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1. Introduction

This paper is concerned with the regularity in ¢ of the solution of the initial-
boundary value problem of the linear parabolic partial differential equation

(1.1)  Bu(x, t)/0t+A(x, t, Dyu(x, t) = f(x, t), Qx(0, 11,
(1‘2) Bi(x9 t, D)u(x: t) = O’ ]: 1’ °tty m/2 , GQX(O, T] ,
(1'3) u(x» 0) = 'uo(x) ’ Q.

Here Q is a not necessarily bounded domain in R¥ with boundary 8Q satisfying
a certain smoothness hypothesis. For each t=[0, T A(x, t, D) is a strongly
elliptic linear differential operator of order m, and {B/(x, ¢, D)} 7/% is a normal set
of linear differential operators of respective orders m;<<m. It is assumed that
the realization —A,(t) of —A(x,t, D) in L?(Q) under the boundary conditions
Bj(x, t, DYt|9a=0, j=1, -++, m/2, generates an analytic semigroup in L?(Q) for any
pE(1, ). A sufficient condition for that, which is also necessary when p=2,
is given in S. Agmon [1]. Assuming moreover that the coefficients of A(x, ¢, D),
{B/(x, t, D)} 7/% and some of their derivatives in x belong to Gevrey’s class {M;}
([4], [6], [7]) as functions of ¢z and f also belongs to the same class as a
function with values in L(Q), we show that the same is true of the solution of
(1.1)~(1.3) considered as an evolution equation in L) for any initial value
u,LY(Q). It should be noted here that if m;—m—1, the boundary condition
Bj(x, t, D)u|50=0 is satisfied only in a variational sense.

In order to prove the result stated above we show that there exist positive
constants K,, K such that

(1.4) 11(8/02)"(A(t)—N) | = KoK M,/ |\ |

for any n=0, 1, 2, -+, t&[0, T] and A in the sector 3: |arg A | =6, 0<0,<7/2,
where A(2) is the realization of the operator A(x, ¢, D) in L(Q) under the boun-
dary conditions B;(x, t, D)u|,0=0, j=1, +--,m/2. Once (1.4) is established, one
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can apply the result of [9] to show that the estimates

(15)  [1(8/01)"(8/0t-+0/3s)" (808 U, S)||S LoL ™My mas(t—s) "
hold for n, m, k=0, 1, 2, --- for the evolution operator U(%, ) to the equation
(1.6) du(t)[dt+A(tyu(t) = f(z), O0<t=T,

where L,, L are some positive constants independent of =, m, &, ¢, s. As for
the solution #%(t) of the inhomogeneous equation (1.6) satisfying the initial condi-
tion #(0)=1u,, if %, is an arbitrary element of L'(Q) and f(¢) is an infinitely dif-
ferentiable function with values in L'(Q) such that

(1.7) lld"f(t)|dt|| S FF"M,, , 0<t=T, n=0,1,2, .-,
for some constants F,, F, then we have
(1.8) |ld"u(t)/dt"|| < LoL"M,|luo| |t~ "+ FF" M, 8",  0<t<T

for n=0, 1, 2, ---, where Fy, F are constants depending only on d,, F,, F, L,, L, T.

Analogous results on the same equation in L?(Q), 1<p<<oco, were proved
in [9]. It was shown in [8] that the evolution operator U(t, s) of (1.6) exists if
the coefficients of A(x, ¢, D), {B;(x,t, D)} 7/} and some of their derivatives in x
are once continuously differentiable in 2.

In [10] with the aid of the idea of R. Beals [2] and L. Hérmander [5] the
estimates of the kernels G(x, y, 7), Ky(#, y) of operators exp (—74,), (4,—N)™*
were established for 1<p<<oo, where A,=A,(t) for some fixed ¢&[0, T]. The
operator exp (—7A) in L) was then defined as an integral operator wich
kernel G(x,y, ), and was shown to be an analytic semigroup with the infini-
tesimal generator —A=—A(z).

We use the same method to estimate the derivatives in ¢ of the kernel of
(A(#)—A)"%. In order to make the paper self-contained we reproduce part of
the argument of [10] which is relevant to the proof of our main result.

2. Assumptions and main theorem

Let Q be a not necessarily bounded domain of R¥ locally regular of class
C? and uniformly regular of class C” in the sense of F.E. Browder [3]. The
boundary of Q is denoted by 0Q. We put D=(8/0x,, -+, 0/0xy).

Let

A(x, t, D) =M§maﬂ(x, t)D*

be a linear differential operator of even order m with coefficients defined in O
for each fixed t€[0, T], and let
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Bi(xr L D) __",,E bjﬁ(x’ t)Dﬂ’ ]= 1, m/2
—mj

be a set of linear differential operators of respective orders m;<<m with coef-
ficients defined on 99 for each fixed t&[0, T1].

The principal parts of A(x, ¢, D) and Bj(x, ¢, D) are denoted by A¥(x, t, D)
and B¥(x, t, D) respectively.

