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1. Introduction

Let P be the principal symbol of a hyperbolic differential operator. At
a double characteristic point of P, its Taylor expansion begins with the quad-
ratic form in the cotangent bundle. The coefficient matrix of the Hamiltonian
system associated with this quadratic form is called the fundamental (or Hamil-
ton) matrix. If the fundamental matrix has non-zero real eigenvalues, P is
said to be effectively hyperbolic operator ([1], [2]).

Ivrii and Petkov conjectured in [2] that C= Cauchy problem for effectively
hyperbolic operators is well posed for any lower order term; that is effectively
hyperbolic operator is strongly hyperbolic.

In this note, in §2, we reduce effectively hyperbolic operators of second
order to certain standard forms by homogeneous canonical transformations.
Since we are concerned with the Cauchy problem, we shall use only homo-
geneous canonical transformations which do not depend on the time and its
dual variables. In §3, for some simple but essential examples, we indicate
how the standard forms relate to the energy integrals which assure the strong
hyperbolicity.

The detailed proofs of deriving the energy estimates for effectively hyper-
bolic operators of the standard forms will be appear elsewhere.

Denote x(p)z(xt’ ) xd): E(’)=(Eﬁ, ) Ed)’ x=x9, E=£0, OSPSd’ and
consider

P(xa E) = ‘f(z)—"Q(xy E(l)) ’

where Q(x, £V) is defined in a conic neighborhood of (0, £®), non-negative
and homogeneous of degree 2 in £®.

Let (0, &) be a double characteristic point of P(x, £). That is dP(x, £)
vanishes at (0, £). This is the same thing as £=(0, &®), 0(0, &9)=0. De-
note by Fp(x, £) the fundamental matrix evaluated at (x, £) (for the precise
definition, see [2]). In the following, {,} denotes the Poisson bracket. The
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standard forms are the followings.

Theorem 1.1. Assume that Fy(0, &) has non-zero real eigenvalues. Then,
in a conic neighborhood of (0, €®), there exists a homogeneous canonical trans-
formation in T*R? taking (0, ) to (0, £9) under which Q(x, E®) is transformed
to (1.1), with (1.1)} or (1.2), with (1.2); and (1.2)}’.

(D), 2] (aroam)? g, E2)+33 € 7i(w, EO)+ {5, — b, (609, E@ D)
| (a0, EXON gpn(x, EV)
(L1 4By 1y VHHO, E4) =0,  0<p<d—1,
(12), 2} (Fir—a)? 0, )3T 8 74 (5 EO)H2,(x, EO) 7y, EO)
(12 4 &pg}} (0, E7) =0
(125 3170, E0)>1, 1<p<d—1,
where g(x, EV), r(x, EV) are positive, homogeneous of degree 2, O respectively,

Yy 8 are mon-negative, vanishing at (0, f‘“’“’), homogeneous of degree 0, 2 re-
spectively and ¢, is homogeneous of degree 0.

RemARk 1.1. The condition (1.2); is closely related with the energy integ-
rals, see §3.

2. Proof of Theorem 1.1

First, we shall prove the following lemma which also will be useful to
study the standard forms for non effectively hyperbolic operators.

Lemma 2.1. Let 330Q(0, 0)>0. Then Q(x, E®) is transformed to (1.1),
with (1.1); (0< p<d—1) or (1.2), with (1.2); (1< p<d—1), by a local homogeneous
canonical transformation in T*R? which takes (0, £V) to (0, EW),

Proof. From the Malgrange preparation theorem, we get

O(s, E9) = (50— du(x®, EN (s, E} 4, E9)

where ¢, Y, are homogeneous of degree 0 with ;>0 and ¢, is positive,
homogeneous of degree 2. This is just (1.1),.

