositions of five explicit or@shich we do not list hede

The importance of this theorem is that it yields a combinatgresentation of the
mapping class groupMCqy 1. More precisely, the action of the mapping class group
MCgq,1 on 7 extends to an obvious action on the S&bf (equivalence classes) of CG
sets, and lettingo(X') denote the image ot underg € MCy 4, the theorem states that
¢ can be represented by a sequence of chord slides

Gxﬁexlﬁ---%6¢(x)

on marked linear chord diagrams, unique up to some knowtiorta The main result
of this paper is an algorithm which will determine such a ssgpe. Note that as a
consequence, we arrive at another proof that the chord glidepoid is generated by
chord slides.

4. The length and energy functions

We now introduce the length and energy functions that we ug# to develop our
algorithm. For the rest of the paper, we assume that the ggriadfixed, and we fix
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a (not necessarily standard symplectic) CG Set {s}izil for = with corresponding
lettersCs = {o}{%, so that[]}%, o} = 9541

Firstly, we recall the standard word length function wittsgect toS, which we
denote by|-|. For an elementv € 7, we define|w| = k if w is written as a reduced
word w = ]_[:‘:la,-i usingk (possibly repeating) letters @fs. We also setid| = 0. For
any CG sett = {x} with corresponding chord end%y = {c;}, we define the length
of X by

4g

29
1X]:=2)"Ix| = Igil.
i=1

j=1
Note that|X| = 4g if and only if X' is equivalent toS (i.e., Cx = Cs) by the unique-
ness of reduced words. We also define the length function ofaeked linear chord
diagramGy by |Gy| := |X].

We shall also require a refinement of the above word lengtletiom, which we
call the energy function This energy function is derived from a lexicographical erd
ing for =, and we begin by defining the value of the energy function anlétters in
Cs. We set

lojll = j.
We then define the energy of a reduced ward= ]_[:‘:l o, € by
k .
lwll =) (49 + 1) ' [loj, .
i=1

For example, the wordv = a1 = 0,07 has energy|w| = 25 with respect to the

standard symplectic generating $et, §;}7_, for the genus two surface. Note that this
function defines a well-ordering on elements ;of Moreover, this extends the word
length function since by the definition, we have

(49 + 1) < |lw|| < (49 + 1)

so that
lw| < |v], implies [w] < [v].

Finally, for any CG setY¥ = {x;} with corresponding chord end% = {c;}, we define
the energy ofX to be

49
1l = "lic; |-
=1

Similarly, we define the energy of a marked linear chord diegG v by |Gy | := || X].
As a final remark, we state the easy
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Lemma 4.1. If p,q € = with || p|| < |||, and w € = is written as a reduced
word w = gx with |q| < |x]|, then

x|l + [IXpll < llax|l + [xall.
Proof. Lettingk = |x|, we have
IXBI — %Il = 1Bl — lla]l < (4g + 1),

while
llax| — IlpxIl = (lall — I pl)(4g + 1) = (4g + 1)%,

and the result follows. OJ

5. Some cancellation theory

Recall that we have fixed a “basepoint” CG set= {s}izﬂl with corresponding
lettersCs = {ov,—}j-‘g=1 and length and energy functiops| and || - .

Now, consider an arbitrary CG set = {xi}izﬂl with corresponding chord ends
Cy = {c,—}‘j‘g:l and linear chord diagranG . For a given chord enda; € Cx with
j > 1, letl(c;) denote the amount of cancellation @f on the left, meaning the number
of letters that get cancelled when reducing the woydic;. More precisely,

1
(1) I(c)) = §(|0171| +Icj| = ICj—1Cj ).

Similarly, definer(c;) to be the number of cancellations on the right, so t{af) =
I(Ccj+1) with 1 < j < 4g. We also formally set(ci) =r(csg) = 0.
We begin by stating the obvious

Lemma 5.1. If I(cj) > |cj|/2 for some j> 1, then the chord slide ofjcto the
left results in a new CG set” with |X'| < |X|. Similarly, if r(c;) > |cj|/2 for some
j < 4g, the slide of ¢ to the right reduces the length of the CG set.

Proof. The slide ofc; to the left replaces the chord endg.1 and ¢j_; with
Cj—1Cj and ¢;Cj_, respectively and leaves the others unchanged (up to pefion)ta
Thus, ifI(c;) > |cj]/2, then|cj_1cj| < |cj_1] by (1), so the result follows. The argu-
ment for the slide to the right is analogous. O

If we were able to show that every CG set always had an asedc@tord enct;
with 1(c;) > [cj]/2 orr(c;) > |c;|/2, then there would always be a chord slide which
reduced the length, and we would obtain our main result Tdmaat.1. However, this is
not always the case, and we will have to make use of a moreesalglment using the
energy function| - ||. Before stating the next Lemma, we develop some more natatio
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Fig. 5.1. A balanced chord end slid to the right.
DEFINITION 5.2. We say that a chord el is balancedif I(c;) =r(c;j) = [cj|/2.