Let {M,, k=0, 1,2, ---} be a sequence of positive numbers which satisfy
the following conditions ([4], [6], [7]): for some positive constants d,, d;, d,

@1) My, <diM, forall k=0,
2.2) (?)M,,_,-M,-gdlM,, for all &, j such that 0= j<k,

23) M,=M,, forall k=0,
(24)  Mj,=<di**M;M, forall j, k=0.

We assume the following:
(A.1) For each t<|[0, T'] A(x, t, D) is strongly elliptic, i.e. for all real
vectors £==0, all (x, )0 x [0, T]

(—1)™2 Re A¥(x, t, £)>0.

(A.2) {Bj(x,t,D)}7/% is a normal set of boundary operators, i.e. 3Q is
noncharacteristic for each Bj(x, t, D) and m;%=m, for j=k.

(A.3) For any (x, )€9Q X [0, T] let v be the normal to 8Q at x and 0
be parallel to 8Q at x. The polynomials in =

Bﬁ(x, t, E+7V) ’ ]= 13 °t%y m/2,

m/
are linearly independent modulo the polynomial in =, Hz(‘r—-r;: (&, \; x, 1)) for
k=1

any complex number A with non-positive real part where 7i (&, \; x, ) are the
roots with positive imaginary part of the polynomial in 7, (—1)*24¥x, t, E-+7v)
—N.
(A.4) For each t=[0, T'] the formal adjoint

A'(x, t, D) =m§ma4(x, t)D*

and the adjoint system of boundary operators

Bj(«, t, D) =|312 ,b§5(x, t)DB j=1, -, mf2
=m
can be constructed.

(A.5) For |a|=m a,(x, t) are uniformly continuous in QX [0, T']. For
|| =ma, (x,t), ay(x, t) have continuous derivatives in ¢ of all orders in Q& x [0, 77,
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and there exist positive constants B,, B such that

(2.5) |(8/0t)au(x, 1)| < B,B*M,
(%, t)eix|[0, T]
(2.6) | (8/02)"al(x, )| < B,B*M,

for k=0,1,2, ... For j=1, -, m/2 Db(x, ), |v| =m—mj, |G| =m;, and
Dblg(x, t), |v| =m—m;, | B| =m/, have continuous derivatives in ¢ of all orders
on 9Q X [0, T'], and

2.7) |(8/02)* Db 4(x, £)| <B.,B*M,
(x, H)€8QX[0, T]
(2.8) |(9/0t)*D"bjg(, )| < B,B"M,

for k=0, 1,2, ---.

Let W™?(Q) be the Banach space consisting of measurable functions de-
fined in Q whose distribution derivatives of order up to m belong to L*(Q).
The norm of W™?(Q) is defined and denoted by

= % | 2, 1/»
1,5 (Mzgmgnw Py

We simply write || ||, instead of || ||, to denote L?-norm. We use the notation
|| 1] to denote both the norm of L'(Q) and that of bounded linear operators from
LY{(Q) to itself.

For each t=[0, T'] A(2) is the operator defined as follows.

The domain D(A(t)) is the totality of functions # satisfying the following
three conditions:

(1) uweWm Q) for any ¢ with 1=<q<N/(N—1),

(ii) A(x, t, Dyus L) in the sense of distributions,

(iii) for any p with 0<(N/m)(1—1/p)<1 and any v € W™*(Q), p' =
pl(p—1) satisfying Bi(x, t, D)v|30=0, j=1, +-+, m/2,

(A(x, t, D)u, v) = (u, A'(x, t, D)v).
For us D(A(t))
(A(t)u) (x) = A(x, ¢, Dyu(x) .

We note that the boundary value of Bj(x, t, D)u is defined and vanishes if
m;<<m—1 for u€ D(A(t)).

It is known that —A(#) generates an analytic semigroup in L'(Q). Hence
there exist an angle 6, (0, z/2) and positive constants C;, C, such that

(2.9) p(A@®)D=N M N ZCy,
(2.10) IA—A@E)SC/In]  for AES, |A]=C,,

where p(A(t)) stands for the resolvent set of A(¢) and X is the closed sector
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{: Gp=<arg A=<2z—0,} U {0}.
We write (1.1)—(1.3) as an evolution equation in LY(Q):

2.11) du(t)|dt+A(tu(t) = f(f), O<t<T,
2.12) w(0) = u,.

Let U(¢, s) be the evolution operator of (2.11) which is a bounded operator valued
function defined in A satisfying

U, s)[ot+A@R) U@, s) =0,
(s, )EA,
aU(z, s)[os—U(t, s)A(s) =0,
U(S, S)Z‘I Oé.?éT,
where A= {(s, £): 0<s<t<T} and A={(s, t): 0=s<t=<T}. The existence of

such an operator is known by [8].
Our main result is the following:

Theorem. Under the assumptions stated above the evolution operator U(t, s)
of (2.11) is infinitely differentiable in (s, ty&A. There exist constants Ly, L such
that

[1(8/02)"(8/02+0/85)™(8/95)* U(2, s)|
(s, )EA
§L0L”+"‘+"M,,+,,,+,,(t—s)"‘"‘ ,

for n, m, k=0,1,2, +--.

