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Introduction

In [5], the author showed the existence of infinitely many pure number
fields of any given odd degree n(=3) whose ideal class groups have 2-rank at
least 3A,, where A, is the number of divisors of # which are smaller than 7.
This result was approached via Diophantine equations of the type Y?=X"+4D,
which was also applied to the research on ‘“z-rank’ of the ideal class groups of
quadratic fields (Yamamoto [9], Craig [1], [2]). Particularly, in case n=3,
Craig gave one of the ways to generate the elliptic curves given by Y?=4X3+D
possessing suitably many integral points, and utilized it to obtain a precise result
on 3-rank of the ideal class groups of quadratic fields.

The aim of the present paper is to apply Craig’s elliptic curves to the proof
of a 2-rank theorem on pure cubic fields. We shall namely show the following

Theorem. There exist infinitely many pure cubic fields whose ideal class
groups have 2-rank at least 6.

This theorem is stronger than the above result of [5] in case =3, because
A,=1. The proof is given by the method largely due to Craig [2]. To check
some results of Craig and to calculate the various numerical values, one can
make effective use of an electric computer. In particular, the computer algebra
system REDUCE was suited to our purpose (cf. [3]). REDUCE has been
implemented on the M680H computer at the Computer Centre University of
Tokyo, and able to be utilized at the Gakushuin University Computer Centre
(GUCC), by way of the computer network N1. The calculations in Section 3
were carried out by FORTRAN on the COSMOS800 IIT computer at GUCC.
The author would like to thank the staff of GUCC for their assistance given
to him during the work for the paper. Thanks are also due to Professor H.
Wada who kindly supplied valuable information about calculations of larger
numbers.
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1. Craig’s elliptic curves

In this section, we summerize Craig’s result on the integer solutions of
Y?=4X3+D. For details, refer to [2].
We start with the symmetric polynomial in X, Y, Z;

D(X, Y, Z) = (X*+ YV*+2%)—2A XY+ YZ+ZX)
= (—X+ Y+ Z)P—4YZ = (X—V+Z)—4ZX=(X+Y—Z)—4XY .

From these three expressions, we obtain the three points
(yz, —2+y*+-2), (2%, ¥*—)*+2%), (vy, ¥+°—2%)

on the curve Y?=4X3+4D(x? 3% 2°) over Q(x, y, ). In order to find curves
of this type having many integral points, Craig studied the simultaneous equa-

tions

(1) {xozo = x2, xp—yo+rs=—(x}—yi+z2}),

X0 Vo = X225 xé—i—y%—zg = —(x§+y§—z§) ,
which yield immediately
D(xg; ygy Zg) = D(x:I;a yfa 2:15) = D(xg’ yg’ Zg) .

He gave the solution as follows; For «, 8, v such that

at+pB+y=0,
let
a—B v—a
(2) P
L U 14+3a¢p ¢$*+3a
(3) M V| =|14+38¢ ¢*+38],
N W 14-3y¢p ¢*+3v
K=M+V+3¢

A= —WQR2L*— LW~ W?)
wlK = (N+ U+ WM~ )

v = L(N+U)—KW(M—V)
(4) a=—LW(L—W)N—-U)

Kb = —AN3pK—LU)—uKN

CIL = 3¢(—\ W)+ U(—alLTW)
Npb, = 3prna—Lpb
Kve, = Wxa—K ub, .
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Then
X Yo 2o a ub wve
X Y 2| = |A ub va
X, Vo 2 A pa v

gives a solution of the equations (1).

In particular, putting [a, B, ¥]=[0, T, —T], we may consider that the
parameters appearing above and x,, --+, 2, are rational functions in one variable
T. In fact, we can write them down by a tedious calculation or an electric com-
puter (see Appendix A). Let D(T)=D(x3, v3, 23) and A(T'), B(T) (1=i<6)
be as in the table below.

) A; B;

1 Xo%p =512 w—yit+2i=—axit+yi—=2t
2 Va2, —x3+y3+23

3 N x}+yi—zi

4 X0 YVo=%2), xy+ys—2i=—ad—y3+23
5 Yoo —x3+y5+23

6 Iz —xi+yi4-2i

For 1=:<6, A(T) and By(T) are all polynomials in Z[7']. Thus we obtain
the family of the elliptic curves;

Y?=4X34+D(t), for teZ,

having the six integral points P;=(A4,(z), B,(t)) (1=<i<6).

In Craig [2], the last two points P;, P; are not used, since the classes of
ideals of a quadratic field corresponding to three points, for example, P, P,,
P; satisfy an identical relation (see [1] pp. 451). However, in the proof of our
theorem, we can take full advantage of these six points.

