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Introduction

To study the question of which finite groups can act freely on a sphere,
J. Milnor proved in [5] that if M is a mod 2 homology sphere with a free involu-
tion 71, then for any continuous map/:M->M of odd degree there exists a
point x^M such that fT(x)=Tf(x). In the present paper we generalize this
theorem, and apply it to the problem of group action on spheres.

Let M be a closed manifold with a free involution T. Then a non-
degenerate symplectic pairing o;H*(M;Z2)χH*(M',Z2)-*Z2 can be defined
by a°β=<a U Γ*/8, [M]>, where [M] is the mod 2 fundamental class of M.
Therefore there exists a symplectic basis {μ ,̂ •••, μr, μ/> "*> A6/} f°r tne vector
space H*(M;Z2). Let N be also a closed manifold with a free involution Γ,
and/:Λf->M be a continuous map. Then it is seen that

is independent of the choice of {/*„•••,/*„ A*/> "•>/*/}• Now the Milnor
theorem is generalized as follows: If %(/)^0 then there exists a point y^.N such
that Tf(y)=fT(y).

Λ

This theorem is paraphrased that if the equivarίant Lefschetz number %(/)
is not zero then there exists an equίvariant point y^N, and may be regarded as
an analogue of the classical Lefschetz fixed point theorem. We shall prove it
after the cohomological proof of the Lefschetz fixed point theorem (see e.g. [9]).
As is well known, the Lefschetz theorem asserts that the fixed point index is
equal to the Lefschetz number. Correspondingly, we define the equivariant
point index 7(/)eZ2 which has a property that 7(/)^0 implies the existence of
equivariant points of/, and we prove that the equivariant point index /(/) is

Λ

equal to the equivariant Lefschetz number %(/).
Our theorem is applicable well for the problem of group action on mani-

folds as the Lefschetz fixed point theorem is. The theorem is effective to show
the non-existence of free action of dihedral group on a given manifold.
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Let Q(8n, k, I) denote the group with generators Xy Y, A and relations

X2 = (XY)2 = Y2n , Akl = 1 ,

XAX-1 = Ar, YA Y'1 = A'1,

where 8n, k, / are pariwise relatively prime positive integers, r= — 1 (mod k) and

r= + l (mod /). Milnor asks in [5] if Q(8n, k, I) can act freely on a 3-sphere.
Recently, R. Lee introduced a group homomorphism %1/2 from the bordism

group yi2m+l(G) to a certain Grothendieck group IΪGL eυ(G) for any finite group
G, and applied it to prove that if n is even and />! then Q(8n, ky ϊ) can not act

freely on any mod 2 homology sphere whose dimension is 3 mod 8 (see [4]).

We shall give another proof of this result as an application of our theorem.

Milnor asks also if the group P"(48r) (see §6) can act freely on a 3-sphere,

and R. Lee answers that P"(48r) (O(48, k, /) in his notation) can not act

freely on any mod 2 homology sphere whose dimension is 3 mod 8. We also

prove this fact in the case when r is not a power of 3, but our method gives

no information when r is a power of 3. It seems to me that the proof of Corol-
lary 4.17 in [4] is incorrect and his method also gives no information for

P"(48 3*) (A^l).
Throughout this paper, the homology and cohomology with coefficients in

Z2 are to be understood. For brevity, manifolds and actions on them are

assumed to be differentiable.

1. The equivariant Lefschetz class

Let M be a closed w-dimensional manifold with an involution T. We

regard the product M2=MxM as a manifold with involution by defining

T(xl9 X2)=(x2, #ι). Then we have an equivariant imbedding Δ:M—>M2 given

by Δ(x)=(xy Tx). We shall identify M with its image under Δ. Let v denote

the normal bundle of the imbedding Δ. As usual we shall regard the total space

of v as an equivariant tubular neighborhood U of M in M2. Then v\ U-*M is
a vector bundle with involution.