Let u(t) be the solution of the initial value problem (2.11), (2.12). If u, is
an arbitrary element of L\Q) and f(t) is an infinitely differentiable function with
values in L'(Q) such that

l|d"f(®))dt"| S FF"M,, O0=<t<T, n=0,1,2,.,
for some constants F,, F, then we have
ld"u(2)|dt"|| < LoL"M|lwy| |t~ *+FF "M,  0=<t<T,
for n=0, 1,2, ---, where F, F are constants depending only on d,, F,, F, L,, L, T.

According to [9] it suffices to prove the following proposition in order to
establish the above theorem.

Proposition. For any complex number \ such that N€3 and |\|=C,,
(A(t)—n)"1 is infinitely differentiable in t [0, T'], and there exist positive constants
Ko, K such that for n=0, 1,2, ...

(2.13) 11(8/82)" (A1) — ) I S KK M,/ |\
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3. Preliminaries

For 1<p<<oo the operator A,(¢) is defined as follows:

D(A,(t)) = {ucW™?(Q): Bfx,t,Dju=0 ondQ for j=1, -, m2},
(Ap(t)u)(x) = A(x, t, D)u(x) for ueD(A4,(t)).

Replacing A(x, ¢, D) and {Bj(x, ¢, D)} 7% by A'(x, t, D) and {B/(x, t, D)} 7}
the operator Aj(z) is defined. According to S. Agmon [1] —A4,(¢) generates an
analytic semigroup in L?(Q2), and with the aid of the argument of F.E. Browder
[3] it is shown that the relation 4% (¢)=A4}/(¢) holds where the left member stands
for the adjoint operator of A,(z).

In what follows we assume that the coefficients of B;(x, ¢, D), Bj(x,t, D),
j=1, -, m/2, are extended to the whole of QX [0, T so that (2.7), (2.8) hold
there.

Slightly extending the argument of S. Agmon [1] it can be shown that there
exist an angle 6, (0, z/2) and a constant C,>0 for each p&(1, o) such that for
any u€ Wm™?(Q), a complex number A satisfying G,<arg A=2z—6,, |A|>C,,
and t€]0, T]

(3.1) g [n | m=m)lyy]| . < C, {II(A(x, t, D)—NYull,
m/2 m/2
+ jg‘.llxl"”"”f”’”llg;llﬁ IZ‘.zl 11€3lmm;, 5} »

where g; is an arbitrary function in W"~";#(Q)) such that Bj(x, t, D)ju=g; on
0Q for each j=1, +--, m/2.
For a complex vector nC¥ put

A(x, t, Dtn) = 33 aufx, t)(D+n)",
Bj(x, t, D+n) =m§"jbjs(x’ t)(D-+x)°
(cf. L. Hormander [5]). As is easily seen the adjoint system of
(A(x, t, D+n), {Bj(x, t, D+n)}) is (A'(x, t, D—7), {Bi(x, t, D—7)}).
For 1<p<<oo Aj(2), A;"(2) are the operators defined by
D(45(t)) = {ucWm™?(Q): Bj(x, t, D4nu=0 on 8Q for j=1, -, m/2},
(Ay(tyw)(x) = A(x, t, D+nyu(x)  for usD(Ay2),

D(A}(t)) = fus W™HQ): Bi(x, t, D+n)u=0 on 8Q for j=1, -, m[2},
(AP @) (x) = A'(x, t, D+q)u(x)  for ueD(A}(2)).

Lemma 3.1. For any p<(1, o) there exist positive constants C;, 8, such
that for ,<arg A<2z—0,, |N|>C}, t<[0, T, |9| =8,|\|Y" the following ine-
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qualities hold:
(i) for uc Wm(Q), g, W "*Q) such that Bx,t, D4+n)u=g; on 0Q,
j:l, e, m/Z’

33 I @, ,< CHAlI(AG, £, D) —2ul,
+ 3 I g+ B 18l

(ii) for ve Wm(Q), h;& Wmm»(Q) such that B)(x,t, D+n)o=h; on 0Q,
j:l’ oo M/Z,

3 [ [ @ mlo]],, < CF (A (x, £, D+n)—N)oll,
m/2 ’ m/2
+ 2 M =m0 ||+ 33 172l p} -
Proof. In the proof of (i) we denote by C constants depending only on
N, m, B,, the upperbounds of the coefficients of A(x, ¢, D) and the derivatives in

x of the coefficients of Bj(x, t, D) of order up to m—m;, j=1, -+, m/2. As is
easily seen