We now state, as lemmas, a few properties of the polynomials 4,(T), B,(T)
and D(T) required later. The first lemma is shown by patient modular cal-
culations.

Lemma 1. For any rational integer t, we have

(5)  B(H)=0(mod3) (1=i<6),
(6)  D(t)=1(mod4),
(7)  A(t)=0(mod4) (1=<i<6), if t=0(mod4).

Lemma 2. A(T) and B,(T) are relatively prime in Q[T], for 1<i=<6.
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Proof. For 1=<i<4, the assertions are shown in [2] pp. 391-396. The
others can be verified from them without difficulty.

Lemma 3. D(T) has at least one root whose multiplicity is prime to 3.

Proof. Since D(T)=1+..-—223"T"! (see [2] pp. 390), it is easy to see
that D(T) cannot be equal to 7E(T)? for any r&Q, and E(T)=Q[T]. The
lemma follows from this obviously. (In fact, it has been proved in [2] that
there are at least three simple roots of D(T'), which shall not be required in our
article.)

ReMaARk. Lemmas 2 and 3 are immediate consequences of the irreducib-
ility of D(T') which can be shown by a computer calculation. Indeed, the
factorizer of REDUCE reveals the fact that D(T") modulo 79 is irreducible in
(Z|79Z) [T].

2. Unramified extensions

We now consider the pure cubic fields
K, = Q(0(t)) where 40(¢)* = D(¢),

for teZ. Note that K, is actually pure cubic because D()/4 is not a cube
by (6). Let

Ly = K(VO(t)+Ay(2), -+ VO(t)+As(t)) -
Then we have

Lemma 4. Suppose, for 1<1=<6, A,(t) and By(t) are relatively prime in
the ring Z[2™"] and t=0 (mod 4). Then L,/K, is unramified at all primes of K,.

Proof. We write simply A4, instead of 4,(¢), and so on. It suffices to prove
that the quadratic extension K,(\/§+ A4,)/K; is unramified for each 7. First,
since @*-+A43}=(B;/2)*>0 and consequently 6+ A4; 1s totally positive, all infinite
primes of K, are unramified. Next, let p be any prime ideal of K, prime to 2.
p is unramified for K,(\/9+4,) if it does not divide -+4;. Assume that §44;
is divisible by p. Then we have

(Bij2) = 6+ A3 = (04+4)(0*—0A,+A)=0  (modp).

If *—0A4;4+A%=0 (mod p), then B;=34,;=0 (mod p) which contradicts (5) or
the assumption of the lemma. Therefore

ord, (0+4;) = ord, (6°+47) = ord,((B,/2)*)=0 (mod 2) .
This impiles that p is unramified for K,(~/§+A4;). Lastly, as ord,(D/4)=—2
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by (6), there is a unique prime ideal q of K, lying above 2 which is totally ramified
for K;/@. We have

ord, (26) = ordy(2)+ordy(f) =3—2=1.
Thus, by (6), (7) and the assumption :=0 (mod 4), we have

(20)%(6+A4,)=46¢* = D=1 (mod 4).
Hence q is unramified for K,(\/(20)(0+A4,;)=K(\/6+A4;)- This completes
the proof.

3. A specific example

After Craig [2], we will give a specific numerical example and utilize it to
infer the existence of infinitely many fields mentioned in the theorem.

We will examine the case t=—1, thatis, [a, 8, ¥]=[0, —1, 1]. By (2)-(4),
we obtain the following values;

¢=3,
L U 19
M V|=|-8 6|,
N W 10 12
K=17

A= —1608 = —23.3.67
w/K =193 (prime)
v = 1195 = 5-239
a=132=2%.3.11
Kb= —7738=—2-53-73
c= 1107 = 33-41
ub, = —41687 (prime)
Kve,= —2255263 (prime).

With the same procedure as in [2] pp. 383-386, we can show that 4;(—1) and
B,(—1) are relatively prime for all 1<7<6 (cf. Appendix B). Let R, be the
resultant of 4,(7T) and By(T) (1<i<6). By Lemma 2, R; is a non-zero rational

integer. Lte M, be the product of all odd prime factors of ]_'GIR,-.
i=1

Lemma 5. If t=—1 (mod M,), then At) and B,(t) are relatively prime
in Z[27"] for 1=i<6.

Proof. If an odd prime [/ divides both of A4,(¢) and B,(¢), then we have



166 S. Nakano

R;=0 (mod7) thus M;=0 (mod /). Therefore, if t=—1 (mod M), then 4,(—1)
=B;(—1)=0 (mod /) which is a contradiction.