Let N be a paracompact space with a free involution T. Consider NxM
T

and NxM2, the orbit spaces under the diagonal action of T on NxM and
T

NX M2. Then we have the vector bundle VN= lXv:NxU-*NxM. Regard
T T T

the Thorn class t(vN)^Hm(Nx(U9 U—M)) as an element of Hm(Nx
T T

(M2, M2—M)) by the excision, and define

Δ

to be the restriction of t(vN).
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Obviously we have

(1.1) // h:N-*N' is an equivaήant map, then (hχl)*:Hm(N'xM2)-*
T T

Hm(NxM2) sends ΔV to ΔN.
T

For a closed manifold W, we denote by [W] the mod 2 fundamental homology
class of W. As is easily seen we have

(1.2) If N is a closed m-dίmensional manifold, then the Poincare duality
takes ΔN to (1 xA)*|WxM], i.e.

T

(1 X Δ)*[ΛΓχ M] =ΔN Π [NX M2] ,
T T T

where (1 X Δ)* : Ha+m(Nx M] -* Hn+m(Nx M2).
T T T

Given a continuous map/:Λf-»M, we define an equivariant map/:JV->
NxM2 by f(y)=(y,f(y),fT(y)). Denote by Nτ the orbit space of N under
the action Γ. We have the homomorphism f$:H*(NxM2)-»H*(NT). We

call the element

the equivariant Lefschetz class off.
If N is a closed manifold and dim M =dim N, an integer mod 2 given by

the Kronecker product

is called the equivariant point index off.

(1.3) Proposition. Let N be a closed manifold, and letf:N-^M be a con-
tinuous map. If the equivariant Lefschetz class /*(Δ^) is not zero, the covering
dimension of

is at least n—m.

Proof. Denote by A(f)τ the image of A(f) under the projection π: N->NT.
Then we have the following commutative diagram:

Hm(Nx(M2, M2-M))-^ Hm(NxM2)
!*T

Hm(NT, Nτ-A(f)τ) ^ Hm(NT),

where j are the inclusions. Therefore we havey*/fί(z/JV)=/f ΔΛrΦθ. In par-
ticular Hm(NT, Nτ-A(f)τ)*0. Since this shows Hm(NT, Nτ-A(f)τ)*Q, it
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V

follows that the Cech cohomology group Hn~m(A(f)T) is not zero (see [8]).
Therefore dim A(f)τ^n—my and hence we have dim

(1.4) Corollary. Let N be a closed manifold, and let f: N-+M be a con-
tinuous map. If /(/) Φ 0 there exists y<=N such that fT(y) = Tf(y).

2. Preliminaries

Regard the standard n-sphere Sn as a space with involution by the antipodal
map, where n=l, 2, •••, <χ>. The corresponding Δ^ will be denoted by
Δrte //"*(£" XM2). Since for any paracompact space N with involution there

exists an equivariant map of N to S00, the element Δ^ is universal among {Δ^} .
In the next section we shall consider Δ^ in the case when the involution T on M
is free. For this purpose, we shall recall in this section some facts from [6]

and [7].
We have the following theorem due to N. Steenrod (see §3 of [6]).

(2.1) H*(S~xM2) is naturally isomorphic with H*(Zt;H*(M)™), the
T

homology group of the group Z2 with coefficients in H*(My2:>=H*(M)®H*(M) on
which Z2 acts by permutation of factors. Similarly JF?*(*S°° X M2) is naturally iso-

T
morphic with H*(Z2',H*(My2^). These isomorphisms preserve the cup product and
the cap product.