Note that ifc; is a balanced chord end corresponding to a CGAsethen sliding
¢c; in either direction does not change the lengif| of the CG set. However, we have
the following

Lemma 5.3. Assume that no chord slide reduces the length of a CGYsethen
if ¢ is a balanced chord end alx, either the chord slide of jcto the left decreases
the energy of¥ or else the slide of jcto the right does.

Proof. Sincec; is balanced, it can be written (as a reduced word)

cj = pq

with |p| = |q|. Note that necessarilyp # q. Assume, without loss of generality, that
Ipll < llall. Then we claim that the slide af; to the right reduces the energy of the
CG set. (In a completely analogous way, the slide to the leftldsdecrease the energy
if |lall < |lpll.) To see this, write

Cj+1 = quw.

We know that|g| < |w|, or else the chord slide afj, to the left would decrease the
length of X.

After the slide ofc; to the right, the letters of the CG set get altered (up to per-
mutation) bycj;1 = qw being replaced bypw. See Fig. 5.1. Similarly, the opposite
end .1 = wq is replaced bywp. The result then follows from Lemma 4.1. [

Given a CG seft’ with chord end€ » = {c;}, consider the unreduced Wom?il Cj.
We know that the word reduces 8 1, So there must exist

%(;ICJI—%)

many cancellations. Note that a priori there may be diffeid@ices of cancellation
“schemes” available. So let us fix one choice of cancellasoheme. We writéW;
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for the subword ofc; which is not cancelled under this process, for the subword
cancelled on the left, an®; for the subword cancelled on the right. Thus,

49
Cj ==LjVVjRP and Iﬁ[VW 223294
j=1

with both L; and R4y the empty word. Note that in general, there is no correlation
betweenl(c;) and |L;].

Lemma 5.4. For a given CG sefY, assume that no chord slide reduces the length
|X| of X. Then if there is a cancellation scherfg = L;W;R;} for the word]'[‘j“il Cj
with some VY the empty wordthen some chord end ¢s balanced.

Proof. Note that it suffices to prove that there is sameith I1(c) +r(c) > |G|,
as then eithef(c) =r(c) = |ci|/2, I(¢) > |cGi|/2, orr(c) > |ci|/2, and the latter two
cases cannot occur due to our assumption that no chord glitiees the length of'.

Choose a cancellation schengy = L;W;R;} and assume thalv; is the empty
word for some 1< j <4g. If j =1 or j = 4g, then the chord slides af; to the right
or c4 to the left respectively decrease the lengthAof so assume that & j < 4g.
Letl =[m,nNZ={mm+1,...,n} be the maximal index interval containing
such that for alli € I, W, is the empty word. In other words, the product

n n+1
(2) W= le(l_[ Ci)l-n+1: l_[ Rl
i=m i=m
reduces to the identity element in.

We now assume thd{c) +r(c) < |¢| for all 1 <i < 4g and derive a contradic-
tion. Define a new factorization of each with m <i <n by

G =LWRi with [Li|=1(c), |Ril=r(c), WI|>D0.

Similarly, write Rpn-1 = Wn-1Rm-1 and L1 = Ly 1 Why1 With |[Rm-1| = r(cm-1) and
[Lni1] = 1(chs1). Note that without our assumptidrici) + r(c) < |ci|, the existence
of such a factorization is not guaranteed.

With this new factorization, the produtV of (2) can be written as

n
W= Wmlle(l'[ ciWiRi>cn+lwn+1,

i=m

which reduces to
n+1
W= ] W, w|>0

i=m-1
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by the definitions of the numbelgc;) andr(c;). However, the definitions df(c;) and
r(c) also ensure thatV’ cannot be reduced any further, while on the other hand, we
know that W’ reduces to the empty word. Thus, we have our contradictiah tha
lemma is proved. O

In the opposite direction, we finish this section with our filmnma. Before we
state it, we introduce some helpful terminology. Given a dvar = ]_[ik=l Xi, we call

the subwords
l_[ Xi and 1_[ Xi

i<k/2 i=k/2
the left half and right half of w respectively.

Lemma 5.5. Assume that there is no length reducing chord slide for argi€&
setX. If for some cancellation schenfe; = L;W; R;} there is no i with Wthe empty
word, then W = o; for all 1 < j < 4g. Moreoveyin this caseif ¢; = o; for some j
then no chord end other thary @ontains the lettew;.

