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Abstract

An electron and a hole attract each other due to the Coulomb interaction, and they behave as a
quasi-particle called exciton. An exciton can be created by a photon which is incident into the material,
and the created exciton collapses into a photon with a finite life time. After that, the emitted photon
can also create another exciton at other position. In this way, the exciton and photon propagate as a
quasi-particle in the material, and it is called an exciton-polariton. Because of the Coulomb interaction
and the Pauli exclusion principle, excitons interact with each other, and then optical response of excitons
has been discussed for several decades not only in its linear (one-exciton) process but also in nonlinear
(many-exciton) processes. However, such discussions have been mainly performed in the semiclassical
framework, where the light is classically treated based on the Maxwell equations. The construction
of full quantum theories for exciton optical processes is currently a developing theme, and attracts an
attention due to the recent development of quantum information technologies and the recent observation
of nonclassical states of exciton-polaritons, such as entanglement, squeezing, Bose-Einstein condensation,
and so on.

Although the quantum electrodynamics (QED) in vacuum was established in the 1940s, the QED of
excitonic materials has been discussed for only about 15 years. Compared to the vacuum situation, we
must consider the frequency dependence of the dielectric function of the materials due to the polariton
effect in addition to the nonradiative damping of excitons, which is inevitable to discuss their resonance
processes. The QED of such dispersive and absorptive media has been discussed in the pioneering work
by Huttner and Barnett in 1992. Its theoretical framework can be interpreted by the relation with the
fluctuation dissipation theorem, and has a good correspondence with the classical electrodynamics based
on the Maxwell equations. Currently, this QED theory has been extended to inhomogeneous, anisotropic,
magnetic, and nonlinear media. However, there remains a task to consider the nonlocal susceptibility orig-
inating from the exciton center-of-mass motion, which has been discussed in the semiclassical framework
for about 50 years.

The nonlocal optical susceptibility is a general property derived from the linear response theory, and its
nonlocality should be explicitly considered in nano-scale systems in order to describe the confinement of
the exciton center-of-mass motion. While the nonlocality has been discussed in relation with additional
boundary condition (ABC) problem, K. Cho has proposed a theoretical framework which requires no
ABC in 1986. This is called an ABC-Free theory or a microscopic nonlocal theory, and has been applied
to linear and nonlinear optical processes of excitons confined in nano-scale materials. However, this
theory has been discussed in the semiclassical framework.

One of the main subjects in this thesis is the construction of a QED theory for excitons in arbitrary-
structured 3D materials with considering the nonlocality and nonradiative damping of excitons. This
theory maintains good correspondences with its underlying theories, the QED theory for dispersive and

absorptive media and the semiclassical microscopic nonlocal theory. Although the same kind of theories
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have already been proposed in line with the series of QED theories, the present QED theory provides a
practical calculation method for arbitrary-structured excitonic materials from nano- to macro-scale by
using the same calculation idea as the microscopic nonlocal theory. On the other hand, from the viewpoint
of extending the nonlocal theory, the present theory enables us to consider the quantum fluctuation of
the electromagnetic fields and to describe nonclassical states of light. Furthermore, it has been revealed
in the present thesis that the nonlocal theory can provide the retarded correlation functions of excitons
and of electromagnetic fields.

Another subject in the present thesis is the analysis of exciton-photon coupled modes in excitonic finite
systems, whose resonance frequency and radiative decay rate can be obtained as poles of the exciton
correlation functions derived in the nonlocal theory. Especially, I have focused on the material-size
dependence of the exciton radiative decay rate. According to Fermi’s golden rule, increasing the material
size, the radiative decay rate becomes higher because of the increment of the interaction volume between
excitons and radiation field. This is called exciton superradiance, and has been discussed theoretically
and experimentally for more than 20 years. On the other hand, in a thick film where the exciton-
polariton picture is suitable, we can consider that the radiative decay time of polaritons is proportional
to the time of flight in the film. Therefore, the radiative decay rate is inversely proportional to the film
thickness in contrast to the exciton superradiance. This contradiction reflects a breakdown of Fermi’s
golden rule in the exciton-photon interaction. The crossover between the two radiative decay schemes has
been theoretically discussed in some works previously, and it is interpreted as the crossover of exciton-
photon coupled modes from exciton-/photon-like to polariton modes. However, the crossover condition
has not been completely clarified. By using a rigorous calculation method based on the microscopic
nonlocal theory, which can connect the two decay schemes, I have calculated the exciton radiative decay
rate in a CuCl film with continuously changing the thickness from nano- to macro-scale, and then the
crossover behavior has been numerically obtained. For the analysis, I have intuitively introduced another
calculation method, which is based on the dispersion relation and resonance condition and can reproduce
the results of the rigorous method. From the simplified equation in the intuitive method, I have derived
the crossover condition between the two radiative decay schemes. Briefly speaking, the crossover occurs
when an apparent propagation speed of superradiant excitons reaches the group velocity of polaritons.
This is a reasonable condition in the viewpoint of the breakdown of Fermi’s golden rule in exciton-photon
interaction.

The other subject in the present thesis is deriving the analytical expression of the excitons’ retarded
correlation functions, which is written with the information of their poles derived by the intuitive calcula-
tion method. The exciton correlation functions renormalize the exciton-photon interaction, and then they
reflect the radiative energy shift, retarded interaction via the electromagnetic fields, radiative and non-
radiative relaxation processes. According to the quantum theory of many-particle systems, time-ordered
and thermal correlation functions can be obtained by the analytic continuation with the retarded ones.
Therefore, the analytical expression of the correlation functions is useful for systematic discussion of a
variety of nonlinear, relaxation, and emission processes of excitons in arbitrary-structured materials. As
a demonstration, I consider a CuCl film with exciton center-of-mass motion, and solve an ABC problem
to calculate the poles, i.e., the exciton-photon coupled modes, including polariton-field wavefunctions in
these modes. By a intuitive consideration of the analytical expression, the retarded correlation functions

have been reproduced with good precision.
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Chapter 1

Introduction

1.1 Background

In conventional theories for optical processes in condensed matters, the light has been mainly treated
classically regardless of whether the matter systems are described in quantum mechanical terms (semiclas-
sical theory) or classical ones. These theories have successfully explained a variety of optical phenomena
regarding the classical light or the coherent state of photons. However, there is growing interest in the
quantum electrodynamics (QED) of elementary excitations in condensed matters in order to discuss opti-
cal processes of nonclassical light such as entangled states, single photons, squeezed states, cavity photons,
and so on. The relevant experiments have already been reported, for example, the entangled-photon gen-
eration via biexcitons (excitonic molecules) [I], triggered single photon generation from bound excitons
in a semiconductor [2], and the squeezing of cavity polaritons in semiconductor microcavities [3, 4]. On
the other hand, the Bose-Einstein condensation (BEC) of excitons has been discussed as a principle
theme concerning the bosonic properties of excitons [5l [6]. Recently, the BEC of exciton-polaritons in
semiconductor microcavities has been reported in some experimental works [7, 8, [9] [10], and theoretical
analysis of the BEC of excitons interacting with cavity photons is also a hot topic [11], 12} 13}, 14} [15].

The quantization of the radiation field has been studied for a long time not only in vacuum [16] but
also in a medium characterized by a frequency independent dielectric constant (see introductions and
references in Refs. [I7 and [18). Further, dispersive dielectric media, which have a frequency dependent
dielectric function, has also been considered in some works (see references in Ref. [I§)). In particular,
concerning elementary excitations in condensed matters, Hopfield has discussed eigenstates of exciton-
photon systems or exciton-polaritons [19], where their dispersive properties are reflected through the
susceptibility x(w), dielectric function e(w) = 1+ x(w), or dispersion relation e(w) = c2k? /w?. However,
it is well known that the susceptibility is generally represented as a complex function satisfying the
Kramers-Kronig relations (see App. [A2). Furthermore, its imaginary part, which characterizes the
absorption in medium, cannot be neglected in the discussion of resonant optical processes of elementary
excitations in condensed matters.

In the classical and semiclassical frameworks for optical processes in condensed matters, the absorption
is reflected mainly through the susceptibility or damping rates of elementary excitations. However, in full
quantum frameworks, the absorption significantly modifies the discussion for considering the electromag-
netic fluctuation in the same manner as the appearance of fluctuation operator in the Langevin equation
(see App. [A3), although the statistical average of the fluctuation itself vanishes and it does not affect

the (semi)classical discussions. The theoretical framework for QED of dispersive and absorptive media
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has been established by the work of Huttner and Barnett [20, 21] and the successive studies (see a review
by Knéll et al. [18]). I will explain the outline of those theories in Sec. [[3

On the other hand, the relaxation dynamics of elementary excitations is a significant subject in the
solid state optics. Although the relaxation of elementary excitations is mainly caused by the absorption
in the case of nearly-infinite crystals, the radiative relaxation should also be considered in inhomogeneous
media, especially in nano-structured materials. However, in discussing the optical processes of excitons
in inhomogeneous media, it is well known that, in addition to the Maxwell boundary conditions, some
additional boundary conditions (ABCs) are required in the traditional calculation method based on
connecting the electromagnetic fields at interfaces of different materials [22]. This ABC problem is
caused by the spatial nonlocality of excitonic susceptibility x (7,7, w) originating from their center-of-
mass motion, and the nonlocal effects significantly appear in nano-structured materials as the center-
of-mass confinement of excitons. In order to avoid the ABC problem, we must explicitly consider the
nonlocal susceptibility in inhomogeneous systems. Along the same lines as the above QED theories,
the electromagnetic field quantization in such nonlocal systems has also been performed in some works
[23, 24, 25| 26], 27, 28]. However, for applying these theories into actual problems, we must solve an
integro-differential equation as will seen in Eq. (IL533). Instead of solving this complicated equation, as
indicated by Cho in the semiclassical framework [29] [30, [B1], we can reduce the problem into a linear
equation set by using the microscopic representation of the nonlocal susceptibility. I will explain above-
mentioned studies concerning the nonlocality in Sec. [[4

Based on the microscopic nonlocal theory [30, BI], some anomalous optical phenomena in nano-
structured materials have been predicted theoretically [32 33, B4, [35, B0, 37, B8, B9], and actually
the following experimental works have revealed that the nano-structures show peculiar responses and
rapid radiative decay in nonlinear optical processes of excitons. In 1999, a large nonlinearity has been
observed for the degenerate four-wave mixing in GaAs film with 110 nm thickness [40, [41]. Further, an
energy interchange of exciton’s center-of-mass quantum states has been observed by the nondegenerate
two-photon excitation scattering in CuCl films with 19.3 nm and 35.3 nm thicknesses in 2004 [42]. Most
recently, in 2006, a fast decay time of about 100 fs has been observed for the degenerate four-wave mixing
in CuCl film with 187 nm thickness [43]. These anomalous optical responses originate from the long-range
interaction between the electromagnetic fields and the excitons with center-of-mass motion coherently
spreading in whole crystal. Therefore, in order to discuss these phenomena, we must explicitly consider

the exciton center-of-mass motion yielding the nonlocal susceptibility.

1.2 Motivation and purpose of this thesis

The entangled-photon generation via biexcitons in semiconductors was experimentally reported by
Edamatsu et al. in 2004 [I], and this has been previously proposed in the theoretical work by Savasta
et al. in 1999 [44, 45]. The authors considered a CuCl film with micrometer-order thickness, and also
a CuCl crystal with thickness of about 100 pm was used in the actual experiment. On the other hand,
in other nonlinear processes of excitons as mentioned in the previous section, some theoretical and ex-
perimental studies have revealed that nanometer-order semiconductor films show peculiar and rapid
optical responses compared to bulk crystals. The first motivation of the research in this thesis is dis-
cussing the entangled-photon generation from nano-structured materials, where a high generation effi-

ciency and anomalous generation properties were expected in the same manner as the above experiments
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for nanofilms.

In order to analyze the entangled-photon generation via biexcitons in nano-structured materials, we
need a QED theory for excitons confined in nano-structures, i.e., nonlocal inhomogeneous systems. Fur-
ther, the theory must provide a practical calculation method for inhomogeneous systems in contrast to the
previously discussed QED theories [23] 24} 25|, 26|, 27, 28], in which we must solve the integro-differential
equation. One of the purposes in this thesis is to construct such a QED theory applicable to actual
material structures including a substrate, outside media, distributed Bragg reflector (DBR) cavity, and
so on. This kind of theories is required for the detailed analysis of experimental results and the practical
proposition of suitable material structures for the entangled-photon generation or other optical processes,
while modelized systems are usually considered in the theoretical framework of quantum optics. In con-
trast that the modelized calculation is suitable for qualitative discussion, the detailed calculation of the
present theory is useful for quantitative discussion. In other words, the theories applicable to actual
material structure are essential to verify calculation results obtained from the model calculations. In
Chap. 2 I try to apply the calculation idea of the microscopic nonlocal theory by Cho [30}, BI] into the
QED theory for excitonic media with nonlocal susceptibility in order to reduce the integro-differential
equation into a linear equation set, which can be performed for arbitrary-structured 3D materials.

On the other hand, we must also consider exciton-exciton interactions to describe the entangled-photon
generation by the scattering via biexciton states. The QED theory discussed in Chap. 2l has already been
applied to the theoretical study of the entangled-photon generation from a CuCl nanofilm [46], and it
has been elucidated that a good signal-to-noise ratio with maintaining a signal intensity can be obtained
from nanometer-order thickness, in addition to the anomalous exciton-exciton scattering via biexcitons
reflecting the above-mentioned anomalous exciton mode structure [42]. On the other hand, although the
present QED theory was extended under a phenomenological approximation to describe the biexciton
scattering in Ref. 46} its approximation cannot be applied to the entangled-photon generation from semi-
conductor microcavity proposed in Refs. 47 and [48, because we must consider the recreation of biexcitons
from the emitted entangled pairs in the cavity. Therefore, more systematic technique for perturbation
calculation should be constructed for the further discussion of the entangled-photon generation and of
other processes of excitons in nano-structured materials. One of the candidates for such a perturba-
tion method is the Feynman diagram technique with exciton correlation functions in exciton-photon
inhomogeneous systems, which are obtained by the present QED theory (and also by the semiclassical
microscopic nonlocal theory [30} [31]) as revealed in the present research. The next purpose is to construct
a calculation method applicable to general perturbation in exciton-photon inhomogeneous systems. Such
method would be a powerful tool for discussing the nonclassical light generation from condensed matters
with practical structure and nonclassical states of polaritons, such as entangled photons, single photons,
squeezed states and BEC of cavity polaritons as mentioned above. Further, such a general perturbation
method is also useful for other nonlinear, dephasing, and emission processes of excitons in inhomogeneous
systems, especially for discussing nano-structured materials, where the center-of-mass confinement and
radiative decay of excitons significantly appear. The present theory is required for the detailed analysis
of experimental results and proposing suitable material structures for these discussions in the future.

In order to construct the general perturbation theory for exciton-photon inhomogeneous systems, time-
ordered and thermal correlation functions of excitons should be derived from the analytic continuation
with the retarded ones obtained from the QED theory of this thesis. First, we must obtain the information

of poles in the exciton-photon inhomogeneous systems to analytically express the retarded correlation



Chapter 1 Introduction

functions, although the functions can be numerically evaluated for a given frequency. This is the another
subject of this thesis and will be discussed in Chap.[Bl One pole is characterized by a complex frequency,
and its real and imaginary parts represent a resonance frequency and a radiative decay rate of a exciton-
photon coupled mode, respectively. The crystal-size dependence of this radiative decay rate has been
discussed in relation to the crossover between the exciton superradiance and the polariton radiative
decay scheme. A comprehensive interpretation of the crystal-size dependence of the exciton-photon
coupled modes is also a subject of this thesis, and it will also be discussed in detail in Chap.[Bl After the
calculation of the poles, the analytical expression of the retarded correlation functions must be derived
for the continuation to the time-ordered and thermal ones. This is the other subject of this thesis, and
will be discussed in Chap. @

1.3 QED of dispersive and absorptive media

In this section, I explain the outline of QED theories of dispersive and absorptive media. The pioneering
work has been performed by Huttner and Barnett [20, 2I]. As reviewed in Ref. [I8 the successive
works have revealed its interpretation and the relationship with the fluctuation-dissipation theorem, and
also applied the theory into some actual problems. Further, the QED theory has been generalized for

inhomogeneous media in some works.

1.3.1 Huttner-Barnett theory

The quantization of the electromagnetic fields in dispersive and absorptive dielectrics has been system-
atically carried out by Huttner and Barnett [20] 2I]. The authors discussed homogeneous systems, and
the dispersive property is described by using the classical Hopfield polariton model [I9], i.e., polarizable
harmonic oscillators interacting with the radiation field. Further, the absorption is considered by using a
reservoir of oscillators interacting with the polarizable ones. First, the authors diagonalized the Hamil-
tonian, and derived the eigenoperators {C’A(k,w)}, where the quantum numbers A\, k, and w represent
the polarization direction, wavevector, and frequency, respectively. This operator satisfies the Bosonic

commutation relation as
[C*,\(k:, w),CL (K, w’)] = oy d(k — K)o(w — w'), (1.1a)

[CA‘,\(k,w),C',\/(k’,w’)} —0, (1.1b)
and describes the Hamiltonian as

H= Y /dk /OOO dw hw O (k,w)Cx (K, w). (1.2)

A=1,2

Further, the authors represented the vector potential by using the eigenoperators. The most useful

expression is its frequency Fourier component defined as

2

At (r,w) = 1 / dt et @t A(r,t), (1.3)

— 00

which gives its Heisenberg representation as

A(r,t) = /OOO dw [e_i‘”tffr('r,w) + ei“’tA_(r,w)} . (1.4)
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Here, At (r,w) and A’(r,w) are respectively called positive- and negative-frequency components, and

they have a relation as

A (r,w) = AT (r, —w) = {A*(r, —w")}T. (1.5)
By using the eigenoperators {CA(k,w)} (here, w is a quantum number in the system), the positive-

frequency component of the vector potential is represented as
eifer h O (k,w)
7° w /dk 3/2 Z €>\ g 71111[5((4))] m, (16)

where ey (k) is the unit vector in the polarization direction, and e(w) is the complex dielectric function
represented by system parameters, i.e., coupling parameters between the radiation field and the polar-
izable oscillators and between the polarizable oscillators and the reservoir ones. Further, the authors
showed that (w) satisfies the Kramers-Kronig relations. This function just characterizes the quantum
fluctuation of the electromagnetic fields in the dispersive and absorptive media. On the other hand, the

other electromagnetic fields are described as

ET(r,w) =iwA*(r,w), (1.7)
Bt (r,w) =V x At (r,w), (1.8)
DT (r,w) = coe(w)Et (r,w) — %JANT(nw). (1.9)

Here, jNT(r, w) is the fluctuation operator governing the absorption in media, which does not appear in

the classical electrodynamics, and it is defined as

1k'r
eoh
JNT (r,w) = —wy/ —I /dk 27) o373 Z ex(k C,\ k,w). (1.10)

This operator is called noise current density, and, from commutation relation (L)), it satisfies

60hw2

™

dyr(r,w), {Inr (0 H | = 8w = )or(r — ) 2 e ()], (1.11)

where [J, {J}'] is a 3 x 3 tensor whose (&, &’) element implies [J, {Je/ }T] for € = 2,9, 2, and dr(r — )
is the dyadic Dirac delta function extracting the transverse component (see App. [[).
1.3.2 Relationship with fluctuation-dissipation theorem

As indicated by Matloob and Loudon [49], the commutation relation [Eq. (LIIJ)] of the noise cur-
rent density jNT(r,w) can be understood from the fluctuation-dissipation theorem (see, for example,

Chap. XII of Ref. [50). Eq. (I9) means that the induced current density in the medium is written as
JH(r,w) = —iw | DY (r,w) —eo BT (r,w)| = cow?x (W) At (r,w) + Jn1(r,w), (1.12)

where y(w) = e(w) — 1 is the optical susceptibility. In the same manner as the Langevin equation
(App. [A3), the noise operator jNT(r,w) appears due to the absorption in the medium. When we

consider the subspace Hy excluding the radiation field, from the interaction Hamiltonian

Hiny = —/dr J(r)- A(r), (1.13)
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the susceptibility x(w) corresponds to the retarded Green’s function of the polarization in Hey system as

dr(r — reow?x(w) = %’; / dt =) ([Jo(r, 1), Jo(r', t')]) ey » (1.14)
t/

where the time-dependent operator is defined as

Jo(r,t) = etfext/h g (p)eiHext/h (1.15)

In the same manner that the Langevin equation has the fluctuation operator to maintain the equal-time
Schrodinger commutation relation, J+ (7, w) must have the noise operator Jyr (7, w) in order to maintain
the identity (LI4), because A(r,w) is considered to be an external field or a c-number in the subspace.

Actually, by using Eq. (A20) and the Kramers-Kronig relation [Eq. (A23)], the commutation relation

(CID) of Jxr(r,w) provides Eq. (TI4).
On the other hand, as indicated by Matloob et al. [51] and by Gruner and Welsch [52], using expression
(I0) of Jnr(r,w), the vector potential [Eq. (IZ6)] is rewritten as

AT (r,w) = —uo/dr' Go(r,r',w)Inr (1, w), (1.16)

where the function Go(r,r’,w) is defined as

) dk oike-(r—7') exp |i1v/e(w)(w/e)|r — 7|
Golr,m,w) = / (2m)3 e(w)w?/c? — k2 - [ d|r — 7| ' (1.17)

Since this is just the Green’s function satisfying

2
[VQ - C;E(w)} Go(r, 7', w) =6(r — 1), (1.18)
we can find that the vector potential [Eq. (II6])] satisfies the following wave equation:
2 w? A &
[V + C2€(w)} A(r,w) = —podnt(r,w). (1.19)

This has the same form as the Maxwell wave equation in the classical electrodynamics except the noise
current density Jy(7,w).
On the other hand, when we focus on the transverse field propagating in the z direction, Eq. (LI9)

reduces to
0?2 w? N A
[322 + ng(w):| A(z,w) = —poJINT(2, W), (1.20)

where the fields are integrated over the z-y plane with the normalization area S as
A(z) = %/dx/dy A(r), (1.21)
Ixr(z,w) = %/dm/dy Int(r,w). (1.22)
Further, Eq. (LI6) is rewritten as
At (z,w) = fpo/dz/ Go(z, 2 ,w)JInr (2, w), (1.23)
where the Green’s function Go(z, 2/, w) satisfies

2 w2
|+ o) Guler ') = 8 = ), (120
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and is represented as

o , > 4k eik(z—z/) ein(w)(w/c)\z—z/| o5
oz %, w) _/OO% eww?/c2 — k2 i2n(w)w/c (1.25)

In this situation, the commutation relation [Eq. (LII)] of Jxr(7,w) reduces to

2

[xr(zw), Pve ()] = 8w = )3z = #) = Imf () (1.26)
and that of the vector potential is obtained as
s T / toh /
[A (z,w), A” (2", w )} = —0(w—w')— Im[Go(z, ', w)]. (1.27)
™

This result can be understood from the linear response theory as discussed in Chap. 6 of Ref. 53l This
means that the Green’s function Gy(z, ', w) corresponds to the retarded correlation function of the vector
potential as L e

m%%%m:ﬁchMHWM@WM%M> (1.28)
We can verify that Eq. (L28) actually provides Eq. (L27). It is worth to note that, although Jyxr(r,w)
[Eq. (LIO)] and its commutator [Eq. (III)] vanishes in the limit of no absorption Im[e(w)] — 0, the
commutator [Eq. (IL27)] of the vector potential does not vanish as discussed by Gruner and Welsch
[64]. The remains just represent the quantum fluctuation of the electromagnetic fields, or the vacuum

fluctuation (see App. B)).

1.3.3 Field quantization in inhomogeneous media

The pioneering work by Huttner and Barnett [20, 21] stimulated various theoretical studies associated
with the QED of dispersive and absorptive dielectrics, for example, the spontaneous decay in dielectrics
[65, 6], quantum input-output relations [51l, 57, B8], and quantization in amplifying, anisotropic, mag-
netic, or nonlinear media [I8, (59} [60, 27, 28]. However, in order to extend the Huttner-Barnett theory
for inhomogeneous 3D dielectrics, we must consider the Coulomb potential induced by the polarization
charge in addition to the vector potential. In the study of Dung, Knéll, and Welsh [61], the extension
has been performed by phenomenologically introducing the noise current density and its commutation
relation. On the other hand, Suttorp and Wubs have systematically done by using the Laplace transfor-
mation technique [62] [63], and Suttorp and van Wonderen also did by the diagonalization method [64].
In these schemes, the complex dielectric function (7, w) depends on the spatial position 7 of the medium
and the radiation frequency w. I show the outline of these works in the following paragraphs.

Instead of the vector potential in the Huttner-Barnett work, the field quantization in inhomogeneous

media is described in terms of the electric field, which is written as

E(r,t) = —%A(r,t) — Vo(r,t), (1.29a)
Ef(r,w) =iwA*(r,t) — Vot (r,w). (1.29b)

Compared to Eq. (7)) in the Huttner-Barnett work, the Coulomb potential ¢(r) is added in this scheme.
When we use the Coulomb gauge, the vector potential is a transverse field satisfying V- A(r) = 0, and the
second term of Egs. (I.29]) represents the longitudinal field. In the same manner as the Huttner-Barnett
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work, the motion equation of the electric field is obtained as
2

V XV x Bt (r,w) — %s(r,w)ﬁfr(r,w) = ipowdn (7, w). (1.30)

This also has the same form as the Maxwell wave equation in the classical electrodynamics, and has a

fluctuation operator Jx(7,w), whose commutation relation is written as

eohw?

