<table>
<thead>
<tr>
<th>Title</th>
<th>Moduli of algebraic SL_3-vector bundles over adjoint representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Masuda, Kayo</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 38(3) P.501–P.506</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2001-09</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/4968</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/4968</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
Masuda, K.
Osaka J. Math.
38 (2001), 501–506

MODULI OF ALGEBRAIC SL_3-VECTOR BUNDLES OVER ADJOINT REPRESENTATION

KAYO MASUDA

(Received June 21, 1999)

1. Introduction and result

Let G be a reductive complex algebraic group and P a complex G-module. We consider algebraic G-vector bundles over P. An algebraic G-vector bundle E over P is an algebraic vector bundle $p: E \to P$ together with a G-action such that the projection p is G-equivariant and the action on the fibers is linear. We assume that G is non-abelian since every G-vector bundle over P is isomorphic to a trivial G-bundle $P \times Q \to P$ for a G-module Q when G is abelian by Masuda-Moser-Petrie [12].

We denote by $\text{VEC}_G(P, Q)$ the set of equivariant isomorphism classes of algebraic G-vector bundles over P whose fiber over the origin is a G-module Q. The isomorphism class of a G-vector bundle E is denoted by $[E]$. The set $\text{VEC}_G(P, Q)$ is a pointed set with a distinguished class $[Q]$ where Q is the trivial G-bundle $P \times Q$, and can be non-trivial when the dimension of the algebraic quotient space $P//G$ is greater than 0 ([15], [2], [13], [11]). In fact, Schwarz ([15], cf. Kraft-Schwarz [5]) showed that $\text{VEC}_G(P, Q)$ is isomorphic to an additive group \mathbb{C}^p for a nonnegative integer p determined by P and Q when $\dim P//G = 1$. When $\dim P//G \geq 2$, $\text{VEC}_G(P, Q)$ is not necessarily finite-dimensional. In fact, $\text{VEC}_G(P \otimes \mathbb{C}^m, Q) \cong (\mathbb{C}[y_1, \ldots, y_m])^p$ for a G-module P with one-dimensional quotient $[9]$. Furthermore, Mederer [14] showed that $\text{VEC}_G(P, Q)$ can contain a space of uncountably-infinite dimension. He considered the case where G is a dihedral group $D_m = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$ and P is a two-dimensional G-module V_p, on which $\mathbb{Z}/m\mathbb{Z}$ acts with weights p and $-p$ and the generator of $\mathbb{Z}/2\mathbb{Z}$ acts by interchanging the weight spaces. Mederer showed that $\text{VEC}_{D_m}(V_1, V_1)$ is isomorphic to $\Omega^1_{\mathcal{C}}$, which is the universal Kähler differential module of \mathcal{C} over \mathcal{Q}.

In this article, we show that under some conditions there exists a surjection from $\text{VEC}_G(P, Q)$ to $\text{VEC}_{D_m}(V_1, V_1) \cong \Omega^1_{\mathcal{C}}$. It is induced by taking a H-fixed point set E^H for $[E] \in \text{VEC}_G(P, Q)$ where H is a reductive subgroup of G (cf. Proposition 2.3). In particular, we obtain the first example of a moduli space of uncountably-infinite dimension for a connected group.
Theorem 1.1. Let \(G = \text{SL}_3 \) and let \(\mathfrak{sl}_3 \) be the Lie algebra with adjoint action. Then for any \(G \)-module \(R \), there exists a surjection from \(\text{VEC}_G(\mathfrak{sl}_3 \oplus R, \mathfrak{sl}_3) \) onto \(\Omega^1_\mathbb{C} \). Hence \(\text{VEC}_G(\mathfrak{sl}_3 \oplus R, \mathfrak{sl}_3) \) contains an uncountably-infinite dimensional space.

At present, \(G \)-vector bundles over \(P \) are not yet classified for general \(G \)-modules \(P \) with \(\dim P/\!/G \geq 2 \) (cf. [10]). Theorem 1.1 suggests that the moduli space \(\text{VEC}_G(P, Q) \) is huge when \(\dim P/\!/G \geq 2 \).

I am thankful to M. Miyanishio for his help and encouragement. I thank the referees for giving advice to the previous version of this paper.

2. Proof of Theorem 1.1

Let \(G \) be a reductive algebraic group and let \(P \) and \(Q \) be \(G \)-modules. Let \(\pi_P : P \to P/\!/G \) be the algebraic quotient map. By Luna’s slice theorem [6], there is a finite stratification of \(P/\!/G = \bigcup_i V_i \) into locally closed subvarieties \(V_i \) such that \(\pi_P|_{\pi_P^{-1}(V_i)} : \pi_P^{-1}(V_i) \to V_i \) is a \(G \)-fiber bundle (in the étale topology) and the isotropy groups of closed orbits in \(\pi_P^{-1}(V_i) \) are all conjugate to a fixed reductive subgroup \(H_i \).

