

| Title        | Colocal pairs in perfect rings                           |
|--------------|----------------------------------------------------------|
| Author(s)    | Hoshino, Mitsuo; Sumioka, Takeshi                        |
| Citation     | Osaka Journal of Mathematics. 1999, 36(3), p.<br>587–603 |
| Version Type | VoR                                                      |
| URL          | https://doi.org/10.18910/4979                            |
| rights       |                                                          |
| Note         |                                                          |

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Hoshino, M. and Sumioka, T. Osaka J. Math. **36** (1999), 587-603

# **COLOCAL PAIRS IN PERFECT RINGS**

MITSUO HOSHINO AND TAKESHI SUMIOKA

(Received September 12, 1997)

Our main aim of the present note is to provide several sufficient conditions for a colocal module L over a left or right perfect ring A to be injective. Also, by developing the previous works [8] and [5], we will extend recent results of Baba [1, Theorems 1 and 2] to left perfect rings and provide simple proofs of them.

Throughout this note, rings are associative rings with identity and modules are unitary modules. For a ring A we denote by Mod A (resp. Mod  $A^{op}$ ) the category of left (resp. right) A-modules, where  $A^{op}$  denotes the opposite ring of A. Sometimes, we use the notation  ${}_{AL}$  (resp.  $L_A$ ) to signify that the module L considered is a left (resp. right) A-module. For a module L, we denote by soc(L) the socle, by rad(L) the Jacobson radical, by E(L) an injective envelope and by  $\ell(L)$  the composition length of L. For a subset X of a right module  $L_A$  and a subset M of A, we set  $l_X(M) =$  $\{x \in X | xM = 0\}$  and  $r_M(X) = \{a \in M | Xa = 0\}$ . Also, for a subset X of A and a subset M of a left module  ${}_{AL}$  we set  $l_X(M) = \{a \in X | aM = 0\}$  and  $r_M(X) = \{x \in M | Xx = 0\}$ . We abbreviate the ascending (resp. descending) chain condition as the ACC (resp. DCC).

Recall that a module L is called colocal if it has simple essential socle. We call a bimodule  ${}_{H}U_{R}$  colocal if both  ${}_{H}U$  and  $U_{R}$  are colocal. Let A be a semiperfect ring with Jacobson radical J. Let  $L_{A}$  be a colocal module with  $H = \operatorname{End}_{A}(L_{A})$  and  $f \in A$  a local idempotent with  $\operatorname{soc}(L_{A}) \cong fA/fJ$ . In case  $L_{A}$  has finite Loewy length, we will show that  $L_{A}$  is injective if and only if  ${}_{H}Lf_{fAf}$  is a colocal bimodule and  $M = r_{Af}(l_{L}(M))$  for every submodule M of  $Af_{fAf}$ . Also, in case A is left or right perfect and  $\ell(Af/r_{Af}(L)_{fAf}) < \infty$ , we will show that the following are equivalent: (1)  $L_{A}$  is injective; (2)  ${}_{H}Lf_{fAf}$  is a colocal bimodule and  $r_{Af}(L) = 0$ ; and (3)  ${}_{H}Lf_{fAf}$  is a colocal bimodule and  $M = r_{Af}(l_{L}(M))$  for every submodule Mof  $Af_{fAf}$ .

Recall that a module  $L_A$  is called *M*-injective if for any submodule *N* of  $M_A$ every  $\theta : N_A \to L_A$  can be extended to some  $\phi : M_A \to L_A$ . Dually, a module  $L_A$  is called *M*-projective if for any factor module *N* of  $M_A$  every  $\theta : L_A \to N_A$ can be lifted to some  $\phi : L_A \to M_A$ . In case *L* is *L*-injective (resp. *L*-projective), *L* is called quasi-injective (resp. quasi-projective). Let *A* be a left perfect ring with Jacobson radical *J* and  $e, f \in A$  local idempotents. Assume  $\ell(Af/r_{Af}(eA)_{fAf}) < \infty$ . Then we will show that  $eA_A$  is quasi-injective with  $\operatorname{soc}(eA_A) \cong fA/fJ$  if and only if  $_AE = E(_AAe/Je)$  is quasi-projective with  $_AE/JE \cong Af/Jf$  (cf. [1, Theorem 1]). We call a pair (eA, Af) of a right ideal eA and a left ideal Af in A a colocal pair if  $e, f \in A$  are local idempotents and  $_{eAe}eAf_{fAf}$  is a colocal bimodule. We will see that  $\ell(_{eAe}eA/l_{eA}(Af)) = \ell(Af/r_{Af}(eA)_{fAf})$  for every colocal pair (eA, Af) in A. In case  $\ell(_{eAe}eA/l_{eA}(Af)) = \ell(Af/r_{Af}(eA)_{fAf}) < \infty$ , a colocal pair (eA, Af) in A is called finite. Let A be a left perfect ring with Jacobson radical J and  $e, f_1, f_2, \dots, f_n \in$ A local idempotents. Put  $E = E(_AAe/Je)$ . Assume  $(eA, Af_i)$  is a finite colocal pair in A for all  $1 \leq i \leq n$ . Then we will show that  $\operatorname{soc}(eA_A) \cong \bigoplus_{i=1}^n f_i A/f_i J$  if and only if  $_AE/JE \cong \bigoplus_{i=1}^n Af_i/Jf_i$  (cf. [1, Theorem 2]).

Following Harada [4], we call a module  $L_A$  *M*-simple-injective if for any submodule *N* of  $M_A$  every  $\theta : N_A \to L_A$  with Im  $\theta$  simple can be extended to some  $\phi : M_A \to L_A$ . In case *L* is *L*-simple-injective, *L* is called simple-quasi-injective. We will show that a left perfect ring *A* is left artinian if *A* satisfies the ascending chain condition on annihilator right ideals and  $eA_A$  is simple-quasi-injective for every local idempotent  $e \in A$ .

# 1. Preliminaries

In this section, we collect several basic results which we need in later sections. We refer to Bass [2] for perfect rings.

**Lemma 1.1.** Let A be a left or right perfect ring and  $f \in A$  an idempotent. Assume  $\ell(Af_{fAf}) < \infty$ . Then  $_AAf$  has finite Loewy length.

Proof. Denote by J the Jacobson radical of A. Consider first the case of A being left perfect. Since the descending chain  $Af \supset Jf \supset \cdots$  terminates, there exists  $n \ge 1$  such that  $J^n f = J^{n+1}f$ . Thus  $J^n f = 0$ . Assume next that A is right perfect. Then, since the ascending chain  $\operatorname{soc}_{(A}Af) \subset \operatorname{soc}_{(A}Af) \subset \cdots$  terminates, there exists  $n \ge 1$  such that  $\operatorname{soc}_{(A}Af) = Af$ . Thus  $J^n f = J^n(\operatorname{soc}_{(A}Af)) = 0$ .

**Lemma 1.2.** Let  $e \in A$  be an idempotent. Then for a module  $L \in Mod A$  with  $r_L(eA) = 0$  the following hold.

- (1) If  $_{A}L$  is simple, so is  $_{eAe}eL$ .
- (2)  $_{eAe}eE(_{A}L) \cong E(_{eAe}eL).$
- (3) The canonical homomorphism  ${}_{A}E({}_{A}L) \rightarrow {}_{A}\operatorname{Hom}_{eAe}(eA, eE({}_{A}L)), x \mapsto (a \mapsto ax)$ , is an isomorphism.

Proof. (1) See e.g. [5, Lemma 1.1].

- (2) See e.g. [5, Lemmas 1.2 and 1.3].
- (3) See e.g. [5, Lemma 1.3].

Recall that a module  $L_A$  is called *M*-injective if for any submodule *N* of  $M_A$  every  $\theta : N_A \to L_A$  can be extended to some  $\phi : M_A \to L_A$ . Dually, a module  $L_A$ 

is called *M*-projective if for any factor module *N* of  $M_A$  every  $\theta : L_A \to N_A$  can be lifted to some  $\phi : L_A \to M_A$ . In case *L* is *L*-injective (resp. *L*-projective), *L* is called quasi-injective (resp. quasi-projective).

**Lemma 1.3** ([6, Theorem 1.1]). Let  $L \in \text{Mod } A^{\text{op}}$  and put  $H = \text{End}_A(E(L_A))$ . Then  $L_A$  is quasi-injective if and only if HL = L. In particular, if  $L_A$  is quasiinjective, then we have a surjective ring homomorphism  $\rho_L : \text{End}_A(E(L_A)) \to \text{End}_A$  $(L_A), h \mapsto h|_L$ .

The equivalence (1)  $\Leftrightarrow$  (2) of the next lemma is due to Wu and Jans [11, Propositions 2.1, 2.2 and 2.4].