Now we assume that (1.1);_; is not satisfied. Set X, (x®, E®)=¢,_,
(x®, E®).  Then it follows that d¢,, and >3-, &; dx; are linearly independent
at (0, £9). In fact, if d¢,_, were to be proportional to 334, &; dx; at (0, é")),
taking into account that dvr,_,(0, f“’))=0, the Euler’s identity would give (since
Y,-1 is homogeneous of degree 0),

{bs-1 {Pp-1> ¥p-13}(0, é(’)) =0.
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This contradicts to our assumption. Thus following proposition 3.11 in Mel-
rose [3], we can construct a homogeneous canonical transformation [X ;(x®,
ED), B (2P, EP)]4_, so that

(2.1) X0, ») =0, p<j<d, H,(0, £#) = 0, p< j<d—1, E,(0, £»)=%0.
After having done this transformation, remarking that
(@510 £3) (0, E9) %0, £» = (0, -+, 0, &), &,%0,
the Malgiange preparation theorem gives that
Vpor (XD, EP) = {(E,—h,(xP, EXI))p R (2D, EPD)} b (x®, EP),

where b, is positive, homogeneous of degree —2, k, is non-negative, homo-
geneous of degree 2 and 4, is homogeneous of degree 1. Take

E,(x(’), E(P)) = §p—hﬁ(x‘”, E(’“))"Xp(x(’), g(ﬁ)) =x,.

It is clear that {E,, X,}=1. Moreover the differentials >Y¢., &, dx;, dE,, dX,
are linearly independent at (0, é"’)). Indeed, if there were to be a dependence
relation

s £,dx; = adE,+LBdX, at (0, é(p)) ,

then applying this to Hy, the Hamilton vector field of X,, would give a=0,
hence

Z‘Ii'-ﬁ Ej dxj = Bpr .

But this gives a contradiction because f‘“’)z(O, -, 0, fd), dX,=dx, and p<d—1.
Again, from proposition 3.11 in [3], one can extend E,, X, to a homogeneous
canonical transformation [X;(x®, £®), B (x®, £®)]¢_, satisfying (2.1). Since
0={g,, x,} ={§;, X,}=—0E,/05,, p+1<j<d, 0={x;, x,} = {x;, X, }=—0x,/
0E,, p<j<d, it follows that £(X®, E®) (p+1<j<d) and x,(X®, E®)
(p<j<d) do not depend on E,. Thus we get (1.2), with g,(x®, E*?*0)>0,
7,+1>>0 being homogeneous degree 2, 0 respectively.
Finally, assume that (1.2); does not hold. Then one can write

g,(x®, EOD) = {(3,— d,(xPV, ECV)Rfah, (xPHD, ECHD)} g (xP), E@HD)

with ¢,, ¥, which are homogeneous of degree 0 and r,>0, where a, is posi-
tive, homogeneous of degree 2. This yields (1.1),. Therefore, the induction
on p proves this lemma.

We proceed to the proof of theorem 1.1. If 83 Q(0, ®)=0, it is easily
seen that F,(0, €) has only pure imaginary eigenvalues (cf. [1], [2]). Then
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we may suppose that 83 Q(0, €9)>0. Applying lemma 2.1, Q(x, £®) is re-
duced to (1.1), with (1.1); (0<p<d—1) or (1.2), with (1.2); (1<p<d—1).

We note that the fundamental matrix is transformed to a similar matrix
by a canonical transformation. Therefore to prove theorem 1.1, it suffices
to show that an operator P with Q of type (1.1), with (1.1); is in fact effectively
hyperbolic and an operator P with Q of type (1.2), with (1.2); is effectively
hyperbolic if and only if (1.2);’ holds. The following two propositions are
easily verified.

