

Title	Mobile Robot Navigation using Rough Maps
Author(s)	尹, 柱燮
Citation	大阪大学, 2009, 博士論文
Version Type	
URL	https://hdl.handle.net/11094/49516
rights	
Note	著者からインターネット公開の許諾が得られていないため、論文の要旨のみを公開しています。全文のご利用をご希望の場合は、大阪大学の博士論文についてをご参照ください。

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

氏 名	尹 柱	ソウブ
博士の専攻分野の名称	博士(工学)	
学 位 記 番 号	第 22586 号	
学 位 授 与 年 月 日	平成 21 年 2 月 13 日	
学 位 授 与 の 要 件	学位規則第 4 条第 1 項該当	
	工学研究科電子制御機械工学専攻	
学 位 論 文 名	Mobile Robot Navigation using Rough Maps	
	(大まかな地図に基づいた移動ロボットのナビゲーションに関する研究)	
論 文 審 査 委 員	(主査) 教 授 金子 真	
	(副査) 教 授 浅田 稔 准教授 東森 充	

論文内容の要旨

For robots and even for men, to be able to use an internal representation of the spatial layout of their environment to localize themselves is a very complex task. In human-to-human communication, a rough map is often sketched to show a desired path. The rough map is an inaccurate map with large uncertainties in the existence, the dimension, the position, and the shape of objects so that it can be built easily. In this thesis, we describe a mobile robot navigation using rough maps that can be used to guide a mobile robot along a specified path in its unfamiliar place. Since rough maps often suffer from various and large uncertainties of landmarks, we discuss what kinds of uncertainties in the rough maps would mainly have effects on navigating a robot. The effects of such uncertainties on robot navigation are analyzed in simulated environments. A quantitative navigability measure of rough maps is then developed based on the analysis. Experimental results are also presented for validating the navigability measure.

Most robotics applications require autonomous mobile robot navigation methods that are safe, robust and inexpensive. This raises numerous issues of recognition, classification and motion control that must all be solved in an integrated manner. In this dissertation, therefore, we describe a novel method of mobile robot localization based on the rough map using stereo vision. It uses multiple visual features to detect the buildings in the robot's field of view. The robot fuses odometry and vision information using extended Kalman filters to update the robot pose and the associated uncertainty based on the recognition of buildings in the map. We use multi-hypothesis Kalman filter to generate and track robot pose hypotheses. Experimental results show the feasibility of our localization method in outdoor environments.

論文審査の結果の要旨

本論文では、正確に記載されていない地図でも移動ロボットが目的地まで正確に到達できるロバストな位置推定手法について論じている。

1章では、ロボットが持つセンサや地図には様々な不確実性が含まれているため、その不確実性に対処できるロバスト