**Lemma 1.4** ([11]). Let A be a left perfect ring. Then for a module  $L \in Mod A$  the following are equivalent.

- (1)  $_{A}L$  is indecomposable quasi-projective.
- (2) There exist a local idempotent  $f \in A$  and a two-sided ideal I of A such that  ${}_{A}L \cong Af/If$ .
- (3) There exists a local idempotent  $f \in A$  such that  ${}_{A}L \cong Af/l_{A}(L)f$ .

Proof. (1)  $\Rightarrow$  (2). By [11, Proposition 2.4] there exists an epimorphism  $\pi$ :  ${}_{A}Af \rightarrow {}_{A}L$  with  $f \in A$  a local idempotent. Put  $K = \text{Ker }\pi$ . Then by [11, Proposition 2.2] KfAf = K and  ${}_{A}L \cong Af/If$  with I = KfA a two-sided ideal of A.

(2)  $\Rightarrow$  (1). Since  $_{A/I}Af/If \cong _{A/I}(A/I)f$  is projective,  $_{A}Af/If$  is quasi -projective.

(2)  $\Rightarrow$  (3). Since  $If = l_A(Af/If)f$ ,  ${}_AL \cong Af/l_A(L)f$ . (3)  $\Rightarrow$  (2). Obvious.

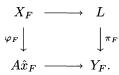
Recall that an object L of an abelian category  $\mathcal{A}$  in which arbitrary direct products exist is called linearly compact if for any inverse system of epimorphisms  $\{\pi_{\lambda} : L \rightarrow L_{\lambda}\}_{\lambda \in \Lambda}$  in  $\mathcal{A}$  the induced morphism  $\lim_{k \to \infty} \pi_{\lambda} : L \rightarrow \lim_{k \to \infty} L_{\lambda}$  is epic. In case  $\mathcal{A} = \operatorname{Mod} \mathcal{A}$ , there is an equivalent definition of linear compactness. Recall that, for a family of submodules  $\{L_{\lambda}\}_{\lambda \in \Lambda}$  in a module  $_{\mathcal{A}}L$ , a system of congruences  $\{x \equiv x_{\lambda} \mod L_{\lambda}\}_{\lambda \in \Lambda}$ is said to be finitely solvable if for any nonempty finite subset F of  $\Lambda$  there exists  $x_F \in L$  such that  $x_F \equiv x_{\lambda} \mod L_{\lambda}$  for all  $\lambda \in F$ , and to be solvable if there exists  $x_0 \in L$  such that  $x_0 \equiv x_{\lambda} \mod L_{\lambda}$  for all  $\lambda \in \Lambda$ .

For the benefit of the reader, we include a proof of the following.

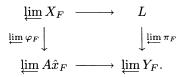
**Proposition 1.5.** For a module  $L \in Mod A$  the following are equivalent.

- (1)  $_{A}L$  is linearly compact.
- (2) For any family of submodules  $\{L_{\lambda}\}_{\lambda \in \Lambda}$  in  ${}_{A}L$ , every finitely solvable system of congruences  $\{x \equiv x_{\lambda} \mod L_{\lambda}\}_{\lambda \in \Lambda}$  is solvable.

Proof. (1)  $\Rightarrow$  (2). Let  $\{L_{\lambda}\}_{\lambda \in \Lambda}$  be a family of submodules in L and  $\{x \equiv x_{\lambda} \mod L_{\lambda}\}_{\lambda \in \Lambda}$  a finitely solvable system of congruences. Denote by  $\phi_{\lambda} : L \to L/L_{\lambda}$  the canonical epimorphism for each  $\lambda \in \Lambda$  and set  $\phi : L \to \prod_{\lambda \in \Lambda} L/L_{\lambda}, x \mapsto (\phi_{\lambda}(x))$ . Put  $\hat{x} = (\phi_{\lambda}(x_{\lambda})) \in \prod_{\lambda \in \Lambda} L/L_{\lambda}$ . We claim that  $\hat{x} \in \operatorname{Im} \phi$ . Let  $\mathcal{F}$  be the directed set of nonempty finite subsets of  $\Lambda$ . For each  $F \in \mathcal{F}$ , denote by  $p_F : \prod_{\lambda \in \Lambda} L/L_{\lambda} \to \prod_{\lambda \in F} L/L_{\lambda}$  the projection and put  $\hat{x}_F = p_F(\hat{x}) \in \prod_{\lambda \in F} L/L_{\lambda}$  and  $X_F = (p_F \circ \phi)^{-1}(A\hat{x}_F)$ . Note that for any  $F \in \mathcal{F}$ , since  $\{x \equiv x_{\lambda} \mod L_{\lambda}\}_{\lambda \in \Lambda}$  is finitely solvable,  $p_F \circ \phi : L \to \prod_{\lambda \in F} L/L_{\lambda}$  induces an epimorphism  $\varphi_F : X_F \to A\hat{x}_F$ . For each  $F \in \mathcal{F}$ , take a push-out of  $\varphi_F : X_F \to A\hat{x}_F$  along with the inclusion  $X_F \to L$ :



Then we get an inverse system of epimorphisms  ${\pi_F : L \to Y_F}_{F \in \mathcal{F}}$ . Also, since  $\varprojlim$  is left exact, we get a pull-back square



Since L is linearly compact,  $\lim_{E \to \infty} \pi_F$  is epic, so is  $\lim_{E \to \infty} \varphi_F$ . Note that  $\lim_{E \to \infty} X_F \xrightarrow{\sim} \bigcap_{F \in \mathcal{F}} X_F$ . Also,  $\lim_{E \to \infty} p_F : \prod_{\lambda \in \Lambda} L/L_{\lambda} \to \lim_{E \to \infty} \prod_{\lambda \in F} L/L_{\lambda}$  is an isomorphism and hence induces an isomorphism  $A\hat{x} \xrightarrow{\sim} \lim_{E \to \infty} A\hat{x}_F$ . It follows that  $\phi(\bigcap_{F \in \mathcal{F}} X_F) = A\hat{x}$ . Thus  $\hat{x} \in \operatorname{Im} \phi$ .

(2)  $\Rightarrow$  (1). Let  $\{\pi_{\lambda} : L \to L_{\lambda}\}_{\lambda \in \Lambda}$  be an inverse system of epimorphisms in Mod A. We may consider  $\lim_{\lambda \to L_{\lambda}} L_{\lambda}$  as a submodule of  $\prod_{\lambda \in \Lambda} L_{\lambda}$ . Let  $(x_{\lambda}) \in \lim_{\lambda \to L_{\lambda}} L_{\lambda}$  and for each  $\lambda \in \Lambda$  choose  $y_{\lambda} \in L$  with  $\pi_{\lambda}(y_{\lambda}) = x_{\lambda}$ . Then, since for any nonempty finite subset F of  $\Lambda$  there exists  $\lambda_0 \in \Lambda$  such that  $\lambda_0 \geq \lambda$  for all  $\lambda \in F$ , the system of congruences  $\{x \equiv y_{\lambda} \mod \ker \pi_{\lambda}\}_{\lambda \in \Lambda}$  is finitely solvable and thus solvable. Hence  $\lim_{\lambda \to L_{\lambda}} \pi_{\lambda} : L \to \lim_{\lambda \to L_{\lambda}} L_{\lambda}$  is an epimorphism.

Let  ${}_{H}U_{R}$  be a bimodule and  $K \in \text{Mod } R^{\text{op}}$ . For a pair of a subset X of  $(K_{R})^{*}$ and a subset M of  $K_{R}$ , we set  $r_{M}(X) = \{a \in M | h(a) = 0 \text{ for all } h \in X\}$  and  $l_{X}(M) = \{h \in X | h(a) = 0 \text{ for all } a \in M\}$ , where  $()^{*} = \text{Hom}_{R}(-, {}_{H}U_{R})$ .

The next lemma is due essentially to [7, Lemma 4].

**Lemma 1.6.** Let  ${}_{H}U_{R}$  be a bimodule and  $K \in \text{Mod } R^{\text{op}}$  a module such that  $U_{R}$  is K-injective. Assume  $X = l_{K^{*}}(r_{K}(X))$  for every submodule X of  $(K_{R})^{*}$ . Then  $(K_{R})^{*}$  is linearly compact.