The unique open dense stratum of \(P/\!/G \), which we denote by \(U \), is called the principal stratum and the corresponding isotropy group, which we denote by \(H \), is called a principal isotropy group. We denote by \(\text{VEC}_G(P, Q)_0 \) the subset of \(\text{VEC}_G(P, Q) \) consisting of elements which are trivial over \(\pi_P^{-1}(U) \) and \(\pi_P^{-1}(V) \) for \(V := P/\!/G - U \).

When \(\dim P/\!/G = 1 \), it is known that \(\text{VEC}_G(P, Q) = \text{VEC}_G(P, Q)_0 \) ([15], [5]). We assume that the dimension of \(Y := P/\!/G \) is greater than 1 and the ideal of \(V \) is principal. We denote by \(\mathcal{O}(P) \) the \(\mathbb{C} \)-algebra of regular functions on \(P \) and by \(\mathcal{O}(P)^G \) the subalgebra of \(G \)-invariants of \(\mathcal{O}(P) \). Let \(f \) be a polynomial in \(\mathcal{O}(Y) = \mathcal{O}(P)^G \) such that the ideal \((f) \) defines \(V \).

Lemma 2.1. Let \([E] \in \text{VEC}_G(P, Q)_0 \). Then \(E \) is trivial over \(P_h := \{ x \in P \mid h(x) \neq 0 \} \) where \(h \) is a polynomial in \(\mathcal{O}(Y) \) such that \(h - 1 \in (f) \).

Proof. Since \(E|_{\pi_P^{-1}(V)} \) is, by the assumption, isomorphic to a trivial bundle, it follows from the Equivariant Nakayama Lemma [1] that the trivialization \(E|_{\pi_P^{-1}(V)} \to \pi_P^{-1}(V) \times Q \) extends to a trivialization over a \(G \)-stable open neighborhood \(\tilde{U} \) of \(\pi_P^{-1}(V) \). Let \(\tilde{V} \) be the complement of \(\tilde{U} \) in \(P \). Since \(\tilde{V} \) is a \(G \)-invariant closed set, \(\pi_P(\tilde{V}) \) is closed in \(Y \) [4]. Note that \(V \cap \pi_P(\tilde{V}) = \emptyset \) since \(\pi_P^{-1}(V) \cap \tilde{V} = \emptyset \). Let \(a \subset \mathcal{O}(Y) \) be the ideal which defines \(\pi_P(\tilde{V}) \). Then \((f) + a \ni 1 \) since \(V \cap \pi_P(\tilde{V}) = \emptyset \). Hence there exists an \(h \in a \) such that \(h - 1 \in (f) \). Since \(P_h \subset \tilde{U} \), \(E \) is trivial over \(P_h \).

We define an affine scheme \(\tilde{Y} = \text{Spec} \tilde{A} \) by

\[
\tilde{A} = \{ h_1/h_2 \mid h_1, h_2 \in \mathcal{O}(Y), h_2 - 1 \in (f) \}.
\]
Set $\tilde{Y}_f := Y_f \times_Y \tilde{Y}$, $\tilde{P} := \tilde{Y} \times P$ and $\tilde{P}_f := \tilde{Y}_f \times_Y P$. The group of morphisms from P to $M := \text{GL}(Q)$ is denoted by $\text{Mor}(P, M)$ or $M(P)$. The group G acts on M by conjugation and on $M(P)$ by $(g \mu)(\chi) = g \cdot (\mu(g^{-1})\chi)$ for $g \in G$, $\chi \in P$, $\mu \in M(P)$. The group of G-invariants of $M(P)$ is denoted by $\text{Mor}(P, M)^G$ or $M(P)^G$. Let $[E] \in \text{VEC}_G(P, Q)_0$. Then by definition of $\text{VEC}_G(P, Q)_0$, E has a trivialization over $\pi_p^{-1}(U) = P_f$. By Lemma 2.1, E has a trivialization also over an open neighborhood of $\pi_p^{-1}(V)$, i.e., P_h for some $h \in \mathcal{O}(Y)$ with $h - 1 \in (f)$. Hence, E is isomorphic to a G-vector bundle obtained by gluing two trivial G-vector bundles $P_f \times Q$ and $P_h \times Q$ over P_{fh}. Note that the transition function of E is an element of $M(P_{fh})^G \subset M(\tilde{P}_f)^G$.