We shall regard these isomorphisms as the identifications.
Let W be a Z2-free acyclic complex which has one cell e{ and its transform

Tef in each dimension i^>0 and has the boundary 9 given by d(e2i+l) = e2i— Te2iy

9(e2i+2)=e2£+1+ Te2i+1. For *, δe#*(M), let Pf(a), P(a, b)€=H*(Z
H*(S°°xM2) denote the homology classes represented by the cycles

T

e0®a®b<=W®H*(M)(2> respectively. Similarly, for α, /3<Ξ#*(M), let P{(a\
Z2

P(a, /S)eίί*(Z2;fl
r*(M)c2))-:ίί*(S00xM2) denote the cohomology classes rep-

T

resented by the cocylces %(α), u(a, β)^HomZ2(W, H*(My2)) respectively,
where <%(α), ej> = a®a, <w, (α), βy> = 0 (i=t= j), <u(ay β), eoy = a

As is easily seen we have

(2.2) If {alf a2y •••, as] is a basis for the vector space H*(M)y then
, ak);i^>Q,j<k} is a basis for the vector space H*(S°°xM2). Similarly, if

T

a2, •••, <xs} is a basis for the vector space H*(M}y then {Pi(ctj), P(<Xj, a^)\
is a basis for the vector space H*(S°°xM2).

Since a diagnoal approximation d$: W-> W® W is given by
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Γ./2]

it follows that

We see

(2.4) For the homomorphism (ίX 1)*: H*(Sn X M2) ->H*(S°° X M2) induced
T T T

by the inclusion, we have

Let X be a Hausdorff space with a free involution 71. Consider the

induced chain map Ti:S(X)-*S(X)9 π^:S(X)->S(Xτ) of singular complexes,
where π:X-*Xτ is the projection. Then a chain map φ: S(X τ) -> S(X) can
be defined by

, and we have 'transfer homomorphisms'

, φ* : H*(X)-*H*(XT) .

These are obviously functorial with respect to equivariant maps.
We have the following (2.5) and (2.6) (see §2 of [7]).

(2.5) For any a^H*(XT), the diagram

H*(XT) -2l> H*(XT)

is commutative.

(2.6) // X is a closed manifold, then φ*[Xτ]=[X].

The following is easily seen.

(2.7) For φ* : H*(S°° X M2) -> Jf/*(5°° X M2), we have

3. Expression of Δ^

Throughout this section, we assume that the involution T on M is free.
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We shall consider the element Δ00GΞ#m(S°°xM2).

(3.1) Lemma. For n^l we have

Proof. In the commutative diagram

(1XΔ)*

Ha+m(S»xM) -̂ ->

, (lχΔ)φ

Hn+m(S"xM) -?— » Hn+m(S~xM2),
T T

we have Hn+m(S°°xM)^Hn+m(MT)=0 («;>!), for the involution T on M is

free. Therefore by (2.4), (1.1) and (1.2) we see

ΔM Π P«([M]) = Δ. Π (« X 1)*[5" X M2]

= (ί x !)»((» x 1)*Δ. Π [5" x M2])

(3.2) Proposition. Le£ {α^ α2, •• ,α
*,=«, Π [M], ί=l, 2, -.., ί.

α basis for the vector space

), let

e Z2) .

/or each /, Λ,

where φ* : /ί *(S°° X M2) -̂  ff *(S°° X M2) w ̂  transfer homomorphism.
T

Proof. In virtue of (2.2) we can put

= ΣΛyP,(αy)+Σ h>'*P(a»

j, hJk<=Z2). Then it follows from (3.1) and (2.3) that
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0 = Δ.nPM([M]) =
i=-0 j=-l

for any «2; 1. Therefore by (2.2) it holds £,v=0 for any t,y, and hence by (2.7)

/<*

By (2.5) and (2.6) the diagram

(1XΔ)*
H*(S"xM) -̂ — » ^(^xM2) <— — H*(S"χM2)

1**
H*(S"xM2)

is commutative. Therefore by (2.6) and (1.2) we have

(lχΔ)*[5"xM]

= (lχΔ)*φ*[5"xAf] = φ*(lχΔ)*[5"xΛί]

= φ*(ΔB Π [5" x M2]) = ^*(ΔΛ) n [5" x M2] .
Γ

Since the diagram

(*Xl)*
H*(S°°χM2) -^—> H*(S"xM2)