Proof. Let  $\{\pi_{\lambda} : K^* \to X_{\lambda}\}_{\lambda \in \Lambda}$  be an inverse system of epimorphisms in Mod *H*. For  $\lambda \in \Lambda$ , put  $Y_{\lambda} = \operatorname{Ker} \pi_{\lambda}$  and  $M_{\lambda} = r_{K}(Y_{\lambda})$ , and let  $j_{\lambda} : M_{\lambda} \to K$  be the inclusion. Then for each  $\lambda \in \Lambda$ , since  $\operatorname{Ker} j_{\lambda}^{*} \cong l_{K^{*}}(M_{\lambda}) = Y_{\lambda}$ , and since  $j_{\lambda}^{*} : K^{*} \to M_{\lambda}^{*}$  is epic, there exists an isomorphism  $\phi_{\lambda} : M_{\lambda}^{*} \to X_{\lambda}$  with  $\pi_{\lambda} = \phi_{\lambda} \circ j_{\lambda}^{*}$ . Since  $\lim_{\lambda \to \infty} j_{\lambda}$  is monic,  $\lim_{\lambda \to \infty} j_{\lambda}^{*} \cong (\lim_{\lambda \to \infty} j_{\lambda})^{*}$  is epic. Also,  $\lim_{\lambda \to \infty} \phi_{\lambda}$  is an isomorphism. Thus  $\lim_{\lambda \to \infty} \pi_{\lambda} = (\lim_{\lambda \to \infty} \phi_{\lambda}) \circ (\lim_{\lambda \to \infty} j_{\lambda}^{*})$  is epic.

**Corollary 1.7.** Let A be a left or right perfect ring. Assume  $A_A$  is injective and  $I = l_A(r_A(I))$  for every left ideal I of A. Then A is quasi-Frobenius.

Proof. It follows by Lemma 1.6 that  $_AA$  is linearly compact. Thus by [10, Propositions 2.9 and 2.12] A is left noetherian.

#### 2. Bilinear maps into colocal bimodules

In this section, as further preliminaries, we modify results of [8, Section 1]. For a left *H*-module  $_{H}L$ , a right *R*-module  $K_{R}$  and an *H*-*R*-bimodule  $_{H}U_{R}$ , we call a map  $\varphi : {}_{H}L \times K_{R} \to {}_{H}U_{R}$  *H*-*R*-bilinear if  $K_{R} \to U_{R}$ ,  $a \mapsto \varphi(x, a)$ , is *R*-linear for every  $x \in L$  and  ${}_{H}L \to {}_{H}\operatorname{Hom}_{R}(K_{R}, {}_{H}U_{R}), x \mapsto (a \mapsto \varphi(x, a))$ , is *H*-linear.

Throughout this section,  $\varphi : {}_{H}L \times K_R \to {}_{H}U_R$  is a fixed H-R-bilinear map. For a pair of a subset X of L and a subset M of K we set  $r_M(X) = \{a \in M | \varphi(x, a) = 0 \text{ for all } x \in X\}$  and  $l_X(M) = \{x \in X | \varphi(x, a) = 0 \text{ for all } a \in M\}$ . We denote by  $\mathcal{A}_l(L, K)$  the lattice of submodules X of  ${}_{H}L$  with  $X = l_L(r_K(X))$  and by  $\mathcal{A}_r(L, K)$ the lattice of submodules M of  $K_R$  with  $M = r_K(l_L(M))$ .

REMARKS (see e.g. [3, Part I] for details). (1) Let X be a subset of L. Then  $\varphi(X, r_K(X)) = 0$  implies  $X \subset l_L(r_K(X))$  and thus  $r_K(l_L(r_K(X))) \subset r_K(X)$ . Also,  $\varphi(l_L(r_K(X)), r_K(X)) = 0$  implies  $r_K(X) \subset r_K(l_L(r_K(X)))$ . Thus  $r_K(X) = r_K(l_L(r_K(X)))$  and  $r_K(X) \in \mathcal{A}_r(L, K)$ .

(2) Let X be a subset of L. For any  $Y \in \mathcal{A}_l(L, K)$  with  $X \subset Y$ ,  $l_L(r_K(X)) \subset l_L(r_K(Y)) = Y$ . Thus  $l_L(r_K(X))$  is the smallest module in  $\mathcal{A}_l(L, K)$  containing X.

(3) Let  $\{X_{\lambda}\}_{\lambda\in\Lambda}$  be a family of submodules of  $_{H}L$ . For any  $\mu \in \Lambda$ , since  $\bigcap_{\lambda\in\Lambda} X_{\lambda} \subset X_{\mu} \subset \sum_{\lambda\in\Lambda} X_{\lambda}, r_{K}(\sum_{\lambda\in\Lambda} X_{\lambda}) \subset r_{K}(X_{\mu}) \subset r_{K}(\bigcap_{\lambda\in\Lambda} X_{\lambda})$ . Thus  $r_{K}(\sum_{\lambda\in\Lambda} X_{\lambda}) \subset \bigcap_{\lambda\in\Lambda} r_{K}(X_{\lambda})$  and  $\sum_{\lambda\in\Lambda} r_{K}(X_{\lambda}) \subset r_{K}(\bigcap_{\lambda\in\Lambda} X_{\lambda})$ . Let  $a \in \bigcap_{\lambda\in\Lambda} r_{K}(X_{\lambda})$ . Since  $\varphi(X_{\lambda}, a) = 0$  for all  $\lambda \in \Lambda$ , and since  $_{H}L \to _{H}U$ ,  $x \mapsto \varphi(x, a)$ , is *H*-linear,  $\varphi(\sum_{\lambda\in\Lambda} X_{\lambda}, a) = 0$  and  $a \in r_{K}(\sum_{\lambda\in\Lambda} X_{\lambda})$ . Thus  $r_{K}(\sum_{\lambda\in\Lambda} X_{\lambda})$ .

(4) Let  $\{X_{\lambda}\}_{\lambda\in\Lambda}$  be a family of submodules of  $_{H}L$  with the  $X_{\lambda} \in \mathcal{A}_{l}(L, K)$ . Then by (3)  $\bigcap_{\lambda\in\Lambda}X_{\lambda} = \bigcap_{\lambda\in\Lambda}l_{L}(r_{K}(X_{\lambda})) = l_{L}(\sum_{\lambda\in\Lambda}r_{K}(X_{\lambda}))$ . Thus  $r_{K}(\bigcap_{\lambda\in\Lambda}X_{\lambda}) = r_{K}(l_{L}(\sum_{\lambda\in\Lambda}r_{K}(X_{\lambda})))$  and by (2)  $r_{K}(\bigcap_{\lambda\in\Lambda}X_{\lambda})$  is the smallest module in  $\mathcal{A}_{r}(L, K)$  containing  $\sum_{\lambda\in\Lambda}r_{K}(X_{\lambda})$ , so that  $r_{K}(\bigcap_{\lambda\in\Lambda}X_{\lambda}) = \sum_{\lambda\in\Lambda}r_{K}(X_{\lambda})$  whenever  $\sum_{\lambda\in\Lambda}r_{K}(X_{\lambda}) \in \mathcal{A}_{r}(L, K)$ . (5) We have an anti-isomorphism of lattices  $\mathcal{A}_l(L, K) \to \mathcal{A}_r(L, K)$ ,  $X \mapsto r_K(X)$ . In particular,  $\mathcal{A}_l(L, K)$  satisfies the ACC (resp. DCC) if and only if  $\mathcal{A}_r(L, K)$  satisfies the DCC (resp. ACC).

Recall that a module is called colocal if it has simple essential socle. We call a bimodule  $_{H}U_{R}$  colocal if both  $_{H}U$  and  $U_{R}$  are colocal modules.

**Lemma 2.1.** Let  $_HU_R$  be a colocal bimodule. Then  $\operatorname{soc}(_HU) = \operatorname{soc}(U_R)$ .

Proof. Since  $\operatorname{soc}(_HU)$  is a subbimodule of  $_HU_R$ ,  $\operatorname{soc}(U_R) \subset \operatorname{soc}(_HU)$ . Similarly,  $\operatorname{soc}(_HU) \subset \operatorname{soc}(U_R)$ . Thus  $\operatorname{soc}(_HU) = \operatorname{soc}(U_R)$ .

Throughout the rest of this section,  ${}_{H}U_{R}$  is assumed to be a colocal bimodule with  ${}_{H}S_{R} = \operatorname{soc}({}_{H}U) = \operatorname{soc}(U_{R})$ , and ()\* denotes both the U-dual functors.

Lemma 2.2. The following hold.

- (1) The canonical ring homomorphisms  $H \to \operatorname{End}_R(S_R)$  and  $R \to \operatorname{End}_H(_HS)^{\operatorname{op}}$ are surjective.
- (2)  $(_HS)^* \cong S_R$  and  $(S_R)^* \cong _HS$ .

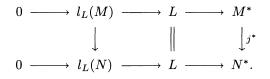
Proof. (1) Let  $0 \neq u \in S$ . Then S = Hu = uR. For any  $h \in \operatorname{End}_R(S_R)$ , h(u) = au for some  $a \in H$  and h(ub) = h(u)b = (au)b = a(ub) for all  $b \in R$ . Thus the canonical ring homomorphism  $H \to \operatorname{End}_R(S_R)$  is surjective. Similarly, the canonical ring homomorphism  $R \to End_H(HS)^{\operatorname{op}}$  is surjective.