[JAl\I(rgu)7 {In(r", W] = 6w —)o(r —7') Imle(r,w)]1. (1.31)

Compared to Eq. (LTI in the Huttner-Barnett work, the commutator becomes isotropic because of
considering the longitudinal field or the Coulomb potential. According to the fluctuation dissipation
theorem, this commutation relation has been phenomenologically introduced by Dung, Knoll, and Welsh
[61]. On the other hand, from the Laplace-transformed motion equations of system variables, Suttorp
and Wubs [63] have systematically derived the representation of Jy(r,w), which is written in terms of
the canonical variables and momenta of the system at ¢ = 0. From the commutation relations between
them, that of Jy(r,w) have been derived. Around the same time, Suttorp and Wanderen [64] have
diagonalized the Hamiltonian, and represented jN (r,w) in terms of the eigenoperators in the same manner
as Eq. (CI0).
On the other hand, by introducing the dyadic Green’s function Go(7,r’,w) satisfying
2

V x V x Go(r,r',w) — %e(r,w)Go(r,r’,w) = §(r — 1)1, (1.32)

we can rewrite the Maxwell wave equation, Eq. (L30), as
Ef(r,w) = i,ugw/dr' Go(r, 1, w) - In(r',w). (1.33)

From commutation relation (IL31) of Jx(7,w), that of E*(r,w) can be derived as

[EA"’(T,w),EA'_(r’,w’)} = §(w — w,),u(.);iw [Go(r, 7", w) — Gi(r, 7", w)], (1.34)

1247

where T use the equivalence shown in Eq. (1.54) of Ref. 18 as
2
w * * *
/ds = [e(s,w) — e*(8,w)] Go(r, s,w) - G5 (s, 7",w) = Go(r, 7, w) — Gi(r, 7', w), (1.35)

and the reciprocity relation in the isotropic system as

GO(’I',’I”I,W) = {GO(TI7T7W)}t' (136)

In the same manner as Sec. [[3.2] commutation relation (IL34]) can be understood by the fact that the
dyadic Green’s function Go(r, 7', w) satisfying Eq. (L32)) corresponds to the retarded correlation function
of the electric field as

7#0(“)2(;0(7” r’,w) = %/ dt eiW(tit/) <[E(Ir7 t)? E(rlv t/)]> : (137)
t/

The information of the material structure is reflected through the dielectric function e(r,w), and it
uniquely determines Go(7,7’,w). The form of the dyadic Green’s function has already been known for
various structures with high symmetry [65], and also can be numerically calculated for arbitrary 3D

structures [66].
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1.4 Semiclassical theory of excitons

In this section, I focus on the theoretical treatment of optical processes of excitons, especially on
the nonlocal susceptibility originating from their center-of-mass motion. Because of this nonlocality, we
require some additional boundary conditions (ABCs) in some calculation method. On the other hand, I

also explain a method without any ABCs.

1.4.1 Nonlocal susceptibility

In the above QED theories and also in semiclassical ones, the dielectric function is usually treated as a
local form as e(r,w) with respect to the spatial position. However, from the microscopic point of view,
the optical susceptibility generally has a nonlocal form as x(r, ', w), which characterizes the polarization

P..(r,w) at a position r induced by electric field E(r',w) at a different position =’ as
Po(r,w) = 20 /d’r’ Xex 7 w) - B(1 ). (1.38)
When we consider the interaction Hamiltonian between the electromagnetic field and the excitation as
Hip = — / dr P (r) - E(r), (1.39)

the representation of the dyadic susceptibility x(r,r’,w) is derived from the linear response theory

(App. [AT) as

Xex (7,7, 0) = &:(%h _DO at et~ 1) (| Poc(r,1), P, 1)] ) (1.40)
= ;h % dt et {<0|15ex(r) o Hest B (1)[0) — (0| Ba () eHHext/ Pex(r)\()}} (1.41)
€o 0
1 (01 Pex(r)|A) (A Pex (1)[0) (0] Pex ()| A) {A| Pex(7)[0)
_EOZA:{ hor—hw—i6 | oyt ho g id } (1.42)

where I denote the excitation eigenstates by A, and their eigenfrequency by wy. This nonlocality originates
from the spatial spreading of the wave function of elementary excitations, or, particularly for excitons
in semiconductors, their center-of-mass motion with a finite translational mass. If we consider that the
excitation is localized at an excited position, the susceptibility reduces to the local form as Eq. (II4).
Usually, the nonlocality is not considered to be important for macroscopic materials, because the coher-
ence length of elementary excitations is usually much shorter than the light wave length. Therefore, only
the averaged values of physical quantities over the coherence volume are reflected in observation, and
the nonlocal effect is not apparent. However, in high-quality samples with few defects and impurities,
the motion of excitons could have a considerably long coherence, and the electromagnetic fields vary in a
considerably short distance in the resonance condition. In such cases, the nonlocality becomes important
even for bulk materials, as explained below.

In the case of homogeneous and isotropic media, the exciton center-of-mass wavefunctions are expanded

by plane waves as

eik'-r

v
where 17 and k are indices of relative and center-of-mass motions of excitons, respectively. Substituting
Eq. (T43) into Eq. (T42), we can find that the nonlocal susceptibility depends only on the difference

(1, k| Pex (7)[0) = P (1.43)
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Exciton//,//

Figure 1.1: Dispersion curves of exciton polariton. Solid lines represent the polariton dispersion [Eq. ([49))]
and dashed lines are those of bare exciton [Eq. (LE0)] and photon [w = ck/,/Evg]-

r — v’ of the two positions as

eik-(rfr') efik-(rfr')

/ |PTI|2
x\" T = ; " . 1.44
Xex(r, 7', w) nzk: eV hw,,,k—ﬁw—1§+hw,,,k+hw+1§ ( )

Therefore, Eq. (IL38)) is rewritten in the reciprocal space as

P(k,w) = cox(k,w)E(k,w), (1.45)

and the susceptibility is represented as

|’P"7|2 2m}n)k
€0 (hwn,k)Q — (hu.) + 15)2

Xex(F,w) = /d" e B yaw(rrw) = (1.46)
n

In this manner, even for homogeneous media, when it has the nonlocality, the susceptibility x(k,w)

depends on the wavevector k in addition to the frequency w, i.e., the excitonic media have both spatial

and temporal dispersions in general. This k-dependence leads to more than one propagating or evanescent

modes for a given frequency satisfying the dispersion relation

w?k?
5 = c(k,w) = eng(w) + x(k,w), (1.47)

c
which is obtained by substituting Eq. (L45]) into the Maxwell wave equation

2
V XV x E(r,w) — w—Qabg(w)E(r,w) = pow? Py (1, w). (1.48)
c

Especially, when we consider only one relative motion of exciton, the dispersion relation reduces to

k> Je

= k = _— 1.4
5( aw) Ebg T wkg — (w+15/)2 ( 9)

2
Here, fr = 2wi|P|?/eoh is called oscillator strength (but there are some other definition), and the bare
exciton frequency is written as
7:L2 | k!|2

2Mex

hwie = hwr +

, (1.50)

where wr is the transverse exciton frequency at the band edge, and mey is the exciton translational mass.

The two solutions of Eq. (L49) are shown in Fig. [T by solid lines, and they are called upper and lower
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Incident Incident Polariton 1

Refraction / /

Reflection Reflection Polariton 2 /

z z
> >

Figure 1.2: Schematic view for boundary problem Figure 1.3: Schematic view for boundary problem
that requires only the Maxwell boundary conditions.  that requires an ABC.

polariton branches. On the other hand, one dashed line represents the photon dispersion w = ck/,/Epg,
and the other is the bare exciton one, Eq. (L30). In particular, we obtain two solutions of Eq. (ILZ9]) at

k = 0: One is w = 0 and the other is equal to the longitudinal exciton frequency as

/) Jo |’P‘2
Wi, =/ wr® + fO/Ebg ~ wr + SR = wTr + oen P (151)
0g g

which actually provides £(0,wr,) = 0. As seen in Fig. [Tl we can find two propagating polariton modes

for w > wr,, and one propagating mode even at the polariton band gap wr < w < wr, in addition to an
evanescent mode. On the other hand, only one polariton mode is obtained in the classical Hopfield model

[19], because the excitons were assumed to have infinite translational mass.

1.4.2 Additional boundary condition

When we consider a material with the polariton dispersion as discussed in the previous section, as first
indicated by Pekar [67], we must introduce some additional boundary conditions (ABCs) in addition to
the Maxwell boundary conditions in order to uniquely connect the polariton modes inside of the material
and the external ones at the interfaces. This kind of problems is known as ABC problems (see, for
example, Ref. 22)), and it arises when the translational symmetry is broken due to the material interfaces.
The Maxwell boundary conditions, which are derived from the Maxwell equations (see, for example,
Sec. 1.5 of Ref. [68), are well known as

(D1 — D3) n =os, ( )
(Bl — Bg) ‘n = 07 (152b)
(El—Eg)X‘n:O, ( )
(Hy — Hz) x n = js, ( )

where n is the unit vector perpendicular to the interface, og is the surface charge density, and jg is the
surface current density. However, among these eight boundary conditions, some of them are necessary
and sufficient, and the others are trivial because of the completeness of the Maxwell equations. This
means that the number of unknown variables and that of the Maxwell boundary conditions are the same
in usual boundary problems. For example, when we consider the reflection and refraction of s-polarized
field in nonmagnetic and isotropic media as seen in Fig. [[2] only two conditions in Eq. (L52) are just

sufficient in order to determine the unknown two fields, one reflection and one refraction fields (see, for
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example, Sec. 7.3 of Ref. [68). However, when we consider that the refraction medium has the polariton
dispersion [Eq. ([49)] as seen in Fig. [[3] for a given incident field, an ABC is required to uniquely
determine the three unknown fields, reflection, polariton 1, and 2. This contradiction originates from
considering the polariton dispersion relation [Eq. (I49))] in the boundary condition, although it is derived
for homogeneous media.

In order to solve this problem, Pekar [67] introduced the following ABC that gives no polarization at

the boundary:
X(k)l, w)E1 + X(kg,w)EQ =0. (153)

After the Pekar’s study, subsequent studies have revealed that the ABC problems can be resolved by con-
sidering the microscopically determined boundary conditions of the exciton center-of-mass motion at the
interfaces [69] [70} [7T], [72]. Nowadays, in the semiclassical framework, some calculation methods indepen-
dent from the notation of ABCs are established, which are called as ABC-free theory [29] or microscopic
nonlocal theory [30, [31]. These theories consider the nonlocality of the susceptibility x(r,r’,w) from the
microscopic point of view, in contrast to the macroscopic consideration based on the phenomenological

introduction of ABCs. In the next section, I explain the outline of the microscopic nonlocal theory [31].

1.4.3 Microscopic nonlocal theory

This theory is based on the motion equation of the polarization, and that of the electromagnetic field,
i.e., the Maxwell equations. In this section, for simplicity, I consider the exciton-photon interaction as
Eq. (I39), which is valid for the linear response regime under weak excitation, although more general
discussion has been performed in Ref. 31l From Eq. (I39), we can derive the motion equation of the
polarization as Eq. (I38]), and the other one is the wave equation for the electric field as

w2
VXxVxE((rw)-— C—zsbg(r,w)E(r,w) = pow? P (1, w). (1.54)
Substituting Eq. (I38)) into Eq. (L34]), we obtain an integro-differential equation as
2 w2

V xVx E(r,w)— %%g(r,w)E(r,w) - /dr/ Xex(T, 7 w) - E(r',w) = 0. (1.55)

In principle, by solving this equation, we can uniquely determine the electric field for a particular initial
condition, and no ABC is required. By assuming the nonlocal medium as being homogeneous, i.e., infinite
system, it is easy to solve this equation and then we can obtain the dispersion relation [Eq. (LZ4T)].
However, it is difficult to solve this integro-differential equation in inhomogeneous systems. Instead, we
can reduce this nonlocal problem into a linear equation set by using the fact that the nonlocal susceptibility
[Eq. (T42)] consists of the separable functions with respect to the two positions (r and =’). This means

that, by introducing a variable
1 R
Xi(w) = m/d"‘ (Al Pex(r)|0) - E(r, w), (1.56)
we can rewrite the motion equation [Eq. (IL38)] of the polarization as

Pe(rw) =Y [<0|15ex(7°)lk> XA (W) + (Al Pux(7)[0) {XA (=)} (1.57)
A

where I use the relation originating from the fact that the electric field E(r,t) is a real function:

E(r,w) ={E(r,—w")}". (1.58)
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From Eq. (IL57), X, (w) is considered as the exciton amplitude in state A. On the other hand, by using
the dyadic Green’s function satisfying

2

V X V x Go(r,7',w) — t—ze(r,w)Go(r,r’,w) = §(r — )1, (1.59)

the Maxwell wave equation ([Lh4) is rewritten as

E(r,w) = Eo(r,w) + pow? /dr' Go(r, 7", w) - Pex(r,w), (1.60)

where Ey(r,w) is the background electric field, or the incident field for excitons. Substituting this
equation into Eq. (I50) and Eq. (LET) into it, we obtain

(hwy — hw — i6) Xy (w) = FY(w) + pow? /dr/dr’ (AP (7)]0) - Go (7, 7", w) - P (1", w) (1.61)

= FY(w) = ) [Eaa (@)X (@) + 25 (@)X (-} ] (1.62)
~

Here, FY(w) appearing on the right-hand side (RHS) is defined as
F(w) = /dr (A| Py (1)]0) - Eo(r,w), (1.63)

and it represents the exciton component induced by the incident field Ey(7,w). On the other hand, the

following terms represent the inter-polarization interaction via the electromagnetic fields:
Dy (w) = —ﬂowz/dr/dr’ (A Pex(r)[0) - Go (7, 7', w) - (0| Pux ()N} , (1.64)
E&,\,(w) = —u0w2/dr/dr’ <)\|1-:’ex(r)\0> -Go(r,r",w) - (X|136X(7")|0>. (1.65)

Together with the complex conjugate of Eq. (LG2), we obtain a linear equation set as

> |:(th — hw)dxn + Zxv (W) (@) } { Xy (w) ] _ { F(w) ] ’

v 2w (=w) (hwx + hw)dx x + 25 (—w) | [{Xn (=)} ] [{FR (=)}
(1.66)
where I used the relation originating from that the dielectric function epg(t) is real:
Go(r, 7", w) = {Go(r,r", —w*)}* = Gj(r, 7', —w). (1.67)

Therefore, instead of solving integro-differential equation (L53]), the problem reduces to the linear equa-
tion set [Eq. (L66)] with respect to {X)(w)}, and we can represent the polarization as Eq. (LX1) and
also the electric field as Eq. (L60) in terms of them.
On the other hand, under the rotating wave approximation (RWA), equation set (L66]) becomes more
simple. This means that, under the RWA, the polarization [Eq. (L57)] is approximated as
Pee(r,w) =Y (0[Pu(r)|A) X (w), (1.68)
A
because of the denominator (wy + w)~! of {X\(—w*)}* is negligible compared to (wy —w)~! of X (w)
under the condition w ~ wy. By using Eq. (L6])), we obtain a simple equation set as
D[y — hw)dx x4+ S x (w)] Xov (w) = FR(w). (1.69)
A/
Based on the microscopic theories, various linear and nonlinear phenomena in inhomogeneous materials

have been discussed. In particular, for nano-structured materials where the coherence of the exciton
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center-of-mass motion is maintained in whole material (weak confinement regime), the anomalous size
dependence of their optical processes has been elucidated [32, [40, [34, [41] [37]. With regard to nanofilms,
the nonlocal theory has successfully explained their peculiar spectral structures originating from the
polariton interference [72] [73], [74]. Further, with the recent development of fabrication technologies for
nano-structured samples, various peculiar effects due to the long-range coherence are appearing through
the interplay between the spatial structures of electromagnetic and excitonic waves, such as the resonant
enhancement of a nonlinear response [41], interchange of quantized states due to giant radiative shift [42],

and ultrafast radiative decay with femtosecond order [43].

1.4.4 Self-sustaining modes

Based on the microscopic nonlocal theory explained in the previous section, self-sustaining modes in
the inhomogeneous systems have been discussed for excitons confined in films [36] [38], multilayers [33],
spheres [75], 35 [70], [77], and so on [3I]. They have been recently observed in nonlinear experiments for
semiconductor nano films [42, [43]. The self-sustaining condition in the microscopic nonlocal theory is

given as

det[S(&)] = 0, (1.70)

where S(w) is the coeflicient matrix in the self-consistent equation set [Eq. (LG60) or Eq. (.69) under the
RWA]. A self-sustaining mode is characterized by a complex frequency & satisfying Eq. (L70), and its
real and imaginary parts respectively represent the resonance frequency wes and radiative decay rate -y
as W = Wyes — 1.

Fig.[[4lshows the thickness dependence of (a) the radiative decay rate v and (b) the resonance frequency
wres Of self-sustaining modes in a CuCl film existing in vacuum. In this calculation, I consider the exciton

center-of-mass wavefunction as

gm(2) = \/gsin(qmz), (1.71)

where d is the film thickness, and ¢, = mm/d is the confinement wavenumber of excitons for m =

1, 2, 3, .... The bare exciton eigenfrequency is given in line with the effective mass approximation as

higm?
2Mex

W = wr + (1.72)

The other calculation parameters will be explained in Chap. Bl There are many self-sustaining modes
at a particular thickness, and the number of modes is equal to that of exciton center-of-mass motion
states, i.e., the number of atomic layers in the film. As seen in Fig.[[4[a), the radiative decay rate 7 of a
self-sustaining mode has a maximum value at a particular thickness, and the maximum value gradually
increases together with the maximizing thickness. On the other hand, as seen in Fig.[[4(b), the resonance
frequency wyes of a self-sustaining mode gradually decreases until its maximizing thickness, and it flips
from lower to upper side around its thickness. After that, w.s decreases with increasing the thickness,
and saturates to wr + wrr, the band edge frequency of upper branch polariton.

The above behavior of wy.es and 7 can be understood from the dispersion relation of exciton-polariton as
seen in Fig. Solid and dashed lines represent the polariton and bare exciton dispersion in bulk CuCl,
respectively, and self-sustaining modes are plotted with vertical bars. The length of a bar represents
the radiative decay width Ay of the mode, and the center is the resonance energy. As experimentally

demonstrated by Tang et al. [74], in the case of a CuCl film with a thickness in the order of 10 nm, the
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Figure 1.4: Thickness dependence of (a) radia-
tive decay rate and (b) resonance frequency of self-

sustaining modes in CuCl film existing in vacuum. . . . .
Solid and dashed lines represent exciton-polariton and

bare exciton dispersions, respectively.

quantized frequencies [Eq. (I'72)] of confined excitons are observed as dips in the reflection spectrum.
However, even modes (m = 2,4,6,...) can not be observed, because they are optically forbidden due
to the parity of center-of-mass wavefunctions under the long wavelength approximation (LWA). On the
other hand, for more than a few tens nanometer thickness, we must consider an energy shift of confined
exciton modes due to the interaction with the electromagnetic fields (radiative shift). As seen in Fig. [[H]
if the confinement wavenumber g,, = mn/d reaches the crossing wavenumber ny,zwr/c of the exciton and
photon dispersion curves, the resonance frequency is strongly shifted from the bare exciton frequency, and
the radiative decay rate increases due to the strong exciton-photon coupling. Since g, = mn/d decreases
with increasing the thickness, w;s and ~y of self-sustaining modes behave as seen in Fig.[[L4l Interestingly,
the even modes are not optically forbidden and have finite radiative decay rate as seen in Fig.[[L0l because
the LWA is broken in these film thicknesses, which are in the order of light wavelength in CuCl. Further,
in contrast to the bulk polariton dispersion, one self-sustaining mode exists in the polariton band gap
(wr < Wres < wr +wrr) as seen in [[H[a). Such modes deviate from the bulk polariton dispersion, and
they are just in the transition from lower to upper frequency side and have a large radiative decay rate
as see in Fig. [4(a).

The resonance frequency and radiative decay rate of the self-sustaining modes have been recently
observed in experiments. Syouji et al. observed the large radiative shift of resonance frequency from
the bare exciton one by means of the nondegenerate two-photon excitation scattering in CuCl film with
thickness of 35.3 nm [42], where the first mode feels the positive radiative frequency shift and the second

mode becomes the lowest energy state. On the other hand, Ichimiya et al. observed the quantized
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resonance frequencies by the degenerate four-wave mixing in CuCl film with thicknesses of 187, 260, and
312 nm. Further, they observed a decay time of about 100 fs for 187 nm thickness, and its rapid decay
is considered owing to the size-enhancement of the radiative decay rate as see in Fig. [[L4(a).

However, there remain some theoretical problems for understanding the thickness behavior of the self-
sustaining modes. First, as seen in Fig. [[4(a), the maximizing thickness for radiative decay rate does
not obey the condition ¢, = mm/d = nygwr/c. This is because a self-sustaining mode consists of some
exciton center-of-mass motion states especially under the strong exciton-photon coupling around the
maximizing thickness, and then the confinement wavenumber cannot be strictly determined. Second,
for more than 500 nm thickness, the maximization of v becomes divergent, and the transition of wyes
from lower to upper frequency side becomes discontinuous. The reason of this behavior has not been
understood. Last, the crossover condition from the above radiative modification regime to bulk polariton

one was not been completely clarified, although some prospects have been suggested by Ajiki [35].

1.5 Structure of this thesis

One of the main subjects of this thesis is the application of the calculation idea of the microscopic non-
local theory into the QED theory of dispersive and absorptive media, or in other words, the redescription
of the microscopic nonlocal theory in terms of the quantum electrodynamics. The present QED theory
has good correspondences with these two underlying theories, and it will be discussed in Chap.

Another subject is the comprehensive thickness dependence of the self-sustaining modes explained in
Sec. [L44l In the framework of the microscopic nonlocal theory, there remains a task to interpret the
divergent thickness dependence of the self-sustaining modes appearing at the phase-matching thicknesses
larger than, for example, 500 nm under the same condition as Fig. [L4l This behavior has a close
connection with the crossover of the radiative decay schemes of excitons, which has been discussed for
more than 20 years, and Ajiki have provided an answer for this problem in the framework of the nonlocal
theory. The novelty of the present work is deriving the crossover condition of the radiative decay schemes
explicitly. This work has another subject to construct a calculation method for the resonance frequency
and radiative decay rate of exciton-photon coupled modes in inhomogeneous systems, i.e., a calculation
method for poles in the exciton-photon inhomogeneous systems, which is required to analytically express
the retarded correlation functions of excitons. The details will be discussed in Chap. [3

The other subject is providing the analytical expression of the retarded correlation functions of exci-
tons in exciton-photon inhomogeneous systems by using the pole information obtained in Chap. Bl As
will be explained in Chap. 2 the present QED theory or the semiclassical microscopic nonlocal theory
provides the correlation functions. Therefore, for the future application of the present theory, their an-
alytical expression should be obtained to derive the time-ordered and thermal correlation functions by
the analytical continuation. I will show a good approximation of the analytical expression in Chap. @

In App.[ATl I explain general concepts of retarded correlation functions in relations to linear response
theory, Kramers-Kronig relations, and Langevin equation. In App. [Bl I show a validity of the QED
theory for dispersive and absorptive media by discussing the vacuum fluctuation of the electromagnetic
fields in its framework. In App.[Cl I show a direct derivation technique of the Green’s function for the
integro-differential equation, and I show the Green’s function for general multilayer system without the
nonlocality in App.[Dl Further, I explain the numerical calculation method for poles in App.[E] and show

the definitions of Fourier transform, longitudinal and transverse fields in App. [E



Chapter 2

QED Theory of Excitons

In this chapter, I explain the main result of this thesis: the full quantum theory for the optical process
of excitons (QED theory of excitons) with nonlocal susceptibility originating from their center-of-mass
motion. As explained in Chap. [[I there is growing interest in the QED of elementary excitation in
condensed matter, for example, the generation of entangled photons [I] and single photons [2] from semi-
conductors, and squeezing [4] and BEC [, @, [10] of polaritons in semiconductor microcavities. In order
to systematically discuss these topics for actual materials with spatial structure, such as surfaces, sub-
strates, and distributed Bragg reflectors (DBRs) with finite period, we require a QED theory of excitons
applicable to arbitrary-structured 3D systems with considering their center-of-mass motion, radiative and
nonradiative relaxations. While some papers have focused on the same subject previously, the novelty
of the present theory is its practical calculation method applicable to arbitrary-structured 3D systems
including exciton center-of-mass motion. This is owing to that the present theory adopts the calculation
idea of the microscopic nonlocal theory by Kikuo Cho [31], which has been developed in the semiclassical
framework as explained in Sec.[[L43l As the result, the present theory shows good correspondences with
the nonlocal theory as well as the series of QED theories for dispersive and absorptive materials, which
is explained in Sec. [[L3] for media with local susceptibility. The contents of this chapter was published in
Ref. [78.

The previously discussed QED theories with the nonlocality is explained in Sec. 2.1l The Hamiltonian
of the present theory is shown in Sec.[Z2 and two fundamental equations of it, the Maxwell wave equation
and motion equations of excitons, are respectively shown in Secs. 2.3 and 224l The wave equation with
the nonlocal susceptibility is explained in Sec. The present QED theory is explained in Sec. 2.6l and
the Green’s function for the nonlocal wave equation is shown in Sec. 277l The validity and usefulness of
the rotating wave approximation (RWA) in the present theory are shown in Sec. 2.8 and the practical
calculation scheme is explained in Sec. Finally, the comparison between the present QED theory and
others is discussed in Sec. 210

In this chapter, MKS units and Coulomb gauge are used.

2.1 Previous QED theories with nonlocal susceptibility

The series of QED theories [18] for dispersive and absorptive dielectrics, based on the pioneering work
by Huttner and Barnett [21], enable us to discuss the optical process in arbitrary-structured 3D dielectrics
characterized by a dielectric function (r,w). However, in order to discuss materials with the nonlocal

susceptibility, we must consider more general elementary excitations that cannot be described by the

17
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localized harmonic oscillators in the classical Hopfield model [19], which were adopted in the Huttner-
Barnett theory.