T \ T

(ίxl)* Γ*

is commutative, we have

(lχΔ)*[S"xM]

= (ί x !)***( Σ Ay*Φ*(l X αy X «*)) Π [5" X M2]

= Σ M*'X !)*(! X αy X «*+ 1 X α* x «y) Π [5" X M2]
/<*

= Σ M1 X «y x «*+ 1 X «* X «y) Π ([5*] X [M] x [M])
/<*

On the other hand, by the assumption we have

= [S"]x Σ
y»*
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Thus we see that £#=0, Sjk=ekj-=hjk (j<k) and Δ00= Σ £/*£*(!

This completes the proof.
Define a bilinear form

by

By Poincarό duality this is non-singular. We have also

(3.3) Proposition. The bilinear form o is symplectic^ i.e. a°a=Q for any

Proof. Note first that o is symmetric. In fact,

T*α U/3),

U £,

Therefore we have

(a+β)o(a+β) =

Thus it suffices to prove that α°tf— 0 for each element a of a basis for H*(M).
To do this, take the basis {#?, ..., 0*} dual to a basis {#„ •••, βj for H*(M).
Then it follows from (3.2) that

= 0.

REMARK. (3.3) is known by G. Bredon (see Corollary 1.11 of [2]).

Let V be a finite dimensional vector space over Z2, on which a non-
singular symplectic bilinear form

is given. Such V is called a non-singular symplectic vector space over Z2.
It is known that for such V we can take a symplectic basis, i.e. a basis
{#!, •••, vr9 vS, ••-, #/} such that

u,-0^ — 0, V/OV/ = 0,
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As is shown above, if M is a closed manifold with a free involution, then
H*(M) is a non-singular symplectic vector space over Z2 with respect to the
bilinear form o defined above.

(3.4) Theorem. Let {μly •••, μr, μ,/, •••, //,/} be a symplectic basis for

AΓ*(M), then we have

where φ*:#%S~χM2)^/f*(S°°xM2) is the transfer homomorphίsm.
T

Proof. Put a~μiΓ\ [M], a/=μ/Γί[M] (ί=l, -, r). Thenfo, -, 0r, Λ/,
•••, a/} is a basis for H*(M). We have

= </*y U

and similarly <Γ* ,̂., αy/>=Sίy, <Γ*/^t , 0/>=0, <Γ*^/, αy

/>=0. Therefore if
{αf, •••,«?, «ί*, •••, «ί*} denote the basis dual to {αx, •• ,^r, α/, •• ,^/}, we have

a*=T*μ/, a/*=T*μi.

Consequently it follows that

and similarly

<α

This shows that

Δ*[M] = Σ «ί X «/+«/ X Λ«
|=-1

Thus, by (3.2) we get the desired result.

4. The number %(̂ )

Let V and ίF be non-singular symplectic vector spaces over Z2, and
i/r: F-> IF be a linear map of vector spaces. Then we define a number

by making use of a symplectic basis {2 ,̂ •••, vr, ^/, •••, ̂ /} for V.
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If {w19 ••-,wt> ™ι> •"> ™t'} is a symplectic basis for W and if

•ψ fay) — Σ <*ijWi+ Σ **y«>/ ,

then it can be easily seen that

%(ψ.) = trace

for the matrices A=(aiJ)9 •••, where ̂  denotes the transposed matrix of A.
Λ

(4.1) Lemma %(i|r) is independent of the choice of symplectic bases for V.

Proof. Let {uly •••, ur, w/, •••,«/} be another symplectic basis for F, and
put

We shall show

trace (^Ό'+'JS'C7) - trace (ΆD+'BC) .

Let

My = Σίo^. H- Σ r^/ ,

My' = Σ ?y»i+ Σ ί«7»/ -

Then the symplectic conditions imply

'PR+ (RP = 0 , 'QS+ <SQ = 0,

'PS+'RQ = E ,

where E is the identity matrix. This shows that

/*p 'R
\*Q 'S (Q

Therefore we have

( * ) S'R+R'S = o, ρ'p+p'ρ = o,
5'P+Λ'ρ = E.