Conversely, if $\phi \in M(\tilde{P}_f)^G$ is given, then $\phi \in M(P_{fh})^G$ for some $h \in \mathcal{O}(Y)$ with $h - 1 \in (f)$ and we obtain a G-vector bundle $[E] \in \text{VEC}_G(P, Q)_0$ by gluing together trivial bundles $P_f \times Q$ and $P_h \times Q$ by ϕ. Since $[E]$ is determined by the transition function $\phi \in M(P_{fh})^G$ up to automorphisms of trivial G-bundles $P_f \times Q$ and $P_h \times Q$, we have a bijection to a double coset (cf. [8, 3.4])

$$\text{VEC}_G(P, Q)_0 \cong M(P_f)^G \backslash M(\tilde{P}_f)^G / M(\tilde{P})^G.$$

The inclusion $P^H \hookrightarrow P$ induces an isomorphism $P^H \backslash N(H) \cong P^H / G$ where $N(H)$ is the normalizer of H in G. The stratification of P^H / G coincides with the one induced by $P^H \backslash N(H)$ [7]. Set $W := N(H)/H$. When we consider P^H as a W-module, we denote it by B. Let $L := \text{GL}(Q)^H$. By an observation similar to the case of $\text{VEC}_G(P, Q)_0$, we have

$$\text{VEC}_{N(H)}(P^H, Q)_0 \cong L(B_f)^W \backslash L(\tilde{B}_f)^W / L(\tilde{B})^W.$$

Let $\beta : M(P)^G \to L(B)^W$ be the restriction map. We say P has generically closed orbits if $\pi_p^{-1}(\xi)$ for any $\xi \in Y_f$ consists of a closed orbit, i.e. $\pi_p^{-1}(\xi) \cong G/H$. When P has generically closed orbits, $P_f = GP_f^H$. Hence $M(P_f)^G = \text{Mor}(GP_f^H, GL(Q))^G \cong L(B_f)^W$, i.e. β is an isomorphism over Y_f.

Let $[E] \in \text{VEC}_G(P, Q)_0$. The H-fixed point set E^H is equipped with a W-vector bundle structure over B. The fiber of E^H over the origin is a W-module Q^H. Hence there is a map

$$r_H : \text{VEC}_G(P, Q) \ni [E] \mapsto [E^H] \in \text{VEC}_W(B, Q^H)_0.$$

Note that r_H factors through $\text{VEC}_{N(H)}(P^H, Q)_0$ since the restricted bundle $[E]_{P^H}$ fixes to a Whitney sum of trivial H-bundles $[E]_{P^H}^H = E^H$. Note also that r_H maps $\text{VEC}_G(P, Q)_0$ to $\text{VEC}_W(B, Q^H)_0$.

Lemma 2.2. Suppose that P has generically closed orbits. Then

$$r_H : \text{VEC}_G(P, Q)_0 \to \text{VEC}_W(B, Q^H)_0.$$
is surjective.

Proof. By the above statement, it is sufficient to show that the restriction map
\[\text{res} : \text{VEC}_G(P, Q) \ni [E] \mapsto [E]_{\mu^H} \in \text{VEC}_{N(H)}(P^H, Q) \] is surjective. Note that the map \(\text{res} \) coincides with the map on double cosets induced by \(\beta : M(P)^G \to L(B)^W; \)
\[M(P_f)^G \backslash M(\hat{P}_f)^G / M(\hat{P})^G \to L(B_f)^W \backslash L(\hat{B}_f)^W / L(\hat{B})^W. \]

Let \([E] \in \text{VEC}_{N(H)}(P^H, Q) \) and let \(\phi \in L(B_{fh})^W \), where \(h \in \mathcal{O}(Y) \) such that \(h - 1 \in (f) \), be the transition function corresponding to \(E \). Since \(\beta \) is an isomorphism over \(Y_f \), \(\phi \in L(B_{fh})^W \) extends to \(\tilde{\phi} \in M(P_{fh})^G \). The \(G \)-vector bundle \(\tilde{E} \) obtained by glueing trivial bundles over \(P_f \) and \(P_h \) by \(\tilde{\phi} \) is mapped to \(E \) by \(\text{res} \). \(\square \)

Remark. It seems that the restriction \(r_H : \text{VEC}_G(P, Q) \to \text{VEC}_W(B, Q^H) \) is not necessarily surjective, though the author does not know any counterexamples. Every \(G \)-vector bundle over a \(G \)-module is locally trivial [3], however, it seems difficult that a set of transition functions of a \(W \)-vector bundle over \(B \) with fiber \(Q^H \) extends to a set of transition functions of some \(G \)-vector bundle over \(P \) with fiber \(Q \); some conditions seem to be needed so that the restriction \(M(X)^G \to L(X^H)^W \) is surjective for a \(G \)-stable open set \(X \) of \(P \) such that \(X \not\subseteq \pi_{p\cdot}(U) \) (cf. [17, III,11]).