[I(A(=, £, D)—N)ull,
=|I(A(x, £, D+n)—Nyull,+II(A(x, £, D+5)—A(x, t, D))ul|,
<I(AGx, &, D) —Nyully+C S 01" lhell
If we put
&i = (Bi(x, t, D)—B(%, t, D+n))utg;,
then g/ W= "*(Q) and g}=B/(x, t, D)u on 0Q, and
llgill,=C 2 1nl™ ™ llullsp+-1lgslly »
I8/ lm-mssSC 2 12l "l p 112 st -
i
In view of (3.1) and the above inequalities
3 M=l , < C, {II(Alx, 2, D+m)—2)ul,
m—1 ) m/2 mj—1 .
TC X 11" lulli p+C 23 N2 5 || el
ml2 m/z2 m-1 .
+ 23 IMETm g, S I,
j=1 ji=1 t=m—mj

m/2
+ 12=—1 ”gj”m-m,'.p} .
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If 0<8,<1 and |n|=8,|\|"" the right member of the above inequality does
not exceed

Coll(AG, £, D-+r)—Null,+C8, B [N,

108, B v wemite el

m—1

+E g8, 3 S el
- 37118l

< CI(A, 1, Do) =2l + 3 [n[e=mmlg
- 318l s+ €3 33 NIl

Choosing 8, sufficiently small we easily complete the proof of (i). The proof
of (ii) is similar.

Especially if ueD(4)(t)), v&€D(A4,’(t)) then we can choose g;=0, k;=0
in Lemma 3.1. Hence we obtain:

Corollary. If §,<argA=2z—0,, |\|>C}, t<[0, T], || =8,IN|"", then
AEp(A4)(2)), NEp(A}(2)) and the following inequalities hold:

(3-2) (A —A) " lsar,in = C3/IN],
(3.3) I(AE) =) s wmn =C
(3.4) 147" () —2) " llzczo,wmnr = C5 -
(3.5) (As()* = dyp™(2) -

Here and in what follows B(L?, L?), B(L?, W™?) stand for the sets of all
bounded linear operators from L?(Q) to L*(Q), W™?(Q) respectively.

Lemma 3.2. For any p<(1, oo) there exist constants C, ,, C, , such that the
following inequalities hold for any n=0,1,2, ---, argAE[6,, 2z—0,], |IN|>C},
I"II ésplxlllm, tE[O ’T]:

(3.6) [1(0/02)"(A3(8)—N) szt i = Cs,5Cop M N1,
(3.7) 11(8/88)"(A3(t)—X) lszs,wmtr < Cs,sCap" M,
(3.8) [1(8/02)"(A5" (&) —N) st wmny = Cs,4Co, s M, .

Proof. In the proof of this lemma we use the notation C to denote con-
standts depending only on m and N. Letting f be an arbitrary element of
L¥(Q), we put w(t)=(A43()—r)""f. Then
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(3.9) (A(x, t, D+7)—Nu(x, £) = f(x), x€Q
(3.10) B/(x, t, D+n)u(x, £) = 0, x€0Q, j=1,-,m2.

Differentiating both sides of (3.9), (3.10) » times with repect to ¢ we get
(A, £, D) —r)u(x, 1) = — 5 (7)4*5(, 1, D+, 1),
Bj(x, t, D+n)u®(x, £) = — z:( >B"‘ (x, t, D4n)u®(x, 7).,

where A®~® and B{*"" are differential operators obtained by differentiating n—k
times the coefficients of 4, B; with respect to ¢ and u™=(3/9¢)"u. Applying
Lemma 3.1 we get

B 3 e,

=CHIE (F) 479, 1, D+,

+ 3 vl emtel) 5 (1) BP0 (s, 1, D)l

m/2 -
+ 3311 S (5) B0, t DAl
The first term in the bracket of the right side of (3.11) does not exceed
(3.12) C 5 (3) BB M, s Bl " @)l
<CS(3) BB M, M a0l
k=0 i=0

It is easy to show that remaining terms in the bracket of the right side of (3.11)
are not larger than the right side of (3.12). Hence

NN L PRICT[

=CC; 5 (3) BB My s ZIM w0
Arguing as in [9: p. 542] we show the existence of constants C, ,, C, , such that
(@)1, I X P (@, = Cs,5Co, " Ml £,
for n=0, 1, 2, ---. Hence we have established (3.6), (3.7). The proof of (3.8)

is similar.

We choose natural numbers /, s and exponents 2=¢;<<¢,<+**<q,<g,4;="2°,



920 D.G. Park

2=1<r, <+ <7;_<r;_sy; =00 as follows (R. Beals [2]):

(1) in case m>N/2. =2 and s=1, hence 2=¢,<¢,= o0 and 2=7,<r,= o0;

(i) in case m<N/2. s>N/2m, |—s>N[2m, ¢;'—q7i1<m/N for j=1, ---,
s—1, ¢:21>m[N>q;', m—N/q, is not a non-negative integer, r;'—7rji,<m|/N
for j=1, -+, I—s—1, ri},_;>m|/N>r7l,, m—NJr,_, is not a non-negative integer;