Proof. We begin with some observations. First of all, siE‘éil|Wj| =10Xg1| =
4g, it is immediate that if noW; is the empty word, thefiw;| = 1 for all j. In fact,
it is clear that we must have/; = o; for all j and thatR; = L for 1 < j < 4g.
Second, using Lemma 5.1, the condition that no length reduchord slide exists forces
|ILjl = IRl| < |w;] for all j, which in our case givefL;| — |Rj|| < 1, meaning each
W; lies “near the middle” ot;. As a consequence, any lettgr# o; appears in the left
half of ¢; if and only if it appears irLj, and it appears in the right half if and only if it
appears irR;.

Now assume that for somgwe havec; = o and that the lettes; appears in the
chord endc, with k # j. Sinceoy # oj, oj appears in eithek or R, and we assume
without loss of generality that it appears li, in which casek must be greater than 1.
Theng; must appear irR;. Let ¢, be the opposite end aj_; so that we haver;
appearing inc,,. Note that we cannot havg = j since|c,| > 1 = |c;j|. Sinceq; lies
in the right half ofcc_1, o; must lie in the left half ofc,,. SinceW, # o}, o; must
appear inLy,. Similarly, we see that; appears inR_1, thuso; appears in the left
half of the opposite end ady,_1. Continuing in this way, we eventually see that either
oj liesin Ly or Lj, or thato; lies in R; or Ryg (see the last section where we discuss
the boundary cycle of a fatgraph), which gives us a conttiicsince eachLi, Rug,

Lj, and R; is the empty word. O

6. Main result

Again, we fix a basepoinf and corresponding length functions. We now present
our main theorem:
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Fig. 6.1. The cas¢R,| = 1.

Theorem 6.1. Given a CG settY not equivalent taS, there is some chord slide
which reduces the energyt’|| of X.

Proof. If any chord slide reduces the word length %f then we are done, so
assume otherwise. Also, if under any cancellation sch¢aje= LjW;R;} there is
some chord end; with W; the empty word, we are done by Lemmas 5.3 and 5.4, so
assume that this is not the case.

With these assumptions, the conditions of Lemma 5.5 aresfigati so that each
W, is the single letter wordW; = o;. In this case, we know that; = o1R; and
¢ = LoouRy with L, = Ry, etc. Furthermore, we must hay®;| < 1 otherwise we
could slidec; to the right and decrease the lengthogf

Now, if |Ry| = 1, then slidingc; to the right would have the effect of changing
the first letter ofc, from L, to oy, changing the last letter of, from L, to &1, and
keeping all other chord ends unchanged. See Fig. 6.1. SingeR; = L,, we would
then have 1= |o1] < ||L2||. Thus,

lo102Re || + [|Re6261 < [IL202Re|l + [|ReG2La |l

by Lemma 4.1. In other words, this would reduce the endgyj of X', and we would
be done.

So we are left with considering the case whéRg| = 0, or in other words, the
case wherec; = o1. In this case, we must hawe = 0,R,. Lemma 5.5 says thaR,
cannot contain the letter;. Thus, if |Ry| # 0, the same argument as above shows that
the chord slide ofc, to the right reduces the energy. |[IR;| = 0, then we look ats,
etc., until we find the minimumj such that|R;| # 0. Note that a minimumj must
exist sinceX is not equivalent taS. In this case, we have; = o R; with |Rj| = 1.
Again, Lemma 5.5 say®; cannot contain any of the lettets for i < j so that the
chord slide ofc; to the right reduces the energy. O

We note that if we assume our basepoint CG &db be symplectic in the above
theorem, we can prove slightly more: if no chord slide redute word length of,
then some chord end is balanced. Moreover, it is tempting tgecture that this holds
regardless of our choice of basepoit

As an immediate consequence of the above theorem, we obigin t
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Theorem 6.2. There is an algorithm which from a given marked linear chord
diagram G provides a sequence of energy decreasing chord slides

Go—Gi— - — Ge [Gi] < |IGidl

with Gy = Gs. In particular, by applying this to @ = G,s) for somep € MCy 1, we
obtain an algorithm which factors mapping classes into seges of chord slides.

Proof. At every step, the existence of an energy reducingdchklide is provided
by Theorem 6.2. That this determines an algorithm is gueeghby the fact that for
any linear chord diagram, only finitely many chord slides possible. []

7. Relation to fatgraphs

In this final section, we re-articulate the main result of frevious section into
statements about factorizations of mapping classes. Asémee suggests, the orig-
inal motivation for the fatgraph Nielsen reduction alglanit comes from a desire to
obtain a factorization into sequences of Whitehead movefatgraphs, and we begin
this section by briefly outlining how our results on linearoddh diagrams transfer to
this fatgraph context. We end the section with a purely mapmilass group factoriza-
tion algorithm where a mapping class is factored into a pcodi certain generators
for MCy 1.

