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Introduction

The present paper is concerned with the following question raised on the
classical Borsuk-Ulam theorem : Let G denote a cyclic group of odd order g,
and let X' be a homotopy (27 -+ 1)-sphere on which a free differentiable G-action
is given. For any differentiable m-manifold M and any continuous map f: Z—
M, put A(f)={xc 2 |f(x)="1(xg) for all g=G}. What can be deduced about
the covering dimension of A(f)?

In response to this question, the authors showed previously that if ¢ is a
prime p then dim A(f)=2n+1—(p—1)m ([4], [6]). Furthermore, one of the
authors showed in [5] that if ¢ is a prime power p* and M is the Euclidean space
R”™ then

(0.1) dim 4A(f)=(2n+1)—(p*—1)m
—[m(a—1)p*— (ma+2)p* " +m+3].

It will be shown in this paper that (0.1) still holds for any differentiable m-
manifold M.

The procedure taken in this paper is different from the previous ones, and
we shall derive the above result from a general theorem stated in connection with
the formal group law for some general cohomology theory.

Assume that there is given a multiplicative cohomology theory % defined
on the category of finite CI pairs and satisfying the conditions: i) each complex
vector bundle is A-orientable, ii) Ai(pt)=0 for each odd i. Let F(x,y)h(pt)
[[#,»]] denote the formal group law associated to %, and [z](x)A(pt)[[x]] denote
the operation of “multiplication by "’ for a positive integer 2. We shall show that

0.2) dim A(f)<2d =
(T e, @) in Apo)

where (a,b) denotes the ideal generated by a and b.
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Take as & the general cohomology theory defined from K-theory. Then
it is seen by using elementary algebraic number theory that (0.2) is equivalent
to (0.1).

We can also take as /2 the complex cobordism theory U*. Since U* is
stronger than K-theory in general, it is expected that sharper result than (0.1)
will be obtained from (0.2) applied to A=U*. However we have no method
to derive numerical conditions equivalent to (0.2) for A= U*.

In an appendix, we shall prove in the same procedure as above a non-
existence theorem for equivariant maps which generalizes the result of Vick [10].

1. The formal group law for a multiplicative cohomology

We recall first some facts on multiplicative cohomology theory (see Dold
[3D-

We fix once and for all a multiplicative reduced cohomology theory } defined
on the category of finite CW complexes with base point. There is the cor-
responding multiplicative cohomology theory % defined on the category of finite
CW pairs.

Let & be a real #n-dimensional vector bundle over a finite CW complex B,
and denote by M(&) the Thom space for £. For each b= B let &, denote the
restriction of £ over b. 'Then j(M(&,)) is a free h(pt)-module on one generator.
£ is said to be h-orientable if there exists #(&)e p"(M(E)) such that #(€)| M(&,) is
a generator of % (M(,)) for each b&B. Such #(§) is called an h-orientation or a
Thom class of ¢ By an h-oriented vector bundle we mean a vector bundle in
which an A-orientation is given.

Let D(£) (or S(£)) denote the total space of the disc bundle (or the sphere
bundle) associated to £, and consider the homomorphism

FOUE)=1(D(E), 88) L WD) T B,

where j is the inclusion and p is the projection. The image of #(£) under this
homomorphism is called the Euler class of the h-oriented bundle £, and is
denoted by e(&).

The following facts are easily proved:

(1.1) If there is a bundle map f: £ — £ and &’ is h-oriented, then §is h-
oriented so that f*: h(B’) — h(B) preserves the Euler classes.

(1.2) If £, and &, are h-oriented, then the Whitney sum & ,PE, is h-oriented
so that e(§1@§2)=e(£1)e(§2)'

(1.3) If £ has a non-zero cross section, then e(£)=0.

The classical Leray-Hirsch theorem on fiberings can be generalized to the
multiplicative theory %, and so we have the Thom isomorphism
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® : h(B) == B(M(£))
given by ®(a)=a-#(£). As a consequence, the Gysin exact sequence

s 1S — 1 B) 2 ) L his()

holds.