On the other hand, since

/A', B'\ = (A B\fP Q\

\σ, D') (c D)\R s),

we have
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trace ('̂ 'D'+'fi'C")

= trace (t(AP+BR)(CQ+DS)+t(AQ+BS)(CP+DR))

= trace ('PΆCQ+'PΆDS+'R'BCQ+'R'BDS

+ <QΆ CP+ *QtADR+tStBCP+ 'S'BDR)

= trace (Q'PΆC+S'PΆD+Q'R'BC+S'R'BD

+P'QΆC+RtQtAD+PtStBC+RtStBD) .

By (*) this is equal to trace (^β+'BC), and the proof is complete.

The following is obvious.

(4.2) Lemma. Let V be a non-singular symplectic vector space over Z2.

Then dim V is even, and for the identity map id: V-+V we have

X(id) = — dim V mod 2 .
v ' 2

5. Main theorem

We assume that N is a closed manifold and the involution on M is free,
and consider the element AN^Hm(NxM2). Since there exists an equivariant

T

map h:N-+S°°, by (1.1) and (3.4) we have immediately

(5.1) Lemma. For any symplectic basis {μ19 ••-, μr, μ/, ••-, μ/} for

H*(M)> it

where Φ*:H*(NxM2)-+H*(NxM2) is the transfer homomorphism.
T

Let/:7V-^M be a continuous map. Then f*:H*(M)-+H*(N) is a linear
map of non-singular symplectic vector spaces over Z2, and hence we have the

number %(/*) which will be denoted by %(/). We call %(/) the equivariant
Lefschetz number of/:

£(/) = Σ </ V,- u τ*f w, [N]>

Analogously to the Lefschetz fixed point theorem which asserts that the fixed
point index coincides with the Lefschetz number, we have

(5.2) Theorem. If dim M=dίm N, then the equivariant point index /(/)

coincides with the equivariant Lefschetz number %(/).

Proof. Consider an equivariant map k:N-*NxN2 given by k(y)=
(y, y, T(y)). Since the diagram
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/*
Hm(NxM2) -̂ -> Hm(NT)

'Vox/1)* A
Hm(NxN2)

is commutative, it follows from (5.1) that

Let d:N-*N3 be the diagonal map, then the diagram

H*(N3)

(1X1XΓ)*X

JΦ* k*
H*(NxN2) — !-

is commutative. Consequently we have

X 1 X

and hence

</*(Δw), [ΛΓT]> = Σ <f*μ, U
i=-l

= Σ</V, u τ*f*μt', [N]y
i—l

This completes the proof.
Now the following main theorem is a consequence of (1.3) and (5.2).

(5.3) Main theorem. Let M and N be closed manifolds on each of which

a free involution T is given. Letf :N-*Mbea continuous map such that %(/) ̂  0.
Then there exists a point y^N such that fT(y}=Tf(y).

For a closed manifold M such that the dimension of the vector space H*(M)
is even, an integer mod 2 given by



CONTINUOUS MAPS OF MANIFOLDS WITH INVOLUTION I 141

X(M) = 1 dim H*(M) mod 2

is called the semicharacteristic of M.
By (5.2) we have

(5.4) Corollary. Let T, T' be free involutions on a closed manifold M with

%(M)^0. Let f: M->M be a continuous map of degree odd such that f*°T*
= T*of*: H*(M)->H*(M). Then there exists a point x<=M such that fT'(x)=

Tf(x). In particular, if T*=T*': H(M)-*H*(M) then T and T' have a coinci-
dence.

We have also the following corollary of (5.3).

(5.5) Corollary. Let M be a closed manifold with a free involution Γ, and

assume %(M)^0 mod 2. Then, for a continuous map f:M-*M such that
f*:H*(M)-*H*(M) is the identity, there exists a point x^M such that fT(x)=
Tf(x).