(2) Let  $\pi : R_R \to S_R$  be an epimorphism. We have a monomorphism  $\mu : (S_R)^* \to HU$  such that  $\mu(h) = (\pi^*(h))(1)$  for  $h \in (S_R)^*$ . Put  $u = \pi(1)$ . Then  $\mu(h) = h(u) \in S$  for all  $h \in (S_R)^*$  and  $\operatorname{Im} \mu = HS$ , so that  $(S_R)^* \cong HS$ . Similarly,  $(HS)^* \cong S_R$ .  $\Box$ 

**Lemma 2.3.** Let  $N \subset M$  be submodules of  $K_R$  with  $N = r_K(l_L(N))$  and  $M/N_R$  simple. Then the following hold.

(1)  $M/N \cong S_R$  and  $l_L(N)/l_L(M) \cong (M/N)^* \cong {}_HS.$ (2)  $M = r_K(l_L(M)).$ 

Proof. (1) Since  $M \neq N = r_K(l_L(N))$ ,  $l_L(M) \subset l_L(N)$  with  $l_L(N)/l_L(M) \neq 0$ . Let  $j : N_R \to M_R$  be the inclusion. Then we have the following commutative diagram with exact rows:



Thus  $0 \neq l_L(N)/l_L(M)$  embeds in Ker  $j^* \cong (M/N)^*$ . Hence  $(M/N)^* \neq 0$ , so that  $M/N \cong S_R$  and by Lemma 2.2(2)  $(M/N)^* \cong {}_HS$ .

(2) Since  $l_L(M) \subset l_L(N)$  with  $l_L(N)/l_L(M)$  simple, one can apply the part (1) to conclude that  $r_K(l_L(M))/r_K(l_L(N))$  is simple. Thus, since  $r_K(l_L(N)) = N \subset M \subset r_K(l_L(M))$  with both M/N and  $r_K(l_L(M))/r_K(l_L(N))$  simple, it follows that  $M = r_K(l_L(M))$ .

**Lemma 2.4.** Let M be a submodule of  $K_R$  with  $r_K(L) \subset M$  and  $\ell(M/r_K(L)_R) < \infty$ . Then the following hold.

(1) Every composition factor of  $M/r_K(L)_R$  is isomorphic to  $S_R$ .

(2)  $M = r_K(l_L(M)).$ 

Proof. Since  $r_K(L) = r_K(l_L(r_K(L)))$ , Lemma 2.3 enables us to make use of induction on  $\ell(M/r_K(L)_R)$ .

**Lemma 2.5** ([8, Lemma 1.3]).  $\ell({}_{H}L/l_{L}(K)) = \ell(K/r_{K}(L)_{R}).$ 

Proof. By symmetry we may assume  $\ell({}_{H}L/l_{L}(K)) < \infty$ . Let  $l_{L}(K) = L_{0} \subset L_{1} \subset \cdots \subset L_{n} = L$  be a chain of submodules of  ${}_{H}L$  with the  $L_{i+1}/L_{i}$  simple. Then by Lemma 2.3 we get a chain of submodules  $r_{K}(L) = r_{K}(L_{n}) \subset \cdots \subset r_{K}(L_{1}) \subset r_{K}(L_{0}) = K$  in  $K_{R}$  with the  $r_{K}(L_{i})/r_{K}(L_{i+1})$  simple.

**Lemma 2.6.** Assume R is left perfect. Then the following are equivalent. (1)  $\ell(K/r_K(L)_R) < \infty$ .

- (2)  $A_r(L, K)$  satisfies both the ACC and the DCC.
- (2)  $\mathcal{A}_r(L, K)$  satisfies the ACC.

Proof.  $(1) \Rightarrow (2) \Rightarrow (3)$ . Obvious.

(3)  $\Rightarrow$  (1). It follows by Lemma 2.4 that there exists a maximal element  $K_0$  in the set of submodules M of  $K_R$  with  $r_K(L) \subset M$  and  $\ell(M/r_K(L)_R) < \infty$ . We claim  $K_0 = K$ . Otherwise, there exists a submodule M of  $K_R$  with  $K_0 \subset M$  and  $M/K_0$  simple, a contradiction.

#### 3. Simple-injective colocal modules

Throughout the rest of this note, A stands for a ring with Jacobson radical J. For any pair of a right module  $L_A$  and a left ideal K of A, we have a canonical bilinear map  $_{H}L \times K_R \rightarrow _{H}LK_R$ ,  $(x, a) \mapsto xa$ , where  $H = \text{End}_A(L_A)$  and R = $\text{End}_A(_AK)^{\text{op}}$ , so that, in case  $_{H}LK_R$  is a colocal bimodule, we can apply results of the preceding section. **Lemma 3.1.** Let  $L \in \text{Mod } A^{\text{op}}$  be a colocal module and  $f \in A$  a local idempotent with  $\text{soc}(L_A) \cong fA/fJ$ . Then the following hold.

(1)  $l_L(Af) = 0.$ 

(2)  $l_L(If) = l_L(I)$  for every right ideal I of A.

(3)  $Lf_{fAf}$  is colocal with  $\operatorname{soc}(Lf_{fAf}) = \operatorname{soc}(L_A)f$ .

Proof. (1) For any  $0 \neq x \in L$ , since  $soc(L_A) \subset xA$ ,  $0 \neq soc(L_A)f \subset xAf$  and thus  $x \notin l_L(Af)$ .

(2) We have  $l_L(I) \subset l_L(If)$ . For any  $x \in l_L(If)$ , since xIAf = xIf = 0, by the part (1)  $xI \subset l_L(Af) = 0$  and  $x \in l_L(I)$ . Thus  $l_L(If) \subset l_L(I)$ .

(3) Let  $0 \neq x \in \text{soc}(L_A)f$ . For any  $0 \neq y \in Lf$ , since  $xA \subset yA$ ,  $xfAf = xAf \subset yAf = yfAf$ . Thus  $Lf_{fAf}$  is colocal and  $\text{soc}(Lf_{fAf}) = \text{soc}(L_A)f$ .

**Lemma 3.2.** Let  $L \in Mod A^{op}$  and  $f \in A$  a local idempotent. Then the following are equivalent.

(1)  $L_A$  is colocal with  $\operatorname{soc}(L_A) \cong fA/fJ$ .

(2)  $Lf_{fAf}$  is colocal and  $l_L(Af) = 0$ .

Proof. (1)  $\Rightarrow$  (2). By (3) and (1) of Lemma 3.1.

(2)  $\Rightarrow$  (1). Since by Lemma 1.2(2)  $E(L_A)f_{fAf} \cong E(Lf_{fAf}) \cong E(fAf/fJf_{fAf})$   $\cong E(fA/fJ_A)f_{fAf}$ , by Lemma 1.2(3)  $E(L_A) \cong \operatorname{Hom}_{fAf}(Af, E(L_A)f)_A \cong$   $\operatorname{Hom}_{fAf}(Af, E(fA/fJ_A)f)_A \cong E(fA/fJ_A)$ . Thus  $L_A$  is colocal with  $\operatorname{soc}(L_A) \cong$ fA/fJ.

**Corollary 3.3.** Let  $e, f \in A$  be local idempotents. Then the following are equivalent.

(1)  $eA/l_{eA}(Af)_A$  is colocal with  $\operatorname{soc}(eA/l_{eA}(Af)_A) \cong fA/fJ$ .

(2)  $eAf_{fAf}$  is colocal.

Proof. Put  $L = eA/l_{eA}(Af)_A$ . Then  $l_L(Af) = 0$  and, since  $l_{eA}(Af)f = 0$ ,  $Lf_{fAf} \cong eAf_{fAf}$ . Thus Lemma 3.2 applies.

Following Harada [4], we call a module  $L_A$  *M*-simple-injective if for any submodule *N* of  $M_A$  every  $\theta : N_A \to L_A$  with Im  $\theta$  simple can be extended to some  $\phi : M_A \to L_A$ . In case *L* is *L*-simple-injective, *L* is called simple-quasi-injective.

**Lemma 3.4.** Let  $L \in \text{Mod } A^{\text{op}}$  be a colocal module and put  $H = \text{End}_A(L_A)$ . Let  $f \in A$  be a local idempotent with  $\text{soc}(L_A) \cong fA/fJ$ . Then the following hold.

- (1) If  $L_A$  is A-simple-injective, then  $M = r_{Af}(l_L(M))$  for every submodule M of  $Af_{fAf}$ .
- (2) If  $_HLf_{fAf}$  is a colocal bimodule and  $M = r_{Af}(l_L(M))$  for every submodule M of  $Af_{fAf}$ , then  $L_A$  is A-simple-injective.