Proposition 2.1. Let
P= Eﬁ—_"; q,~(ac,-_1——x,')2——21 r; €, ¢.>0,7,>0.
Then we have
yJ -1
Jj=1 Jj=1
Here ls(x, £) is considered as a function of (%, +++, X,_1, Egy *++5 Ep-1)-
Proposition 2.2. Let
ﬁ —_ E%—E’ q,-(xi_l——x,-)z—zp r" Ef, qi>0, 1’,>0 .
i=1 i=1
Then we have
det (>"+F19) = CI)O\" 9 ri) =\ \b’(?\/, q; T,-), \.V(Oa qis ri) =
? ? ?
= —(tf 40) (1 7) 77—
Here p(x, &) is considered as a function of (xy, -++, %,y Eg, ***, E,)-

First we consider the case when Q is of the form (1.1), with (1.1);. We
denote by 7;, ¢; the value of r,(x, £V), gi(x, £V) at (0, f‘l)). Since ¢,, Y,
depend only on (x?*V, £?*V) and {¢,, {p, Vv,}} (0, gony=0, it follows
that

det(\+F5(0, £)) = det(n+F5) det(v+Fy),
where
ﬁ = 55—‘.‘;: Qi(xi—l—xi)z_g 7; f?“%ﬂ x;

is considered as a function of (%, -+, x,, &, -+, &,) and E is a non-negative
quadratic form in (x®*Y, £#*D), By proposition 2.1, we get

®() = det(A-+Fp) = A4+ D(0), (0) = —(I 4,) (11 7,)<0.
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This shows that ®(A)=0 has non-zero real roots.
Next we consider the case when Q has the form (1.2), with (1.2);. Put

B =83 qnia—xf =30 1 B E = —g,(x®, EO) 1ppy(a, E) .

From the non-negativity of g, taking that (8°g,/dx3) (0, £0+9)=0 into account,
it follows that

0% g,[ox,0x, = 0, p< p<d, 8*g,[0E0x, = 0, p+1<pu<d at (0, o)
Then the same reasoning as before shows that
det(A+F(0, £)) = det(r+F) det(r+Fx(0, £)),

where P, E are considered as functions of (%gy ***5 ®py Egy *o05 Ep), (x®TD, EGHD)
respectively. From proposition 2.2, we get

detA+Fp) = AN, g, 1), YN, g3y 7)) = N2+ +4(0, g5, 7))
WO, g r)=—(I 40 ({1 7)) 37— 1} .

From [2], the equation (A, ¢;, 7;)=0 has only pure imaginary roots except
for at most one simple real root x (30) and for —u, for any ¢;, r,>0. Since
Y(\, ¢;, ;) depends continuously on ¢;, 7;, in order that the equation yr(,
¢i, 7;)=0 has a non-zero real root, it is necessary and sufficient that (0, g;, 7;)
is negative. Taking into account that det(A+Fz)=0 has only pure imaginary
roots (since E is non-negative), F(0, £) has a non-zero real eigen value if and
only if the condition (1.2);” holds.
These facts prove theorem 1.1.

3. Energy integrals

As a simple example, we shall indicate some connections between the
condition (1.2);’ and the energy integrals. Let us consider the following oper-
ator,

P= 65—2’ qi(xi_xi+l)2 63—,2_"; r; 0%,

where 1<p<d, ¢,>0 (0<i<p—1), >0 (1<i<p—1), r,>0. We assume
that P is effectively hyperbolic. If 7,>0, the effective hyperbolicity means
that f_‘, rit>1

Here, we note that the condition é ri'>1 (r;>0), is equivalent to the

existence of real numbers {&;}2., such that
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3.1) Ner<l, e =1.
i=1 i=1
Taking (3.1) into account, we use the following weight (or separating) function,
Y(x) = xo—ﬁ &%,

with {&}%., in (3.1) if »,>0 and &§;=0, 1<j<p—1, &=1 if r,=0. Then
the integration by parts gives that

(3.2) —2Re Sn_ Y(x)"Pu- Y(x)"8judx = 2n Sn_ Y(x)**!| 0gu | 2dx+-
+2n| v 8 g} 0t
+2n$n_ Y(x)! {gr,.la,.uV}derzq,, Sn_ V()" (00— 07) | 9ate | *dx—+