A complex vector bundle £ is called h-orientable if the real form &g is A-
orientable. Let 7, denote the canonical complex line bundle over the complex
n-dimensional projective space CP”. 'Throughout this section the following
will be assumed:

(1.4) For each n, 7, is h-oriented so that the homomorphism A(CP™*')—
h(CP™) preserves the Euler classes.

It follows from this assumption that any complex line bundle £ over a
finite CW complex is h-oriented so that the homomorphism f* : h(B’)—h(B)
induced by every bundle map f : £—>¢’ preserves the Euler classes.

We can prove

(1.5) The algebra &(CP") is a truncated polynomial algebra over h(pt) :

h(CP") = h(pt)[e(7.)]/(e(7)""")-
(1.6) Put e(n,,),=p¥ e(n,,) and e(n,),=pF e(n,) for the projections p, : CP™
X CP*—CP™ and p, : CP™x CP"—CP”. Then the isomorphism
h(CP™ X CP") = h(pt)[e(n,n): e(n)a]/(e(nm)T* "5 €(na)2*7)
holds.

For a CW complex X with finite skelta, we define A(X) as the inverse limit
with respect to skelta :

h(X) = lim H(X").

Then, for the infinite dimensional projective space CP=, the following result is
obtained from (1.5) and (1.6).

(1.7) (CP=) and h(CP~ x CP*) are rings of formal power series :

WCP~) = h(pt)[[*]], WCP=X CP~) = h(pt)[[x,, x.]],

where x, x, x, are the elements defined by e(7,,), e(7,),, é(7,), respectively.

Let 7 denote the canonical line bundle over CP*, and consider the external
tensor product 7®n which is a complex line bundle over CP*xX CP>. Let u :
CP~ X CP*—CP" be a classifying map for 7&@n which is cellular, and put

W) = Sagatad  (agehR(ph)
‘.'j_

for u* : (CP~)—h(CP~x CP~). Then we obtain easily
(1.8) For the tensor product £,®¢&, of any complex line bundles £, and &,
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over a finite CW complex,
e(El@Ez) =‘§0aii e(fl)i e(gz)j

holds.
Consider now a power series F(x,y) with coefficients in A(pt), which is
defined by

F(x,y) = ;Eoﬂi jxtyl

with a;; above. Then it follows that F(x,y) is a formal group law over h(pt), i.e.
the identities

F(x,0) = x, F(x,y) = F(y, x),
F(x, F(y, 2)) = F(F(x, y), 2)

hold. For each integer i=>1, let [{](x)eA[[x]] denote the operation of
“multiplication by ¢’ for the formal group, i.e.

[1](x) = =, [f1(x) = F([i—1](x), ).
Since the formula in (1.8) is rewritten as
e(£:Q&,) = F(e(£,), e(£.)),
for the i-fold tensor product £ =£¢Q®--- @& we have
e(£°) = [1(e(£)).

Given a positive integer g, let G denote a cyclic group of order g. Define
a G-action on the standard (2z+1)-sphere S***' = {(z,, 2,,**, 2,)€C™"| 2| 5|

=1} by
(2’0, %y zn)go = (zo €xp 2”\/:—1/qi *ety By €XP 27[\/—_—1/q)’

where g, is the generator of G. This yields a principal G-bundle p} : S***'—L"
(g) over the lens space L"(g). Let L denote a 1-dimensional complex G-module
given by c¢-g,=c exp 2z\/ —1/q, and consider the associated complex line bundle
pn=pax L. For the canonical projection = : L*(q)—CP" we have p,=n*(7,),

and her(:ce e(p,)""'=0 holds.

Proposition 1. Let P(x)eh(pt)[[x]]. Then the element P(e(p,)) of H(L"(q))
is gero if and only if P(x) is in the ideal generated by x™* and [q](x).

Proof. Consider the g-fold tensor product 7} of 7,. As is observed in [9],
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the total space S(ni) of the sphere bundle associated to »@ is homeomorphic
with L*(g). Therefore we have the Gysin sequence

ceeshi Y CP") —fg]:—l K(CP™) , B (L"(q)) —+--.

Since e(7%)=[q](e(n,)), the desired result follows from the above sequence
and (1.5).