Proof. (1) Let M be a submodule of  $Af_{fAf}$  and put  $N = r_{Af}(l_L(M))$ . We claim M = N. Suppose otherwise. Note first that  $l_L(N) = l_L(M)$ . Since  $(NA/MA)f \cong N/M \neq 0$ , there exist right ideals K, I of A such that  $MA \subset K \subset I \subset NA$  and  $I/K \cong fA/fJ \cong \operatorname{soc}(L_A)$ . Then we have  $\theta : I_A \to L_A$  with  $\operatorname{Im} \theta = \operatorname{soc}(L_A)$  and  $\operatorname{Ker} \theta = K$ . Let  $\mu : I_A \to A_A$  be the inclusion. There exists  $\phi : A_A \to L_A$  with  $\phi \circ \mu = \theta$ . Then  $\phi(1)I = \phi(I) = \theta(I) \neq 0$  and  $\phi(1)K = \phi(K) = \theta(K) = 0$ . Thus  $\phi(1) \in l_L(K)$  and  $\phi(1) \notin l_L(I)$ . Since  $l_L(N) = l_L(NA) \subset l_L(I) \subset l_L(K) \subset l_L(MA) = l_L(M)$ ,  $l_L(K) \neq l_L(I)$  implies  $l_L(M) \neq l_L(N)$ , a contradiction.

(2) Let I be a nonzero right ideal of A and  $\mu : I_A \to A_A$  the inclusion. Let  $\theta : I_A \to L_A$  with  $\operatorname{Im} \theta = \operatorname{soc}(L_A)$  and put  $K = \operatorname{Ker} \theta$ . Since by Lemma 1.2(1)  $If/Kf_{fAf} \cong (I/K)f_{fAf}$  is simple, by Lemma 2.3(1) so is  ${}_{H}l_L(Kf)/l_L(If)$ . Let  $a \in If$  with  $a \notin Kf$ . Then, since  $l_L(Kf)a \neq 0$  and  $l_L(If)a = 0$ ,  ${}_{H}l_L(Kf)a$  is simple. Thus by Lemmas 2.1 and 3.1(3)  $l_L(Kf)a = \operatorname{soc}(L_fA_f) = \operatorname{soc}(L_A)f$ , so that  $\theta(a) = \theta(af) = \theta(a)f = xa$  for some  $x \in l_L(Kf)$ . Define  $\phi : A_A \to L_A$  by  $1 \mapsto x$ . Then, since by Lemma 3.1(2)  $x \in l_L(Kf) = l_L(K)$ , and since I = K + aA, we have  $\phi \circ \mu = \theta$ .

**Lemma 3.5.** Let  $L \in \text{Mod } A^{\text{op}}$  be a colocal module and put  $H = \text{End}_A(L_A)$ . Let  $f \in A$  be a local idempotent with  $\text{soc}(L_A) \cong fA/fJ$ . Then the following hold.

- (1) If  $L_A$  is simple-quasi-injective, then  ${}_HLf_{fAf}$  is a colocal bimodule and  $l_L(Af) = 0$ .
- (2) If  $L_A$  is A-simple-injective, then  $r_{Af}(L) = 0$  and  $r_A(L/LJ_A) \subset l_A(\operatorname{soc}(_AAf))$ .

Proof. (1) By Lemma 3.2  $Lf_{fAf}$  is colocal and  $l_L(Af) = 0$ . Let  $0 \neq x \in$ soc $(L_A)f$ . We claim that  $x \in Hy$  for all  $0 \neq y \in Lf$ . Note that  $r_{fA}(x) = fJ$ . Let  $0 \neq y \in Lf$ . Then  $r_{fA}(y) \subset fJ = r_{fA}(x)$  and we have  $\theta : yA_A \to xA_A = \text{soc}(L_A)$ ,  $ya \mapsto xa$ . Let  $\mu : \text{soc}(L_A) \to L_A$  and  $\nu : yA_A \to L_A$  be inclusions. There exists  $h \in H$  with  $h \circ \nu = \mu \circ \theta$ , so that  $x = h(y) \in Hy$ . Thus  ${}_{H}Lf$  is colocal.

(2) By Lemma 3.4(1)  $r_{Af}(L) = r_{Af}(l_L(0)) = 0$ . Next, let  $a \in r_A(L/LJ)$ . Since  $La \subset LJ$ ,  $La(\operatorname{soc}(_AAf)) \subset LJ(\operatorname{soc}(_AAf)) = 0$ . Thus  $a(\operatorname{soc}(_AAf)) \subset r_{Af}(L) = 0$  and  $a \in l_A(\operatorname{soc}(_AAf))$ .

**Lemma 3.6** ([5, Lemma 3.3]). Let  $L \in Mod A^{op}$  be a simple-quasi-injective module with  $soc(L_A) \neq 0$ . Assume  $End_A(L_A)$  is a local ring. Then  $soc(L_A)$  is simple.

Proof. Let S be a simple submodule of  $\operatorname{soc}(L_A)$ . Suppose to the contrary that  $S \neq \operatorname{soc}(L_A)$ . Let  $\pi : \operatorname{soc}(L_A) \to S_A$  be a projection and  $\mu : \operatorname{soc}(L_A) \to L_A$ ,  $\nu : S_A \to L_A$  inclusions. There exists  $\phi : L_A \to L_A$  with  $\phi \circ \mu = \nu \circ \pi$ . Since  $\pi$  is not monic,  $\phi$  is not an isomorphism. Thus  $\phi \in \operatorname{rad} \operatorname{End}_A(L_A)$  and  $(\operatorname{id}_L - \phi)$  is a unit in  $\operatorname{End}_A(L_A)$ , so that for  $0 \neq x \in S$ , since  $\phi(x) = \pi(x) = x$ ,  $(\operatorname{id}_L - \phi)(x) = 0$  and x = 0, a contradiction.

## 4. Injectivity of colocal modules

In this section, by extending the previous results [8, Theorems 2.7, 2.8 and Proposition 2.9], we provide several sufficient conditions for a colocal module over a left or right perfect ring A to be injective.

**Lemma 4.1** ([5, Lemma 3.4]). Let A be a semiperfect ring and  $L \in \text{Mod } A^{\text{op}}$ an A-simple-injective colocal module of finite Loewy length. Then  $L_A$  is injective.

Proof. Let *I* be a right ideal of *A* and  $\mu: I_A \to A_A$  the inclusion. Let  $\theta: I_A \to L_A$ . We make use of induction on the Loewy length of  $\theta(I)$  to show the existence of  $\phi: A_A \to L_A$  with  $\theta = \phi \circ \mu$ . Let  $n = \min\{k \ge 0 | \theta(I)J^k = 0\}$ . We may assume n > 0. Since  $\operatorname{soc}(L_A)$  is simple,  $\operatorname{soc}(L_A) = \theta(I)J^{n-1} = \theta(IJ^{n-1})$ . Let  $\mu_1$  and  $\theta_1$  denote the restrictions of  $\mu$  and  $\theta$  to  $IJ^{n-1}$ , respectively. Then  $\operatorname{Im} \theta_1 = \operatorname{soc}(L_A)$  and there exists  $\phi_1: A_A \to L_A$  with  $\phi_1 \circ \mu_1 = \theta_1$ . Since  $(\theta - \phi_1 \circ \mu)(I)J^{n-1} = 0$ , by induction hypothesis there exists  $\phi_2: A_A \to L_A$  with  $\phi_2 \circ \mu = \theta - \phi_1 \circ \mu$ .

**Thorem 4.2.** Let A be a semiperfect ring. Let  $L \in \text{Mod } A^{\text{op}}$  be a colocal module of finite Loewy length and put  $H = \text{End}_A(L_A)$ . Let  $f \in A$  be a local idempotent with  $\text{soc}(L_A) \cong fA/fJ$ . Then the following are equivalent.

- (1)  $L_A$  is injective.
- (2)  ${}_{H}Lf_{fAf}$  is a colocal bimodule and  $M = r_{Af}(l_{L}(M))$  for every submodule M of  $Af_{fAf}$ .

Proof. (1)  $\Rightarrow$  (2). By Lemmas 3.5(1) and 3.4(1). (2)  $\Rightarrow$  (1). By Lemmas 3.4(2) and 4.1.

**Corollary 4.3.** Let A be a semiperfect ring. Let  $L \in \text{Mod } A^{\text{op}}$  be a colocal module of finite Loewy length and put  $H = \text{End}_A(L_A)$ . Let  $f \in A$  be a local idempotent with  $\text{soc}(L_A) \cong fA/fJ$ . Assume  ${}_HLf_{fAf}$  is a colocal bimodule and  $M = r_{Af}(l_L(M))$  for every submodule M of  $Af_{fAf}$  with  $r_{Af}(L) \subset M$ . Then  $L_A$  is quasi-injective.

Proof. Put  $I = r_A(L)$ . Then by Theorem 4.2  $L_{A/I}$  is injective, so that  $L_A$  is quasi-injective.

**Thorem 4.4.** Let A be a left or right perfect ring. Let  $L \in Mod A^{op}$  be a colocal module and put  $H = End_A(L_A)$ . Let  $f \in A$  be a local idempotent with  $soc(L_A) \cong fA/fJ$ . Assume  $\ell(Af/r_{Af}(L)_{fAf}) < \infty$ . Then the following are equivalent.