Next we are concerned with the independency of 0(f)+4;(t) (1={=<6) in
K¥|Ky?. Let p be a prime for which D(—1)/4 is a cubic residue modulo p.
We define ¢;(p)=Z[2Z as

(’—f‘A;("l)) = (—1)®
p
where r*=D(—1)/4 (modp) and (—) is the quadratic residue symbol. It

should be noted that c;,(p) is dependent on the choice of r. We will fix 7
suitably for each p. A computer search gives the following table;

? D/4 r 6 6 & € G G
17 10 3 1 0 1 1 1 1
19 12 10 0 1 1 0 1 1
23 4 3 0 1 0 0 1 0
31 1 25 1 0 0 0 0 0
37 1 1 0 1 0 0 0 1
41 | 16 10 0 0 0 0 0 1

The second and third columns are given modulo p. Let [p,, +--, ps]=[17, 19, 23,

31,37, 41] and M,=IIp; We need the fact that det(c/(p;)=0 in ZJ2Z,
j=1

which is easily verified.

Lemma 6. If t=—1 (mod M,), then 0(t)+A,\(2), -+, 0(f)+Ag(t) are in-
dependent in K} |K 2.

Proof. Suppose t=—1 (mod M,). It is not difficult to show that there
exist a prime ideal p; of K, such that

(Q(t)-l—A;(t)) = (=1} (1=j=<6).
p; T

Assume
6
II (1) + A1) K ¥
for some a, Z|2Z. Considering this modulo p;, we have

Stelpa =0 (15j=6).
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As det(c;(p;)) %0, we see a;=0 for all 1</<6. This proves the lemma.

ReMARK. For te Z, let E, be the elliptic curve defined by Y?=4X34D(),
and E,(Q) be the set of @-rational points of E,. Then there is an injective
homomorphism

E(Q)[2E(Q) — K} |K*
given by
(%, ¥) = 0(t)+= .

(See [7] Chap. X.) Therefore the above lemma implies that, for infinitely
many rational integers /, the six points (4;(¢), B;(¢)) (1=<:<6) are independent
in E,(Q)/2E,(Q), and consequently,

rank E,(Q)=6.

On the other hand, Kihara [4] showed a result of this type using the duplica-
tion formula on elliptic curves, for the case [@, B, yv]=[—¢, ¢, 0]. Kihara’s
argument can be applied to the proof of the independency of 8(¢)+A4;(t) (1=
i1<6)in K;/K}*.

4. Proof of Theorem

We are now ready to prove the theorem. Let ¢ be a rational integer such
that
t=0 (mod 4),
(8) |

=—1 (mod M,),

where M, is the least common multiple of M, and M,. Then, by Lemmas 4,
5 and 6, L, is an unramified abelian extension of K, with Galois group isomorphic
to the elementary 2-abelian group of rank 6. Hence K, is a pure cubic field
whose ideal class group has 2-rank at least 6.

Lastly, we must make sure of existence of infinitely many such fields.
From Lemma 3, we can take a root 7 of D(T) with multiplicity 7 prime to 3.
Write

D(T) = (T—7)"D|T) -
It is well known that there exist infinitely many prime ideals of @(7) of degree

1 which are unramified for Q(7)/Q. We choose a prime ideal p of this kind
such that

ord, (6M,) = ord,(7) = ord,(Dy(7)) = 0.

Then it is possible to find a rational integer ¢ satisfying in addition to (8) also
the congruence;
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t=7+p (mod ¥?),
where p is the rational prime contained in p. Since
ord, (t—7) = ord,(p) =1 and ord,(Dy(t)) = ordy(Dy(7)) =0,

we have
ord,(D(t)) = m=0 (mod 3).

Hence p is ramified for K,. The various choices of p prove our assertion.

Appendix

A. The following explicit expressions in the case [a, B, ¥]=[0, T, —T]
are obtained, in an instant, by means of REDUCE.

¢ =37,
L U 1 9T
M V|=|149T° 374974,
N W 1-971%  —-3T+971*
K =143T49T*+9T34+9T*,
A= 6T+9T*427T3—18T*—54T°5—243T°+81T8+729T°—729T*,
w/K=1-3T+97T%—18T3+4817T°—817T7,
v=143T—9T3-27T44-81T%+81T"—486T°+729T*,
a=3T+97T%—36T*—162T°—81T°4- 81774 648T4-+-486T°—729T"
—729T*%,

Kb = —1-3T—18T*—72T3—-288T*—675T°5—1215T°—567T7+1701T*
+7047T°+4-9477T" 4801971 —3645T%*—13122T3—19683T*
—13122T%—65617",

¢ = 18T°+27T34-90T*+-27T5—81T°—567T"—405T8—243T°4-729T"
+729T" 47297,
ub, =y, (see below),
Kyc, = Kz, (see below).