2. The element s*(0)

As in § 1, let G denote a cyclic group of order g. We shall assume in the
following that g is odd.

For any space X, let XG denote the product of g copies of X. Writing its
elements as %_‘,gxgg, a G-action on XG is given by

(l%,‘;xgg)-h =f:—:;', xen-1g  (heG).

We denote by 4X the diagonal in XG.

Let ¥ be a homotopy (27+ 1)-sphere (which is a differentiable manifold),
and assume that there is given a free differentiable G-action on 2. We denote
by X the orbit space.

Let M be a differentiable manifold, and consider the diagonal action on ¥
X MG whose orbit space is denoted by X X MG. X Xxd4M is an invariant

submanifold of the G-manifold ¥ x MG, and its orbit space is regarded as Y
X dM. We denote by v the normal bundle of Y;Xx 4M in ¥ X MG. This
G

is a real m(qg— 1)-dimensional vector bundle.

Choose a point y,&M, and identify 3, with a subspace X¢Xy,G (y,G=
S1y,8) of XX AM.
[3

Let A’ : ¥—-J3; denote the principal G-bundle defined by the G-action

on 2, and consider the associated complex line bundle A=A\’ X L.
G

Proposition 2. The normal bundle v has a complex structure for which
*(v) = mADN D+ DAV
holds, where i : 3;—3 o X AM is the inclusion.

Proof. If v, : N,—4M denote the normal G-vector bundle of 4M in MG,
then we have v=id X v, : ¥ X N,—>X ;X 4M. Therefore it suffices to prove that
(24 q

there exists a G-equivariant complex structure on », with the fiber over
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_’YOG being m(L@...@L(ﬂ—l)p).
To prove this, let IG be defined by the exact sequence of real G-modules

0— 4R —- RG — IG — 0.

View this as a sequence of real G-vector bundles over a point, and identify 4M
with M X pt=M in the obvious way. Then we have the exact sequence

0—>TMQIR - TMRRG — TMKIG — 0

of real G-vector bundles over M, where TM denotes the tangent bundle over M.
Since 7(MG)=(TM)G, an equivariant isomorphism

B : T(MG)|4M — TMQ RG
can be given by

'8(; ‘vgg) = ; 2,8 (‘Uge’ry(]w): yEM)'

Since >} v,g is in 7(4M) if and only if all v, are equal, 8 maps 7(4M) onto
TM®4R. Thus it holds that v,=TM ® IG as real G-vector bundles. From
elementary representation theory of groups, it follows that /G is the real form
of LP---PLU P2, This gives v, its complex structure, and we get

(V1)yo == ’TyoM@(L@...@L(q—l)/z)
= R"Q(LD--PLI V) =m(LP--- LI

as desired. 'This completes the proof.

As in§1, let & be a given multiplicative cohomology theory. In the
following we shall assume the following conditions:

(2.1) every complex vector bundle of any dimension is z-orientable.

(2.2) ho#?(pt)=0.

Assuming that M is closed, consider the normal bundle ». Then, by
Proposition 2 and (2.1), we have a Thom class t(v)€ 5™ >(M(v)) and the
corresponding Euler class e(v) €A™ (2 X 4M) such that

(2.3) i*e(v) = e(mADA D+ DAIVE))
= (T e

As usual we shall regard the total space N of » as a tubular neighborhood
of JoX4M in YxXMG. Then we can identify j(M(v)) with A(Z x MG,
G q
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Y X MG— N) canonically. Let
[z}
g k™2 x MG)
a

be the image of the Thom class #(») under the homomorphism /* : A(¥ X MG,
2z X MG—N)—h(2 X MG) induced by the inclusion. We have immediately
(2.4) For the homomorphism j* : A(Z X MG)—h(Z; X 4M) induced by the
inclusion, j*(6)=e(v) holds. ’
Given a continuous map f : ¥—M, define a continuous map s : Jo—2% >;

MG by

(xG) = (x, /(x5 ")e)G.
For the projection p : ¥ x MG—2, pos is the identity.
q

Proposition 3. For the homomorphism s* : h(X X MG)—HK2;) and the
G
homomorphism i* : h(Xg X AM)—h(2 ), we have

*(6) = i*(e(v)).