As a pioneering study on such full quantum theory considering the nonlocality, Jenkins and Mukamel
have discussed molecular crystals in d dimensions (d = 1,2,3) [(9], where the relative motion of excitons
is localized at a single molecule and the center-of-mass moves between molecules due to the dipole-dipole
interaction. While their theory concentrates on treating the resonant polarization without nonradiative
relaxation, recently, the nonlocality has been introduced into the field quantization in dispersive and
absorptive media [23] 24] 25 26] 27, 28], and some studies have demonstrated the application of their
theories for specific structures [23] 28]. Stefano et al. discussed excitons with the nonlocality in media
where the spatial translation symmetry is broken along one dimension, and they practically calculated
the spatial and frequency dependences of the vacuum field fluctuation in a semiconductor quantum
well structure [23]. Thereafter, they extended their theory to arbitrary-structured 3D media [24], and
discussed the input-output relations in scattering systems [25]. On the other hand, Bechler performed
the field quantization for homogeneous systems with the nonlocality by using the path-integral method
[26], and Suttorp performed the same for nonlocal, inhomogeneous, and anisotropic systems by using
the diagonalization method [27]. Most recently, Raabe et al. phenomenologically discussed the nonlocal
systems with both dielectric and magnetic properties [28], and they proposed the use of the dielectric
approximation with the surface impedance method for the practical application of their theory.

As seen in the above previous studies, it can be considered that a consistent framework for the field
quantization in dielectrics with the nonlocal susceptibility has already been established. Thus, the issue
of current importance is to establish a general and practical calculation method applicable to arbitrary-
structured 3D systems; this is desired for the actual applications of the above framework, although
interesting applications have already been demonstrated in specific situations by Stefano et al. and Raabe
et al. The essential task for this purpose is the derivation of dyadic Green’s function for the Maxwell
wave equation with the nonlocal susceptibility, as seen in Eq. (LE5). However, it seems a hard task to
solve such integro-differential equation for arbitrary structures.

On the other hand, in the semiclassical framework, such a calculation problem has been resolved
by using the fact that the nonlocal susceptibility is represented as a summation of separable functions
with respect to two positions [Eq. (ZE5I))], which is known as the ABC-free theory [29], or the micro-
scopic nonlocal theory [30} B1] as explained in Sec. [[43l I adopt the same calculation idea of them
to provide a practical calculation method for the Green’s function for arbitrary structures. Along the
lines of this strategy, the present theory start from the Suttorp-Wubs Hamiltonian [63], which describes
arbitrary-structured 3D isotropic linear media with local susceptibility, and consider the excitons with
finite translational mass and nonradiative damping. In other words, this theory extends the microscopic
nonlocal theory, previously discussed in the semiclassical framework, into the full quantum one. The
present QED theory consists of two equations in w-representation: the Maxwell wave equation with exci-
tonic polarization and the motion equation of excitons. From these two equations, we can derive a linear
equation set for exciton operators, which corresponds to the self-consistent equation set [Eq. (L66)] in the

semiclassical framework, instead of the Maxwell wave equation with nonlocal susceptibility [Eq. (L53])].
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2.2 Hamiltonian

The present theory describes the dielectric materials with resonant contributions from excitons with
center-of-mass motion and nonresonant ones from the background with local dielectric function epg (7, w).
This treatment is useful for considering the modification of the background electromagnetic fields in the
practical material structures (with absorption) such as substrate, dielectric multilayer cavity, photonic
crystals, and so on, surrounding the excitonic active regions. The nonresonant background is treated
by the Hamiltonian of Suttorp and Wubs [63], which describes inhomogeneous 3D dielectrics with local
susceptibility, and the optical and nonradiative damping processes of excitons are discussed by considering
the exciton-photon interaction and a reservoir of oscillators interacting with the excitons, respectively.

The Hamiltonian in the whole system was derived in App. B of Ref. [78, and is written as

H = Hem + Hint + Hrnata (21)

where H.p, describes the electromagnetic fields and the background dielectric medium, Hy,,: represents
the excitons and the reservoir of oscillators, and Hj, is the interaction between Hey, and Hp,i. In the
following discussion, the detailed representation of Hep, is not important, and it is shown in Eq. (B9) of
Ref. [f8 or in Eq. (3) of Ref. [63l

On the other hand, the interaction Hamiltonian is represented as

1

Hini = = [ ar [t} Al) = () 4750 + [ dr onu(rdptr) 4 5 [ ar bslrhpntr). 22

Here, A(r,t) is the vector potential and ¢ng(r,t) is the Coulomb potential induced in the background.
I (r) is the excitonic current density without radiation contribution —Nex(r)A(r), i.e., the whole current
density is written as Jox (1) = Iox (1) — Nox(r) A(r) (see App. A of Ref.[78 or Sec. 2.2 of Ref.[31]). Further,
Pex(T) is the excitonic charge density and
'

buslr) = [ ar M (2.3)
is the Coulomb potential. The first and second terms of Eq. ([2:2) represent the interaction between the
radiation field and excitons. The third term is the Coulomb interaction between the induced charges
of the excitons and those of the background. The last term represents the interaction between the
excitonic charges themselves, and it is also considered as the dipole-dipole interaction between excitonic
polarizations, or the exchange interaction between electrons and holes [0l [75] [31] (or see App. B of
Ref. [78). Although this term usually belongs to the matter Hamiltonian Hpa¢, I displace it into Hing
because it can also be considered as the interaction between the longitudinal component of the excitonic
polarization and that of the electric field. This treatment will give us the motion equation of excitons
in a simple form as seen in Eq. ([237), and will eliminate the explicit consideration of the longitudinal-
transverse (LT) splitting of the exciton eigenenergies, because the last term of Eq. (22]) is just the origin
of the LT splitting.

With regard to the excitons, they are, in principle, described in electron system with valence and
conduction bands or in electron-hole system, and the Coulomb interactions between electrons and holes
and between themselves are considered. However, as long as we consider the optical processes of excitons
under weak excitation, it is valid to describe the electron system in terms of exciton eigenstates, and put

the nonresonant (background) contributions into Hep,. In addition, in order to describe the nonradiative
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damping process of excitons, I consider a reservoir of oscillators interacting with the excitons. In the

present theory, the matter Hamiltonian is represented as
Hypar = > hwyblb, + Z/O A2 {182 d},(2)d,(22) + [by + bl [9.(2)du(2) + g (2)d],(2)] }. (2.4)
I "

Here, b, is the annihilation operator of an exciton in eigenstate p with eigenfrequency w,, which does
not include the LT splitting because I displace the exchange interaction between electrons and holes from
Hpat to Hing. The center-of-mass motion of excitons is confined in finite spaces, and index p represents
the degrees of freedom of not only the relative motion but also the translational one. Instead of evaluating
the commutation relations of b, from the Fermi’s commutation relations of electrons and holes, I consider

the excitons as pure bosons satisfying

[b/n b;ru] = 6u,u’7 (2.58,)
(b, by] = 0. (2.5b)

On the other hand, in Eq. (Z4)), d,,({2) is the annihilation operator of an reservoir oscillator with frequency
(2 interacting with the excitons in state p, and g, (f2) is its coupling parameter. The oscillators are

independent of each other and satisfy the following commutation relations:

dl ()] = 0,0,0(2 — '), (2.6a)
d (2] =0. (2.6b)
The present theory consists of two equations in w-representation: the motion equation of excitons and
Maxwell wave equation, which are both derived from the Heisenberg equations. Because of the interaction
with the reservoir oscillators, as seen in Sec.[2.4] the motion equation of excitons has fluctuation operators
in the same manner as the Langevin equation (App.[A3). On the other hand, the Maxwell wave equation
also has a fluctuation operator, the noise current density, which originates from the absorption in the
background dielectrics as explained in Sec. [[L3 The quantum mechanical properties of electromagnetic

fields are treated through the commutation relations of these fluctuation operators.

2.3 Maxwell wave equation

Since I consider the interaction Hamiltonian Hj,; between excitons and electromagnetic fields, the
excitonic polarization is introduced into the Maxwell wave equation with the noise current density, which
was explained in Sec. for local dielectrics. In this section, I show that modified wave equation,
whose derivation is shown in App. C of Ref. 78l

Since I consider the matter system as a combination of excitons and background medium, the electric
field contains Coulomb potentials ¢ex(7) and ¢pg(r) induced by excitons and background, respectively,
and it is represented as

O A(r,t) = Vng(rst) — Ve (r,1). (2.7)

E(r,t) = ~ 5

Because the Coulomb gauge is used in the present theory, the vector potential is a transverse field
satisfying V - A(r) = 0, and the second and third terms represent the longitudinal fields. The Maxwell
wave equation for the electric field is written in w-representation as

2
~ w ~ . ~ ~
VXxVxE"(rw)— c—erg(r,w)Eﬂr,w) = ipgwdo(r, w) + pow? Pt (r,w), (2.8)
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where E*(r,w) and P (r,w) are the positive-frequency Fourier components of E(r,t) and the excitonic
polarization density 15(3,((1*,15)7 respectively, and they are defined in the same manner as Eq. (LH). I
represent the Fourier transformed operators with a hat (") in this chapter. Comparing to Eq. (IL30), the
Maxwell wave equation for local media, Eq. (28] has the additional polarization Isef((r, w), which reflects
the matter information as well as the background dielectric function epg(7,w). On the other hand, as
compared to the classical electrodynamics, Eq. (2.8]) has the noise current density operator jo(r,w) on

the RHS, and it satisfies X R
Jo(r,w) = {Jo(r, fw*)}f (2.9)

as the vector potential satisfies Eq. (LX), and also the electric field does. Furthermore, as the noise

current density satisfies Eq. (L31)) in the Suttorp-Wubs theory, jo(r, w) should also satisfies

[Jo(r,w), {do(r', VM| = [do(r,w), do(#”, )] = 6w - w)a(r - r')eozw Imepg (r,w)]1,  (2.10)

where [Jo, {Jo}1] is a 3 x 3 tensor and its (¢,£’) element implies [{Jo}e, {jg}g/] for £ = z,y, z. Although
Eq. (ZI0)) is phenomenologically introduced in the present theory, it can be derived through the Laplace
transformation technique of Suttorp and Wubs [63]. However, the validity of Eq. (Z10) can be understood
according to the series of QED theories for dispersive and absorptive media (Sec. [[3), or the fluctuation
dissipation theorem. In addition, we can verify that Eq. (2I0) provides reasonable commutation relations
of excitons and electric field in the whole system as will discussed in Secs. and 271

By using the dyadic Green’s function Go(r, r’,w) satisfying Eq. (L29), Eq. (Z8]) can be rewritten as

Ef(r,w)=E}(r,w) + ,uowg/dr’ Go(r, 7, w) - PX(r' w), (2.11)
where Ear (r,w) is considered as the background field, the electric field in H,,, system, and defined as
Ef(r,w) = i,uow/dr' Go(r, 1, w) - Jo(r', w). (2.12)

In the classical electrodynamics, this is usually introduced as a homogeneous solution satisfying

V x V x <E'ar(r,w)> - i—jabg(r,w) <EJ(r,w)> =0, (2.13)

and is considered as an incident field for excitons. On the other hand, since the optical susceptibility is
a response function connecting the electric field and matter polarization, according to Eq. (A14)), the

background dielectric function epg = 1 4 xpg satisfies
ebg(r,w) = {epg(r, —w")}* = Ebg (T, —W), (2.14)
and also the Green’s function satisfies

Go(r, 7", w) = {Go(r,r", —w*)}* = Gj(r, 7', —w). (2.15)

Therefore, the negative-frequency Fourier component of the electric field is represented as
E~(r,w)=E*(r,—w) = E; (r,w) + uowz/dr' G;(r, 7 w) - PL(r,w), (2.16)
and the background field is given as

E; (r,w) = —i,uow/dr' Gy(r, 7", w) - Jo(r', —w). (2.17)
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Since Jo(r,w) satisfies Eq. (23), in the same manner as Eq. (L), E& (r,w) also satisfies

Ef(r,w) = EJ(r,—w) = {EX (r, —w")}'. (2.18)

Furthermore, from the commutation relation ZI0) of Jo(r,w) with Egs. (L35) and (L36), that of

EF(r,w) can be derived as

2

(B (r,w), By (r,0)| = [Bf (r,0), B (', —o)| zé(w—w')mi):: [Go(r, ', w) — Gy (r, ', w)]. (2.19)

This has the same form as Eq. (IL34), and is also interpreted as that the Green’s function Go(r,r’,w) is

the retarded correlation function of the electric field in the background system:
1 [ : /
—pow?Go(r, 1, w) = ﬁ/ dt =) ([Eo(r,t), Eo(r',t)]) . (2.20)
t/

This representation actually satisfies Eq. (2.19). Therefore, because of the causality seen in Eq. (220),
Go(r,r’',w) satisfies the Kramers-Kronig relation, and has no pole in the upper half of the complex

w-plane.

2.4 Motion equation of excitons

The motion equation of the electric field has been obtained as the Maxwell wave equation [Eq. (Z8])]
or Eq. (ZII). On the other hand, there remains a task to derive the motion equation of excitons or the
excitonic polarization Pef((r, w) appearing in the Maxwell equations. As seen in App. A of Ref. [78] the
second-quantized form of the excitonic polarization is represented in terms of the exciton operator set
{bu} as

Pe(r) = [Pu(r) b+ Pj(r) b}] , (2.21)
7

where the expansion coefficient P, (r) is written as
P.(r)="P.e,G,(r). (2.22)

P, is the transition dipole moment, e, is a unit vector in the polarization direction, and G (r) is the
center-of-mass wavefunction in exciton state p. Under the weak (center-of-mass) confinement regime
of excitons, their relative motion is approximated as that in bulk system, and P, is related to the LT
splitting energy as Al = [P, |2 /e0ebg.

From the matter Hamiltonian [Eq. ([24])] and the interaction one [Eq. ([Z2])], neglecting the radia-
tion contribution of the current density Ney(r)A?(r)/2 under the assumption of weak excitation, the
Heisenberg equation of exciton operator is derived as

ih%bu(t) = hw,b,(t) — /dr [IZ(’I“) “A(r,t) — pZ(r)gbbg(r,t) — p;(r)qSex(nt)]

+/oodrz [9.(2)d,(2,) + g (2)d],(2,1)] . (2.23)
0

Here, Z,,(r) and p,(r) are, respectively, the expansion coefficients of Iox(r) and pex(r) as

I(r) =Y [Zu(r) b+ I;(r) bl] (2.24)
pex(r) =D [pu(r) b+ pji(r) O] (2.25)

m
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Further, from the relations of excitonic polarization under weak excitation

0 1 1
Loc(r) = £ Pex(r) = <1 [Poc(r), H) = <1 [Poc(r), Hosl, (226)
Pex(1) = =V - Pey(7), (2.27)
the coefficients can be rewritten as
Z(r) = —iw,Pu(r), (2.28)
==V - P,(r). (2.29)

On the other hand, the Heisenberg equation of reservoir operator is derived as

ih%du((),t) = B2 d(2,1) + g5(92) [bu(t) + b1, (2)] - (2.30)

By the same procedure as deriving the Langevin equation (App. [A3]), the motion equation (2.23) of
excitons is rewritten by substituting Eq. (230) as

200 = Bt 1) — [ ar [Z3.0)- Al ) (el 1) — i)t 0]
—/t dt’%[b(t’)—klﬂ(t’)]—ki)“(t), (2.31)

where the coefficient function is defined as

L-t)_ [~ |9u(9)|2 —iQ(t—t") i2@—t)| _ F/:(t, —1)
T:/0 dQT[e —e }_T. (2.32)
Further, the fluctuation operator D, (t) is defined as
Dy(t) = /0 492 |gu(2)e7 2001, (to) + g5, (2)e 2l ()| = D (1), (2.33)

where ty — oo is the time that the exciton-reservoir interaction is switched on. This operator satisfies

KL, (t—t)

5 (2.34)

[D4(8), D}, (1] = D), D () =

In the present theory, the noise current density Jo(r,w) and D, (t) [or its Fourier transform 15“ (w)] are
the fundamental fluctuation operators, whose commutation relations are already known.
Next, I show the w-Fourier transform of the exciton motion equation. The Fourier transform of exciton

operator is defined as

/ dt e“'p,,( (2.35a)

bl (w) = > / dt bl (1) = {bu(—w*)}. (2.35b)
Since the electric field [Eq. [27)] is transformed into
E(r,w) = iwA(r,w) — Voug(r,w) — Ve (r,w), (2.36)

By using Eqs. 228) and [229) with the partial integration, Eq. [231)) is rewritten under the resonant

condition w ~ w,, as

[y, — hw = i034(@)/2) B (@) + [~L(w)/2] {bu(~w™)}T = / dr PL(r) - B (rw) + D, (w),  (2.37)
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where I, (w) is the nonradiative damping width defined as

1wtli |glt 1 1
/dte /dg ih {Q—w—ié—i_()—i-w-i-ié’ (2:38)

(W) = AL (=w")}" = =T (-w). (2.39)

and it satisfies

In the calculation for analyzing practical materials, we usually give real values {I,(w)} as fitting param-
eters, rather than estimating them from their definition [Eq. (Z38)] for given coefficients {g,(2)}, which
reflect into the present theory only through {I7,(w)}. On the other hand, the fluctuation operator D,,(w)

is written in w-representation as

D, (w) = % /_OO dt €D, (t) = {D,(—w*)}, (2.40)

and, by the same procedure as App. [A.3] its commutation relation is obtained as

hoil(w) +il7; (w)

(D), 1D ()] = [Do(). Do ()] = Bl = ') - = (2.41)

Since the origins of D, (w) and Jy(r,w) are independent with each other, they should be commutable as
[ﬁﬂ(w)7 jO(ra w/)i| - {ﬁlt(w)a {jO(va/*)}T =0. (242)

We can verify the validity of this relation from the fact that the fundamental commutation relations,
gs. 210, Z41), and ([Z42), provides those of excitons and electric field with reasonable representation
as will seen in Secs. and 2.7

Motion equation (2371 of excitons is rewritten with its Hermite conjugate as

Sule) [{éﬁ”(g»*] - [ar [pi) B+ ] 2o (243)

where the coefficient matrix is defined as

fwy —Tw =il (w)/2 —il,(w)/2
Sl = { —il(w)/2 hw,, + fiw — i, (w) /2] ' (2.44)
By introducing the inverse matrix wu(w) = [§M(w)]—1’ Eq. (ZZ3) becomes
Bu(w) = w r Pur)| g r,w w L g w
(] =Wt far [T B e w0 || o (2.45)

Here, it is worth to note that W, (w) can be interpreted as the retarded correlation function of excitons

in Hey system:
L[
W) = g [ e 0.5, (2.462)
Wi2(y) = & Tt ) (b (1), b (¢ 2.46b
EAST) (w) - E y € <[7u( )77u( )]>7 ( . )

where the exciton operators in the interaction representation is defined as

b,(t) = el Hext/h by e Hext/ (2.47a)

bl (t) = eflext/M it = Hext/I (2.47b)



2.5 Maxwell wave equation with nonlocal susceptibility

25

This is because, as seen in Eq. (231), the interaction Hamiltonian Hi, [Eq. (Z2))] can be approximated

under the linear optical process with weak excitation as
Hine ~ — / dr Pu(r)-E(r) =) / dr [Pou(r) by + P(r) bL] - E(r), (2.48)
"

and then, according to the linear response theory, W, (w) is interpreted as the correlation function from

Eq. (245).

On the other hand, the w-representation of the polarization density [Eq. (221])] is written as

Pi(r,w) = 3 [Pulr)bu(w) + Prr) {bu(—")}] (2.49)
B 50/ dr' Xex(r,7',w) - E¥ (r,w) + ) [gfm W, (w) m Dy(w), (2.50)
where the dyadic susceptibility has a nonlocal form as
F o= LS [Pu)] Pu(r)
Xexlri) = 203 i) e ) 231

Since this function can be directly derived from the motion equation [223) of excitons and that (230
of reserver oscillators with maintaining the causality, Xex(7, 7', w) satisfies the Kramers-Kronig relations

and has no pole in the upper half of the w-plane. Further, it also satisfies
Xex(rvT/7w) = {Xex(rvr/7 _W*)}*7 (252)

but does not have the reciprocity relation Xex(r, 7', w) # {Xex(r',7,w)}" because of the anisotropy of ex-
citons in general. The spatial spreading of the exciton center-of-mass motion, the origin of the nonlocality,
is reflected through the polarization coefficient P, (r) or the center-of-mass wave function G, (r). On the
other hand, the spatial structure of the background dielectrics is characterized by the dielectric function
epg(r,w) in the Maxwell wave equation [Eq. (Z8)] and in commutation relation (ZI0). Through these
position-dependent functions, the present theoretical framework can be applied to arbitrary-structured

exciton motions and background dielectrics.

2.5 Maxwell wave equation with nonlocal susceptibility

In order to discuss the optical processes of excitons, we must simultaneously solve the Maxwell wave
equation [Eq. (28)] and the motion equation of the excitonic polarization [Eq. (Z50)] for describing the
unknown physical operators ET(r,w) and P (r,w) in terms of the fluctuation operators Jo(r,w) and
ﬁﬂ (w), whose commutation relations are already known. Substituting Eq. (Z350) into Eq. (Z8), a wave
equation with the nonlocal susceptibility is obtained as

2 2

V XV x E*(r,w) — %Ebg(r,w)E+(r,w) - uc% /dr' Xex(r, 7" w) - EY (7', w) = ipowJ}(r,w), (2.53)

where the new noise operator Jj(r,w) consists of Jy(r,w) and the second term of Eq. (Z50) as

| W, [}] B 25)

r
r

Jrw) = do(rw) — w0y ﬁzg

From Egs. (29), (239), and (240)), this operator also satisfies
Jo(r,w) = {J4(r, —w*)}H. (2.55)
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From commutation relations (ZI0), (ZZ1), and (Z42), that of J}(r,w) is obtained [derivation is shown
in App. E of Ref. [7§] as

R R " Fuw?
[Jo(rw) {dgr W] = 8w — ) 22 o7 w) — e m,0)] (2.56)
7
where e(r,r’',w) is the dyadic dielectric function defined as
e(r,r',w) =6(r — r')epg(r,w)1 + Xex(r, 7', w). (2.57)

Wave equation (Z53) and commutation relation (Z56) are just the ones discussed by Savasta et al.
[24] 25], and they also have the same forms as those of Raabe et al. [28]. Further, Eq. (250]) can be
understood as a natural result from the fluctuation dissipation theorem as discussed in Refs. 24] 25 and
28 (or see Sec.[[32)). Along the lines of those works, the problem reduces to finding the dyadic Green’s
function G(r,r’,w) satisfying

2 2

V xVxG(r,r w)— %Ebg(r,w)G(r, r' w)— ucj—z /dr” Xex (T, 7" w) - G(r" v w) = 6(r —r")1. (2.58)

This function renormalizes the linear optical process of excitons with the nonlocality, and enables us to

rewrite Eq. (Z53) as
ET(r,w) = iuow/dr’ G(r,v"\w) ) w). (2.59)

However, it seems very difficult to solve this nonlocal equation in practical problems. However, this
difficulty becomes avoidable by using the fact that the nonlocal susceptibility [Eq. (Z51))] is represented as
a summation of separable functions with respect to 7 and r’. One scheme is to directly derive G(r,r’,w)
as discussed in Ref. BTl (or see App. [0), and the other is to reduce this integro-differential equation
into a simultaneous linear equation set along the lines of the microscopic nonlocal theory [3I] (or see
Sec. [L4.3). The present QED theory adopts the latter scheme because it provides not only the dyadic
Green’s function of the former but also the retarded correlation function of excitons in inhomogeneous

exciton-photon systems as discussed in the following sections.

2.6 Simultaneous linear equation set for exciton operators

Instead of solving the integro-differential equation [Eq. (258])], I reduce the problem into a linear
equation set by using the same technique as the microscopic nonlocal theory developed in the semiclassical
framework [3I]. Substituting Eq. [2.I1]), the electric field represented with Green’s function Go(r,r’,w),
into Eq. (Z37), the motion equation of excitons, with expanding P (r,w) as Eq. ([249), a linear equation

for exciton operators {b,,(w), {b,(—w*)}T} is obtained as

> [ @b (@) + 12, (@) b (=)} | = / dr Pi(r) - Bf (r,0) + Du(w),  (2.60)
w
where the coefficients are defined as
11
Sﬂyﬂ,(w)
12
Smu’(w)

[wy, — hw — i, (w) /2] 6, 0 + Xy (W), (2.61a)
[l (w) /2] Oy + X, 0 (). (2.61b)

The first term on the RHS of Eq. (Z:60) can be interpreted as the exciton amplitude directly induced
by the background electric field. Here, the word “directly” means that this term does not include the
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diffusion of the exciton amplitude via the electromagnetic fields. Instead, such an effect is reflected

through the correction terms appearing in Eqs. ([2.61):
(@) = =t [ dr [ ar PLr) - Golror' ) o), (2.622)

E,/L w = —[ow /dT/dT Pu -Go(r, 7", w) - ’P (). (2.62b)

These can be interpreted as that the polarization at ' induces an electric field, and then it induces
another polarization at r later. The interaction between the transverse fields is the retarded interaction,
and the one between the longitudinal fields is interpreted as the Coulomb interaction between induced
charges. The latter is just the exchange interaction between electrons and holes, which is displaced from
Hpat to Hing, and gives the LT splitting as a correction to exciton eigenenergies.