(i) in case m=N/2. [=4, s=2, 2=¢,<q,<@y=100, 2=1,<r,<ry=00,

Adding some positive constant to A(x, ¢, D) if necessary, we may suppose in

view of Lemma 3.2 that for any non-negative integer 7, complex number AEZ
= {\: argAE[0, 22— 0,]} U {0}, complex vector & C¥ such that || <§|n|¥™
and t<[0, T

(3.13) [1(8/88)*(A3(t)—A) llsczr, . S CCIM,[ I

(3.14) [1(8/08)"(A5(#)—N) | sezs, wmty=C;Ci M,

fOfPZQn G2 * 5 G5y and

(3.15) [1(8/8)*(A5"(2)—N) lsczt, . S CCIM,[ I,

(3.16) 11(8/08Y"(A5"(5)—N) " sczo wmn < C:CIM,

for p=ry, 1,, -+, 7,_,, where C,, C, and & are some positive constants.

According to Sobolev’s imbedding theorem there exists a positive constant
v such that for j=1, -+ s

(3.17) Wma(Q)c L%+(Q) and ||u||qi+1§'>’l|”'|fnqu||u||,l,;“i
where 0<a;=(N[m)(¢;'—q;i1)<1, and for j=1, «++, [—s
(3.18) Wmri(Q)CLi+(Q) and lull,,, = vllullysillull %

where 0<<a,, ;=(N/m)(r;j'—rji)<l.

4. Estimates of the kernel of the derivatives of exp (—zA(¢)) (1)
In what follows we only consider the case (ii) of the previous section.
For complex numbers A, -+, A, €3, a complex vector = C¥ such that
(4.1) || =8 min{|n, Y7, -y [N Y7,
and t€[0, T'] we put
(4.2) S(t) = (A2(8) =) 7 (A=) 7
(4.3) T(t) = (A3(t)—Ngi)) 2o (A3(E)—N) "
In view of (3.17)
R((43(t)—n) " HT W™ Q) = Wma(Q)C L%(Q) .
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Hence, we may replace (43(t)—\;)™" in (4.2) by (47,(f)—2;)"". Continuing
this process we get

(44) S(#) = (A, (B)=Ne) ™ (Azy(8) =) ™ (A2(8) —0) 7" -
By virtue of Sobolev’s imbedding theorem we get
(4.3) R(S(2)) CR((Az,()—N) ) B V(D)

where B"~¥/1,(Q)) is the set of all functions which have bounded, continuous
derivatives of order up to [m—N/g,] in & and have derivatives of order [m—N/q,]
uniformly Holder continuous with exponent m— N/q,—[m—N/q,].

With the aid of (3.13), (3.14), (3.17) we get
(4-6)  1(3/08)"(AZ;(A)—2) 7 fllg;u,
<71(8/88)"(A3,(t)—x) " fll;7 , I(8/02)* (A7 () —nj) ™ flla7
SyCCIM, I 157 Ifly; -
Using (4.4) and (4.6) for n=0 we obtain
(*7) IS8l 2= (YC M) TT 1157
Similarly we see that

(4.8) R(T*@#) B Vn-«(Q),
NT*(O)llzea?, o = (A7, s (@)= X0) ™+ (A7, ()= Xwd) "l nca?, 2
S(vCMo)'™* TL a5,

Jj=%+1

(4.9)

Lemma 4.1 ([2]). Let S and T be bounded linear operators in L*(Q) such
that R(S)CL>(Q) and R(T*)CL=(Q). Then ST has a kernel ke L*(Q X Q)

satisfying
”k“ooé”S”B(Lz,z.“')”T*”B(Lz,z.‘”) .

In view of (4.5), (4.7), (4.8), (4.9) and Lemma 4.1
St)T(t) = (A3(2)—n) 7 -+ (A3(E)—ny) !
has a continuous kernel K, ..,,"(x, y; f) satisfying
(4.10) [ Koy (3%, 3 2)] S (vCaAy)! 1’1 Inlot .
If 5 is pure imaginary, e f € L?(Q) if and only if f =L?(Q), and hence
(A3(6) =) f = e (A () —N) e S)
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which implies
SOTEf = e (A —N) (A —N)Hef) -
Hence, if we denote the kernel of
(Ao(B) =) e+ (Ae(t) — ) ™!
by K,,,..a,(%, ¥; ), we have
(4.11) Ky (%, y5 t) = &K, 0 (%, 95 8)

if 7 is pure imaginary. As is easily seen S(¢)7T'(¢) is a holomorphic function of »
in [n| <8 min {|X\[¥", <+, |N;|¥"}, and hence so is K, ..,"(%,y;¢). Thus
(4.11) also holds for complex vector . With the aid of (4.10), (4.11) we get
when 7 is real

I3
| Koy (%5 75 8) | S (YCsM) e==" ,I=Il Injle .

Minimizing the right side of this inequality with respect to 7 we obtain

(4.12) |K,, (x5 1)]
7
é('YCsMo)' exp [—6 min{| A, |7, -+, | N | Y™} lx—y|] ;-[Iﬂlleaj_l .