Proof. It is easily seen that there exist a continuous map f, : 2—M and
an open set V of X satisfying the following conditions: i) f is homotopic to
fu 11) ¥ is homeomorphic to R***, iii) f(Z—V)=y,, iv) xg& V for any g1
and any x€ V, where V denotes the closure of ¥V Define s, : 35—% ‘>;<MG

from f, as s was defined from f, then s and s, are homotopic. Let (MG),
denote the subspace of MG consisting of points with at most one coordinate
*y, Then (MG), is an invariant subspace of the G-space MG, and the orbit
space Z’>L§(MG)1 contains s,(2g). Since 3—V is contractible, there exists

a homotopy v, :(V, aV)—(2, ¥—V) such that v, is the inclusion and
Y (0V)=x,£0V, where 9V =V—V. Put Vio==(V) for the projection 7 : 3
—2X;.  Consider now the following commutative diagram:

Se 5 Ix(MG),

l q

ljz it
sl

(26 26—Vg) ——> (Z'>;(MG)1, X ,G)

where j,, j,, are the inclusions.
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We have
(g, Tg—Va) = BMTD(S™) = Wamenii(pt) = 0
by (2.2). Therefore
skoit: A™O™(3 X (MG),, 6 X 3,G)—>h™""(Z¢)

is trivial.
Next consider the commutative diagram

¥
WEXMG) — s h(Zex 4M)
G
N
o WS x (MG),) *
G

SLV p*T i

hZEe) = WZe) = MZeXy6)

where 7, 7, are the inclusions. Putting ¢’ =p*i¥i¥(0)—15(0), we have

sH(O) = 1*i%(0)— s*(0) = i*(e(v))—s*(6)
by (2.4), and §(¢')=0. Therefore ¢ is in the image of j¥ : ™" (¥ X (MG),,
2o X y,G)—=h" (Y é(MG)l), and hence sf(6’)=0 by the fact provee:i above.
Thus we have i*(e(v)) =s*(6).

3. Generalization of Borsuk-Ulam theorem

Let 2 be asin §2, and let f : ¥—M be a continuous map to a differentiable
m-manifold. Put

A(f) = {x2|f(x) = f(xg) for any g=G}.

In this section we shall consider the covering dimension of A(f).
For the image A(f)e=n(A(f)), we have dim A(f)=dim A(f)e.

Proposition 4. Assume that M is closed. Then dim A(f)<2d implies
e(d\)s*(0) = 0.

Proof. Since dim A(f)e<2d—1, it follows that dA» has a non-zero cross
section over A(f)¢ (see [5], Lemma 2). By standard facts on extension of cross
section, this cross section extends to a non-zero cross section over the closure
W of some neighborhood W of A(f)¢ in X;. Here we may assume that W is
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a finite CW complex, and that s(Ze—W)c ¥ xMG—N by taking N small.

We have then e(dx | W)=0, and so e(d\) is in the image of I¥ : h(Zs, W)—
h(2 ) induced by the inclusion.
On the other hand, it follows from the commutative diagram

l*
B(E X MG, Zx MG—N) —> k(3 X MG)
& G ' @

ST

I
WZg, Zo— W) g

—> h(2¢)
(4, 1, : inclusions) that s*(6) is in the image of /§.
Therefore e(d\) s*(6) is in the image of the homomorphism A(Zg, WU
(Ze—W))=hZs, 25)—>h(2s), and hence we have the desired result.
We shall now prove the main theorem.

Theorem 1. Let G be a cyclic group of odd order q, and 3 be a homotopy
(2n+1)-sphere on which a free differentiable G-action is given. Let M be a
differentiable m-manifold. Assume that there exists a continuous map f:X—M
with dim A(f) <2d. Then, for any multiplicative cohomology theory h defined on
the category of finite CW pairs and satisfying the conditions (2.1), (2.2), it holds
that

(T )" hpr)[]

is contained in the ideal generated by x™** and [q](x).