The following expressions are given with coefficients which are factorized into

prime factors;
Xy = 2 FT?-3#T3+2. 3 T4 —BT5—22.34.576—-3%.17T7—2%. 3. 191®
+35.3179438.57°4-36.97T"4-36. 1372 —37. 53 T8—22.38. 13T
—3UTIS L 38,0976 39,4314 2.30. 582 30 __) 312 D
—3u.572 1T Jl2TH



Pure Cusic FieLps wiTH LARGE 2-cLass GRoups 169

Vo= —1—2.32T2—-33T3-22.32.5T*—33. 55— 34.77T°4-34.5°T"
+2-3%.7T%4-3%.597°—36.571°—2.35. 13711 —36.5.317*2
—2.37. 11784223871 - 38.5. 1375 4-22. 38. 11 T%64-3°. 77
—30.13718 3011710320 31 2| 312y 312

2y = 2+32T24-34T3432. 194+ 33. 55— 38T 6—34. 2977 —34. 41 T8-37T"*°
+-36.2371°4-38.31 71 —2.38T12—37. 438 24. 38143915
+-38.5.117%64-3%. 1777 4- 30822 3UTH_30. 11 72032 T2
43T 32 TB L 32 TH

x, = 22.33734-22. 3414 4-33. 475434 17763577 —2.34.67T%—35.89 T
—23.36. 7710 4-22.36. 571 4-2.30. 61 T2 -28. 38. 5713 1-38. 19T
—39.575—38. 113716 —22.39. 717 —22. 30184 30, 17T 3. 5T
422307831 JuTR__3uTH

y= 1423272422 3T34+-2.32.19T4+2.33. 19T5+-34.29764-2. 3¢. 517
—22. 318 —35.5379—36. 61770436 11T 4-36.5.37T*%
+2.37.5.137184-2%.38. 57T —3%. 1375 —2.38.617%6—22.3°.7T"
-3UTI8 D 3T U, TN 32T 32T

2, = 3T+2.3* T4 3313 —-3.77T*—24-.337°—2.3*. 574-34.5T74-34. 53T
+2.3%.177°9—2.3T10—28.36. 5T —36.61 T2 4-2.37T11-38.23 1
428,395 3871639, 5217310, 7184 D 310,70 | D2, 3up2l
— 3T _31uTH

Kx,= —2.37—33T72—2.3*T3—-32.7374—2.34. 17T5—34.97T°—25.34. 717
—35.797%4-22.35.177°4-35. 22974 38. 59T ' 4-2. 36. 373 T2
—37.17T8—3°.73T"—2.3%.7. 13755 —2.39.5.17T%4-3°.5T"
43147718424, 30,1319 4-28. 31 7T 2. 3. 574 _32.3] T
—23.312.5T%8__2.312. 7T# | JUTH L JBTH L D JUTH L JUTS
Yo/ K = 3T—32T4—2%. B¥T54-3T6—3°T"42.3*.19T8—36. 52T — 36712
22,3713 23,38 U__ 2. 39T 16__30 17 4 31019
Kz,= —1—-3T7—3372—-32.17T3—2%. 334 —24. 33. 715—22. 3716—23.34. 237

—22. 34 418437 179422 37 177039 17T 37 1497
—2.37. 1178 —38.11.17T%—2.3°.59T5—2.38.211T%—3°.5T"
4-30.717184-310.7.237194-3%.5.297%04-31. 11 T#—22.312.5T*
—32.3178-28.3B8T%# | 2.3UWT%.2. 384 3UT8

B. To check quickly that (4,(—1), B(—1))=1 (1=<7=6), one can use the
Euclidian algorithm, directly for 4,(—1) and B;(—1), which is carried out on an
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electric computer. Another method is to factorize them into primes. Our
assertion is verified by the following complete factorizations;

Ay = —2%.3%5.11-41-67-239 B, = 401-1229-2153-5311935749

A, = —2%.3.11.193.2255263 B, = —750719.7518218706311

Ay = 2%-34.41.67-41687 B; = —11-23304629-22017793601
Ay = 25-32.11.53-67-73-193 B, = —5-61-18542335623945929

Ay= —2.33.5.41.53.73-193.239  B; = —29-34701175163759747

Ay = —2%.3.5-11-239-41687 B = 139-40605300259955467

Lastly, we append the factorization of D=D(—1);
D = 185478257-171752102638681035930180903617 .

These factorizations were performed in consulting of Riesel [6] or Wada [8].
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