Next, we estimate the derivatives of K, ..,(%,y;?) in £. For that purpose
we first estimate the kernel of

(4.13) (8/08)*(S()T(t)) = .,2 (Z)(6/6t)”"‘S(t)(6/8t)"T(t) .
Using (4.4), (4.6),
1(8/08)"~*S(2)llsc2, 1
=il 3 =B e —n)

kptertkg=nk Ry leco R
+++(0/0t)3(AZ,(t) =) Ml see2, =
—k)! 2 . -
= h1+-..+2h,=n—k E::"—]ZJ;E[I I'(a/at)kj(Azi(t)_xj) IHB(”j’L“ﬂ)
— k! _s
= by M II 'YCaCA.k"Mij\jla"_l

kytoethg=n—k kl!"‘ks!j=1

—oeyert s B

kx"’““"ks:"_kkl! ...ks!

Mlq"'Mk, gllhila’;-l .
Noting

oee !
1 s°



REGULARITY IN TIME OF THE SOLUTION 923

which can be easily shown by induction, we get
(4.14) l1(8/02)**S(®)ll 22, 1>
SOCYATCI ML TNl S

SOCYHCO)™ My TT 10197
Similarly
(4.15) 11(8/02) T*(t)llz2, 1

SO (=M 5], Inylor

With the aid of (4.10), (4.13), (4.14), (4.15) we get
[(8/88)"K,,,...," (%, 5 B)]
3 !
= 3 (3) () di=ClHi—s) M, M TT [0 157

S (G CE 3 H 1M, TT I
<(YC)'di=*Ci(n+1) (max {s, I—s})"M,, TI |n;]%57!
<CCiM, 1T I\ o7,

where Cy=(vC;)'d{™", Cg=eC,max{s, I—s}, where we used n+1<e". By the
argument through which we derived (4.12) we obtain
(4.16) [(8/0t)"K,,,..p (%, ¥5 2)|
< CiCEM, exp [—8 min{ |2 | ¥7, ) |2 1%} |x—y |1 TT 2yl
j=1

1 1
=CsCiM, 35 exp (=81 M| V" lx—yp]) TLIN |77
= j=

5. Estimates of the kernel of the derivatives of exp (—zA(%)) (2)

We denote the kernel of exp (—7A4(t)) by G(x,y, ;) which is also the
kernel of exp (—74,(2)), 1<p<<oo.
Let T be a smooth contour running in %— {0} from cce™# to ocoe’®, Then
for |arg 7| <z[2—6,, t<[0, T]
1

exp (—IrAy(t) = {2; Sre""(Az(t)——x)“dx}l

- (E::r)l Sp Sre_}f—m_A’T(Az(t)_‘xl)_l"’(Az(t)—‘xl)_ldxr"dhz .
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Hence
(5.1) G(x, 3, I7; 1)
1 ! — A T == A, T .
= <2_’;t_i) Sr b Sp e M N le,...,)‘l(x, y, t)d)»l'"d?\,, .

For any fixed x, y, 7, let T, , , be the contour defined by

T,,.={\: largA|=6,, [M|=a} Ui n=ae®, 6,<0=<2z—0}
where
(52)  a=&(x—yl/lr))=D =ep[lz], p=|x—y|m@D[z[VenD

and € is a positive constant which will be fixed later. If |argA|=6, and hence
A=reti%, y>0, then

Reaxr=ReARer—ImAIm~
= 7 Re 7(cos ,F sin y(Im 7/Re 7))
= r Re 7(cos §,—sin (| Im | [Re 7)) .

Thus if 7 is in the region

Im 7| cos 4
5.3 —I S(1—-&)=—=>"
( ) Rer _( 0)sin 6,

for some &, 0<<&;<<1, then
(5.4) Re Ar=r Re 7+& cos Gy=c,7| 7|

where ¢, is some positive constant depending only on &, 6,. Differentiating
both sides of (5.1) # times with respect to ¢, deforming the contour I"to T, , .
and using (4.16) we get

(5.5)  1(9/08)"G(x, y, I3 1)|
<(1/2z) L Sr M7= N(B]02) Ky (8 33 D)+ |

é(l/zn)l S e—Re )\l‘r—'"—Ra AT

I‘.4:.,7,')' ) Sl‘,.y',r
4 ]
X C;CEM, 35 exp (=8|l ¥ w—y ) IL 2|47 | dng -+
!
= (1/275)105ch” E pr']',r cee SFZ'LT e—Re Alf—--.—ReA!'r

!
xexp (=8N |e—p ) IL X147 @Ay ] e [d ]
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The summand with 2=1 in the last member of (5.5) is

(5.6) Ji, €™ axp (=8Il ls—y ) [na] 57 |

x L[, emrriylertian).

j=2 px,y,'r
If we write
(57) [ emerexp (—alnlm =yl nal s dn)
2,5,T
={ 4|  =rm,

Ial=a I1>a
then
(5.8) I1=2za"1exp (a|r| —8a¥™|x—y]|)