REMARK. If we take in (5.5) a mod 2 homology sphere as M, we get
Theorem 1 in Milnor [5].

6. Applications

(6.1) Theorem. Let M be a closed manifold such that dimH*(M) =
2 mod 4, and G be a group acting freely on M. Then

i) G can have at most one element T of order 2 such that T* : H*(M) ->
H*(M) is a given isomosphism.

ii) If T<=G is an element of order 2 such that T*:H*(M)-*H*(M) is the
identity, T lies in the center of G.

hi) IfT<=Gisan element of order 2, T lies in the centralizer of G0= {S e G;

Proof. Let Γ, Γx, S<Ξ G, and let T, Γx have order 2. It follows from (5.4)
that if T*=T'* then Γ(Λ?I)=ΪI/(Λ?I) for some a^e M, and that if T*=T^=id then
ST(x2)=TS(x2) for some x2£ΞM. It follows from (5.5) that if S<=G0 then ST(xz)
= TS(x3) for some x3^M. Since G acts freely on M, we have the desired
results.

Let D(2l) denote the dihedral group with presentation (X, Y;X2=(XY)2

= Yl=l).

(6.2) Theorem. Let M be a closed manifold on which D(2l) acts freely.

Assume that %(M)^0 and I is an odd>\. Then the representation of D(2l) on
H*(M) given by sending S<EΞD(2l) to S*:H*(M)->H*(M) is faithful.

Proof. Any element of D(2l) has a form X*Y*(€=Q, 1, 0^'</). We shall
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show that JΓψφid and (X*Y%±id (£=Q, 1, l^i

i) Assume X*='ιd. Then we have ^y=yj£ by ii) of (6.1). Since
X= YXYy this implies Y2=l. Since the order of Y is /, this is a contradiction.
Thus ̂ Φ id.

ii) Assume (X*Y%=id with £=0, 1, l^i<l. Then we have X*+lYf=
X* YΉ, i.e. XY*= Y*X by iii) of (6.1). This implies Y2i= 1 which shows ί=0.

Thus (X*Y%±id for 6=0, 1 and l^ί

Consider the group 0(8«, &, /) stated in Introduction.

(6.3) Theorem. If n is even and />!, the group Q(8n, k, I) can not act
freely on any mod 2 homology sphere whose dimension is 3 mod 8.

Proof. Put Ά=Ak, then we have

x2 = (χγ)2 = y2*, A1 = i ,

Therefore the subgroup in Q(8n, k, /) generated by {X, Y, A} is isomorphic
to Q(8ny 1, /). Thus it suffices to prove (6.3) in the special case when k=r=l.

Put Ύ= Y\ then we have in Q(8n, 1, /)

X2 = (XΫ)2= F",

= YX, yyy-1 = y,
-1^ y.

Therefore the subgroup in Q(8n, 1, /) generated by {X, Ϋ} is a normal subgroup
isomorphic to the binary dihedral group Q(4n). The quotient group Q(8n, 1, /)/
Q(^n) is generated by the classes T=[Y] and S= [A] with relations

T*=(TS)*=Si=l, and so is isomorphic to D(2ΐ).
Suppose now that we have a free action of Q(8ny 1, /) on a mod 2 homology

sphere L of dimension 8*-f 3. Let M=L/Q(4ri) be the quotient manifold of L
under the action of the normal subgroup Q(4n). Then there is a natural free
action of D(2ΐ) on M.

Since S{(L)=Q for *'<8*+3, it follows that

H£(M)^Hί(Q(4n)) (i<8t+3) .