From Eq. (Z80) and its Hermite conjugate, a simultaneous linear equation set for {b,,(w), {b,(—w*)}}

is obtained as

S (w) 512,(w)] [ by (w) ] / [’P*(r)} - H A
b Kot w dr | -Ef(r,w)+ D,(w). 2.63
2 D ] [ Sy Pulr)| Bl g Pule) (263
This equation has the same form as Eq. (IL66) in the semiclassical microscopic nonlocal theory, except
for the fluctuation operator D, (w) on the RHS of Eq. [ZB3). Further, the background field Ej (r,w)
satisfies commutation relation (2-19]), and then we can discuss the vacuum fluctuation of electromagnetic

fields. By calculating the inverse of the coefficient matrix as W(w) = [S(w)] 7!, Eq. ([263) is rewritten as

o] -S e s {[ e B s []o0)
R = ! i dr -EJ (r,w) + D,y (w) ¢, 2.64
o] - S s o). oo
where I consider that the inverse matrix should have the same symmetry as the original one. In the same
manner as the exciton correlation function in Hey system appearing in Eq. (245), W(w) is interpreted
as the Fourier transform of the retarded correlation functions of excitons in the whole system:

—WiL " dt ettt ([bu (1), b1, (£)]) (2.65a)

Wikw) = / at S ([ (1), (1)) (2.65b)

Therefore, from the calculation scheme of the microscopic nonlocal theory [31], the exciton retarded cor-
relation functions renormalizing the exciton-photon interaction can be obtained by the matrix inversion.
On the other hand, in App. E of Ref. [78, the commutation relations of excitons were calculated from
those of Ef(r,w) and D, (w) [Eqs. @I9), @41), and 242)]. As the result, they are represented by the

elements of W(w) as

i), fbye (/D] = 80 — ) o (WAL () = Wit )] (2.660)
[Bueo), B ()] = 6 = )i (W12, () — W22, ()] (2.66D)

These are reasonable results that can be derived from Eq. (2:65).

2.7 Green's function for nonlocal wave equation

Since the exciton operators are represented in terms of fluctuation operators as seen in Eq. (Z.64)), the

other physical variables can also be described in terms of them and EASE (r,w) in the present theory. For
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example, the excitonic polarization is written as Eq. (2:49), and the electric field [Eq. (ZI1))] as

E*(r,w) = Ef (r,w) + ) _[Eu(r,w)bu(w) = &,(r, —w){bu(~w)}], (2.67)

where the coefficients are defined as
Eu(r,w) = ,uowg/dr’ Go(r,r",w) - P,(r), (2.68a)
Fulr,w) = uowQ/dr' Go(r,r',w) - P,(r'), (2.68b)

and, from Eq. (ZI5), they have the relation as

Eu(rw) = .7-';(7“, —w) ={Fu(r,—w")}". (2.69)

Here, from Eq. ([Z.67), the commutation relation of the electric field operator is obtained (derivation is
shown in App. E of Ref. [78)) as

2
[Eﬂr,w),E‘(r’,w’)} = [E*’(r,w),E"‘(r’7 —W)| = 6(w — w,)u(?;w [G(r,r',w) — G*t(r',r,w)] ,
i2m

(2.70)

where the dyadic function G(r, r’,w) is defined as
1 '
G(r,r",w) = Go(r,r",w) + e Z{gu(r,w)W;}u, (W)F(r' w) + £M(r,w)W[}72u, (W)E(r',w)
st
+ &,(r, fw)W;}:,(fw)J:z,(r', —w) + &, (r, —w)WfJ/(—w)Ez/(r’, —w)}. (2.71)

In the same manner as the discussion in Sec. [[.L3.2] this function corresponds to the Fourier transform of
the retarded correlation function of the electric field in the whole system as

—pow?G(r, 7 w) = ,l/t/ At <) ([E(r,t), E(r',)]). (2.72)

1

Actually, as verified in App. F of Ref. [78, G(r, r’,w) satisfies Eq. (2.58]), the wave equation with nonlocal
susceptibility. On the other hand, this function satisfies

G(r,v,w) ={G(r,r",—w*)}* = G*(r,r', —w), (2.73)

but does not satisfy the reciprocity relation G(r,r’,w) # {G(r’,r,w)}' because of the anisotropic sus-
ceptibility tensor (ZH]]) of the excitonic polarization. In this way, the dyadic Green’s function satisfying
Eq. (2358), the nonlocal wave equation, is obtained for arbitrary-structured 3D systems in the present

theory.

2.8 Under rotating-wave approximation

In the semiclassical framework, the microscopic nonlocal theory has mostly been discussed under the
rotating wave approximation (RWA) for its practical applications. The RWA is valid for most of the
excitonic systems, and also the self-consistent equation set [Eq. (ZG3])] becomes simple under the RWA.
In this section, I show the validity and usefulness of the RWA in the present QED theory.

The RWA means that nonresonant terms proportional to (w + wu)_l are negligible as compared to

resonant terms (w — w#)_l. In discussing the resonant optical processes of elementary excitations in
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condensed matter and also in atoms and molecules, the RWA is usually considered to be a valid approx-
imation, because the width of the energy range of interest is usually sufficiently small as compared to
the eigenenergies of the elementary excitations. In particular, in the case of excitons, the width is of
the order of LT splitting, center-of-mass kinetic energy, or radiative and nonradiative relaxation widths,
which are usually more than three orders of magnitude smaller than the excitons’ eigenenergies. Since
the nonlocality becomes essential only under resonance conditions, the RWA does not impose any signif-
icant restriction on the present theory for discussing nonlocal systems. In the following paragraphs, the
RWA will be applied to the excitons’ motion, and simplified equations and commutation relations will be
derived.

Under the RWA, i.e., w ~ w,,, the excitons’ motion equation, Eq. (Z37), can be approximated as

ooy — b — 10 (w)/2] by (w) = / dr Pr(r) - B (r,w) + Dy(w), (2.74)

because the contribution from {b,(—w*)}f = Z;L (w) is negligible as compared to that of B,L(w). For the

same reason, the excitonic polarization [Eq. (2:49)] is also rewritten as

Pi(r,w) =) Pu(r)bu(w). (2.75)

Substituting Eq. (Z774]) into this equation, the excitonic polarization is written, instead of Eq. (Z50), as

. _ : P (r)Dyu(w)
Pl(r,w)=¢ /dr' Xex (P, 7' w) - BT (r,w) + - L , (2.76)
0 %:hwu—hw—l u(w)/2
where the susceptibility tensor, Eq. (2X&]]), is simplified as
_ 1 P.(r)PE(r
Xox (T, 7, W) = w(r)Py(r) (2.77)

€0 —~ hwy, — hw —il,(w)/2”

This function also satisfies the Kramers-Kronig relation and has no pole in the upper of the complex
w-plane, because it is also derived from Eqs. (2223)) and (230), the motion equations of excitons and of
reservoir oscillators under the RWA. However, while the susceptibility (2.51]) satisfies Eq. (2.52) without
the RWA, Eq. (2717) obeys Xex (7, 7', w) # {Xex(7, 7 —w*) }* because the focusing frequency is only under
W~ Wy

Substituting Eq. ([Z276) into the Maxwell wave equation [Eq. ([28])], a new wave equation is obtained,
instead of Eq. (253)), as

2 w2

V XV x ET(r,w) — %ebg(r,w)EJr(r,w) - = /dr’ Xex (1,7, w) - EY (¢! w) = ipowy (r,w), (2.78)
C C

where the noise current density [Eq. (Z54))] is rewritten as

Jyr) = do(r) i3 A (2.79)

From commutation relations 2I0), Z41), and (242), that of JJ(r,w) is obtained as

EOhUJQ
i2m

J! (r,w), {j{]’(r’,w’*)}q =6(w—w) [E(r, 7" w) — e (v, r,w)], (2.80)

where the nonlocal dielectric tensor is represented as

e(r, 7", w) =6(r — ' )epg(r,w)1 4+ Xex(r, 7', w). (2.81)
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In this way, even under the RWA, the commutation relation has the the same form as the original one
[Eq. (Z356)], which is represented by the nonlocal dielectric tensor e(r,r’,w) [Eq. 257)].

On the other hand, substituting Eq. (ZI1]), the representation of the electric field, into Eq. (274, the
approximated motion equation of excitons, with expanding P*(r w) as the approximated form (273]), a

linear equation set with respect to only {b,(w)} is obtained, instead of Eq. (ZB0), as

Z SAL ()b ( dr Pi(r) - Ef (r,w) + D, (w). (2.82)

By calculating the inverse matrix W(w) = [S"(w)]~", on the basis of the exciton eigenstates, the exciton

operators are represented as
=> Wy (w) [ / dr P (r) - Ef (r,w) + Dy (w)] . (2.83)
M/

From commutation relations (Z19), [2:41)), and ([2:42), those of excitons are derived under the RWA as

[Bule), {bye (W] = 50 — ) oo (W ) — W) (2.842)
[Bu(w), BM,(—M')} —0. (2.84b)

Here, from the relation Wu,u’(_w) < Wmu’ (w) obtained under w ~ W' ~ w, > 0, Eq. (2:840) can be
approximated to be zero. In addition, the relations Wl}}#/ (w) > W;?#, (w) and W;}#,(w) o~ W#,u/ (w) are
obtained under the RWA. Therefore, commutation relations (2.84]) can be considered as approximations
of Egs. (266), which are derived without the RWA.
On the other hand, instead of Eq. (Z67), the electric field is written under the RWA as
Ef(r,w) = Ef (r,w) + Y _ Eu(r,w)bu(w). (2.85)
Iz

From commutation relations (ZI9) and ([2:84), those of the electric field are obtained in the same form
as Eq. (Z70) as
fohw?
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ET(r,w), E=(r', )| = 0(w—') [é(r,r’,w) — a*t(r',v“,w)} , (2.86)

where the dyadic Green’s function a(r, r’,w) is represented, instead of Eq. (ZX11)), as

~ 1 —~
Glr,r',) = Go(r ) 4 s 3 £l )W () F (7 0) (2.87)

Since W1, (w) > W2, (w) and W)L (w) > WL (—w), G(r,r',w) can be considered as an approxima-
tion of Eq. (2X71). Further, instead of Eq. (258]), this function also satisfies
2 W2

V XV xG(r,r,w)— %gbg(r,w)a(r, rw)— = /dr” Xex (1, 7", w) - G(r" v’ w) = 6(r —r')1. (2.88)

However, Eq. [2.73) is not maintained under the RWA as G(r,7/,w) # {G(r, 7, —w*)}*.

From Eqs. (283) and (2388), under the RWA, Wu,/ﬂ(w) and G(r,r',w) can also be considered as
retarded correlation functions of excitons and electric field, respectively. This can also be verified from
the fact that the commutation relations of them, Eqs. (284]) and (Z86), maintain their forms from the
general ones. Furthermore, since those correlation functions functions are considered as approximations
of the general ones, it is safe to say that the RWA is valid in the present QED theory, and it is useful in the
practical application from the viewpoint of the simplicity of the self-consistent equation set [Eq. (2:82)]
and the dyadic Green’s function [Eq. (287)].
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2.9 For practical calculations

In this section, I explicitly show a calculation scheme for practical applications of the present theory.

First, the practical materials should be described in terms of the parameters of the present theory,
i.e., background dielectric function epg(7,w), excitons’ eigenfrequencies {w,, }, transition dipole moments
{P.}, polarization direction {e,}, center-of-mass wave functions {G,(r)}, and nonradiative relaxation
widths {I',}. Usually, {w,} and {G(r)} are determined from boundary conditions for the exciton center-
of-mass motion. The absolute value of P, is determined by the LT splitting energy Al = |P,|?/g0ebg
in bulk system, and {I,} and the phase differences of {P,} between different relative-motion states are
treated as fitting parameters for experimental results. However, it is sufficient to consider only the lowest
relative motion of excitons, when the eigenfrequencies of higher states are far from the frequency region
of interest. In such a case, the phase of P, does not appear in the calculation of observables under the
RWA, and only {I,} remain as fitting parameters.

Next, the dyadic Green’s function Go(r,r’,w), which satisfies Eq. (L59) and is uniquely determined
for given epg(r,w), should be derived. The form of Go(r,r’,w) has already been known for various
structures with high symmetry [65], and it can also be numerically calculated for arbitrary 3D structures
[66]. Therefore, the integrations appearing in X, ,,/(w), E;w’ (w), Eu(r,w), and F,(r,w) [Egs. (2624,
(2.62h)), (268a), and ([2.68H)] can be performed, and then the inverse of the coefficient matrix of the self-
consistent equation set [Eq. (263) or Eq. (2:82) under the RWA] is numerically calculated. The dyadic
Green’s function G(r,r’,w) satisfying BEq. [Z58) is obtained as Eq. @7I) [or G(r,r',w) as Eq. (Z37)
under the RWA].

The size of the coefficient matrix is 2N x 2N (or N x N under the RWA), where N is the number
of exciton states to be considered in the calculation. The above numerical calculation has been per-
formed for semiconductor quantum dots, films, multilayers, and so on in the semiclassical framework
[31]. Furthermore, the present QED theory with the RWA has already been applied to the analysis of
the entangled-photon generation from a semiconductor film with thickness of a few hundreds nanometers
[46]. In this numerical calculation, 200 exciton center-of-mass motion states were considered. In this way,

the present QED theory is definitely feasible for practical applications.

2.10 Discussion

In this chapter, based on the framework of QED for dispersive and absorptive media [21], 18] [63] and the
calculation idea of the microscopic nonlocal theory [31], a QED theory for excitons in arbitrary-structured
3D dielectrics has been constructed with considering the nonlocal susceptibility and the nonradiative
damping of excitons. This theory maintains good correspondences with both the two underlying theories.
On the other hand, as mentioned in Sec. 2Tl the QED of nonlocal media has already been discussed in a
few studies. From the viewpoint of practical applications, I compare the present theory with the studies
of Stefano et al. [23, 24, 25] and Raabe et al. [28§].

Stefano et al. have discussed the quantum-well structures of dispersive and absorptive dielectrics with
the nonlocality in Ref. 23] and their theory is generalized to enable the consideration of arbitrary struc-
tures in Refs. 24| and [25] However, there still remains a problem in deriving the dyadic Green’s function

for the generalized wave equation, as shown in Eq. (Z58]) in this thesis. On the other hand, the present
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theory gives a solution to this problem by providing a definite calculation method based on a linear
equation set, which is derived in the same line as the microscopic nonlocal theory [31], i.e., by using the
Green’s function Gy (7, r’,w) and the fact that the nonlocal susceptibility is represented as a summation of
separable functions with respect to two positions, as seen in Eq. (Z21]). In the present theory, the Green’s
function required in Ref. 25| can be obtained as Eq. (Z71), which can be applied to arbitrary-structured
excitonic polarization and background dielectrics.

On the other hand, Raabe et al. proposed the use of the dielectric approximation with the surface
impedance method for the practical calculation of the dyadic Green’s function for the wave equation with
nonlocal susceptibility. In the dielectric approximation, the characteristic length of spatial dispersion
(the spatial spreading of the excitons’ center-of-mass motion) is assumed to be small as compared to the
spatial length of materials, and the information outside of a focusing region is compressed to integrations
of the electromagnetic fields at the interfaces. The Green’s function can be derived using the surface
impedance method for a given surface impedance or admittance, which includes the outside information.
In contrast, the present theory provides the Green’s function, without any significant approximations,
for given epg(r,w) and microscopic information of excitons.

As mentioned in Chap.[Il there is a growing interest in the QED of elementary excitations in condensed
matters. For example, theoretical studies on entangled-photon generation via biexcitons have already
been performed by Savasta et al. [44, [45] (although the nonlocality was not sufficiently considered in
these calculations). Further, by extending the present QED theory, the same kind of study has also been
performed for the excitonic system weakly confined in nano-structures [46], which are known to exhibit
anomalous nonlinear optical phenomena [32] 40}, [34] 411 [37]. In addition, Scheel and Welsch have discussed
the QED of nonlinear media with absorption and dispersion (but without the nonlocality) [59, [60].
When we discuss the nonlinear processes of excitons with the nonlocality, we must self-consistently treat
their nonlinear motion equation and the Maxwell equations. Based on the self-consistent equation set
[Eq. 283) or [282)], as discussed in this thesis, the new objective is to solve the equation set with
nonlinear terms originating from nonlinear processes, as performed in Ref. 46l On the other hand, based
on the Maxwell wave equation [Eq. (253)] with the nonlocal susceptibility as discussed in the previously
discussed QED theories [23, 24], 25] [26], 27, 28], we must solve the wave equation with nonlinear and
nonlocal susceptibility. Both approaches can be performed by applying some techniques such as successive
approximation, and the expectation values of observables are calculated based on commutation relations
[250) of excitons and that ([Z70) of the electric field [Eqgs. (Z84]) and (280) under the RWA] that are
described in terms of Wﬁ’lu, (w), Wl}?ﬂ, (w), and G(7, 7', w) derived in this thesis. However, such calculations
are usually difficult, and then more detailed and systematic calculations should be performed by using
the Feynman diagram technique with the time-ordered correlation functions, which identifies with the
retarded correlation functions under the RWA and also derived by the analytic continuation from the
retarded ones. In this sense, the present scheme will be a powerful tool to discuss the nonlinear processes
of elementary excitations in condensed matter with the nonlocality, and also nonclassical light emitted

from such processes.
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Crossover of Radiative Relaxation of Excitons

According to Fermi’s golden rule, the radiative decay rate of excitons increases together with the crystal
size because of the increment of the interaction volume between the excitons and the radiation field. This
is called exciton superradiance. On the other hand, in thick film where the exciton-polariton picture
is valid, the radiative decay time should be proportional to the time of flight (film thickness divided
by polariton group velocity). Therefore, the radiative decay rate is inversely proportional to the film
thickness in contrast to the exciton superradiance scheme. The subject of this chapter is to elucidate the
crossover condition between the two radiative decay schemes based on the theoretical framework of the
microscopic nonlocal theory, which continuously describes weakly confined excitons to bulk-like system

and can connect the two decay schemes.

3.1 Background

In order to obtain a strong and coherent response from nonlinear optical process in condensed matter,
the radiative decay of elementary excitations should generally be rapid as compared to dephasing processes
at their resonance conditions. The dephasings can usually be suppressed in low dimensional systems owing
to the quantization of the excitation and phonon states. Especially in quantum-dot systems, very long
dephasing times of subnanosecond [82 [83] and more [84] [85] have been experimentally observed. On the
other hand, there is an attempt to enhance the radiative decay due to the strong coupling between the
elementally excitation and the radiation field. In particular, the exciton superradiance, a size enhancement
of the radiative decay rate of excitons, has been studied theoretically and experimentally for more than
20 years [86, [87, 88, [89 ©0], O11 92 03, 04] ©5], B85, [77]. In a crystal where the exciton center-of-mass
motion is confined, their radiative decay rate gets larger with increasing the crystal size because of the
expansion of interaction volume between the exciton and the radiation field [86] [87] [88], [89, @0} 911, 92} [93].
The same kind of enhancement occurs with respect to the oscillator strength and nonlinearity of excitons
[87, B8, [89L [06]. In the case of a semiconductor film, the radiative decay rate of the lowest exciton center-
of-mass motion state gets larger with increasing thickness until about a half light wavelength at the
resonance frequency, but after that it reversely decreases. The origin of this superradiance suppression is
the phase mismatch between the center-of-mass motion and the radiation field [92] 03] 05]. In the same
manner, the decay rate of the higher center-of-mass motion state is maximized at each phase-matching
thickness, and the maximum value becomes larger with increasing thickness [94], [97, [35] 36} [77] in line
with the exciton superradiance. Further, the resonance frequency of the exciton state is also shifted

due to the exciton-photon interaction [94, ©5], 07, B3], 36, [77], and its anomalous frequency shift has
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been experimentally observed in the nondegenerate two-photon excitation scattering in a CuCl film with
thickness of several tens nanometers [42]. On the other hand, in addition to the frequency shift, a rapid
decay time about 100 fs has recently been observed in the degenerate four-wave mixing in a CuCl film
with thickness of a few hundred nanometers [43], and it is considered as a radiative decay enhanced by
the exciton superradiance. Although it is usually considered that the size enhancement of the radiative
decay rate is suppressed due to the dephasing processes of excitons, its suppression picture is broken if the
radiative decay rate is enhanced beyond any dephasing processes in a single crystal with little impurities
and defects as the samples used in Ref. [43l Therefore, there should be another mechanism to suppress
the exciton superradiance without considering any dephasing processes.

As an answer for this question, Knoester [92] predicted and Bjork et al. [94] theoretically demonstrated
that the exciton superradiance is only maintained until a particular film thickness, and thereafter the
radiative decay rate of the phase-matching exciton is inversely proportional to the thickness in the same
manner as the radiative decay scheme of polaritons, where the decay time is proportional to the time
of flight (thickness divided by group velocity) [08, 05 [@9]. Further, Bjork et al. also showed that the
superradiance suppression can be interpreted as a crossover of the exciton-photon coupled modes from
exciton-like (superradiant) and photon-like modes to the upper and lower branch polaritons. This is
similar to the case of the cavity quantum electrodynamics (QED) [100]. In the weak coupling regime
between an excitation and a cavity mode, the spontaneous emission rate is larger than the coupling
strength, and these modes are slightly modified from the bare states and almost independent. On the
other hand, in the strong coupling regime, the coupling strength is larger than the emission rate, and
the energies of the coupled modes split into upper and lower sides (Rabi splitting). In the discussion
of the exciton superradiance, the exciton- and photon-like modes are considered in the weak-coupling
regime, and a photon created by the exciton-photon recombination can go outside of the film without
the reabsorption, and then the radiative decay rate is enhanced obeying Fermi’s golden rule. On the
other hand, the polariton modes are in the strong coupling regime, and the photon is reabsorbed in the
material because of the strong coupling. Therefore, the exciton and photon behave as a polariton, and
the radiative decay rate is inversely proportional to the film thickness.

However, in the calculation by Bjork et al. [94], they considered the retarded interaction (interaction via
electromagnetic fields) between the same exciton states but not between the different states. Therefore,
their crossover thickness may be different from the correct one, because the inter-state retarded interaction
must be considered under the strong exciton-photon coupling at the crossover. On the other hand, the
inter-state retarded interaction has been considered in works by Agranovich et al. [95] and by Ajiki [35].
Agranovich et al. properly considered the wavenumber uncertainty originating from the translational
symmetry breaking perpendicular to the surface, and demonstrated the smooth thickness dependence of
radiative decay rate after the phase-matching thickness instead of the oscillating behavior, which is a
result of neglecting the inter-state retarded interaction [94] 97]. Further, the authors showed a correct
expression of the radiative decay rate in the polariton scheme as seen in Eqs. (8.48) and (348) of the
present thesis. On the other hand, Ajiki discussed the crossover in a spherical semiconductor with a size
of from quantum dot to bulk limit, and showed that the radiative decay rate decreases with increasing
the crystal size if the crystal becomes larger than a particular size. However, in these two studies, the
crossover condition from exciton-/photon-like modes to polariton ones has not been completely clarified.
The subject of this chapter is to elucidate the crossover condition by means of a rigorous calculation

method connecting the two radiative decay schemes.
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3.2 Calculation method

I consider a material where the translational symmetry is broken in the z direction, and discuss the
radiative decay of s-polarized exciton whose center-of-mass is confined in a finite region. I suppose
a background system characterized by dielectric function epg(2,w), and a resonant contribution from
excitons inducing a polarization P(z,w). The Maxwell wave equation for the electric field E(z,w) is

represented as
[(8%/022) + ¢ (2,w)] E(z,0) = —pow? P(z,w), (3.1)

where ¢2(z,w) = epg(z,w)w?/c? — kH2 and k| is the in-plane wavenumber. This wave equation can be

rewritten as
E(z,w) = Ep(z,w) — uow2/dz’ G(z,72,w) P(,w), (3.2)

where Ey(z,w) is the homogeneous solution of Eq. (8I)), and G(z, 2/, w) is the Green’s function satisfying
[(02/022) + ¢*(z,w)] G(z,7',w) = 6(z — ). (3.3)

On the other hand, I consider the Hamiltonian of the whole system as
H = Hyag + Hox + Hing. (3.4)

Here, Hyog represents the radiation field and the background dielectric medium, and it provides the
Maxwell wave equation with quantum fluctuation as discussed in the QED of dispersive and absorptive
media [21} 18] (or see Sec.[3). On the other hand, Hey describes the resonant contribution from excitons,

and flim represents the interaction between the exciton and the radiation field as

Hip = — / dz E(2)P(z). (3.5)
Since the expectation value E = (E) of the vector potential is given in the same form as Eq. (32

according to the linear response theory, G(z,z’,w) is interpreted as the retarded correlation function of

FE in ﬁrad system as discussed in chap. 6 of Ref. 53:

1 [ ; - -
pow? Gz, 2 w) = o /O dt ¢ ([Eo(z,1), Bo(=,0)]) (3.6)

where the time representation of the electric field is defined as

Eo(z,t) = eflmat/hf () o 1Haat/h (3.7)

Furthermore, under the rotating wave approximation (RWA), G(z, z’,w) also corresponds to the time-

ordered correlation function of A:

pow?G(z, 2, w) =~ %/ dt €t (TEy(z,t)Eo(2',0))

— 00

rad ’ (38)
where T is the time-ordering operator. Therefore, under the RWA, the correlation function of E in the
background system can be obtained by finding the Green function satisfying Eq. (3]), which has already
been known for general multilayer systems [65].