= 2m(&p/|T|)"r exp (Ep—5€¥"p)
= Gylv| ™ exp (26p—3EV™p)

where C, is a positive constant such that
226'iSCpe”  for ¢>0, j=1,.,1,
and in view of (5.4)

112 s” exp (—er| 7| —8rV™|x—y|)rar~dr .
Suppose that x==y. By the change of the variable r=ao we get
(3.9) II = 2a% S“ o171 exp (—c,Epo—OEV"pa/™)da
1
< 2t exp (—3p¥") [ 0"t exp (—apo)do
1

T(a) _ 2T(a)
(c€p)r  (alrh™

It is easy to show that (5.9) holds also in case x=y. Combining (5.7), (5.8),
(5.9) we get

(5.10) Sr e"ReM" exp (—8|7\,1|1/"'|x—yl)]7\,1|‘1'1]d7\,1|
=< Gg|7| M1 exp (26p—3€'/mp) ,

exp (—O8p&Vm) .

— 2(ep/|7])" exp (—8peim)

where Cy=C,+2 max{I'(a;)c7%; j=1, -+, I}.
For j=2, -+, 1

—“ReXA;T |y . |6;-1 =
(5.11) pr"_f € 1 dnjl Slle=a + jl)\jl 2a
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L]
é eai'rlaai-l Zﬂa-f—zj. e-clrl‘rlraj—ldr
a

= 2n(ep]|71)"se"+20(a;) (e 7)™
= Gl7| 7% -2 (aj)er % || 4= Cyl 7| ~%i€*",

where Cy=C,- max {2I(a;)cr%; j=1, -+, I}.
Combining (5.10) and (5.11), and noting E a;=N|m, we see that (5.6) is
dominated by

Cpol 7| ~Nm exp {(216—88"™)p} .

Other summands in the last member of (5.5) is analogously estimated, and so
we get

[(0/0t)"G(x, y, I3 t)| =(27)'ICsC1 ,CEM, | 7| ~¥/™ exp {(216—8EY™)p} .

Choosing & so small that ¢,=8&¥"—2I€>0, and replacing = by 7/l we obtain

(5:12)  10/00G(x, 3, 75 )] SCuCEM, || ™ exp (—, 2217000
| T I 1/(m=-1)

for 7 in the region (5.3), where C;,=(27z)~'I"*N/mC,C,,.
6. Estimates of the derivatives of the kernel of (A(f)—A)™!
If we denote the kernel of (4A(t)—\)™* by K,(, y; £), then
(6.1) Ky(x, y; £) = S" & G(x, y, 7; t)dr .
[
First let A be in the region

(6.2) {A:Rer>0,ImAr>0, Rer/ImA=(1—¢§))tand;} U {A: ReA=<0, ImA>0}

where &, and 0, are arbitrary fixed constants such that 0<<8,<<z/2—6,, 0<&,<1.
Then the integral path in the right side of (6.1) may be altered to the ray
T=re"%1, 0<r<<oo, since ReAr=—cy|\| for some positive constant ¢, on the
ray. In view of (5.12)

(6.3)  1(0/0t)"Ky(, y; t)I=ISe”(3/3t)"G(x, ¥, 7; H)dr|

<C,CiM, Sm exp (—c | M| )r V™ exp (—c, | x—y | ™Dy~ Y m=D)gy |
0
First we consider the case N>m. If x=k y, by the change of variable r=|x—y|"s

S” exp (—csr | M| )r~V/m exp (—c,|x—y | M/~ Vy= V=D gy
0

=|x—y|m¥ S: sTN/m exp (— s V™D —cg [N ] |x—y | "s)ds .
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Putting A=(|A|Y"|x—y|)'"™ we see that the right side of the above equality
does not exceed

P
Je—yl=on 7 smim exp (—cimen-m)ds
0
+|x—y|m¥ S‘” §—N/m exp (__csh-m/(m—l)s)ds = [+II.
k

If |[A|Y"|x—y]| <1, then

h ©0
S s~ Nim exp (_sz—ll(m-l))dsé S §~N/m exp (—czs"/""‘l))ds
0 0
= Cp=Ce-exp (— |7\|V"‘|x—y|) .
Note that Cj,<<oo since N/m>1. If |\|Y"|x—y|=1, then letting C,, be a
constant such that o™~ D¥/m < C\¢%°/2 for any o->0 and noting that <1
h h
j sTN/m exp (—eps™VDYds < C, S exp (—27 ¢, s Vm=D)ds
0 0

< Cush exp (=27 h Vm=D) < Cyy exp (— 271 h~Ym=D)
= Cuexp (—27% | N | Y™ |x—y]).
Thus

(6.4) I<Cylxe—y|™ ¥ exp (—27 %, | M| Y™ | x—y])
where C,,=max(Cye, Ci;). Next,
S“ s™NIm exp (—c ™™™ V5)ds < exp (—ch VD) r s~ NImgg
h

= (m/(N_m))h-(N-m)/m exp (——L‘ah_ll(”'_l))
g ClS exp (_Z—ICah—l/(’”_l))

where Cj; is a constant such that

(m|(N—m))gm-DWN-minL C exp (27%,0) forany o>0.
Hence
(6.5) IS Cplx—31"N exp (—276 | M| ¥ x—y]) .