+2n L_ Y(x)™! {ﬁ‘. €:7:(0; w-0u+0,u-0u)}dx .

for ue C7(R*""), where Q*= {x&R**'; Y(x)O0}, and 7 is a positive integer.
We shall estimate the last term of the right hand of (3.2). Let r,>0, then by
the Cauchy-Schwarz inequality, it follows that

2m 3& 7,(0;u-Dgu+-Bu ) <2n8 710,417+ 208" (3] €2 7.) | 0|,
with §>0. From (3.1), we can take § so that
5= 53] &1 r)<1, 8<1.

On the other hand, from é &;=1, we have | Y(x) (x,—x)| <c ﬁ q:(%;—%;11)%
i=1 i=0

with some ¢>0. Hence the right hand side of (3.2) is estimated from below
by

20(1-8) | _ ¥yt ol tdnt @n—o) | ¥(or {8 g i)} 0,1 det

—i—Zn(l—S)Sn_ Y 33 ril0ul% dv.

In the case 7,=0, the last term of the right hand side of (3.2) is equal to
zero, and we have the following estimate from below,

20 Yxprtowl? det@n—o) | Y £ an—wn)} 10l det

+2n Sn_ Y(x)? {S__f, r;|0u|%} dx.
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Now let us consider the first order term B9,, BEC. From the following
two inequalities

2Re S Y(x)"Bo,u- Y(%)'0p dx<287" n~!| B|? So V()| 0,u|? dx-+
o ]
—|—81ns Y(x2~-1|aoujzaburzslrﬂSn V()% |u|? dx,
7)o _
_— 2n-3 2 2n—~1 2
n(n Z)Su_ ¥ ()22 dxssn_ V(%) |02 dx
it follows that
" 2Re Sn_ Y(x)"Bou- Y(x)"0q dx<287" n'| B|? Sn_ Y(x)2+ | 0,u? dx+

4381 SQ_ Y(x) 0|2 dx, n>4.
Then using the inequality Y(x)*<¢é 21 q;(%;—%;4,)%, we get finally

(3.3) 2ReSﬂ Y(x)"B0, u- Y(x)"3qu dx< 257" n~! f|B|ZS V() x
) o
X {53 qii—misa} |0,01? dw+38m [ V(@ 0l? d

Now we take &, # so that 2(1—8)—38,>0 and n(2n—c)>287" é|B|?, then
one can absorb the first order term B9,.

Proposition 3.1. Assume that P is effectively hyperbolic. Then we have
s V(x| (P-+Bo,Yu|? dx>2ns, S V() |0 |? d+
Q- Q-
-1
e | V@ B a0l dt

+28,n Sh- Y(x)?n? {2’1 r;|0u|% dx,

where n>c;| B|.

By a similar way, one can obtain the energy estimate in Q* (cf. [4]).
Finally, we consider a simple example corresponding to operators of type

{(1.1),, (1.1);}. Let
P = g—5 gni—sia B—3) i Ei— (e~ $E) &,

where ¢,>0, 7,>0, £"=(&,.,, -+, ), p+1<d. Taking the Fourier transform
with respect to x”/=(x,,,, ***, &,), it suffices to consider
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b= 65+:Z;§ qi(*i—%;11)" fg—g 7; 04q,(x,— P(E”)) &2 .
As a separating function, we take
(3.4) Y(x, &) = %—$(£") .

Denote by #@(x’, £”) the partial Fourier transform with respect to x’’. Then
the same reasoning as before gives that

| . e e Be) ap dz2ms, | Y, o7 0 av+
+cn S»_ Y(x, gyt @ qs(x;-—xs+1)2+%(xp—¢(£"))2} |Ete|%dx'+

+2n Vi, £ {5 niloaly dv
for n>¢,;| B|, where o*=w*(§")={x"; x,—p(&”)=0}. (cf. [5]).
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