Next, I discuss the time-ordered correlation functions of exciton. For simplicity, I consider only one

relative exciton motion with eigenfrequency wr, and denote the center-of-mass motion by index m, its
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annihilation operator by I;m, and its eigenfrequency by (2,,, which includes the center-of-mass kinetic

energy. In this chapter, I simply consider that the exciton is a pure boson, and the system is linear as

Hex =Y W2 bl by (3.9)

In this situation, the exciton correlation function in H.y system is derived as

(0) [T et i 0) i O __ Omaw
B, (@) = =i [ de e (B (50, = S (3.10)

— 00

where the time representation is defined as

b (t) = eiflext/ M, 071 Hext/ (3.11a)
b (£) = o flext/Mp} o= iHext/n, (3.11b)

On the other hand, the excitonic polarization appearing in Eq. ([B3]), the interaction Hamiltonian, is

quantized as
P(2) =P gm(2) b + He, (3.12)
m

where g, (z) is the exciton center-of-mass wavefunction in state m, and the absolute value of the coefficient
P can be estimated by the longitudinal-transverse (LT) splitting energy of excitons as hwpr = |P|?/ EbgE0-
Under the RWA, according to the linear response theory, the excitonic component of the optical suscep-

tibility is obtained as a nonlocal from [31] [78]:

L [T et 7 : gm (2)gm (')
X(Z,Z’,w):% 0 dt e t([PO(Zat)7P0(2/7O)]>exZgbngT;m7 (313)

which characterizes p(z, w) at position z induced by E(z’ ,w) at the other position 2’ as

oo

P(z,w) = 50/ dz' x(z, 2, w)E(,w). (3.14)

—0
Here, in the case of bulk system, we can consider the exciton center-of-mass wavefunction as g,, =
e*m# /\/L, where L is the normalization length and k,, = 27m/L for m = 0, #1, £2, ... In this
situation, the nonlocal susceptibility, Eq. (BI3)), is diagonal in the k-space, but it depends not only on w
but also on k due to the nonlocality as

1 o o ; ! ! EpgW
X(kj, k/,w) = E/ dz/ dzl e_lkzx(Z,Z/,W)elk 7= 6]@,]@’% = (5k’k/X(k',OJ). (315)

Substituting Eqs. (814) and (BI3) into the Maxwell wave equation, Eq. (31, the polariton dispersion

relation in bulk system is obtained as

W = epg(w) + x(k,w). (3.16)

On the other hand, in the general case, the self-energy tensor 3 (w) of exciton states is derived from the

interaction Hamiltonian [Eq. (3] as
Em,m’ (W) = EbgWLT(W/C)Z/ dZ/ dz’ g:n(Z)G(Z, Zlaw)gm’ (Z/)a (317)

which describes the retarded interaction not only between the same exciton states (m = m’) but also

between the different states (m # m'). Further, the time-ordered correlation function tensor &(w) of



3.2 Calculation method

37

exciton states in the whole system is derived from the Dyson equation, i.e., it is obtained as the inverse

of the matrix whose elements are given as

[ﬁil(w)]m,ﬂﬂ = (W - Qm)(sm,m’ - Z/17n,m’ (w) (318)

The resonance frequency wyes and the radiative decay rate vy of exciton-photon coupled modes are respec-
tively obtained from the real and imaginary parts of poles @ = wyes — iy of the exciton correlation function
tensor. The calculation of these poles is just identical to that of the self-sustaining modes discussed under
the microscopic nonlocal theory in the semiclassical framework [35] [36, [77) [3T] B8] (or see Sec. [[4.4]).

The above calculation method can consider the inter-state retarded interaction through the self-energy
tensor, Eq. (BI7). Further, in this chapter, I numerically calculate the poles without any pole approxi-
mations in contrast to Ref. [35. With regard to the RWA, it can be considered as a good approximation,
because neither the frequency shift nor the radiative decay rate reaches only a few percent of the bare
exciton frequency wr even at the maximum in the calculation.

I consider a CuCl film with thickness d, and suppose the background dielectric constant epg = nbg2 =
5.59 inside of the film. In the case that the background is a homogeneous medium [epg(2) = €bgl, the

Green function satisfying Eq. (B3)) is derived as

eldlz—2]

G(z,7 \w) = (3.19)

i2q
On the other hand, as shown in Ref.[65] (or see App.[D)), in general multilayer systems, the Green function

from a focusing layer to the same one is written as

i2¢G(z, 7', w)

_ eiq\zfz'| + eiquL [eiqz/ + eiqdRReiq(dfz')} M

+e =R, {eiQ(d*Z/) + eiqd]-:iLeiqzl} M, (3.20)

where I consider that the left-hand interface of the focusing layer is at z = 0, and the right-hand at z = d.
In Eq. @20), Ry, /R is the generalized reflection coefficient [65] (App. D) from the focusing layer to the
left- /right-hand interface, and M = [1 — Ry Re'299)~1. In the case of a three-layer system where the
background dielectric constants are respectively given as €, €ng, and eg, when we focus on the middle

layer, R, /R 1s simply represented as the Fresnel reflection coefficient:

~ q—Fkr/r
R = 3.21
LR q+kr/r (8:21)
where kp,/p is the wavenumber in the left- /right-hand region:
1/2
kL/R: [EL/R(U2/CQ—]€”2] . (322)
In this chapter, I discuss only the modes perpendicular to the layers, i.e., k = 0, and I consider the

wavefunctions of the exciton center-of-mass motion as sinusoidal functions whose amplitudes are zero at
the interfaces of the focusing layer:
\/2/dsin(k,z) 0<z<d
gm(2) = fdsin(knz) . (3.23)
0 otherwise
where k,, = mn/d and m = 1,2,.... The exciton translational mass is mex = 2.3mg, where my is the free

electron mass. The bare exciton frequencies are given as hwp = 3.2022 eV and (2, = wr + Tk, /2Mex.

The LT splitting energy is hwpp = 5.7 meV.
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Figure 3.1: Thickness dependence of (a) (b) radiative decay rates and (c) (d) resonance frequencies of exciton-
photon coupled modes in a CuCl film. Outside of the film is e = er = €bg. 200 states of exciton center-of-mass

motion are considered.

3.3 Thickness dependence

First I discuss the thickness dependence of the exciton-photon coupled modes in the case of homo-
geneous background, e, = eg = epe. The calculation algorithm is explained in App. [El In Fig. Bl I
plot the radiative decay rate v and resonance frequency wyes of the exciton-photon coupled modes with
continuously changing thickness d. As seen in Fig.Bl(a), v of the lowest mode is maximized at thickness
about 50 nm. Although this thickness should be approximately equal to A\/2 = 7¢/npgwr ~ 80 nm, a half
light wavelength at frequency wr in the background medium, there is a mismatch due to the deviation
of the lowest exciton center-of-mass motion from a continuous wave. On the other hand, in the case of
the higher modes, the phase-matching condition, k,,, = mn/d = npgwr/c or d = mA/2 ~ m x 80 nm, is
gradually satisfied with increasing the mode number because of increasing the wavefunction continuity.
Further, increasing the mode number, the maximum value of v also increases in line with the exciton
superradiance. As theoretically demonstrated by Agranovich et al. [95], we can find no oscillation in the
thickness dependence of v after the phase-matching thickness owing to the consideration of the inter-state
retarded interaction. With regard to the resonance frequency wyes as seen in Fig. Bl(c), when we fo-
cus on a particular mode, w5 gradually decreases with increasing d until the phase-matching thickness,
but it flips to the higher side around its thickness. After that, w,es gradually decreases and saturate
to wt 4+ wrr, the band edge of the upper polariton. This behavior can be understood by considering
the polariton dispersion relation [95, [42] and the decrease of wavenumber k,, = mn/d with increasing
thickness as will seen in Fig. B3(a).

On the other hand, as seen in Fig. Bl(b), the exciton superradiance is suppressed at thickness over
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about 2 pm, although any dephasing processes are not considered in the calculation. Further, the
behavior becomes discontinuous at the peak, and the peak value cannot be found in this numerical
calculation. As seen in Fig. Bl(d), the thickness dependence of wyes also becomes discontinuous after
the crossover thickness, so that wyes suddenly flips to the higher frequency side at the phase-matching
thickness. According to the work by Bjork et al. [94], this behavior just reflects the crossover from
exciton-/photon-like modes to polariton ones. In other words, the discontinuity reflects the frequency
splitting of upper and lower polaritons at the phase-matching wavenumber k = npzwr/c in bulk system
as will seen in Fig.[34(a). In order to elucidate this crossover condition, I calculate v and wyes by another

calculation method discussed in the next two sections.

3.4 Dispersion relation

The calculation of the previous section is based on the exciton correlation function tensor renormalizing
the exciton-photon interaction. However, this method is relatively complicated to analyze the superra-
diance suppression. In this section, I approximate the self-energy tensor, Eq. (BI7), and try to derive
a simplified equation for the complex frequency of the exciton-photon coupled modes by introducing a
complex wavenumber, whose imaginary part represents the wavenumber uncertainty in finite systems.

In the homogeneous background medium, epg(2,w) = epg(w), the Green’s function satisfying Eq. (3:3))

is diagonal with respect to the wavenumber as
1 o0 o0 H 1
Gr (W) = —/ dz/ dz’ e %% GQ(z, 2, w) ¥ ?
L —o00 —o0

Ok, i/
[ LA A— 24
@ +10)2 — k2’ (3.24)

where L is the normalization length. Eq. (819) can be obtained by transforming this equation into the
real space. Substituting Eq. (824 into Eq. (8I7), the self-energy tensor, I obtain

gmk 9m’ k
D (W) = wrr qo Z (q+i0) — k2’ (3.25)

where ¢ = sbgw2 /c?, and gm,k is the Fourier transform of the exciton center-of-mass wavefunction:

1 > —ikz
Im,k = ﬁ/ dz e 4§ gm(z)' (326)

In contrast to the infinitesimal interval 27 /L between the neighboring k, the interval of ¢, is much large
as m/d. Therefore, the base-transformation between m and k is not unitary in the case of a film with

finite thickness. This means that the transform coefficient set {g,, »} satisfies the orthogonality as
o0
Zg;kn,k Im’ k = / dz gm(z) gjn’ (Z) = 6m7m’7 (327)
k — 00
but it does not satisfy the completeness:

1o d sin[(k — k')d/2]
* ke = = d i(k—k")z _ = 9
E gm,kg ,k T /_d/Q z € T (k — k/)d/Q ) (3 8)

where I consider that the exciton center-of-mass motion is confined in —d/2 < z < d/2. Therefore, the

self-energy, Eq. ([B:253]), becomes diagonal with respect to k only in infinite systems.
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In order to obtain a simple equation for a smooth analysis of the crossover condition, I consider the
following approximation to quasi-diagonalize the self-energy, Eq. (3:25]). The function sin(z)/x appearing
in Eq. (328) can be approximated as sin(z)/x ~ 1 under the condition |z| < 1. Therefore, by relaxing
the identical condition of k as |k — k’| < d!, Eq. (8:28) can be approximated as

(L))" Gy Gk 2 Ot (3.29)

m

and then {gm, x} has a quasi-completeness. Here, since I admit an uncertainty of k in the order of
d~!, the wavenumber should have an imaginary part as ¥ — k — ia/d, and the summation becomes
>r — (L/d)>",. The physical meaning of the nondimensional value « will be discussed later. As the

result of the above approximation, the self-energy, Eq. (8228, becomes quasi-diagonal as

d wrr o’
2k = m Em m’ o = Ok " " . 3.30
Kok (W) mzm/g & D (@) G 1 LM (102 — (k= ia/d)? (3.30)
In the same manner, the diagonal part of the correlation function, Eq. (B8], is rewritten as
. d :
ng,k((lm — W) Gk = 6k’k/f [2(k —ia/d) — W], (3.31)
m

where the bare exciton frequency is written as

2k —ia/d) = wr + 5 h

mex

{kﬁ + (k - i‘;‘ﬂ . (3.32)

Therefore, the exciton correlation function can be obtained as a diagonal form as

d w 2
-1 -1 * . LT 40
) = m m.m/’ ’ o (5 = — Q k/’ — d - N . )
[6 (w)]k«,k nlzmlg 7k[6 (w)] m Im’ & k,k T |:w ( IOé/ ) (q ¥ 16)2 — (k — 104/d)2
(3.33)
and the pole @ = wes — 177 is obtained for a given complex wavenumber k=k—ia /d from
~ ~ /)2
o= (k) + ‘*fLTESg(“’/ ? — (3.34)
Ebg(w/c) — k“ —k
Here, we can rewrite this into the dispersion relation
CQ(kH2 + ];2) EbgWLT =
_ L = Epe + — T =g + x(k, @), 3.35
- et i = v (i 9) (3.35)

which has the same form as Eq. (8.I0) obtained in the bulk system. However, there remains a task to
determine the nondimensional value o and the k-selection rule that governs the discrete k values for a

finite thickness.

3.5 Self-sustaining condition

In order to determine the complex wavenumber k = k — i /d, I consider a self-sustaining condition of
exciton-photon coupled modes in a film with polariton dispersion. If the translational mass of exciton
is assumed to be infinite, there is only a single polariton mode satisfying dispersion relation ([3.34]) for a

given frequency @, and the self-sustaining condition is simply considered as

L TR eizkd — 1, (3.36)
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\

0 d

Figure 3.2: Schematic view of polariton and photon fields to calculate the reflection coefficients from inside of
the film.

where 71/ is the Fresnel reflection coefficient at the left-/right-hand interface:

I

LR (3.37)

TL/R = =
/ k+ L/R

T I[N

and kj /r is the outside wavenumber defined in Eq. ([8.22) by replacing w with & = wpes — i, The
self-sustaining condition, Eq. (830), means that there is neither amplitude decay nor phase shift after a
round trip inside of the film. Actually, this intuitive method consisting the dispersion and self-sustaining
condition provides the complex wavenumber set {@wy} obtained in the matrix method. However, if we
consider the exciton center-of-mass kinetic energy with finite translational mass, we must consider an
additional boundary condition (ABC) [67] besides the Maxwell boundary conditions, because there are
two wavenumbers k; and ko satisfying dispersion relation B34) for a given w.

As seen in Fig.B.2] I consider forward (A; and As) and backward fields (By and Bs) for each polariton,
and two outward fields (Cp, and Cg) from the film. In order to derive the reflection coefficients for
polariton 1 from inside of the film, I consider an incident field F; from inside to the left interface. The

electric fields in the left-hand side, polariton 1, 2, and right-hand side are respectively written as follows:

Ep(z) = Cre 17 (3.38a)
Ei(z) = Ayeifrz=d) 4 Ble_if“z(—l—Fle_ii“Z only at z = 0), (3.38b)
Bo(2) = Ageih2(:=d) 4 Bye=ikoz, (3.38¢)
Er(z) = Cre*n?, (3.38d)

Here, I define the phase origins of the polariton modes as opposite as usual in order to avoid a numerical

divergence caused by Im[k;] < 0. From Egs. (338), I obtain four Maxwell boundary conditions at z = 0
and z =d as

Fi+ Are ™14 4 By 4 Aye 2 1 By = Oy, 3.39a

Ar + BieT®id 4 Ay 4 Boemd = o, 3.39b

—ky(—=Fy + Are 14 — Bl — ky(Age*2 — By) =k Oy, (3.39¢

ke (Ay — Bie F14) 4 ko (Ay — Boe F2d) = fipCh,. (3.39d

NN N N
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In addition, since I consider the exciton center-of-mass wavefunction, Eq. ([3.23]), whose amplitudes are

zero at the interfaces, the following Pekar’s ABCs are required [67, [70]:

x1(F1 + Ale_if“d +By)+ Xg(Age_if”d + Bs) =0, (3.39)

XI(AI + Ble_ikld) + XQ(AQ + Bge_ifc2d) = 07 (339f)

where the susceptibilities x; and x» are written as

(C]NCZ-)Q + (CkH )2

&2

i = ~ epg. (3.40)

Usually, we cannot define the reflectance from inside of the film with multiple polariton modes, because
the amplitude of one mode is also transferred to the other modes after the reflection, and it also go back
to the original mode after another reflection. In order to derive the appropriate self-sustaining condition,
I consider that, as a result of the multiple reflections inside of the film, B;/F; should be represented by

a product of the two reflection coefficients, 7 and %, as

oo

Bi/F1 = (ryr) e2dyn, (3.41)

n=1

From this relation, by solving the boundary problem [Eq. 839)], 77.7% should be represented as

’ (Bl/Fl)e_iQfCld
= 42
TLTR 11 (Bi/F) (3.42)

and, comparing with Eq. (836, the self-sustaining condition for the multimode system is obtained as

1ot si2kid _ (B1/F1) _
TR € T+ (Bi/FY) 1. (3.43)

Although this equation is satisfied only in the limit of |By/Fy| — co, I renew k; as

-1 —1 . (By/Fy)e i2hd
Ey ::WID(T/L 1) = - (Bi/F1)e "7

— 44
2 2d " 1+ (B /F) (344)

in the numerical successive calculation. Actually, by simultaneously solving Eqgs. (8.34) and (3:44), I can
reproduce {wyes — 17} obtained by the correlation function method in Sec. The calculation algorithm
is explained in App. [El

3.6 Polariton scheme

In Fig. B3l I show (a) dispersion relation and (b) frequency dependence of ~ at thicknesses of 50,
200, and 500 nm. The poles of the exciton correlation function tensor are plotted with symbols, and
k = k — ia is calculated from dispersion relation ([B.34) for each @ = wyes — iy. On the other hand, the
lines are calculated by the intuitive method discussed in the previous two sections. However, the ABC
and k-selection rule are not considered in the self-sustaining condition [Eq. (343))] in order to show the
continuous k-dependence. This means that, instead of Eq. ([8.:44), I consider only the relation between «
and w for a given real k as

1 1

=-1 3.45
o= (3.45)

el
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Figure 3.3: (a) Dispersion relation and frequency dependence of (b) radiative decay rate v, (¢) «, and (d)

apparent propagation speed 7ydeg at thicknesses of 50, 200, and 500 nm. The lines are calculated by solving
Egs. 334) and (345) for a given real wavenumber k. The symbols are the poles of the exciton correlation

functions. €1, = er = €bg.

where 77, is the reflection coefficient without the ABC, i.e., the Fresnel coefficient [Eq. (B.37)].
Egs. B34) and [B4h) give solutions for arbitrary k as seen in Fig. However, if the ABC is
considered, the solutions are obtained only for particular k satisfying self-sustaining condition (3.43).

Since dispersion relation (3.:34) is rewritten as a third-order polynomial equation for @ as

(& — 2(k)]leng(@/¢)? — ky* — k] = wrreng (©/¢)?, (3.46)

there are three solutions for a given k. One is an unphysical solution with negative frequency, and the
other two satisfying Eq. (345 are plotted in Fig. for a given real k. One solution has an exciton-like
frequency wyes =~ wr with small v, and the other has a photon-like frequency wyes =~ ck /nbg with large
~. These exciton-like and photon-like modes are slightly modified from the bare exciton and photon
states, respectively, because of the relatively weak exciton-photon coupling. As seen in Figs. B.3la) and
(b), increasing the thickness, the deviation of wyes of the exciton-like mode from wr increases at the
phase-matching condition k >~ nyzwr/c, and 7 also increases in line with the exciton superradiance. By
using the correlation function method, only the exciton-like modes are numerically obtained, because the
photon-like modes are divergent solutions for finding the poles of the exciton correlation function tensor
[Eq. (3I8)]. This can be understood by rewriting dispersion relation (3.34)) as

Ty wirebg(@/c)?

o — k) YR F(@, k) =o0.

(3.47)

It is difficult to numerically find the zero points of function f(@,k) for the photon-like solutions (k ~
NbgWres/C), because the last term of the left-hand side (LHS) is divergent. This is the reason of the
discontinuity in Figs. BIl(b) and (d). On the other hand, although we can find good agreements between
symbols and lines in the dispersion relation [Fig. B3|a)], there are some deviations of v in Fig. B3|(b),
especially for thickness of 50 nm and for k larger than 10 x npgwr/c. This is because of the neglect of
ABC in the intuitive calculation method. By considering the ABC, I can obtain the exact agreement
between the two calculations under the numerical precision.

As discussed by Agranovich et al. [95], Eq. (345), the representation of «, is also obtained along the

calculation of radiative decay rate in the polariton scheme, which provides the radiative decay rate as

v = awg/d. (3.48)
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Figure 3.4: (a) Dispersion relation and frequency dependence of (b) radiative decay ratey, (c¢) «, and (d)
apparent propagation speed ydeg at thicknesses of 1.6, 2, and 3 um. The lines are calculated by solving Egs. (3:34)

and (B45) for a given real wavenumber k. The symbols are the poles of the exciton correlation functions, where

400 states of exciton center-of-mass motion are considered. €;, = er = €pg.

On the other hand, in the present intuitive calculation method, Eq. (48] is obtained from the self-
sustaining condition, and Eq. (848]) can be obtained from dispersion relation ([334]) in particular situa-
tions. When the radiative decay rate is much smaller than the resonance frequency as v < wres, and the

uncertainty of the wavenumber is much small as a/d < k, Eq. (334 can be approximated as

hk> wrr 4o
. , 3.49
T chx q02 o kHQ o k2 ( )
hk 2wrrqo?lka/d — (k® + K
L ko 2wwa’lka/d - (ky® £ K2)y/w) (3.50)

Mex d (0% — by —K2)?

Here, Eq. (3.49) is just the dispersion relation in bulk system [Eq. (BI6])] under the RWA, and it gives
the group velocity as

_dw  (a0® — ky® — )Rk /mex + 2wirqo’k
& dk (q02 — kHQ — k2)2 + 2{—:bngTw(kH2 + kZ)/C2 ’

(3.51)

From this representation of vg, Eq. (848]) can be obtained by rewriting Eq. (8:50) without any information
outside of the excitonic medium, which is described by self-sustaining condition [336]) or (3:43]). Although

Eq. (348) cannot be applied to superradiant excitons, I define an effective thickness of an exciton-photon

coupled mode as R
dogp = a/d = —Tm[k] ™", (3.52)

which gives 7 = vg/deg in the polariton scheme. Further, I define an apparent propagation speed of the
coupled modes as yd.g, the effective thickness divided by the radiative decay time, and it agrees with v,
in the polariton scheme.

In Fig. B3lc) and (d), I respectively plot the frequency dependence of a and ~des, and also I plot
the polariton group velocity vy with bold solid lines in Fig. B3(d). Although vdeg of superradiant
excitons (k =~ npgwr/c and wres =~ wr) gets larger with increasing thickness, we can find that ydeg of the
other exciton-like modes agree with v,. In other words, all the exciton-like modes without the phase-
matching condition obey the polariton scheme even at small thickness where the exciton superradiance is

maintained. This is because that the above conditions v < wyes and «/d < k, which are used to derive
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Eq. (BR0), are satisfied even for those phase-mismatching modes. On the other hand, we can find that
~dest of photon-like modes agree with ¢/npg, the light speed in the background medium because of the
relatively weak exciton-photon coupling at the small thickness. As seen in Fig. B:3|c), there are some
deviations of o between the two calculation methods for large wavenumber and for small thickness. This
is because « is determined by self-sustaining condition [B30]) or [B.44]) as discussed above. On the other
hand, ydeg of the two are well agreed even for large wavenumber, because Eq. (8:4])) is obtained only
from dispersion relation (3.34)).

Fig. 3.4 shows the dispersion relation and frequency dependence of v, o, and vd.g at large thicknesses
of 1.6, 2, and 3 pm. For thickness of 1.6 pm, where the exciton superradiance is maintained, v and yd.g of
the superradiant modes are much larger than those of Fig. obeying the exciton superradiance. On the
other hand, vydeg of photon-like modes decrease from ¢/nyg because of the relatively strong exciton-photon
coupling. In this thickness region near the crossover, increasing the thickness, vdeg of the superradiant
and photon-like modes gradually close to each other, and after the crossover of exciton-photon coupled
modes, the two solutions of the intuitive method split into the upper and lower branches as seen in
Fig. B4Ya). After that, the phase-matching modes disappear from the polariton band gap, and then the
exciton superradiance is suppressed. On the other hand, the frequency dependence of v also splits into
upper and lower branches, and ydeg gradually saturates to the polariton group velocity vs even at the
phase-matching condition. Therefore, all the modes obey the polariton scheme after the crossover. This

is the suppression mechanism of the exciton superradiance as discussed by Bjork et al. [94].

3.7 Crossover condition

The crossover condition between the exciton/photon-like modes and the polariton ones can be obtained

from dispersion relation ([3.34). At the phase-matching condition k|\2 + k% = epgwr?/c?, the real part of
Eq. (340)) is written as

(w—wr)(W? =72 —wr? + %) — 27 [wy — (ck/npg)B] = wrTw?, (3.53)
where 8 = ca/npgd. Further, at small thickness where the exciton superradiance is maintained, the
resonance frequency obeys wyes ~ wr as seen in Fig. B3la), and the first bracket in the LHS of Eq. (3.53)

is negligible:
7 = nlca/mygd)y + wrwpr/2 =0, (3.54)

where 1 = ck/npgwr is the perpendicular component of the propagation direction. When the film is thin

enough compared to the crossover thickness, the two solutions of Eq. (3:54]) are obtained as
v = (nbgwrwrr/2nc)deg (3.55)

for the exciton-like (superradiant) mode, and
v = n(c/nng)/ det (3.56)

for the photon-like mode. Here, we can find that the propagation speed of the latter is the light speed
n(c/nug) perpendicular to the layer in the background medium, and it is verified in Fig. B3(d), where
ki =0 and then n = ck/npgwr = 1. Since Eq. 355) is proportional to d and Eq. (B56) is to d ™!, these

values gradually close to each other with increasing the thickness, and they finally reach to

Ydest = nC/ 2Ny, (3.57)
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which is the degenerate solution of Eq. (8:54]). This is the crossover condition between exciton-/photon-
like modes and polariton ones, and it is roughly verified in Fig. B:4(d). Since ¢/2nyg is the polariton
group velocity at the phase-matching condition, Eq. (357)) means that the crossover occurs when the
apparent propagation speed ydeg of superradiant exciton reaches the group velocity ¢/2n,g of polariton.
Therefore, the photon created by the electron-hole recombination cannot go outside of the film without
reabsorption, when its propagation speed looks beyond the group velocity.

Fig. B.5 shows the thickness dependence of vdeg. The solid lines are calculated by the correlation
function method, and the effective thickness dog is derived from dispersion relation (B34 for each © =
w — iy. On the other hand, dashed lines are calculated by the intuitive method with ABC, i.e., by
simultaneously solving dispersion relation ([8.34) and self-sustaining condition ([3.44]). We can verify that
the crossover occurs when 7ydeg of superradiant exciton reaches c¢/2npg. On the other hand, Fig.
shows the frequency dependence of vydeg with continuously changing the thickness, which is calculated
by simultaneously solving Eqs. (3.34) and (344]). When we focus on a particular mode with relatively
small mode number, w.s shifts to the lower side and v gets larger with increasing d until its phase-
matching thickness, and around its thickness, wyes flips to the higher side with maximizing ~. After that,
wres decreases to the band edge wt + wrr of the upper branch, and v monotonally decreases. Although
the maximum value of vy gradually increases together with d in line with the exciton superradiance, it is
suppressed when ydeg reaches ¢/2ny, as discussed above. After the crossover, the exciton-photon coupled
modes split into upper and lower branches, and vd.g gradually decreases and saturate to the polariton
group velocity v when we focus on a particular frequency. On the other hand, as seen in Fig. B0(b), vder
of the phase-mismatching modes agree with v, even at small thickness where the exciton superradiance

is maintained.
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function method.