Since n is even, we have

Z2 i Ξ 0 mod 4 ,

Z20Z2 i = 2 mod 4 ,

Z2 i = 3 mod 4
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(see [3], p. 254). Therefore it holds

X(M) = 4Σ dim Ht(M) ΐ 0 mod 2 .
1=0

Under the isomorphism ofH^M) to if , (£)(4w)) (/ < 8ί+3), the induced homomor-
phism S^iH^M)-*!!;^) corresponds to the homomorphism σ* : H^Q^n)} -*•
Hi(Q(^n)) induced by the homomorphism σ:Q(4ri) -> Q(4n) sending each
element U to AUA'1. Since AXA~1=X9 AΫA~1=ΫJ we see that 5* is the
identity for i<8t+3. This is obvious for i^8t+3. Since T is of order 2,
it follows from (6.1) that ST=TS. Since / is odd >1, this is a contradiction,
and the proof completes.

Let P"(48r) denote the group with generators X, Y, Z, A and relations

X* = Y* = Z2 = (XY)2 , A3r = 1 ,

ZXZ-1 = YX , ZYZ-1 = Y'1 , AXA-1 = Y ,

where r is an odd positive integer. Milnor proves in [5] that if r is not a power
of 3 then P"(48r) can not act freely on any homotopy 3-sphere. More gener-

ally we have

(6.4) Theorem. If r is not a power of 3, the group P"(48r) can not act

freely on any mod 2 homology sphere whose dimension is 3 mod 8.

Proof. Let r=3*-1/with (/, 6)=1, /^5. Then it follows that the subgroup
in P"(48r) generated by {X, Y, A1} is a normal subgroup isomorphic to P'(8 3Λ)
and its quotient group is isomorphic to D(27), where P'(8 3*) denotes the group
with presentation (X, Y, A',X2= Y2=(XY)\ A*k=l, AXA~l=Y9 AYA~l=
XY).

Suppose now that we have a free action of P"(48r) on a mod 2 homology
sphere L of dimension 8ί+3. If we put M=L/P/(8 3*), there is a natural

free action of D(2l) on M. We have H^M^H^P^S^^) for i<8f+3. The
subgroup in P'(8 3k) generated by {X, Y} is isomorphic to the quaternion
group ζ?(8), and its quotient group is isomorphic to Z3*. Therefore it is easily
seen that

Z2 i=Q mod 4 ,

0 i= 1 mod 4 ,

0 i=2 mod 4,

Z2 ί=3 mod 4 .

Thus %(M)ί 0 and the action of D(2ΐ) on H*(M) is trivial. By (6.1) this is a
contradiction, and the proof completes.
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(Added Nov. 27, 1973). R.E. Stong [10] proves the following theorem. As
an application of Theorem (5.2) we shall prove this theorem.

(6.5) Theorem. If a closed main/old N admits a free action of Z2xZ2,

then X(N)=0.

Proof. Taking generators T and S of Z2 X Z2, regard N as a manifold with
involution by T, and S a continuous map of N to itself. Then it follows from

(5.2) that ί(S)=X(S).
Define Δ, Δ':N-*NxN by Δ(y)=(y9 Ty\ Δ'(y)=(y, Sy). Then the

map Sτ : Nτ -> NxN2 is the composition of Δτ':Nτ-*NxN and lxΔ:NxN-+
T T T T

N X N2. Therefore it holds that

Let VN denote the normal bundle of the imbedding lxΔ:NxN-*NxN2.
T T T

Then it is obvious that (lxΔ)*(Δ^) is the rc-th Stief el- Whitney class wn(vN\
T

where n=dim ΛΓ^dim VN. The involution T on N gives rise to a free involu-

tion T on the orbit manifold Ns. If vN

f denotes the normal bundle of the

imbedding lχΔ:NsxNs-^>NsX ΛΓJ, we have VN = (p Xp)*vN', where/) : N-+NS
T T T T

is the projection. Therefore it follows that

T

where d: NS-*NS X Ns is the diagonal map. Hence

ί(S) = <d$wn(vN'\ pTt[NT]y = o .
On the other hand, we have

= Σ <S*μ{ U T*S*μ/,

where {Λ, •••, μr, μ/, •••, μ/} is a symplectic basis for H*(N). Thus %(JV)=0.
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