(2)  ${}_{H}Lf_{fAf}$  is a colocal bimodule and  $r_{Af}(L) = 0$ .

<sup>(1)</sup>  $L_A$  is injective.

- (3)  $_{H}Lf_{fAf}$  is a colocal bimodule and  $M = r_{Af}(l_{L}(M))$  for every submodule M of  $Af_{fAf}$ .
  - Proof. (1)  $\Rightarrow$  (2). By Lemma 3.5.
  - (2)  $\Rightarrow$  (3). By Lemma 2.4.

(3)  $\Rightarrow$  (1). By Lemma 3.4(2)  $L_A$  is A-simple-injective. Note that  $r_{Af}(L) = r_{Af}(l_L(0)) = 0$ . Thus  $\ell(Af_{fAf}) < \infty$  and by Lemma 1.1  $J^n f = 0$  for some  $n \ge 1$ , so that  $LJ^nAf = LJ^nf = 0$  and by Lemma 3.1(1)  $LJ^n \subset l_L(Af) = 0$ . Hence by Lemma 4.1  $L_A$  is injective.

**Corollary 4.5.** Let A be a left or right perfect ring. Let  $L \in \text{Mod } A^{\text{op}}$  be a colocal module and put  $H = \text{End}_A(L_A)$ . Let  $f \in A$  be a local idempotent with  $\text{soc}(L_A) \cong fA/fJ$ . Assume  ${}_HLf_{fAf}$  is a colocal bimodule and  $\ell(Af/r_{Af}(L)_{fAf}) < \infty$ . Then  $L_A$  is quasi-injective.

Proof. Put  $I = r_A(L)$ . Then  $r_{Af/If}(L) = 0$  and by Theorem 4.4  $L_{A/I}$  is injective, so that  $L_A$  is quasi-injective.

**Proposition 4.6.** Let A be a left or right perfect ring. Let  $L \in Mod A^{op}$  be a colocal module and put  $H = End_A(L_A)$ . Let  $f \in A$  be a local idempotent with  $soc(L_A) \cong fA/fJ$ . Then the following are equivalent.

(1)  $L_A$  is injective and  $X = l_L(r_{Af}(X))$  for every submodule X of <sub>H</sub>L.

(2)  $_{H}Lf_{fAf}$  is a colocal bimodule,  $r_{Af}(L) = 0$  and  $\ell(Af_{fAf}) < \infty$ .

Proof. (1)  $\Rightarrow$  (2). By Lemma 3.5(1)  $_{H}Lf_{fAf}$  is a colocal bimodule, and by Lemma 3.5(2)  $r_{Af}(L) = 0$ . It remains to show  $\ell(Af_{fAf}) < \infty$ . Put  $K_n = Af(fJf)^n$  for  $n \ge 0$ . We claim  $\ell(K_n/K_{n+1fAf}) < \infty$  for all  $n \ge 0$ . Let  $n \ge 0$ . Note that by Lemma 3.4(1) the lattice of submodules of  $Af_{fAf}$  is anti-isomorphic to the lattice of submodules of  $_{HL}$ . Thus  $\ell(K_n/K_{n+1fAf}) = \ell(_{H}l_L(K_{n+1})/l_L(K_n))$ . Also, since rad $(K_n/K_{n+1fAf}) = 0$ ,  $_{H}l_L(K_{n+1})/l_L(K_n)$  is semisimple. For any submodule X of  $_{HL}$ , since  $r_{Af}(X) = r_A(X)f$ , by Lemma 3.1(2)  $X = l_L(r_{Af}(X)) = l_L(r_A(X)f) = l_L(r_A(X))$ . Thus by Lemma 1.6  $_{HL} \cong \text{Hom}_A(A_A, _{HL}A)$  is linearly compact, so is  $_{H}l_L(K_{n+1})/l_L(K_n)$  by [10, Proposition 2.2]. Hence by [10, Lemma 2.3]  $\ell(K_n/K_{n+1fAf}) = \ell(_{H}l_L(K_{n+1})/l_L(K_n)) < \infty$ . Since  $\ell(fJf/(fJf)_{fAf}^2) \leq \ell(K_1/K_{2fAf}) < \infty$ , by [9, Lemma 11] fAf is right artinian. Then  $\ell(K_0/K_{1fAf}) < \infty$  implies  $\ell(Af_{fAf}) < \infty$ .

(2)  $\Rightarrow$  (1). By Theorem 4.4  $L_A$  is injective. Since by Lemma 3.1(1)  $l_L(Af) = 0$ , by Lemma 2.5  $\ell(_HL) = \ell(Af_{fAf}) < \infty$  and thus by Lemma 2.4  $X = l_L(r_{Af}(X))$  for every submodule X of  $_HL$ .

M. HOSHINO AND T. SUMIOKA

# 5. Colocal pairs

We call a pair (eA, Af) of a right ideal eA and a left ideal Af in A a colocal pair if  $e, f \in A$  are local idempotents and  $_{eAe}eAf_{fAf}$  is a colocal bimodule. Note that by Lemma 2.5  $\ell(_{eAe}eA/l_{eA}(Af)) = \ell(Af/r_{Af}(eA)_{fAf})$  for every colocal pair (eA, Af)in A. In case  $\ell(_{eAe}eA/l_{eA}(Af)) = \ell(Af/r_{Af}(eA)_{fAf}) < \infty$ , a colocal pair (eA, Af)in A is called finite.

In [5], a pair (eA, Af) of a right ideal eA and a left ideal Af in A is called an *i*-pair if  $e, f \in A$  are local idempotents,  $eA_A$  is colocal with  $\operatorname{soc}(eA_A) \cong fA/fJ$  and  $_AAf$  is colocal with  $\operatorname{soc}(_AAf) \cong Ae/Je$ .

**Lemma 5.1.** Let  $e, f \in A$  be local idempotents. Then the following are equivalent.

(1) (eA, Af) is an *i*-pair in A.

(2) (eA, Af) is a colocal pair in A with  $l_{eA}(Af) = 0$  and  $r_{Af}(eA) = 0$ .

Proof. (1)  $\Rightarrow$  (2). By (1) and (3) of Lemma 3.1. (2)  $\Rightarrow$  (1). By Corollary 3.3.

The equivalence (1)  $\Leftrightarrow$  (2) of the next lemma has been established in [5, Theorem 3.7]. Here we provide another proof of the implication (2)  $\Rightarrow$  (1) which does not appeal to Morita duality.

**Lemma 5.2** ([5, Theorem 3.7]). Let (eA, Af) be an *i*-pair in a left or right perfect ring A. Then the following are equivalent.

- (1) (eA, Af) is finite.
- (2) Both  $eA_A$  and  $_AAf$  are injective.
- (3)  $eA_A$  is injective and  $_AAf$  is A-simple-injective.

Proof. (1)  $\Rightarrow$  (2). By Theorem 4.4. (2)  $\Rightarrow$  (3). Obvious.

(3)  $\Rightarrow$  (1). It follows by Lemma 3.4(1) that  $X = l_{eA}(r_{Af}(X))$  for every submodule X of  $_{eAe}eA$ . Thus by Proposition 4.6  $\ell(Af_{fAf}) < \infty$ .

**Lemma 5.3.** Let (eA, Af) be a finite colocal pair in a left or right perfect ring A. Then the following hold.

- (1)  $eA/l_{eA}(Af)_A$  is a quasi-injective colocal module with  $\operatorname{soc}(eA/l_{eA}(Af)_A) \cong fA/fJ$ .
- (2) If  $r_{Af}(eA) = 0$ , then  $E(fA/fJ_A) \cong eA/l_{eA}(Af)$ , so that  $E(fA/fJ_A)$  is quasiprojective and  $eA/l_{eA}(Af)_A$  is injective.

**Proof.** Put  $I = l_A(Af)$  and  $L = eA/eI_A$ . Then  $l_{eA}(Af) = eI$  and  $l_L(Af) = 0$ . Note that, since If = 0,  $Lf_{fAf} \cong eAf_{fAf}$ . Thus by Lemma 3.2  $L_A$  is colocal with  $\operatorname{soc}(L_A) \cong fA/fJ$ . Since  $Lf_{fAf} \cong eAf_{fAf}$  and  $H = \operatorname{End}_A(L_A) \cong eAe/eIe$ ,  $_{H}Lf_{fAf}$  is a colocal bimodule. Note also that  $\ell(Af/r_{Af}(L)_{fAf}) = \ell(Af/r_{Af}(eA)_{fAf})$  $<\infty$ .

(1) By Corollary 4.5  $L_A$  is quasi-injective.

(2) By Theorem 4.4  $L_A$  is injective. Thus, since  $soc(L_A) \cong fA/fJ$ ,  $E(fA/fJ_A)$  $\cong L$ . Since  $L_{A/I} \cong e(A/I)_{A/I}$  is projective,  $L_A$  is quasi-projective. 