For any reductive subgroup \(K \) of \(G \), we can construct a map \(r_K \) similarly;
\[r_K : \text{VEC}_G(P, Q) \ni [E] \mapsto [E^K] \in \text{VEC}_W(P^K, Q^K) \]
where \(W_K := N(K)/K. \) Assume that \(W_K \) contains a subgroup isomorphic to \(D_3 \) and that \(P^K \) and \(Q^K \) contain \(V_1 \) as \(D_3 \)-modules, say, as \(D_3 \)-modules \(P^K = V_1 \oplus P' \) and \(Q^K = V_1 \oplus Q' \) for \(D_3 \)-modules \(P' \) and \(Q' \). Restricting the group \(W_K \) to \(D_3 \), we have a map
\[\text{VEC}_W(P^K, Q^K) \to \text{VEC}_{D_3}(V_1 \oplus P', V_1 \oplus Q'). \]

Furthermore, the natural inclusion \(V_1 \to V_1 \oplus P' \) induces a surjection
\[\text{VEC}_{D_3}(V_1 \oplus P', V_1 \oplus Q') \to \text{VEC}_{D_3}(V_1, V_1 \oplus Q'). \]

By taking a composite of the maps \(r_K \), (1) and (2), we obtain a map \(\Phi_K : \text{VEC}_G(P, Q) \to \text{VEC}_{D_3}(V_1, V_1 \oplus Q') \). By Mederer [14], \(\text{VEC}_{D_3}(V_1, V_1 \oplus Q') \cong \Omega_1^1 \), where \(\Omega_1^1 \) is a subspace of \(\Omega_1^2 \), but unfortunately, \(\Omega_1^1 \) is not known so far except when \(Q' = \{0\} \). When \(Q' = \{0\} \), i.e. \(Q^K \cong V_1 \) as a \(D_3 \)-module, we have a map
\[\Phi_K : \text{VEC}_G(P, Q) \to \text{VEC}_{D_3}(V_1, V_1) \cong \Omega_1^1. \]
In the case where \(K = H \) and \(N(H)/H \cong D_3 \), the map \(\Phi_H \) constructed as above can be surjective.

Proposition 2.3. Let \(H \) be a principal isotropy group of \(P \) and let \(N(H)/H \cong D_3 \). Suppose that \(P \) has generically closed orbits. If \(P^H \) contains \(V_1 \) as a \(D_3 \)-module and \(Q^H \cong V_1 \) as a \(D_3 \)-module, then the map

\[
\Phi_H: \text{VEC}_G(P, Q) \to \Omega^1_C
\]

is surjective.

Proof. The assertion follows from Lemma 2.2 and the fact that \(\text{VEC}_{D_3}(V_1, V_1) = \text{VEC}_{D_3}(V_1, V_1) \cong \Omega^1_C \) \[14\].

The condition on the fiber \(Q \) in Proposition 2.3 is rather strict. However, by Proposition 2.3, we obtain the first example of a moduli space of uncountably-infinite dimension for a connected group \(G \).

Proof of Theorem 1.1. Let \(G = SL_3 \) and let \(\mathfrak{sl}_3 \) be the Lie algebra with adjoint action. A principal isotropy group of \(\mathfrak{sl}_3 \) is a maximal torus \(T \cong (\mathbb{C}^*)^2 \) and \(\mathfrak{sl}_3^T \) is the Lie algebra \(t \) of \(T \). \(N(T)/T \) is the Weyl group which is isomorphic to the symmetric group \(S_3 \cong D_3 \) and \(\mathfrak{sl}_3^T = t \cong V_1 \) as a \(D_3 \)-module. The algebraic quotient space is \(\mathfrak{sl}_3//G \cong t//S_3 \cong \mathbb{A}^2 \). The complement of the principal stratum in \(\mathfrak{sl}_3//G \cong \mathbb{A}^2 \) is defined by \(y^2 - x^3 = 0 \). The general fiber of the quotient map \(\mathfrak{sl}_3 \rightarrow \mathfrak{sl}_3//G \) is isomorphic to \(G/T \) and \(\mathfrak{sl}_3 \) has generically closed orbits. Applying Proposition 2.3 to the case where \(P = \mathfrak{sl}_3 \) and \(Q = \mathfrak{sl}_3 \), we obtain a surjection \(\text{VEC}_G(\mathfrak{sl}_3, \mathfrak{sl}_3) \rightarrow \Omega^1_C \). Since there is a surjection \(\text{VEC}_G(\mathfrak{sl}_3 \oplus R, \mathfrak{sl}_3 \oplus R) \rightarrow \text{VEC}_G(\mathfrak{sl}_3, \mathfrak{sl}_3) \) induced by the inclusion \(\mathfrak{sl}_3 \rightarrow \mathfrak{sl}_3 \oplus R \) for any \(G \)-module \(R \), Theorem 1.1 follows.

References

Mathematical Science II
Himeji Institute of Technology
2167 Shosha, Himeji 671-2201
Japan
e-mail: kayo@sci.himeji-tech.ac.jp