3.8 General properties

It is worth to note that the breakdown condition, Eq. (351), may be applied to general situations,
for example, a excitonic layer in cavity, multiple layers separated by a transparent layer, a sphere as
discussed by Ajiki [35], and photonic crystal structures. This is because Eq. (351 is simply derived
from the dispersion relation, Eq. (3.34]), which includes no information outside of the excitonic medium.
For a demonstration of the generality, I verify the breakdown condition for a CuCl film in vacuum,
ie., e = egp = 1. Fig. B shows the thickness dependence of (a) vdeg and (b) y. The former is
calculated by the intuitive method with ABC, and the latter is by the correlation function method. As
the result of the multiple reflections inside of the film, the size enhancement of v becomes more rapid
and the crossover thickness becomes smaller compared to Fig. Bl where the outside dielectric constant
is e, = g = €bg. In other words, deg = d/a is enhanced by the multiple reflections obeying Eq. (B.43]).
However, we can find that the breakdown also occurs when ydeq reaches ¢/2npg as seen in Fig. B.7(a).
On the other hand, Fig. B.8 shows the frequency dependence of ydeg, and it also reflects the crossover
from the exciton-/photon-like modes to polariton ones as discussed above.

For a large thickness where the polariton scheme is valid, at the phase-matching condition k = nyzwr/c,

the resonance frequency has the same value as bulk polariton as

jwLT
CdﬁwT:l:CUT W,
T

which is approximately obtained from Eq. (8:49). On the other hand, the crossover thickness is obtained
from the condition that Eq. (3.54]) has the degenerate solution:

d/ c A wT
|ga= = — -,
NbgV 2wTwLT 2w 2wLT

(3.58)

(3.59)
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where A = 2me/npgwr. Therefore, the maximum value of v of the superradiant mode is derived as

_¢/2mg wLr
T _”T‘/QwT' (3.60)

This is just the frequency shift of bulk polariton at k& = npgwr/c as seen in Eq. B58). For the CuCl
crystal, the frequency shift is about 80 meV as seen in Fig. B4la), and Eq. (B.60) can be verified in
Fig. BII(b) and Fig.B7(b), although more large v is obtained for polariton modes just after the crossover,
and also much larger - is obtained for photon-like modes at small thickness. However, in order to obtain
a strong and rapid nonlinear optical response, we must also consider the ratio of exciton component in
these exciton-photon coupled modes, and discuss the most suitable thickness that gives both the large

exciton nonlinearity and the rapid radiative decay.

3.9 Summary

I calculate the resonance frequency and radiative decay rate of exciton-photon coupled modes in a
film with finite thickness from weak- to strong-coupling scheme or from the exciton superradiance to the
polariton regime. One of the calculation methods is based on the exciton correlation function tensor
renormalizing the exciton-photon interaction in finite system, and I show that the exciton superradiance
is suppressed after a particular thickness, which reflects the crossover of exciton-photon coupled modes
from exciton-/photon-like to polariton ones as indicated by Bjork et al. [94]. In order to elucidate the
crossover condition, I use another calculation method based on the dispersion relation in excitonic medium
and the self-sustaining condition for the complex frequency and wavenumber. In addition to reproducing
the calculation results of the former method, this method also provides the photon-like modes for all
thickness from weak- to strong-coupling scheme. By analyzing the dispersion relation, I obtain the
crossover condition, Eq. (857]), of the exciton-photon coupled modes. This condition means that the
crossover occurs when the apparent propagation speed of superradiant exciton reaches the group velocity
of polariton. In other words, the photon emitted by electron-hole recombination cannot propagate beyond
the group velocity without the reabsorption. Further, this crossover condition may be a general condition

because its derivation needs no information outside of the excitonic medium.



Chapter 4

Correlation Functions in Exciton-Photon
Inhomogeneous System

One of the main achievements of the QED theory for excitons explained in Chap. 2] (or the semiclassical
microscopic nonlocal theory [31]) is providing the retarded correlation functions of excitons in exciton-
photon inhomogeneous system. While it is a powerful tool for discussing nano-structured materials where
exciton center-of-mass motion is confined, its calculation method is not suited for macroscopic materials
because we must consider much number of center-of-mass motion states of excitons. On the other hand,
in the traditional calculation method connecting the electromagnetic fields in different media by the
Maxwell boundary conditions and some additional boundary conditions (ABCs), there are usually only
a few variables to be determined, and the number of unknowns is fixed regardless of the material size.
The subject of this chapter is to derive the analytical expression of the exciton correlation functions from
the information of the exciton-photon coupled modes discussed in Chap. Bl whose complex frequencies
and wavenumbers are calculated from the dispersion relation and the resonance condition described by a

boundary problem with ABCs.

4.1 Introduction

It is well known that the classical electromagnetism is completely described by the Maxwell equations
together with the Lorentz force law. However, in boundary problems for connecting the electromagnetic
fields between different media, we sometimes require additional boundary conditions (ABCs; see Ref. 22
or Sec. in this thesis) in addition to the Maxwell boundary conditions, which are derived from the
Maxwell equations. This ABC problem emerges when we consider the materials that have multiple light
modes for a given frequency. The ABC problem was first pointed out by Pekar [67] for exciton-polariton
systems with exciton center-of-mass kinetic energy, and the subsequent studies have elucidated that ABCs
are uniquely obtained for the exciton center-of-mass wavefunctions that microscopically determined in
finite system with interfaces [70] [71] [72] [T01], although ABCs are frequently introduced for analyzing
experimental results by phenomenological calculations. However, only a few ABCs have been derived
by such first-principle calculations, and a calculation method for deriving ABCs for general boundary
problems has not been established. On the other hand, some calculation methods without deriving ABCs
have already been established, and they are called ABC-Free theory [29] or microscopic nonlocal theory
[30, BI]. Based on the same idea of these theories, I have constructed a quantum electrodynamics (QED)

theory for excitons in inhomogeneous systems (see Ref. [T§ or Chap. 2l). These nonlocal theories can
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be applied to general problems for given set of elementary excitations in finite system, and a boundary
problem is reduced to a simultaneous linear equation set.

However, in other words, the present QED theory and the semiclassical microscopic nonlocal theory
require the complete set of elementary excitations in excitonic materials in principle, and, in order to
derive exciton correlation functions renormalizing the interaction with the electromagnetic fields, we must
calculate the inverse of a large matrix whose size is the number of all excitation states. One method for
reducing the matrix size is describing the contribution from non-resonant excitations, such as phonons and
higher excitons, by the background dielectric function in the Maxwell equations as € = epg+xex. However,
even by using this technique, we must consider large number of exciton center-of-mass motion states in
order to discuss macroscopic materials in contrast to the ABC method, where only a few unknowns are
considered regardless of the material size. Here, we should pay attention to the fact that, in Chap. [B]
the exciton-photon coupled modes could be calculated by the intuitive method based on the dispersion
relation in excitonic medium and the resonance condition described by a boundary problem with ABCs.
This intuitive method actually provided the calculation results obtained by the matrix method of the
microscopic nonlocal theory, and has a few unknown variables to be considered. Therefore, there should
be a simple calculation technique providing the same information as obtained by the microscopic nonlocal
theory, especially the retarded correlation functions of excitons, from the calculation results of boundary
problems with ABCs.

As such works connecting the two calculation frameworks, i.e., ABC theory and microscopic nonlocal
theory (ABC-free theory), the equivalent expressions of the electric field were derived from the two
frameworks for semi-infinite and slab systems in Refs. 29 and [102] respectively. Further, in the case of
spherical semiconductor nanocrystal, spectra of its cross section were calculated by ABC theory and by
the microscopic nonlocal theory in Refs. [76l and [77, and a good agreement between the two results has
been verified. The subject of this chapter is to derive the analytical expression of the exciton correlation
functions in exciton-photon inhomogeneous systems from the calculation results of boundary problem with
ABCs, which do not require the complicated calculation of large matrices. The analytical expression is
applicable to deriving the time-ordered and thermal correlation functions by the analytical continuation
with the retarded ones. Therefore, the calculation method of this chapter is useful not only for reducing
the calculation time but also for the perturbation technique based on the Feynman diagrams. However, we
should pay attention the fact that, in the boundary problem, we must use the ABC properly determined
from the exciton center-of-mass wavefunctions. In other words, if the ABC cannot be derived from
considering set of elementary excitations, the correlation functions cannot be calculated by the present
method explained in the following sections. In this chapter, the exciton center-of-mass wavefunctions are
assumed as sinusoidal functions whose amplitude is zero at interfaces. Therefore, I can use Pekar’'s ABC

[67] for the boundary problem according to the discussion in Ref. [72]

4.2 Bare correlation functions

I consider a material where the translational symmetry is broken in the z direction, and s-polarized
excitons are weakly confined in a finite region. For simplicity, I consider only one relative exciton state

with eigenfrequency wr, and denote the center-of-mass motion by index m. In the present paper, I simply
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consider that the exciton is a pure boson, and the system is linear as

f{ex = Z h-leA)Inl;m7 (41)

where by, is the annihilation operator of an exciton in state m, and §2,, is the eigenfrequency including
the center-of-mass kinetic energy. On the other hand, I consider the interaction between the excitons and

the electromagnetic fields as
Hy = — / dz E(2)P(z), (4.2)

where E(z) is the electric field and

P(z) = ZPgm(z)l;m + H.c., (4.3)

is the excitonic polarization density. The coefficient P has the relation with the longitudinal-transverse
(LT) splitting energy of excitons as hwpr = |P|?/engco, and g, (2) is the exciton center-of-mass wave-

function. The whole Hamiltonian is written as

-E[ - I:ch + -Hint + ﬁcmv (44)

and H,., describes the electromagnetic fields and the background dielectrics as treated in the QED
theory of excitons (see Chap. ), and it provides the Maxwell wave equation with quantum fluctuation
as discussed in the QED theory of dispersive and absorptive media [211 [18].

I suppose a background system characterized by dielectric function epg(2,w) and a resonant contribution

from excitons inducing polarization P(z,w). The Maxwell wave equation for E(z,w) is represented as

[(07/02°) + ¢*(z,w)] E(z,w) = —pow’P(z,w), (4.5)

where ¢%(z,w) = epg(z,w)w?/c* — k;”2 and k| is the in-plane wavenumber. This wave equation can be

rewritten as
E(z,w) = Ey(z,w) — ,uoch/dz’ G(z,2',w)P(Z,w), (4.6)

where Fy(z,w) is the homogeneous solution of Eq. (1), and G(z, 2’,w) is the Green function satisfying
[(0%/02%) + ¢*(2,w)] G(2,2/,w) = §(z — 2'). (4.7)

On the other hand, since the expectation value E = (E) of the electric field is given in the same form
as Eq. ([@0) according to the linear response theory, the retarded correlation function of E in the Hep,

system corresponds to the Green’s function satisfying Eq. [@7) as discussed in Chap. 6 of Ref. 53t

ewt

(B2, Eol='. 0o (48)

u0w2G(z,z’,w)=/ dt
0

where the time representation of the electric field is defined as

Eo(z,t) = eflemt/M (7)o~ Hemt/N, (4.9)
Furthermore, under the rotating wave approximation (RWA), G(z, z/,w) is also equal to the time-ordered
correlation function of E:

o0 iwt

Mosz(Z,z',w):/ dt = (TEy(z,t)Ey(2',0))

— 00

(4.10)

em ’
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where T is the time-ordering operator. Therefore, under the RWA, the correlation function of E in the
background system can be obtained by finding the Green function satisfying Eq. (£7]), which has already
been known for general multilayer systems [65] (or see App. [D]).

Next, I discuss the correlation functions of exciton. The exciton correlation function in H., system is

derived as

1 [ o .
i@ =5 [ e R B o),

5m m’
="M 4.11
Mw — 2, +18)° (411)
where the time representation is written as
b (t) = eiHe"t/hlA)me*iHext/h, (4.12a)
O (1) = eiHext/Rpt o—iHext/ (4.12b)

This function is identical to the time-ordered exciton correlation function as long as we do not consider
the interaction with the electromagnetic fields:

N0 =60, = [ at S B0, O (1.13

m,m’ »Ym/
—o0

According to the linear response theory, the excitonic contribution in the optical susceptibility is derived

as a nonlocal from as [31, [7§]

x(z, 2" ,w) = —__1 dt €t ([Py(z,t), Py(2', 0)]) ox »
lhEo
9Im gm( Im Z)gm k4
= epgurr § [ jw - u)s + Qm<+wiig . (4.14)

This susceptibility characterizes 13(2, w) at position z induced by E (z',w) at another position 2z’ as
oo
P(z,w) = 50/ dz’ x(z,2,w)E(Z,w). (4.15)
— 00

Here, in the case of bulk system, we can consider the exciton center-of-mass wavefunction as g,, =
eikmz/\/f, where L is the normalization length and k,, = 27m/L for m = 0, £1, +2, .... In this
situation, the nonlocal susceptibility [Eq. ([£.14)] is diagonal in the k-space, but it depends not only on w

but also on k due to the nonlocality as

x(k, k' w / dz/ A2’ e oy (2, 2 w)el'

:(5 , 2EbngTQ( )
PR Q)2 = (w +10)2

= 5k,k/x(k,w), (416)

where I suppose £2(k) = £2(—k) for simplicity. Substituting Eqs. {@I5]) and (£I8) into the Maxwell wave
equation [Eq. (£3)], we can obtain the polariton dispersion relation in bulk system as

CQ(k”z + k2)

2 = epg + Xx(k,w). (4.17)
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4.3 Correlation functions in homogeneous system

First, I discuss the exciton correlation functions in the homogeneous exciton-photon system, i.e., in
the infinite system. Due to the translational symmetry in the z direction, the wavenumber k is a good
quantum number as well as the one in z-y plane, and the exciton center-of-mass motion should be
represented as a plane wave as gi(z) = e*?/y/L. Therefore, it is convenient to describe all the physical

quantities in the k-space as

[e's} —ikz
By = /_Oo dz e\FL B(2), (4.18)
R o] efikz R R Iy
P, = [m dz Nis P(z) = Pb, + P*b' . (4.19)

Further, the interaction Hamiltonian, Eq. (£2), is rewritten as

Hyy ==Y PE_y, (4.20)
k

and also the exciton Hamiltonian, Eq. (@), is represented as

Hex = h82(k) bl by. (4.21)
k
From these Hamiltonians, the Heisenberg equation of excitons is derived as
ih%f)k(t) = h2(k)br(t) — P*Ex (1), (4.22)

and the w-representation of the expectation (by(t)) is obtained as
[2(k) — w — i8] (bi(w)) = P* Er(w)/h, (4.23)

where § means the infinitesimal damping and its fluctuation operator disappears by taking the expec-
tation. On the other hand, in the homogeneous case, epg(2) = €bg, the Green’s function G(z, 7', w)

satisfying Eq. (£71) is diagonal in the k-space, and easily derived as

1 o 0 . sl 5 ’
Grp(w) = E/ dz/ dz’ e *2 G (2, 2 w)elF * = m (4.24)
—00 —0o0

Therefore, Eq. ([0 is rewritten as

o P (be(w)) + P* (', (@)
(g +10)2 — k2

Substituting this into Eq. [@.23]), the self-consistent equation for the exciton amplitude is obtained as

Ey(w) = Eo(k,w) — pow

(4.25)

[Q2(k) + Zi(w) — w — 0] (b (@) + €72 Dy (w) (b7 (w)) = P*Eo(k,w)/h, (4.26)

where 6 is the phase of P, and the self-energy Xy (w) is represented as

wLTu.J2

)= e — e

(4.27)

where v = ¢/, /Epg is the light speed in the background medium. Further, together with the equation for

b, (w) = {b_p(—w*)}T, this equation is rewritten as

{br(w))

€20 5, (w) (k) + Zp(w) +w +16 (IA)T_k(w)>

2(k) 4+ X (w) —w—1id e 1203 (w) }
P

_ {7’} Eo(k,w)/h, (4.28)
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and, according to the linear response theory, the retarded correlation functions of excitons are obtained
as the inverse of the coefficient matrix as

{6?1,16(‘“) Qﬁz,k(“})] _ —1/h

B n(w) O3 w)]  02(R)? — (w+16)% + 20(k) Dk (w)

y [Q(k) + Zp(w) +w +10 —e 12037 (w)
—e20 3 (w) Nk)+ Xr(w) —w—1id0|’

where these correlation functions are defined as

ihST (8 — ') = 0t — 1) (bi(8), BL()]) , (4.30a)
ih® R, (t— 1) = 0(t — t') ([bi(t), boi (t')]) (4.30b)
Ih®, (t—t') = 0(t —t') (b, (1), bL(t")]), (4.30c)
RS, 4 (t — ) = 0t — ') (b1 (), bk ()]) (4.30d)

4.4  Correlation functions in inhomogeneous system

Next, I discuss the correlation functions in exciton-photon inhomogeneous system. Due to the interac-
tion with the electromagnetic fields, the bare center-of-mass motion states of excitons are not diagonalized
in such systems, although the wavenumber is a good quantum number in homogeneous system as dis-
cussed in the previous section. Therefore, I represent the correlation function as the matrix form 6%@;)
on basis of the center-of-mass motion states, where ¢, j = {1,2} are the indices used in Eqs. (£30). As the
result of Ref. [T8] the retarded correlation functions in inhomogeneous system is obtained by the matrix

inversion as |

el ehw] _ S(w) ()
oh) k) =Mty sty (1.31)

the matrix S(w) is defined as

Smmt = (2 —w —10) 0, m + Xy (w). (4.32)

Further, the self-energy tensors 3(w) and ¥'(w) are derived as
o0 o0
Ymm (W) = 8bngT(w/c)2/ dz/ d2’ g, (2)G(z, 2" ,w)gm: (), (4.33a)

Dt (W) :e_iwebgwm(u)/cf/ dz/ dz’ g5 (2)G(z, 2" ,w)gr, (2). (4.33b)

These describe the retarded interaction not only between the same exciton states (m = m’) but also
between the different states (m # m/).

In a numerical demonstration, I consider a CuCl film with thickness d, and suppose the background
dielectric constant e,g = nbg2 = 5.59 inside of the film. In the case that the background is a homogeneous

medium, eng(2) = epg, the Green’s function satistying Eq. (1) is obtained by the Fourier transform of

Eq. (24) as
eiq|zfz'|

G(z,7,w) =

4.34
24 (4.34)

On the other hand, as discussed in Ref. 65 (or in App. [D)), in general multilayer systems, the Green’s

function from a focusing layer to the same one is written as
i2¢G(z, z'7w) = eiq\z—z’\ + eiquL [eiqz’ + eiqdRReiq(d—z/)} M

Lol R, {eiq(d_zl) + eiqdRLeiqzl] M, (4.35)
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where I consider that the left interface of the focusing layer is at z = 0, and right at z = d. In Eq. (£35),
R, /R is the generalized reflection coefficient [65] from the focusing layer to the left-/right-hand interface,
and M = [1- R LﬁReiQQd]_l. In the case of three-layer systems where the background dielectric constants
are respectively given as €1, €pg, and eg, when we focus on the middle layer, Ry /R 18 simply expressed

as the Fresnel reflection coefficient:
Ryp=—7F"", (4.36)

where k7, /g is the wavenumber in the left /right region:

1/2

ki = [e/r(w/c)® — k)] (4.37)

In this chapter, I discuss only the fields perpendicular to the layers, i.e., k| = 0, and I consider the
wavefunctions of the exciton center-of-mass motion as sinusoidal functions whose amplitudes are zero at

the interfaces of the focusing layer:

gm(z):{msin(kmz) 0<z<d (4.38)

0 otherwise

where k,,, = mw/d, m = 1,2,.... The exciton translational mass is meyx = 2.3mg, where my is the free
electron mass. The bare exciton frequencies are given as Aiwr = 3.2022 eV and (2, = wt + hkm2 /2Mex.

The LT splitting energy is fwpr = 5.7 meV.

4.5 Analytical expression of correlation functions

As explained in Sec. Bl in principle, the nonlocal theory requires the complete set of elementary
excitations in excitonic materials, and, in order to derive the exciton correlation functions, we must
numerically calculate the inverse of a large matrix whose size is the number of all excitation states.
Therefore, even by using the technique describing nonresonant contributions as background media, a
large number of exciton center-of-mass motion states must be considered in order to discuss macroscopic
materials. For example, in the case of CuCl film with 1 pum thickness, about 500 states of exciton
center-of-mass motion must be considered for good numerical precision. The required number of states
is doubled, if we double the film thickness. On the other hand, as discussed in Chap. 3 the poles of the
correlation functions can be calculated from the dispersion relation and self-sustaining condition with
ABC, which do not require the numerical calculation of large matrices.

As seen in Eq. ([@29)), the divergence condition of the correlation function in bulk system is written
as 2(k)? — (w +16)? + 202(k)Xx(w) = 0, and we can find that it is just identical to Eq. (£IT), the
dispersion relation of bulk polaritons. Therefore, the pole @ = wyes — iy of correlation functions in
inhomogeneous system can be reflected by replacing k& with the complex wavenumber k=k-— ideg ™,
which satisfies Eq. (£I7)) together with w. This means that the exciton correlation function 6%,mm, (w)
in inhomogeneous system could be represented with that in homogeneous system [Qﬁ% (k,w), Eq. (£29)]

as
B (@) = Y B (ka1 w)Onvfy ({kxi o (ki) (4.39)
A

where A denotes an exciton-photon coupled mode, C) is the weight of exciton component in state A\, and

v ({kx,;}) is the base transformation coefficient from A to a exciton center-of-mass motion state m. In
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the limit of infinite system, the coefficient should become v ({kx;}) = 0k, x, and then Eq. #39) becomes
6%’7kk' (w) = 6k,k’®iRj(ka w)[C’UBp + CLBP]7 (440)

where Cygp and Cigp are the exciton components of upper and lower branch polariton states, respec-
tively. When we consider Cygp/rpp as the Hopfield coefficient [19], Cuygp + CLpp = 1 is obtained, and
then Eq. (@40) becomes identical to the bulk one.

From Eq. (338), the field representation in the ABC problem of self-sustaining condition, the polariton
field of an exciton-photon coupled mode A should be written as

2
P({kx} ZX,\ i [A,\ i) By etz (4.41)

i=1

Therefore, the transformation coefficient v,,({kx ;}) is obtained as

- 1 rd - .
on({nih) = - [ dz PUlEna)2)gin2), )
xJo
where N, is the factor for the normalization condition (without the orthogonality)

> om{kr Do, ({kai}) = 1. (4.43)

Since I consider the exciton center-of-mass wavefunction as Eq. ([{38) , the coefficient is represented as

2
m({kxi}) = Z \/7/ dz AA 1elk/\7 =D 4 By e lk“z] sin(gm 2)

2
Z \[ (1) Axi = Bril =" e - [emiFrimanid _q] (4.44a)
i T Um
m({kai}) = Z X5 (=1)™Axi — Bl % [ei(’”*i*qm)d - 1} : (4.44b)
=1 AiT — dm

Here, it is worth to note that we must not use the conjugate of the complex wavenumber IEM in the latter
representation, and also x s, Ax,i, and B ; are not changed, because they are determined by IEM and @,.

Further, the normalization factor Ny is determined from these representations for satisfying Eq. (£43).

4.6 Numerical verification

As demonstrations, I numerically calculated the exciton correlation function (’511117mm, (w) by the matrix
inversion method and from the phenomenologically introduced analytical expression, Eq. ([@39). Figs. dTl
- show the comparison of the two calculation results. In these calculations, I used Eq. (438) as the
exciton center-of-mass wavefunction, and considered that the CuCl film is existing in vacuum. As seen
in these figures, it can be said that Eq. ([@39) provides a good approximation of the exciton correlation
functions for nano- to macro-scale thicknesses. However, as seen in Fig. [£5] there are some deviations
between the two calculation results. Although the deviations are five orders of magnitude smaller than the
maximum value (about 10000 in Fig. EA]), the deviation significantly modifies the spectra of correlation
functions for nonresonant exciton states (m = 3, 12, and 61 are the resonant exciton states for d = 100,
1000, and 5000 nm, respectively). In the application of the analytical expression into the nonlinear and
thermal processes of excitons in inhomogeneous systems, these deviations may significantly affect the

calculation results.
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4.7 Discussion

In the matrix inversion method, the calculation time is proportional to the third power of the number of
considered exciton states. In contrast, in the analytical method based on the poles of correlation functions,
the calculation time is linearly proportional to the number of states when we calculate the poles {@y}
(or complex wavenumber {I~c,\z}) from the dispersion relation and the self-sustaining condition. However,
there remains a little deviation from the results of the matrix inversion method. In order to remove the
deviation, the analytical expression of the correlation functions should be systematically derived from
Eq. (&31)), the strict expression, although Eq. (£39]) has been intuitively introduced in this thesis.

As part of the derivation of the analytical expression represented with the poles {@y} or the complex
wavenumbers {l::M}, in Chap. [Bl T numerically verified the equivalence between the correlation function
method for calculating {&y} and the intuitive method for the poles, which is based on the dispersion
relation and the self-sustaining condition. The derivation of the analytical expression has close connections
with the discussion of the microscopic derivation of ABCs [70] [71) [72] and also with the equivalence
between ABC theory and ABC-Free theory (microscopic nonlocal theory) [29, 102]. From the detailed
analytical calculations in these previous works, the equivalence of the two calculation methods for poles
would be verified systematically, and also the analytical expression of correlation functions would be
derived precisely. These tasks are essential for the perturbation calculations based on the correlation
functions obtained in the present QED theory.