**Proposition 5.4.** Let (eA, Af) be a colocal pair with  $l_{eA}(Af) = 0$  in a left or right perfect ring A. Put  $\overline{A} = A/r_A(eA)$ . Let  $\pi : A \to \overline{A}$  be the canonical ring homomorphism and put  $\bar{e} = \pi(e)$ ,  $\bar{f} = \pi(f)$ . Then the following are equivalent.

- (1) (eA, Af) is finite.
- (2)  $eA_A$  is quasi-injective, eAeeA is finitely generated and  $_AAf/r_{Af}(eA)$  is injective.
- (3)  $(\overline{e}\overline{A}, \overline{A}\overline{f})$  is a finite *i*-pair in  $\overline{A}$ .

Proof. Note first that  $\overline{A}$  is left or right perfect and  $\overline{e}, \overline{f} \in \overline{A}$  are local idempotents. Put  $I = r_A(eA)$ . Then eI = 0 and  $If = r_{Af}(eA)$ . Thus  $\ell(\overline{eAe}e\overline{A}) = \ell(eAeeA)$  and, since  $_{eAe}e\overline{A}f_{fAf} \cong _{eAe}eAf_{fAf}$  is a colocal bimodule,  $(\overline{eA}, \overline{A}\overline{f})$  is a colocal pair in  $\overline{A}$ .

(1)  $\Rightarrow$  (2). By Lemma 5.3(1)  $eA_A$  is quasi-injective, and by Lemma 5.3(2)  $_AAf$  $/r_{Af}(eA)$  is injective. Also, since  $\ell(eAeeA) < \infty$ , eAeeA is finitely generated.

(2)  $\Rightarrow$  (3). By [3, Corollary 5.6A]  $\bar{e}\overline{A}_{\overline{A}} \cong eA_{\overline{A}}$  is injective. Also, since  ${}_{A}\overline{A}\overline{f} \cong$  ${}_{A}Af/r_{Af}(eA)$  is injective, so is  $\overline{A}\overline{A}\overline{f}$ . It is obvious that  $r_{\overline{A}}(\overline{eA}) = 0$ . For any  $a \in$  $l_{eA}(\overline{Af})$ , since  $aAf \subset If$ ,  $aAf = eaAf \subset eIf = 0$  and  $a \in l_{eA}(Af) = 0$ . It follows that  $l_{\bar{e}\overline{A}}(\overline{A}\bar{f}) = 0$ . Thus by Lemmas 5.1 and 5.2  $(\bar{e}\overline{A}, \overline{A}\bar{f})$  is a finite *i*-pair in  $\overline{A}$ .  $\square$ 

 $(3) \Rightarrow (1)$ . Obvious.

**Corollary 5.5.** Let (eA, Af) be an *i*-pair in a left or right perfect ring A. Then the following are equivalent.

- (1) (eA, Af) is finite.
- (2)  $eA_A$  is quasi-injective,  $e_{Ae}eA$  is finitely generated and  $_AAf$  is injective.

#### Applications of colocal pairs I 6.

In this section, as applications of colocal pairs, we extend recent results of Baba [1, Theorems 1 and 2] to left perfect rings and provide simple proofs of them.

**Lemma 6.1.** Let A be a left perfect ring and  $e \in A$  a local idempotent. Assume  $_{A}E = E(_{A}Ae/Je)$  is quasi-projective. Then  $_{A}E/JE$  is simple and for a local idempotent  $f \in A$  with  ${}_{A}E/JE \cong Af/Jf$  the following hold:

- (a)  $_{A}E \cong Af/r_{Af}(eA);$
- (b)  $_{eAe}eAf \cong _{eAe}eE$  is injective; and
- (c) (eA, Af) is a colocal pair in A with  $l_{eA}(Af) = 0$ .

Proof. Put  $I = l_A(E)$ . By Lemma 1.4 there exists a local idempotent  $f \in A$  such that  $_AE \cong Af/If$ . We claim  $If = r_{Af}(eA)$ . Since by Lemma 3.5(2)  $eAIf = eIf \subset l_{eA}(E) = 0$ ,  $If \subset r_{Af}(eA)$ . Conversely, let  $a \in r_{Af}(eA)$ . Then eA(a+If) = 0 and by Lemma 3.1(1)  $(a + If) \in r_{Af/If}(eA) = 0$ , so that  $a \in If$ . Next, since  $e(r_{Af}(eA)) = 0$ ,  $_{eAe}eE \cong _{eAe}e(Af/r_{Af}(eA)) \cong _{eAe}eAf$ . Thus  $_{eAe}eAf$  is colocal by Lemma 3.1(3) and injective by Lemma 1.2(2). Also, since  $\operatorname{End}_A(Af/If) \cong fAf/fIf$ , by Lemma 3.5(1)  $eAf_{fAf}$  is colocal. Finally, by Lemma 3.5(2)  $l_{eA}(Af) \subset l_{eA}(Af/r_{Af}(eA)) = l_{eA}(E) = 0$ .

**Thorem 6.2** (cf. [1, Theorem 1]). Let A be a left perfect ring and  $e, f \in A$  local idempotents. Put E = E(AAe/Je). Assume  $\ell(Af/r_{Af}(eA)_{fAf}) < \infty$ . Then the following are equivalent.

- (1)  $eA_A$  is quasi-injective with  $\operatorname{soc}(eA_A) \cong fA/fJ$ .
- (2)  $_{A}E$  is quasi-projective with  $_{A}E/JE \cong Af/Jf$ .
- (3) (eA, Af) is a colocal pair in A with  $l_{eA}(Af) = 0$ .
- (4)  $_{eAe}eAf$  is colocal and  $\operatorname{soc}(eA_A) \cong fA/fJ$ .

Proof. (1)  $\Rightarrow$  (3). By Lemma 3.5(1). (3)  $\Rightarrow$  (1). By Lemma 5.3(1). (2)  $\Rightarrow$  (3). By Lemma 6.1. (3)  $\Rightarrow$  (2). By Lemma 5.3(2). (3)  $\Rightarrow$  (4). By Corollary 3.3. (4)  $\Rightarrow$  (3). By (3) and (1) of Lemma 3.1.

**Lemma 6.3.** Let (eA, Af) be a colocal pair in a left or right perfect ring A. Put  $E = E(_AAe/Je)$  and  $H = \text{End}_A(_AE)^{\text{op}}$ . Assume  $\text{soc}(eA_A)f \neq 0$ . Then the following hold.

- (1)  $\operatorname{soc}(eA_A)fA$  is the unique simple submodule of  $eA_A$  which is isomorphic to  $fA/fJ_A$ .
- (2) If (eA, Af) is finite, then  ${}_{A}E_{H}$  contains a subbimodule X such that  ${}_{A}X \cong Af/r_{A}(eA)f$ ,  ${}_{eAe}eX_{H}$  is a colocal bimodule,  $\operatorname{soc}(eA_{A})fA \cap l_{eA}(X) = 0$  and  $\ell({}_{eAe}eA/l_{eA}(X)) < \infty$ .

Proof. (1) Since  $\operatorname{soc}(eA_A)f \neq 0$ ,  $eA_A$  contains a simple submodule  $K \cong fA/fJ$ . On the other hand, by Corollary 3.3  $eA/l_{eA}(Af)_A$  is colocal with  $\operatorname{soc}(eA/l_{eA}(Af)_A) \cong fA/fJ$ . Thus K is the unique simple submodule of  $eA_A$  which is isomorphic to fA/fJ. It follows that  $K = \operatorname{soc}(eA_A)fA$ .

600

 $\square$ 

(2) Put  $I = r_A(eA)$ . Then  $If = r_{Af}(eA)$  and by Lemma 5.3(1)  ${}_AAf/If$  is a quasi-injective colocal module with  $\operatorname{soc}({}_AAf/If) \cong Ae/Je$ . Thus  ${}_AE$  contains a submodule  $X \cong {}_AAf/If$ . Then by Lemma 1.3  $XH \subset X$ . Since by Lemma 3.5(1)  ${}_{eAe}eE_H$  is a colocal bimodule, so is  ${}_{eAe}eX_H$ . Also, since eI = 0,  $\operatorname{soc}(eA_A)fA(Af$  $/If) \cong \operatorname{soc}(eA_A)fAf \neq 0$ . Thus  $\operatorname{soc}(eA_A)fA \cap l_{eA}(X) = 0$ . Finally, since  $l_{eA}(X) =$  $l_{eA}(Af)$ ,  $\ell({}_{eAe}eA/l_{eA}(X)) = \ell({}_{eAe}eA/l_{eA}(Af)) < \infty$ .