A fatgraphis a finite graph with a cyclic ordering given to the half-esldgecident
to each vertex. Given a fatgrafh, we can define the boundary cycles &fto be the
cyclically ordered sequences of oriented edges where amimg edge at a vertex
is followed by the outgoing edge which is next in the cycliclening atv. By gluing
a disc onto each boundary component of a fatgr&ptone obtains a closed orientable
surfaceXs and we define thgenusof the fatgraph to be the genus of the surface.
By a genusg bordered fatgraph, we shall mean a gegustgraph with one boundary
component with all vertices trivalent except for one whishunivalent. We call the
edge incident to the univalent vertex ttel t and give it the orientation that it points
away from the univalent vertex.

Fix a genusg surfaceXy : with one boundary compone@dzy i, and letq € 0Xg 1
be a point on the boundary distinct from the basepqrg d%4,. By a marking of
a genusg bordered fatgraph, we shall mean an isotopy class of embgdufiG into
Y41 as a spine such that the image of the end of the tail is the pgoiftoincaré dual
to a marking of a bordered fatgragh — X4, is a collection of arcs, which can be
chosen to be based @t In this way, we get a map from the oriented edgesGofo
m = m1(Xg,1, P), which we call ar-marking. A w-marking satisfies certain conditions
referred to as orientation and vertex compatibility, sctijéty, and geometricity, the last
of which states that the-marking of the tail is the inverse of the element representi
the boundary of£qq, 7(t) = 9%
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We can then define the Ptolemy groupoid as the groupoid withaiject for each
(isomorphism class of) marked bordered fatgraph and a enigorphism between each
pair of objects. This can be considered as a discrete conobialasubgroupoid of the
fundamental path groupoid of decorated Teichmuller spaeendgoy the 2-skeleten of
the dual fatgraph complex foEyq, but we will not need this perspective here (for
more details, see for example [7, 1]).

By a Whitehead mové&V: G — G’ on a bordered fatgrap®, we shall mean the
process of collapsing a non-tail edg®f G and expanding the resulting four-valent ver-
tex in the unique opposite way. It is clear that markingssthlsoz-markings, evolve
unambiguously under Whitehead moves. Note that under abwonditions, Whitehead
moves can be composed. There are certain sequences of Wddtemoves called the
involutivity, commutativity, and pentagon relations whialways take a marked fatgraph
to itself. As a result of decorated Teichmdller theory or tineory of Strebel differentials
that the Ptolemy groupoid dfg ; can be equivalently defined as the groupoid generated
by Whitehead moves and with relations given by the invoitgivcommutativity, and
pentagon relations.

7.1. Linear chord diagrams as bordered fatgraphs. Note that the immersion
of a linear chord diagran® in the plane endow& with the structure of a fatgraph.
Moreover, if G is the linear chord diagram associated to some CG setr fdhen G
is a genusy fatgraph with one boundary component. In fact, we can censglas a
bordered fatgraph by ignoring the bivalent vertex corresiitg to the rightmost chord
end and “growing a tail” on the left: for example, by exterglithe core [1,4] € R to
the larger interval [0, d]. In this way, one can easily show that a marking of a linear
chord diagramG (as described in Section 3) is equivalent teranarking of G as a
bordered fatgraph.

As observed in [1], a chord slide on a marked linear chord rdimgcan be de-
composed as a sequence of two Whitehead moves on the cordéspdordered fat-
graph. In fact, Theorem 6.2 gives an alternate proof of ttes, férst proven in [2],
which states that the chordslide groupoid is a subgroupbith@ Ptolemy groupoid.
Moreover, there is an algorithm which takes any borderedrdaty to its “nearest lin-
ear chord diagram” via the so-called greedy algorithm [1Hud, Theorem 6.2 can be
restated as follows:

Theorem 7.1. Given any'basepoint marked bordered fatgraph §3— X 1, there
is an algorithm which determines a sequence of Whiteheagsnov

Go— Gy — +++ — Gk = ¢(Gy)

representing a mapping clags € MCy 1 purely from the action ofp on =,
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We note that other algorithms have been previously predef@e8] which rely
on representing mapping classes by their action on idea imrcy, and resolving
intersections of such arcs.

Finally, in [1], the so-called chordslide algorithm wasalissed and was shown to
give an MCy ;-equivariant map from morphisms of the Ptolemy groupoidagf; (i.e.,
sequences of Whitehead moves) MCgy ;. For any genusy, there are only finitely
many combinatorial types of Whitehead moves (note that shisws thatMCg 1 itself
is finitely generated) and we denote Ky the finite image of all Whitehead moves
(i.e., generators of the Ptolemy groupoid) under this map.

Theorem 7.2. If the elements of a generating sétfor MCy 1 can be explicitly
written as products of elements &fy, then Theorem 7.1provides an algorithm to de-
compose any mapping clagse MCy 1 as a product of elements &, purely from the
action ofp on x.
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