Although Pekar’s ABC [67] was used for the actual calculations in this chapter, other ABCs can also
be treated in the self-sustaining condition, if the ABCs have been properly derived from the microscopic
viewpoint. In other words, in order to apply the present analytical method into practical problems in the
future, the general derivation method of ABCs from given exciton center-of-mass wavefunctions should
be established. Further, in addition to the excitonic layer considered in this chapter, the present method
can be applied to other structures, such as multilayers, spheres, photonic crystals, and so on. If the
analytical expression of the retarded correlation functions of excitons is properly obtained, the time-
ordered and temperature correlation functions would be derived by the analytic continuation, and then
the present method could be applied to the discussions of nonlinear and thermal processes in exciton-

photon inhomogeneous systems.
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Conclusion

In the present thesis, for the future discussions of nonclassical light generation from condensed mat-
ters and of nonclassical states of exciton-polaritons, I have constructed (1) QED theory of excitons in
inhomogeneous systems. Although I discussed the present QED theory only under the linear response
scheme, this theory would extended to a calculation method applicable to general perturbation in the
exciton-photon inhomogeneous systems, because the retarded correlation functions of excitons can be ob-
tained by the present QED theory. In order to derive time-ordered and thermal correlation functions by
the analytical continuation from the retarded ones, I tried to obtain the poles of the retarded correlation
functions in the exciton-photon inhomogeneous system. A pole is characterized by a resonance frequency
and a radiative decay rate, and, as a part of the discussion of the poles, I have explicitly elucidated the
condition of (2) crossover of radiative decay schemes of excitons. Last, from the obtained information
of the poles, I discussed (3) analytical expression of exciton correlation functions in the exciton-photon
inhomogeneous systems for the future development of general perturbation theory. I summarize these

topics in Sec. Bl and finally I suggest the remaining problems and the future perspectives in Sec.

5.1 Summary

From the following three research works in this thesis, it can be said that a QED theory for excitons with
center-of-mass motion and nonradiative damping in arbitrary-structured 3D systems has been established
including the actual calculation method for practical materials. Further, although the present thesis
concentrated on only the linear optical process of excitons, the present QED theory has already been
applied to the theoretical study of entangled-photon generation from nano-structures [46], and also has
a potential to provide a systematic calculation method for general perturbation in the exciton-photon

inhomogeneous systems, because the exciton correlation functions can be obtained in the present theory.

(1) QED theory of excitons in inhomogeneous systems

I have constructed a QED theory for excitons whose center-of-mass motion is confined in arbitrary-
structured 3D dielectrics, and therefore it can be applied to optical processes of excitons from nano-
structures to bulk-like systems. This theory is based on the two theoretical frameworks: the series of
QED theories for dispersive and absorptive dielectrics [211 [18], and the semiclassical microscopic nonlocal
theory [3I]. In the same line as the former, the present theory has a good correspondence with the
fluctuation dissipation theorem, and it provides the retarded correlation functions of excitons and of

electromagnetic fields in the inhomogeneous systems. Further, in the same line as the nonlocal theory,
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the present theory reduces the problem into a linear equation set, although the previous QED theories
[23, 24, 25, 26], 27, 28] for spatially-dispersive media are based on the Maxwell wave equations with
nonlocal susceptibility, which is an integro-differential equation. Compared to the semiclassical nonlocal
theory [31], the present theory considers the fluctuation operators due to the exciton and background

nonradiative damping, which do not appear in the semiclassical framework.

(2) Crossover of radiative decay schemes of excitons

According to Fermi’s golden rule, the radiative decay rate of excitons increases together with the crystal
size (exciton superradiance). However, in a thick film where the exciton-polariton picture is suited, the
decay rate is inversely proportional to the thickness, because the decay time should be proportional to
the time of flight of polaritons. The present thesis explicitly provides the crossover condition between
these two radiative decay schemes. The condition means that the crossover occurs when an apparent
propagation speed of superradiant excitons reaches the group velocity of polaritons. In other words, the
photon emitted by the electron-hole recombination cannot go outside of the film without reabsorption,
when the propagation speed looks beyond the polariton group velocity. I used two methods to calculate
the thickness dependence of the radiative decay rate and resonance frequency of exciton-photon coupled
modes. One method is calculating the poles of exciton correlation functions, which are obtained by the
present QED theory in Topic (1). The other is an intuitive method based on the dispersion relation
and self-sustaining condition for the exciton-photon coupled mode, which is characterized by a complex
frequency and a complex wavenumber. I verify that the latter method actually reproduces results of the

former, and the crossover condition has been obtained by analyzing the dispersion relation of the latter.

(3) Correlation functions in exciton-photon inhomogeneous systems

While the retarded correlation functions of excitons are evaluated by matrix inversion in the present
QED theory, I have shown an analytical expression of it, which is represented with the complex wavenum-
bers and wavefunctions of polariton fields obtained in Topic (2). The calculation of the poles can be
performed in a finite time regardless of the crystal size, although, in the matrix inversion method, the
calculation time increases together with the crystal size. I have numerically demonstrated that the an-
alytical expression shows good agreement with the strict correlation functions calculated by the matrix
inversion method. However, there remains a little deviation from the strict results. By deriving the
precise analytical expression and obtaining time-ordered and thermal correlation functions, we can apply
the present QED theory into nonlinear, relaxation, emission processes of excitons or exciton-polaritons in
inhomogeneous systems. It is worth to note that the calculation method of poles is based on a boundary
problem with ABCs, although ABCs are not required in the microscopic nonlocal theory in principle.
This means that we must use proper ABCs corresponding to the considering center-of-mass wavefunctions

in the pole calculation.

5.2 Remaining problems and future perspectives

As seen in Chap. 2 the present QED theory considers the excitons as pure bosons, and describes
only its linear optical process under the discussion in the present thesis. In order to apply this theory

into nonlinear or relaxation processes, we must introduce exciton-exciton interactions as performed in



5.2 Remaining problems and future perspectives

61

the semiclassical framework [34, 37, B1] or in Ref. 46, where the entangled-photon generation from nano-
structures has been discussed by using the present QED theory. While the phenomenological introduction
of the exciton-exciton interactions is useful for simplicity and qualitative discussions, the representation
of the interaction should also be derived from the non-bosonic property of excitons by considering a
general electron-hole system as discussed in Refs. [103] [104, and [I05. Although the exciton correlation
functions obtained in the present QED theory is useful for discussing nonlinear and relaxation processes
if the representation of the exciton-exciton interaction is properly obtained, the nonlinearity may not be
described as the exciton-exciton interaction in particular problems. In such situations, we must rediscuss
the present QED theory for non-bosonic excitons, and derive the correlation functions under the first-
order perturbation in the exciton-photon interaction.

There is another problem whether the exciton-photon interaction should be represented as the product
of current density and vector potential J(r)- A(r) or the one of polarization and electric field P(r)- E(r).
As explained in Chap. 2 the latter representation includes the exchange interaction between electrons
and holes or the dipole-dipole interaction, which is the origin of the exciton LT splitting. The present
QED theory does not consider the second term of Eq. (2:2)), which is proportional to the square of A(r),
in deriving the motion equation of excitons. As the result of this approximation, I assume w ~ w,, in
deriving Eq. [237), and the polariton dispersion relation [Eq. (834))] cannot be properly derived if only
J(r) - A(r) is considered. On the other hand, although representation P(r) - E(r) correctly provides
Eq. (334), its representation is only an approximation under the resonant linear optical process. This
problem concerning the interaction representation should be discussed in detail by considering the gauge
transformation as discussed in Ref. [16] or by considering A(r)? term as in Refs. 19 and [31L

As seen in Chap. Bl the method based on the dispersion relation and the self-sustaining condition
was intuitively introduced, although it exactly provides the same complex frequencies as calculated by
the correlation function method in numerical precision. The equivalence of the two methods should be
systematically verified by a detailed analysis of the correlation function method. Further, such analysis
will provide a precise expression of the retarded correlation functions of excitons, while only its approxi-
mation was intuitively proposed in Chap.[dl In these analytical discussions, some calculation ideas would
be obtained from the previous studies about the first-principle derivations of ABCs [70] [71] [72] and the
equivalence between ABC theory and ABC-free theory (microscopic nonlocal theory) [29, T02]. Although,
in the self-sustaining condition, we must use additional boundary conditions (ABCs) properly determined
from the exciton eigenstates, only a few ABCs have been derived from the first-principle calculations.
The general ABC derivation method should also be developed for the future applications.

From the precise expression of the retarded functions, the time-ordered and thermal ones are derived
by the analytic continuation. The former can be applied to discussing general nonlinear processes by
using the Feynman diagram technique, while the retarded and time-ordered correlation functions are
identical under the rotating-wave approximation. On the other hand, the thermal correlation functions
can be applied to, for example, the discussion of BEC of excitons or polaritons including the exciton-
photon interaction in inhomogeneous systems. However, for such discussions, we must consider the
quasi-thermal equilibrium state, where only the excitonic system is in equilibrium and the radiation one
is not. When we simply connect to the thermal correlation function from the retarded one analytically, it
represents the full equilibrium state including the radiation system, i.e., the thermal radiation. Therefore,
the analytical continuation to the thermal correlation function in the quasi-equilibrium should also be

developed for the future applications.






Appendix A

Retarded Correlation Function

Retarded correlation (Green’s) function is an essential concept not only in this thesis but also in general
physics. In this appendix, I explain its basic knowledge, i.e., the relation with the linear response theory,

Kramers-Kronig relations, and Langevin equation.

A.1 Linear response theory

The linear response theory is the first-order perturbation theory providing physical quantities modu-
lated by perturbation, and their coefficients are represented by the retarded correlation functions. More
detailed discussions are shown in Chap. 5 of Ref. [106l Appendix 2 of Ref. 107, and many other textbooks.

I consider a perturbation H’, an unperturbed system Hy, and the density matrix pg in thermal equi-
librium of Hy system. In the interaction representation, H' and the density matrix p(t) in whole system

are written as

H/(t) _ eiI—IoIf/h}q’/efiffot/ﬁ7 (Al)

ﬁint(t) — eiHOt/ﬁp(t)e—iHot/rL, (A2)

and the density matrix is modulated by the perturbation as

2220 _ T51101), 1] (A.3)
Pint(t) = po + % /_too dt’ [ﬁ/(t/)» Pint (t/)} (A4)

= po + % /_; dat’ [ﬁ’(t’),po} +O(H"™). (A.5)

Therefore, when we suppose the perturbation as the product of external field f and internal quantity B

h H' = Bf(t), (A.6)
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the expectation value of quantity A is derived in the first-order perturbation as
t

(A(t)) ~ <A>O+% / at' w{ [(t). po] A1)} (A7)

—00

= (A), + % /_ ; at' (| A@). 7't)] ) (A-8)
e+ [ ar([A0.B]), 1) (A9)

oo 0
= / dt’ GR(t —t)f(t), (A.10)
where G®(t — ) is the retarded correlation function between A and B:
Ot —t") /1~ ~
R _ 4y — !
GR(t—t) = =—— <[A(t),B(t )DO. (A.11)
Further, the Fourier transform of A(t) is written as
0 eiwt R R ] eiu}t
[t S ) = () = @) = M) [ a s, (A12)
where the w-representation of the retarded correlation function is defined as
R w) = / Tt e OGR( ) = - /  dt eett—t) ([Aw), B)]) . (A.13)
- in Jy ’ 0

We should pay attention to the fact that the factor (27r)~! does not appear in this definition in contrast
to Eq. (A12).
In this way, according to the linear response theory, by calculating the retarded correlation function

(A1d)) or (A13), the expectation value of physical quantity A can be directly obtained from external

field f as Eq. (AIQ) or (AI2).

A.2  Kramers-Kronig Relations

As explained in the previous section, a retarded correlation function plays as a response function
having the causality (providing a finite value only for ¢t > t’). In this section, I explain the Kramers-
Kronig relations, which is derived by the causality of response functions. More detailed discussions are
shown in Sec. 7.10 of Ref. [68, Chap. XII of Ref. 50, and many other textbooks.

I consider the above response relations (AI0) and (AI2). First, if the response function G®(t) is a

real function, we obtain the following equation:
CR(w) = {GR(—w*)}* = GR'(~w). (A.14)

Further, when the frequency is complex as w = wy +iws, GR(w) [[(ATIJ)] is a regular function for we > 0 if
GR(t) is real and continuous, although G®(w) diverges for wy < 0. This is because the real and imaginary

parts of GR(w) = G} (w) +iGR(w) are written as
GRw) = / dt cos(wit)e 2GR (1), (A.15a)
0

GR(w) = /000 dt sin(wit)e 2GR (t), (A.15b)
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and then they satisfy the Cauchy-Riemann equations

OGR  HGR

- 72 Al
6w1 8w2 ’ ( 6&)
oGR  oGH
i (A.16b)

On the other hand, from the physical viewpoint, the response function G®(¢) should vanish in the limit
of t — oco. Further, I consider G®(¢) is differentiable at t = 0F. In this situation, by partially integrating
Eq. (AT3), G®(w) is written as

iGR(t) 1 dGR(2)

w w? dt 0+

GR(w) = (A.17)

Since the response function gives GR(0~) = 0 for the causality, we obtain GR(0*) = 0 owing to the
continuity. Therefore, the first term of (A7) is zero, and we obtain for enoughly large w as
GRw) =0(w™?), (A.18a)
GR(w) = 0(w™?). (A.18b)

As the result, GR(w) vanishes in the limit of |w| — oo.

Since GR(w) is regular for wy > 0 and vanishes at w — oo, we obtain the equation as

1 [ R
= G, (A.19)
im J_o w —w+i0
Here, by using the equality
1 1
=P-Fi A2
o~ P Fimd(a), (A.20)
we can derive the following relation
P [ R
— / dw’ G/ @) _ Ry =0 (A.21)
i J_ o w —w
[ G (w) —iGF(w) R . R
. /_Oo do’ R =G (w) + 1G5 (w), (A.22)
where P means the primitive integration. Therefore, we can obtain the Kramers-Kronig relations:
P [ GR(W")
R 2
Gl (o.)) = ; /_oo dw' m, (A23a)
P [ G (W)
GHw) = —= do’ == A.23b
Mo = -7 [ T (A.23)

These relations are derived from the causality of the response function.

A.3 Langevin equation

Last, I discuss the response relation of dispersive systems, which have tight connection with the QED
theory for dielectrics. In order to discuss such systems, we must consider the Langevin equation, and its
detailed explanation is shown in Chap. 15 of Ref. [I08] Ref. 109, or other textbooks.

In this section, I consider boson operator a with eigenfrequency (2, and it interacts with reservoir of

oscillators l;j with frequency w;. The unperturbed Hamiltonian is written as

Hy = hafa -+ hwbl; + 1Y (9570, + gbla) (A.24)
J J
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The Heisenberg equations are derived as

%d(t) = —ifa(t) — iZ g;b;(t), (A.25a)
%Bj(t) = —iw;b;(t) —igla(t). (A.25D)

The latter differential equation is solved as

t
b;(t) = by(to)e i (t=t) —jgr / At’ e 1 =1, (A.26)

to

and, by substituting it into the former equation, we obtain
) K t—t
&@a):—HM@)—/‘m’lg——lmﬂy+ﬂﬂ, (A.27)

where (¢t — ') and f(t) are respectively defined as

=) _ 2 —iwyt—t) _ V1)
J
Ft) = 1) g5b;(t)e st 10), (A.29)
J
The commutation relation of f(t) is derived as
S ~(t—t
[F. fin] = 1, (A.30)
Here, for a simple example, I suppose that v(t — t) has no value except for t = t’ as
t—t
ng—zzlwu—ﬂ) (A.31)
This treatment is called the Markov approximation, and Eq. (A.27) is rewritten as
0 r .

The Markov approximation means that a does not keep its previous memory, and its amplitude does not
return to a. Therefore, the amplitude monochromatically decreases. Eq. (A32) is called the Langevin

equation, and f is the fluctuation operator. Here, Eq. (A.32) is solved as
t
a(t) = & e~ i(R=iT/2)(1=t0) Jr/ dt’ e—i(@=T/(=t) fyr). (A.33)
to

and then, for ¢ > ', the commutation relation between a(t) and af(f’) is derived as

t t
[&(t),dT(t/)] — e—iQ(t—t’)_F(t+t/_2t0)/2 + F/ dS/ ds/ e—i(.Q—il"/2)(t—s)ei(ﬂ—i-iF/Q)(t/_s/)(s(s - S/)
to to

t/
_ e—iQ(t—t’)—F(t+t’—2t0)/2 +Fe—i()(t—t’)—1”(t+t/)/2/ ds el'®
to

— iRt —I(t=t)/2 (A.34)

We can see that this correctly provides the equal-time commutation relation [a(t),af(¢)] = 1, which

must identical to that in the Schrédinger representation. On the other hand, it is worth to note that, if
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the Langevin equation (A.32) does not have the fluctuation operator f(t), the equal-time commutation
relation does not match with the Schrodinger one. From Eq. (A.34)), the retarded correlation function of

a is obtained as

GR(t—t) = w ([at),a"(t")]), = we—iﬂ(t—t’)—ﬂt—“ﬂ, (A.35)
1
Mw— 2 +il'/2)

GR(w) = (A.36)

As discussed in the previous section, this function has the extreme value {2 —il'/2 in the lower half side
of the complex w-plane, because Eq. (A28)) provides a real positive value for ¢ = ¢t'.

Last, I show the w Fourier transform of the Langevin equation (A32). By defining the Fourier trans-
forms of a(t) and f(t) as

/ dt e“ta( (A.37)

fw)

o / dt et f(t), (A.38)

Eq. (A32) is rewritten as

o fw)
a(w) = @) i (A.39)

where I consider that the interaction between @ and b initially exists as to — oo, and ~(w) is defined as

t o3}
y(w) = / At et — ) = / dt ey (t). (A.40)
0

— 00

From Eq. (A28), we obtain the relation

oo [eS) 0
7 (w) = /0 dt e wiy*(t) = /0 dt e why(—t) = / dt e“in(t), (A.41)

— 00

and the the commutation relation of f (w) is obtained as

[f( ), fl(w )] =(w —u}')—/Oo dt ei“tg =(w —w')%f. (A.42)






Appendix B

Vacuum Fluctuation in QED of Dielectrics

In this appendix, I discuss the source of the vacuum fluctuation in the QED theory for dispersive
and absorptive dielectrics established in the pioneering work by Huttner and Barnett [2I]. As seen in
Eq. (LII) or [L26)), the commutator of noise operator jNT(Z, w) vanishes in the limit of zero absorption
Im[e(w)] — 0. However, as see in Eq. (L27), the commutator of the vector potential A(z,w) does not
vanish in the same limit, and then we must take the zero absorption limit after expectation values of
focusing observables are obtained. Although this result reflects the existence of the vacuum fluctuation in
the electromagnetic fields, the noise operator Jyr (z,w) should describe only the fluctuation originating
from the absorption in dielectrics. Therefore, there is a following question: What describes the vacuum
fluctuation in the series of QED theories?

I consider a homogeneous medium with dielectric function e(w), and discuss transverse fields propa-
gating in the z direction. The Maxwell wave equation for the vector potential A(z, w) is represented in
Eq. (IT20) with noise operator jNT(z,w). This operator satisfies commutation relation ([26), and the
one of A(z,w) is derived as Eq. (L27). Since the Green’s function Go(z,2’,w) satisfying Eq. (L24) is
represented as Eq. (25, the vector potential is written from Eq. ([23)) as

~ 1 o0 A . ’ ~ ~
AT(ew) =50 / Az’ Jyr(#,w) 7 = AL (z,0) + AL (2,0), (B.1)

— 00

where k = \/e(w)w/c and I define forward and backward fields as follows:

~ 1 o o . ’

A (z,w) = ﬂ/ dz' Jnr(2,w) e G, (B.2a)

A 1 7;0 A —_

At(z,w) = @/ dz' Jnp (2, w) e =2, (B.2b)
z

These fields are also represented with the fields at another position z; as
. . - 1 ? A : ’
AL (z,w) = "2 AT (21, w) + &/ dz’ Inr (2, w) e, (B.3a)
~ . o 1 Z1 o s
AL (z,w) = "D AL (21, w0) + 2—/ dz' Inr(2,w) e =2, (B.3b)
2k J,

The former relation means that A¥ (z;,w) feels phase shift iRe[](z— 2z, ) and amplitude decay e~ Tm[sl(z=21)
during the propagation from z; to z, and also is affected by the fluctuation jNT(z’,w) inz <2 <z
The latter relation is also interpreted in the same way.

Next, I discuss commutation relations between the forward and backward fields. As seen in Eq. (I.20)),

the noise operator jNT(z, w) has a correlation with itself only at the save position. Therefore, forward
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field AL (z,w) and backward field AL (2, w) have a correlation only in the case of z > 2':
{A;(z,w), Az (z’,w')}
1 z 0 . A A~ * 7ilﬁ},* xliz/
= L . dz / / da’ (=) [JNT(:c,w), {Inr (2, )}q o—in' " (2’ =2")

ipohw? Im(e(w)] eRelHz'=2) — giRelWl =2 | W

— _ ! 9 _ A
Ow =) 0z = 2) 4mc?|k[2S 2Relx| ¢
llu’oh Im[ﬁ] iRe[k](z' —z iRe[k](z—2’ —Im[k](z—2'
= 5w — ) Bz — ) S [e [K](='=2) _ giRe[s]( )] e~ tmlsl (=) (B.4)

where 0(z—2') is the step function providing unity only for z > 2’, and I used the relation Im|e(w)](w/c)? =
2 Re[x] Im[x] to derive the above equations. On the other hand, the commutator between A% (z,w) and

itself is derived as
4o, A5 )]
= L /Z dx /Z da’ |:jNT(fE w) {jNT(l'/ w/*)}T:| eiﬁ(sz) e*iﬁl*(zlfz')
4kK"* — oo ) 5 R

| pphe? Imfe(w)]
4|k|? S

_ 5((4) 7&)/) eiRe[n](zfz’) eflm[n](zjtz')/ dl‘/ da’ 5(1,71:/) e2Im[n]z' (B5)

Here, since the integrations with respect to  and x’ are performed as

/
z

/ dx/ da’ §(x — ') el — g(z — z’)/ dz 2™z 4 g( — z)/ dg e?mlxle

— 00 — 00

B 0(2 o Z/)e2lm[n]z' 9(2/ _ Z)e2lm[n]z
N 2Im|[k] * 2Im|x) ’ (B.6)

I obtain

B , z 2 9(2 _ Z/)e—Im[n](z—z/) 9(2,/ _ z)e—lm[n](z'—z)
Im[k](z+2") d da’ §(z — o' 2Im[klz _
¢ /_Oo o /_Oo ' olw—a)e 2Im|[x] + 2Im|[k]

’
eflm[nﬂzfz |

= TR (B.7)
Therefore, Eq. (BH) becomes
N a_ h Re[li] : . _ .
AT A oy — o Ho iRe[k](z—2") Im[k]|z—2'| B.
A2 (), A5 ()] = b0 - o) B o e e : (B:3)

and this commutator has a finite value even in the limit of Im[x] — 0. On the other hand, by the same
procedure, the commutation relation between Ai (z,w) and itself is obtained as

poh Relx]

iRe[k](z'—2) 7Im[n]\zlfz|. B.9
An|k2S © ¢ (B-9)

[Ai(z,w), A;(z',w’)] =6(w—w)
This also has a finite value in the zero absorption limit.
Next, I describe A% (z,w) by using AL (2/,w) at different position 2’ < z as
At (z,w) = DAL (W) + é / dz Jyr(z,w) eFE=o), (B.10)
In this situation, Eq. (BR) is also written as

[Ai(z,w),/l;(z',w')} — eir(z=2") [Ai(z’,w),A>(z’,w’)}

1 ? o A= ik(z—x)
+ﬂlmthWMW . (B11)
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and we can find that Eq. (B) is obtained from only the first term, and the second term provides no
contribution. This is because AL (2/,w) is described by Jxr(z,w) only in —oo < 2 < 2/, and then it
has no correlation with Jyr (z,w) in 2z’ < 2 < z. On the other hand, by introducing another position

2" <z, 2/, Eq. (B:§) is rewritten as

[AJ;(Z,W),A;(Z/,LU,)} _ ein(zfz’/) efi,{’*(z/,z/’) [AJ;(Z//,W),A;(ZH,MI)}
1

+ 4KkK'*

/ dx/ da’ {j(z,w),jf(aj’,w')} elr(z=2) =i =2 (B 12)

where I neglect the commutators between jNT(x,w) and A* (z,w) for the same reason as in the above
discussion. From the first term of Eq. (B12)), we obtain

M()h RG[H] i K|(z—z' —Im[k](z42z"—22"
5(w_w/)WeRe[ [(z=2") g~Imlr](z+2'~22") (B.13)

and the second term becomes

h Re[,‘{] . ’ ’ ’ "
Slw — o' Ho elRe[N](zfz) [eflm[n]\zfz | eflm[m](erz —2z") . B.14

( ) 47r|k|2S ( )
Here, we can find that the second term vanishes in the limit of Im[x] — 0, although the first term has a
finite value. Therefore, the vacuum fluctuation comes from the noise operator jNT(:c, w)in —co <z < 2"
for arbitrary z”/, and we can conclude that the vacuum fluctuation is described by Jxt(z,w) at the infinite
distance x — oo in the series of QED theories for dispersive and absorptive dielectrics and also in the

present QED theory for excitons.






Appendix C

Direct Derivation of Green's Function for
Integro-Differential Equation

In this appendix, I show a direct derivation of the Green’s function satisfying Eq. (2.88)), the integro-
differential equation or the wave equation with the nonlocal susceptibility under the RWA. The Green’s
function satisfying Eq. (2.58]) without the RWA can be also derived directly by the same procedure. The
calculation is based on the fact that the nonlocal susceptibility is represented as a summation of separable
functions with respect to the two positions. Actually, the radiation Green’s function for a quantum well
system with DBR cavity has already been derived in Ref. [81l

I explain the general calculation idea in Sec. [C] and the Green’s function satisfying Eq. ([288) is
derived in Sec.