**Lemma 6.4.** Let A be a left perfect ring and  $e \in A$  a local idempotent. Put  $E = E(_AAe/Je)$  and  $H = \operatorname{End}_A(_AE)^{\operatorname{op}}$ . Assume  $\operatorname{soc}(eA_A) \cong \bigoplus_{i=1}^n f_i A/f_i J$  with the  $(eA, Af_i)$  finite colocal pairs in A. Then  $f_i A/f_i J \ncong f_j A/f_j J$  for  $i \neq j$ ,  $\ell(E_H) = \ell(_{eAe}eA) < \infty$  and  $_AE/JE \cong \bigoplus_{i=1}^n Af_i/Jf_i$ .

Proof. By Lemma 6.3(1)  $f_i A/f_i J \not\cong f_j A/f_j J$  for  $i \neq j$ . Also, for each  $1 \leq i \leq n$ , by Lemma 6.3(2)  ${}_{A}E_{H}$  contains a subbimodule  $X_i$  such that  ${}_{A}X_i \cong Af_i/r_A(eA)f_i$ ,  ${}_{eAe}eX_{iH}$  is a colocal bimodule,  $\operatorname{soc}(eA_A)f_i A \cap l_{eA}(X_i) = 0$  and  $\ell({}_{eAe}eA/l_{eA}(X_i)) < \infty$ . Put  ${}_{A}X_H = \sum_{i=1}^n X_i$ . Then, by Lemmas 3.1(1) and 2.5  $\ell(X_{iH}) = \ell({}_{eAe}eA/l_{eA}(X_i)) < \infty$  for all  $1 \leq i \leq n$ , so that  $\ell(X_H) < \infty$ . Also, since  $\operatorname{soc}(eA_A)f_i A \cap l_{eA}(X) = 0$  for all  $1 \leq i \leq n$ , by Lemma 6.3(1)  $\operatorname{soc}(eA_A) \cap l_{eA}(X) = 0$ . Thus, since  $eA_A$  has essential socle,  $l_{eA}(X) = 0$ . Since by Lemma 3.5(1)  ${}_{eAe}eE_H$  is a colocal bimodule, so is  ${}_{eAe}eX_H$ . Thus by Lemma 2.5  $\ell({}_{eAe}eA) = \ell(X_H) < \infty$ . Since by Lemma 1.3 we have a surjective ring homomorphism  $\rho_X : H \to \operatorname{End}_A(AX)^{\operatorname{op}}$ ,  $h \mapsto h|_X$ , it follows by Theorem 4.4 that  ${}_AX$  is injective. Thus X = E and we have an epimorphism  $\bigoplus_{i=1}^n Af_i/Jf_i \to {}_AE/JE$ . On the other hand, since  $f_iA/f_iJ \ncong f_jA/f_jJ$  for  $i \neq j$ , it follows by Lemma 3.5(2) that  ${}_AE/JE$  has a direct summand which is isomorphic to  $\bigoplus_{i=1}^n Af_i/Jf_i$ . Thus  ${}_AE/JE \cong \bigoplus_{i=1}^n Af_i/Jf_i$ .

**Thorem 6.5** (cf. [1, Theorem 2]). Let A be a left perfect ring and  $e, f_1, f_2, \dots, f_n \in A$  local idempotents. Put E = E(AAe/Je). Assume  $(eA, Af_i)$  is a finite colocal pair in A for all  $1 \le i \le n$ . Then the following are equivalent.

- (1)  $\operatorname{soc}(eA_A) \cong \bigoplus_{i=1}^n f_i A / f_i J.$
- (2)  $_{A}E/JE \cong \bigoplus_{i=1}^{n} Af_i/Jf_i.$

Proof. (1)  $\Rightarrow$  (2). By Lemma 6.4.

(2)  $\Rightarrow$  (1). It follows by Lemmas 3.5(2) and 6.3(1) that  $\operatorname{soc}(eA_A)$  is isomorphic to a direct summand of  $\bigoplus_{i=1}^{n} f_i A / f_i J$ . We may assume  $\operatorname{soc}(eA_A) \cong \bigoplus_{i=1}^{r} f_i A / f_i J$  for some  $1 \le r \le n$ . Then by Lemma 6.4  $_A E / JE \cong \bigoplus_{i=1}^{r} A f_i / J f_i$ , so that r = n.

### 7. Applications of colocal pairs II

In this section, we provide some other applications of colocal pairs. Recall that a set  $\{e_1, \dots, e_n\}$  of orthogonal local idempotents in a semiperfect ring A is called

basic if  $(\sum_{i=1}^{n} e_i) A(\sum_{i=1}^{n} e_i)$  is a basic ring of A.

**Lemma 7.1** ([5, Lemma 3.5]). Let A be a semiperfect ring and  $\{e_1, \dots, e_n\}$  a basic set of orthogonal local idempotents in A. Assume every  $e_iA_A$  is A-simple-injective and has essential socle. Then there exists a permutation  $\nu$  of the set  $\{1, \dots, n\}$  such that  $(e_iA, Ae_{\nu(i)})$  is an i-pair in A for all  $1 \le i \le n$ .

Proof. By [5, Lemma 3.5] there exists a mapping  $\nu : \{1, \dots, n\} \rightarrow \{1, \dots, n\}$  such that  $(e_i A, Ae_{\nu(i)})$  is an *i*-pair in A for all  $1 \le i \le n$ . Then by the definition of *i*-pairs  $\nu$  is injective.

**Corollary 7.2.** Let A be a left perfect ring. Assume  $A_A$  is simple-quasi-injective. Then  $E(_AA)$  and  $E(A_A)$  are injective cogenerators in Mod A and Mod  $A^{op}$ , respectively.

**Lemma 7.3.** Let A be a left perfect ring. Assume  $A_r(A, A)$  satisfies the ACC and  $eA_A$  is simple-quasi-injective for every local idempotent  $e \in A$ . Then A is left artinian.

Proof. It suffices to show that  $\ell(e_A e A) < \infty$  for every local idempotent  $e \in A$ . Let  $e \in A$  be a local idempotent. Since by Lemma 3.6  $eA_A$  is colocal, there exists a local idempotent  $f \in A$  with  $\operatorname{soc}(eA_A) \cong fA/fJ$ . By Lemma 3.5(1) (eA, Af) is a colocal pair in A with  $l_{eA}(Af) = 0$ . For each  $M \in \mathcal{A}_r(eA, Af)$ , put  $\hat{M} = r_A(l_{eA}(M)) \in \mathcal{A}_r(A, A)$ . Then  $\hat{M}f = r_{Af}(l_{eA}(M)) = M$  for every  $M \in \mathcal{A}_r(eA, Af)$ . Thus, for  $M, N \in \mathcal{A}_r(eA, Af)$  with  $M \subset N$ ,  $\hat{M} \subset \hat{N}$  and  $\hat{M} = \hat{N}$  implies  $M = \hat{M}f = \hat{N}f = N$ . It follows that  $\mathcal{A}_r(eA, Af)$  satisfies the ACC. Thus by Lemmas 2.5 and 2.6  $\ell(e_A e eA) = \ell(Af/r_Af(eA)_{fAf}) < \infty$ .

**Corollary 7.4.** Let A be a left perfect ring. Assume  $A_r(A, A)$  satisfies the ACC and  $A_A$  is simple-quasi-injective. Then A is quasi-Frobenius.

Proof. By Lemma 7.3 A is left artinian. Then it follows by Lemmas 3.6 and 4.1 that  $A_A$  is injective.

#### References

Y. Baba: Injectivity of quasi-projective modules, projectivity of quasi-injective modules and projective cover of injective modules, J. Algebra 155(1993), 415–434.

H. Bass: Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95(1960), 466–488.

<sup>[3]</sup> C. Faith: Injective modules and injective quotient rings, Pure and Applied Math. 72, Marcel Dekker, 1982.

- [4] M. Harada: Note on almost relative projectives and almost relative injectives, Osaka J. Math. 29(1992), 435-446.
- [5] M. Hoshino and T. Sumioka: Injective pairs in perfect rings, Osaka J. Math. 35(1998),501-508.
- [6] R. E. Johnson and E. T. Wong: Quasi-injective modules and irreducible rings, J. London Math. Soc. 36(1961), 260–268.
- [7] B. J. Müller: Linear compactness and Morita duality, J. Algebra 16(1970), 60-66.
- [8] M. Morimoto and T. Sumioka: Generalizations of theorems of Fuller, Osaka J. Math. 34(1997),689-701.
- B. L. Osofsky: A generalization of quasi-Frobenius rings, J. Algebra 4(1966), 373–387; Erratum, 9(1968), p. 120.
- [10] F. L. Sandomierski: Linearly compact modules and local Morita duality, Proc. Conf. Ring Theory, Utah 1971, Academic Press, 1972, 333–346.
- [11] L. E. T. Wu and J. P. Jans: On quasi-projectives, Illinois J. Math. 11(1967), 439-448.

M. Hoshino Institute of Mathematics University of Tsukuba Ibaraki, 305-8571 Japan

T. Sumioka Department of Mathematics Osaka City University Osaka, 558-8585 Japan