Combining (6.3), (6.4), (6.5) we obtain
(6.6)  [(8/0t)"Ky(x, y; £)| SCiCoM, | x—p "~ exp (—ci M| ¥"|x—y]),

in case N>m, where Cj;=C,+C;s, ¢,=min(c, ¢;)/2.
Next, we consider the case N=m. If x=y, by the change of variable
r=|x—y|"s

(6.7) s: rlexp (—c|\|) exp (—e|x—y| /==Y m-D)gy
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—— S“‘ s! exp (—Csk_'”/(m_l)-f—czs_wm_l))ds
0

where A=(|A|Y™|x—y|)*~™ as before.

If |[A|Y"|x—y|<1, then putting b=(|A]||x—y|™)'=k"""D>1 we see
that the right side of (6.7) does not exceed

(6.8) S s7hexp (— s VD)5 S s7hexp (—cb7s)ds
=< S s exp (—ps VD) ds+ S ~ids -+ S” s7lexp (—c¢y8)ds
0 1
= Cy+ logb = Cyy+mlog (In|V"|x—y|)™

where Cj, is a constant defined by the above relation. If AV~ =[p\|Y"|x—y|2=1,
then the right side of (6.7) does not exceed

h -]
(69) So s7hexp (—es VO V)ds + S;. s7Lexp (— e/ m=Vs ¢, s~ Ym0
h
< exp (—27eh ) {57t exp (27~ D)ds

[}

1
-+ exp (—Z'ICSh—ll(m-l)) {S s1 exp (__czs—l/(m—l)) ds

h

+ {757 exp (—27a9)dst S Cexp (—ailn ¥l x—y1),

1
where Cj = S s7hexp (—2 s VD) ds Sl s7lexp (— e Ve D)ds
0 0
Sm s7lexp (—27%,s)ds. Inview of (6.8), (6.9) the right side of (6.7) is not greater
1

than
Cyoexp (—e| A" | x—y|) {1+ log* (|n Y™ |x—y )7},

where Cjy;=max(Cy, e, me, Cy5) and log*o=logeo if =1, logte=0 if o<1.
Thus in case N=m

(6.10) | (8/0t)"Ky(x, y; t)|
< CuCyCiM, exp (—cgI M| Y™ | x—y ) {1+ log* (IN|Y™|x—y|)"}.

Finally we consider the case N<<m. Changing the variable by r=s/|\|
and putting 2= |\ |Y"|x—y]|

g exp(—cgr | A | )r~¥/m exp (—c, | x—y | ™=y~ m=D)gy
0

=|a|¥/m-1 S” sNIM exp (—cy5) exp (—cm/m=Ds~Vm=D) s
0

~ (F
SIAY¥mYexp (—ch) | s™V/™ exp (—c,)ds
0 p
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+ M| ¥t exp (—27 ¢ ) S; §TN/m exp (—cy8(2)ds

< céV/m—lp(l_N/m) In] N/m-1 exp (—czﬁ)
+(es/2)Vm =D (1—Njm) |\ | ¥n= exp (—27csh)
= CylM| ¥ L exp (—cg N[V | x—y]) ,

where Cy= {cd/™14-(c,/2)¥™ '} T(1—N/m). Thus in case N<m
(6.11) [(9/08)"Ky(%, y; t)| < CllouCEM, M| ¥ exp (—ey| M| YV™|x—y]) .
Summing up we see that the following estimate holds

(6.12) | (8/02)"Ky(x, y; )]

|x—y|m=N if N>m
= CuCiM, exp (—c MY |x—y|)x { 14 log* (|M Y™ |x—y|)! if N=m
[ A ] ¥/m=1 if N<m

for any #=0,1,2, -, (x,y)€0x8Q, t[0, T], » in the region (6.2) where
Cy=max(Cy, C,Cyq, C;Cy). It is clear that the same estimate holds for A in
the region

A Rea>0, ImA<<0, Rer/|ImA|=(1—&)tan b} U {A: ReA=<0, ImA<<0}.
It follows readily from (6.12) that
(6.13) 11(8/02)"(A(2)—N) Ml s, = CCoM,/ M|
for any n=0, 1, 2, -+, t€[0, T'], and \ in the region
(6.14) {: ReA>0, Rer/|ImA|=(1—&) tan 6;} U {\: Re A=0}.

Due to the closedness of = and the arbitrariness of &&(0, 1), 8, (0, z/2—0,)
we see that there exist constants K,, K such that (2.13) holds for any =0, 1,
2, -+, AEZ, t€[0, T], and the proof of the proposition and hence that of the
main theorem is complete.
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