C.1 General calculation idea

I consider an arbitrary operator O, and suppose that its Green’s function g(x, z’) is already known and
satisfies Og(x,2’) = d(x — 2’). From this Green’s function, I try to derive the Green’s function G(z,x’)
satisfying

OG(z,2') + > Ap(z) /dy B (y)G(y,2") = 6(x — 2'). (C.1)

First, by operating on this equation from the left with 0_1, I obtain
G(z, ') + Z [/ dy’ g(x,y’)Am(y’)] H,,(2") = g(x,2"), (C.2)

where H,,(z') is defined as
Hu(@') = [ dy Bu(w)Glo.o'). (C3)

Next, by multiplying both sides of Eq. (C2) by B, (z) and integrating with respect to z, I obtain

He) ) [ [ @y B 4] Hula) = e (1)

where h, (2') is defined as

hp(x') = /dx Bp(x)g(x,2"). (C.5)

Next, I express the coefficient appearing in the second term of Eq. (C4) by

Chm = /dx/dy B (2)g(z,y ) Am(y'), (C.6)
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and then Eq. (C4) is rewritten as

H,(z") + ZC’n,mHm(x') = hp(z'). (C.7)
Therefore, by calculating the inverse matrix of the coefficient as D = (1+ C)~!, Eq. (C7) is rewritten as
¥) =3 Dmnha(z). (C.8)

Substituting this into Eq. (C2)), T obtain the representation of the Green’s function as

G(z,2') = g(x, ) Zh' ho(2'), (C.9)

where h] (x) is defined as
o) = [ 40 gl Ante). (.10)

C.2 Green's function for nonlocal media

Along the same line as the previous section, I derive the Green’s function satisfying Eq. (Z88]), the
wave equation with the nonlocal susceptibility under the RWA. First, I suppose that the Green’s function
Go(r, 7', w) satisfying Eq. (IL59), the wave equation with local dielectric function eg(r,w), is already
known. By substituting Eq. (2.77) into Eq. ([2.88), I obtain the equation to be solved as

2
V xV xG(r,r,w) — %%g(r,w)G(r ' w)

"X S (ﬂ) 75 [ @ P Gl w) = bl =)L (C11)

Here, we can consider that the functions and variables appearing in the previous section correspond as

follows:
G(z,2") — G(r,r",w), (C.12)
g(z,2") — Go(r, 7", w), (C.13)
{Fulr',w)}*
" — /dr Pi(r) Go(r,r' ,w) = 0 (C.14)
2
’ _ How / / . nNo_ Eulr,w)
R /dr Golr ') Pulr’) = (C.15)
B frow? * N n_ L (W)
R R Y o /2/dr/dr Pu(r)- Golr,'sw) - Pu(r) = m#,—izw—iru,((w)p;
C.16

where ¥, (w), €,(r,w), and F,(r,w) are defined as Eqs. (2.62a)), (2:63a)), and (2.G8L), respectively.
: 11
Since the elements of 1+ C correspond to S, (w) [Eq. 2.61a)] as

1+C Sy () (C.17)
Bl — hw — il (w) /2 ’
the inverse matrix D corresponds to W(w) = [Sn(w)]_1 as
Dy — [hwy — hw — il (w )/2] o (@) (C.18)

Therefore, from Eq. (C.9) and the above relations, the Green’s function satisfying Eq. ([2.88) is derived
as Eq. (237).



Appendix D

Green's Function for Multilayer System

In this appendix, I show and derive the expression of the Green’s function G(z, z’, w) satisfying Eq. (33])
in the case of multilayer system. The details and the Green’s function for other structures with high
symmetry are discussed in Ref. 65

First, I show the expression of G(z, 2/, w) in Sec. The general reflection and transmission coefficients

appearing in the expression are discussed in Sec. [D.2] and the derivation of G(z,2’,w) is explained in

Sec. [D.31

D.1 Expression of Green's function

I consider general multilayer system shown in Fig. [D.Jl Layer ¢ has a thickness d; and a dielectric
function &;(w). I suppose the in-plane wavenumber as k|, and the wavenumber in the z direction is

written as

ki = \/ei(w)uﬂ/cz - kHQ. (D.1)

When we consider that z and 2’ are in layers j and 4, respectively, the Green’s function satisfying Eq. (3.3)

is represented as
1

Gz, 2 w) = —
(#0) = 5

Gja(z,2'), (D.2)
where G;; is the propagator represented as follows. In case ¢ = j, the propagator is written as

/ iki|z—2' iki(z—zi—1) D —iki(zi—1—2' ikid; 1 iki(zi—2' Y
Gii(z,2') = ehilz=7 peiliGm2o0 R, [e thi(zioa=2) g olkidi R, ) jethi(z Z)} M,

e k=R, [eiki(zi_z/) ) ie_ik"(zi’l_z,)} M;. (D.3)

EL Fl F2 E—l Fi Fi+1 FN—l FN FN+1
B, B, B, B, B, B, By, By Ey
d] d2 di—l 61[ 6]i+1 dN—l dN
>
Z Z Zy Zin Z;q Z; Zi ZNo Zn1 Zy

Figure D.1: Schematic view of considering multilayer system.
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Here, Raz is the general reflection coefficient from layer i to the interface with layer j, which is discussed
in Sec. D2 and the factor M; is defined as
~ ~ ~ . -1
M; = [1 - Ri—LiRi—Q—Lieridi} : (D.4)
In case j > i, the propagator is represented as

H . — . i . P — . —_ . nd H . PR ’ 1 . P — . . —_ ’ =~
gj,i(Z,Z/) — |:elk_7(z Zj—1) —|—e’k-7dJRj+17je ik; (z z_7):| jjjz' [elkl(zl z") —|—e‘k”d1Ri_17ie iki(zi—1—2 ):| Mia

(D.5)
and, especially in case j = N + 1, it is written as
gN+1’Z'(Z,Z/) _ eikNH(z—zN)TNJrLi [eik'i(zri—z’) +eikidiRiil’ie—iki(Zi—l_z/):| Ml (D.G)
Here, T“ is the general transmission coefficient from layer ¢ to layer j discussed in Sec. [D.2] and it is
represented with the ones connecting neighboring layers as

7 7 ik 1d; 1 T 7 ikip1dip1
Tji=Tjj-1 €9 Tjoyjog- - Tigoipr €709 Tipy . (D.7)
On the other hand, in case j < i, the propagator is represented as

i . — . i . - 1 . — . = —1 . . — / 1 . Jpad 1 . R 4 ~
gj,i(Z,Z/) — |:e_1k7(z zj) +€1k]d7Rj_17jelk’(Z zJ_l)] Tj,i |:e iki(zi-1—2") +elkld’Ri+1,ielk‘(zl z ):| Mi7

(D.8)
and, especially in case ¢ = 0, it is written as
Go.i(z,2') = e tholz=20) T, . {e—iki(zi,l—z/) i eikidiRiJrLieiki(zi—z’) ;. (D.9)
The general transmission coefficient has the relation
Tji=Tjj e Ty sioe o Ty gy g Fitdioe Ty (D.10)
As seen in the above representations, the Green’s function has the reciprocal relation
G(z,7' \w) = Gialz:2) _ Gig(Z12) _ G(7, z,w), (D.11)

i2k; i2k;
because of the reciprocity of Eq. (33]). The dyadic Green’s function satisfying Eq. (L53)) for general

multilayer system is shown in Sec. 7.4 of Ref. [65l

D.2 General reflection and transmission coefficients

In this section, I derive general reflection and transmission coefficients including the effect of multiple
reflections in multilayer structure. I also consider the system shown in Fig.[D.1l I denote the electric field

E;(z) inlayer i =1, ..., N as a sum of the forward propagating field F;(z) and backward one B;(z) as
E;(2) = Fi(2) + Bi(2), (D.12)
and T define the amplitudes F; and B; of these fields as

Fi(z) = e*im=m) (D.13a)
Bi(z) = e hiz==) B, (D.13b)

On the other hand, the electric field in layers 0 and N + 1 are respectively written as
Bo(2) = By, *(==2) 4 By(2), (D.14)
EN+1(Z) = FN+1(Z) —|— ER e_ikN+1(z_zN), (D15)

where I consider that the incident fields Ep, and ER are given.



D.2 General reflection and transmission coefficients

D.2.1 For incident field only from left

First, I consider that the field is incident on the system only from the left-hand side (Ey, # 0, Er = 0).

In this situation, the fields in layers N and IV + 1 have the following relations at interface z = zy:

FN+1(ZN) = TN+1,N FN(ZN), (DlG)
Bn(zn) = Rnt1,8 Fn(zn), (D.17)

where Ry11,ny and Tn41,n are Fresnel reflection and transmission coefficients from layer N to layer

N + 1, respectively, and they are represented for j =i+ 1 as
_ki—k;

- D.18
R],Z Iﬂz + kj) ( a)
2k;
T. . — LA D.18b
75t kz +kj ( )

In the following paragraph, I derive the general reflection and transmission coefficients Riﬂ,i and ﬂ+1,i

providing the relations at interface z = z; as

Fip1(z) = Ti+1,i Fi(z), (D.19)

Bi(zi) = Riy1,i Fi(z). (D.20)

Here, I rewrite (D.20)) by using Egs. (D13) as

Bi = Ri-‘rLi eikidi Fi, (D.Ql)

and consider that B; is already known. On the other hand, by using the Fresnel coefficients, the boundary

conditions at z = z;_1 are obtained as

Fi(zic1) =Tii-1 Fi—1(2zi—1) + Ri—1,i Bi(zi—1), (D.22)
Bi_1(zi—1) =Ti—1 Bi(zi—1) + Riic1 Fic1(2zi—1), (D.23)
and they are rewritten as
Fi=Ti; 1 Fi_1(2i_1) + Ri_1,; % By, (D.24)
Bi_1(zi—1) = Tj—1,; €% By + Ry ;1 Fi_1(2i-1). (D.25)

Substituting Eq. (D-21)) into Eq. (D-24)), the following relation is obtained:

Fi(zio1) = F, = Tiio1 Fioa(zima), (D.26)

where the general transmission coefficient 75 ;1 is represented with the general reflection coefficient R;41 ;

as

) Ty
hio1 = e O T T (D.27)
L= Ri 1 Riy1 e2kidi
Further, substituting Eq. (D.26) into Eq. (D.2])), we obtain
Bi = Ri1,; &% Ty iy Fioy(zim1), (D.28)

and, substituting this into Eq. (D.25)), the following relation is obtained:

3171(21'71) =R;;_1 Fifl(zifl)a (D~29)
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where the general reflection coefficient R;;_; is represented as

~ T, eFidi Ry, ehidi Ty, 4
Rii-1=Rii1+ - —_— (D.30)
1—Ri_1,; Riqq, eokidi

Therefore, ]N%m»_l is obtained from Ri-&-l,ia and then all Ri,i_l (i=N, ..., 1) are obtained from RN+17N =
Ryi1,n. Further, Ti,iq (¢ = N, ..., 1) is obtained from the derived RH” by using Eq. (D:27), and
Ty =Tniin-

Next, I denote the electric field in each layer by the incident field Ey,. The forward field in layer 1 is

written as ~ ~
Fi=Ty EL. (D.31)
By rewriting Eq. (D.26)) as
Fy =Ty eMirdion By, (D.32)
the forward field in layer ¢ is represented as
Fy =Ty 4t [y =Ty By, (i=1, ..., N+1), (D.33)

where the transmission coefficient from layer 0 to 7 is written as

i—1
TLO :Ti,i—l Heikjdj Nj,j—l . (D.34)

Jj=1

Further, the transmission coefficient of the whole multilayer is obtained as TN+1,O- On the other hand,

since the backward field is represented as Eq. (D.21)), the backward field in layer i is represented as

Bi = Ri+1,i eikidi FZ = éi+1’i eikidi Ti’() EL (Z = 17 ey N), (D35)

and the one in layer 0 is written as R R
By =Ry, EL. (D.36)

D.2.2 For incident field only from right

Next, I discuss the case that the incident field propagates from the right-hand side (Er, = 0, Eg # 0).
In the same manner as the previous subsection, the forward field in layer 1 is represented by the Fresnel

reflection coefficient Ry ; as
Fl = Fl(Zo) = R()’l B1(Zo) = R0’1 eikldl Bl, (D37)

and I try to derive the general reflection coefficient Ri—l,i providing

Fi = Rifl’i eikidi Bz (D38)

From the boundary conditions at z = z;, I obtain

Fiv1(zi) = Tig1s Fi(z) + Riit1 Biv1(%i) = Tiv14 elfidi By 4 Riiv1 Bit1(z), (D.39)
B; = Bi(zi) = Ti 41 Bit1(z) + Riv1i Fi(z) = T iv1 Big1(z:) + Rig1 ethidi fy (D.40)

Substituting Eq. (D.38) into Eq. (D:40), the general transmission coefficient 7} ;11 providing

B; = Bi(2;) = T;i+1 Bit1(2:) (D.41)
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is represented with R;_; ; as

Tiis1 = Tigrr (D.42)
7 L= Rip1i Rioy, e12kidi
Substituting this into Eq. (D38), T obtain
Fi=R;_1; e*% Ty 01 Biyi(2), (D.43)
and then, substituting this into Eq. (0.39)), the general reflection coefficient Rz‘,iﬂ providing
Fi1(zi) = Riis1 Biga (i) (D.44)

is obtained as d A e
= Tigr €% Riq; €9 T i
Ri,i+1 = Ri,i+1 + : —— i2k'd-7 . (D45)
L= Riga,i Ry 2%

Therefore Riﬂurl is obtained from Ri_l,i, and all the reflection coefficients is derived from IéoJ =Ry1.
Next, I try to describe the forward and backward fields by EFr. The backward field in layer N is written

as
By =Tn,Nn+1 ER, (D.46)

and then the backward field in layer 7 is represented as

B =T, 41 elkir1dits Bi+1 =T; ny1 ER, (D.47)

where the transmission coefficient T; y41 from N + 1 to ¢ is written as

N
Tins1 =T+ H elkidj it | - (D.48)
j=i+1
The transmission coefficients of the whole multilayer is TO, ~N+1, and it should be identical to TN+1,0

obtained in the previous subsection. On the other hand, the backward field in layer i is represented as

Fi = Ri—l,i eikidi Bl = Ri—l,i eikidi Ti,N+l ER (Z = 1, ey N), (D49)

and the one in layer N + 1 is } R
Fni1= RNy nN+1 Er. (D.50)

D.3 Derivation of Green's function
First, I consider the case of j = 4. The propagator G; ;(z, z’) should be written as
gi,i(za Z/) _ eik?i|2—z/| n eiki(z—zi,l)FLi(z/) + e—iki(,z—,z,L')Bl_77;(Z/)7 (D51)

where functions F;;(z') and B, ;(z') are unknowns to be determined. From Eq. (D.38) at interface

Z=Zi—1, I obtain

Fii(z)=Ri_1, [eiki(zi_z/) + eikid'iBz‘,i(Z/)} ) (D.52)

and the following relation is also obtained from Eq. (D20) at 2z = 2;:

Bi i(z’) = Ri+17i [eiki(zi_z/) + eiki’diFl‘)i(zl)} . (D53)

)
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Solving these two equations, the two unknown functions are determined as

Fi,i(z/) — Ri—li |:e7ik7:(z7:_1*z’) + eikidiRi+17ieiki(Zi*z’):| Mi7 (D54)

)

Bi,i(Z/) = RiJrl’i [eiki(zi—z’) _|_eikidiRiil,ie—iki(zrifl—z/)] Mi; (D55)

and then we obtain Eq. (D.3).
Next, I consider the case of j > i. The propagator G; ;(z,z’) should be written as

Gji(z,2') = eiki(z_zﬂ'—l)Fj’i(z’) + e_ikj(z_zf)BjJ(z’), (D.56)

and the two unknown functions F} ;(z") and B; ;(z") are determined as follows. From Eq. (D.20) at z = z;,
I obtain

Bj,i(z’) = RjJr],jeikjdej’i(Z/). (D57)

On the other hand, from Eq. (D.19) at z = z,;_1, Fj,(2') is represented as

!

Fji(2') =T, -

ettt py ) (7))
eiki(m—z/) +eiki’diFi’i(Z/)}
Bi,i(z/)

5

Rit1
_ j:’j,i [eiki(z'i,_z/) + eikidq‘,Ri_17ie—ik7‘,(27‘,_1—z’):| Mi~ (D58)

t

J»i

l

<.

Therefore, G; ;(z,2) is represented as Eq. (D.H). The propagator in the case of j > i is also obtained by

the same procedure.



Appendix E

Numerical Calculation of Poles

For calculating the poles for exciton-photon inhomogeneous systems as discussed in Chap. Bl we should
use proper algorithm to correctly obtain the poles. Especially, in order to reproduce the retarded corre-
lation functions of excitons, we must calculate all the poles of the system. I show the algorithm of the

matrix method in Sec. [E.I], and the one of the intuitive method in Sec.

E.1 Matrix method

When we calculate the poles of exciton correlation functions by the matrix method, in the previous
studies based on the microscopic nonlocal theory [33, B35 [38], the poles have been calculated under the
condition that the determinant of the coefficient matrix [Eq. (3:I8])] of the linear equation set is zero for
a trial complex frequency ©. However, this calculation algorithm cannot provide the poles at a large film
thickness, for example, thicker than 300 nm in the case of CuCl film. Therefore, this algorithm is not
applicable to the crossover discussion between the two radiative decay schemes.

On the other hand, I used another algorithm and succeeded to calculate the poles for micrometer-order

thickness. This algorithm is as follows.

1. T calculate complex eigenvalues of the coefficient matrix for a initial frequency. The number of
eigenvalues is equal to the number of exciton states considered in the matrix calculation. Usually,
these eigenvalues are approximately equal to the strict frequencies of the poles. Therefore, for all
obtained eigenvalues, I perform the following processes by considering one of the eigenvalues as a

trial frequency.
2. For a given trial frequency, I calculate the eigenvalues of the coefficient matrix.
3. Among the obtained eigenvalues, I select a value mostly close to the trial frequency.

4. If the difference between the selected value and the trial one is sufficiently close to each other,
I consider the calculated value is the complex frequency characterizing a pole of the correlation
functions. Otherwise, I perform processes 2, 3, and 4 by considering the selected value as the new

trial frequency.

In the actual calculation for CuCl film, I used Aw — Awr = 0, 6, 100, and -100 meVas initial frequencies.
These frequency approximately correspond to the band edge of bare exciton dispersion, band edge of
upper polariton branch, eigenenergies of upper and lower polaritons at the phase-matching wavenumber
k = \/Epgwr/c, respectively. By using these four initial values, when I consider 200 states of exciton

center-of-mass motion, 200 values are obtained for most thicknesses. However, only 199 or 198 values
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were obtained at particular thicknesses, because the exciton-photon coupled modes with much photon
component cannot be numerically calculated in this matrix method as explained in Chap.[Bl In order to

obtain such photon-like modes, we must use the intuitive method explained in the next section.

E.2 Intuitive method

In the intuitive method based on the dispersion relation and the self-sustaining condition, we can
obtain infinite number of poles regardless of the crystal size. This is because I used the effective mass
approximation for the exciton center-of-mass kinetic energy, although the dispersion relation of excitons
is actually periodic by shifting the wavenumber by the unit of reciprocal lattice vector. Therefore, we
should consider the first Brillouin zone as the range of the wavenumber in the actual calculation, and
then the number of wavenumbers are equal to the number of atomic layers in the considering film.

In actual calculation for poles in a film with thickness d, I used the following algorithm.

1. I consider an positive integer n = 1, 2, ..., and use k = nx/d as an initial wavenumber. Further, I
consider a small quantity (10~%) as the initial value of . For all integers smaller than the number
of atomic layers, I perform the following processes in the exciton-like case and in the photon-like

one, independently.

2. For a trial complex wavenumber k=k—ia /d, T obtain two complex frequencies with positive real
parts satisfying Eq. (8:34)), the dispersion relation. In the exciton-like case, I select the frequency

with smaller imaginary absolute, and select the other in the photon-like case.

3. From the selected complex frequency, I obtain two complex wavenumbers satisfying Eq. (3.:34)), and

one of them should be equal to the trial wavenumber.

4. Considering the trial wavenumber as k; and the other as ky, I solve the ABC problem [Egs. (339)],
and then obtain B /F}.

5. Using Bi/Fi, I renew the trial wavenumber k as Eq. (344)). Here, it is worth to note that the
real part of the renewed wavenumber is not determined uniquely, because k + mm /d also satisfies
Eq. (343) for arbitrary integer m. Therefore, I define the range of the real part of k as (n —
1/2)r/d <k < (n+1/2)r/d or (n—1)r/d < k < nm/d. We should independently consider both

of the ranges to obtain all the poles in the system.

6. If the renewed k and the trial complex wavenumber are sufficiently close to each other, I consider the
obtained value as the wavenumber of a pole, and corresponding frequency is the pole. Otherwise,

I perform processes 2—5 again.

When we want to categorize the poles as upper and lower branches instead of exciton- and photon-like
modes, we should select the frequency with larger real part part as the upper branch, and the other as

the lower branch in process 2.



Appendix F

Definitions of Fourier Transform and
Longitudinal & Transverse Fields

I explain the definition of Fourier transform and that of longitudinal and transverse fields discussed in
this thesis. I show the definition of the spatial Fourier transform in Sec. [E.I] and the temporal one in

Sec. [[.2l T explain the definition of longitudinal and transverse fields in Sec. [E.3l

F.1 Spatial Fourier transform

I define the Fourier transform of function f between spatial position r and wavevector k as

flr) = (27:)3/2/&@ fk) e®r, (F.1a)
f(k) = (27:)3/2/017' f(r) e ik, (F.1b)

On the other hand, in a finite system with volume V', the wavenumber is discrete, and I denote the
function in the k-space as
(271.)3/2

Jo= NG f (k). (F.2)

For this definition, the Fourier transform is represented as

fr) = \%V > S (F.3a)
k

fe = %/dr f(r) e kT, (F.3Db)

Further, when we consider r as a discrete position in a lattice consisting of N unit cells with volume §2,

I denote the function in the real space as
fr=V2f(r). (F.4)

In this case, the Fourier transform is represented as

fr = \/—% > fre*, (F.5a)
k

fre = TIN D Sk (F.5b)
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On the other hand, when I consider a function G(r,r’) connecting two functions f(r) and g(r) as

g(r) = / dr G(r, ) f(r'), (F.6)

I define the Fourier transform of G(r,r’) a

1 H 1./ ’

G(r,7') = @ / dk / dk' e Gk, k') e7F T (F.7a)
1 H 1./ ’

Gk, k') = @ / dr / dr’ e kT G(r ') ek (F.7b)

The definitions for finite and discrete systems are the same as mentioned above.

F.2 Temporal Fourier transform

I define the Fourier transform of function f between time t and frequency w as

£(t) = /_ T dw flw) e, (F.8a)
flw) = % L h dt f(t) et (F.8b)

Especially in the case that f(¢) is a real function, I define positive- and negative-frequency Fourier

components of f(t) for w > 0 as

=5 [
1

f(w) = 5 L dt f(t) e 1, (F.9b)

h dt f(t) e“*, (F.9a)

respectively. These functions have a relation as
{1 W)} =7 (W), (F.10)

and the time representation is represented as
f(t) :/ dw [fT(w) e ™ + f~(w) e“’]. (F.11)
0

On the other hand, for correlation functions appearing in the linear response theory discussed in

Sec. [A1] I define the temporal Fourier transform as

G(t) = % /_OO dw G(w) et (F.12a)
G(w) = h dt G(t) et (F.12b)

This definition or Eq. (A13) is suitable for simplifying the representation as seen in Eq. (A12).

F.3 Longitudinal and transverse fields

I define that a vector function X (7) satisfying

V.X(r)=0 (F.13)
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is transverse, and a vector function satisfying
VxX(r)=0 (F.14)

is longitudinal. The reason of these definitions is as follows. By expanding X (r) by plane waves as

1 ik-r

X(r) = Ol /dkz X (k) e* 7, (F.15)
its divergence and rotation are represented as

1 .

V- -X(r)= W/dk ik X (k) e*T, (F.16)
1 .
V x X(r)= S /dk ik x X (k) e*. (F.17)
s

Here, the condition V - X (r) = 0 means that X (k) is parallel to the propagation direction k, and
V x X(r) = 0 means that k and X (k) are perpendicular to each other. Therefore, the above definitions
for longitudinal and transverse fields are reasonable.

From Eq. (EEI8), the longitudinal component of X (7) is represented as

Xi(r) = (2;)3/2/(11@ ';—'2" - X (k) FT
= —ﬁ dk VkQV - X (k) eFT
= —ﬁ/dr’/dk VTZV CX(r') e* T, (F.18)
Here, from the Fourier transform between 1/47r and 1/k? as
/ dr e;:r’" _ % (F.19a)
(2;)3 dk e}% - rjrr (F.19b)
X1.(7) is rewritten as
XL(r) = —/dr’ 47T|V’I"/YI’I"/ -X(r') = /dr' o(r—r')- X ('), (F.20)

where dr,(r — r’) is the delta function extracting the longitudinal component as

v'v’
oplr—r)=—-—"—. F.21
L(r =) dr|r — 7| ( )
On the other hand, by using the delta function extracting the transverse component
v'v’
o -rY=16(r—r")+ —-— F.22
rlr =) = 1o =) b (F.22)
the transverse field is represented as
X1(r) = /d'r' or(r—7r")- X (o). (F.23)
These functions satisfy Eqs. (E13) and (EI4) as
1 : kk ik-r
VXXL(T)(QT(-)S/Q/dekaQX(k)e 7:() (F24)

V. Xp(r) = (%ﬁ /dk ik - (1 - ’Z’;) X (k) %7 =0. (F.25)
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