Proof. Recall that any differentiable m-manifold is regarded as an in-
creasing union of compact differentiable m-manifold, and that any differentiable
m-manifold with boundary is contained in a differentiable m-manifold without
boundary. Since X' is connected and compact, it follows from these facts that
we may assume M to be closed without loss of generality.

Then, in virtue of (2.3), Propositions 3 ane 4, we have

(T )"
= e(dN)-i*e(v) = e(d\)-s*(0) = 0.

Since pj, is a principal G-bundle whose base space is (2n+ 1)-dimensional CW
complex, and since A’ is a (2n+ 1)-universal principal G-bundle, there is a
bundle map of p, to A. Hence the last equation implies

o T Ti(elp))™ = 0.
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From this and Proposition 1 we have the desired result.

As typical examples of the multiplicative cohomology theory satisfying the
conditions in Theorem 1, we have the classical integral cohomology theory H*
( ; Z), the Grothendieck-Atiyah-Hirzebruch periodic cohomology theory
K*( ) of K-theory, and the complex cobordism theory U*( ) obtained from
the Milnor spectrum MU (see [2]).

As is well known, H¥(pt; Z)=Z (1=0), =0 (¢%=0) and the formal group
law for H*( ;Z) is given by F(x, y)=x+y. Hence the conclusion in
Theorem 1 for h=H*( ;Z) is stated that

(25 1) e g
2

! and gx. From this we obtain the

is contained in the ideal generated by x"*
following result.

(3.1) If ¢ is an odd prime, for any continuous map f:¥—M we have dim
A(f) = 2n—m(g—1).

RemaRk. The conclusion in (3.1) is strengthened to dim A(f)=2n+1—
m(g—1) (see [4], [6]).

For K*( )itis known that K“*(pt)=Z, K°*(pt)=0 and the formal
group law is given by F(x, y)=x-+y+xy (see[l1]). Therefore the conclusion
in Theorem 1 for A=K*( ) is stated that

(T (e + 1y~ )y 214)

is contained in the ideal generated by x"*' and (x+1)?—1. Putting y=x+1
this is restated that

G- - ye 2D

is contained in the ideal generated by (y—1)*"'and y*—1. If gis an odd prime
power p“, it can be proved by making use of elementary algebraic number
theory that the above statement is equivalent to

dzn+p*~'—am(p®—p° )2

(see [5], p. 453). Thus theorem 1 implies the following theorem containing
(3.1) and being a generalization of the main result in [5].

Theorem 2. If g is an odd prime power p*, for any continuous map f : 3—
M we have

dim A(f)=2n+1—(p*—1)m
—[m(a—1)p* — (ma+2)p* ' +m+3].
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For U*( ), it is known that U*(pt) is a polynomial ring over Z with one
generator of degree — 27 for each positive integer 7, and that the formal group
law for U*( ) is given by

F(x, y) = g7'(g(x) +g(»))

with g(x)=§) [;C_;_—Pl:] ¥ e U*(pt)[[x]] ® @, where Q is the ring of rational

numbers (see [1], [7]). However we can not deduce numerical conditions
equivalent to the conclusion in Theorem 1 for A=U*( ).

Appendix

In this appendix we shall show a generalization of a result due to Vick [10].
For any positive integer 7, let T, : S**' — S**! denote the fixed point
free transformation of period 7 given by

T (215" Bpi1) =(2, €Xp 272\/ — 11,2, €Xp 21~/ — 1]7).

Then a fixed point free transformation Tp : L"(q)—L"*(g) of period p on the
lens space L*(q) is induced by Tp, : S**'— S+,

Theorem 3. Suppose that there exists an equivariant map f of (L™(q), ’1—“1,)
to (S, T,). Then, for any multiplicative cohomology theory h defined on the
category of finite CW pairs and satisfying (1.4), it holds that ([¢](x))™ " € h(pt)[[*]]
is contained in the ideal generated by x™* and [pq](x).

Proof. For a multiple pq of g, let p’(g, pg) denote the principal Z,-bundle
L*(q)—L"(pq) defined the canonical projection. Corresponding to the standard
1-dimensional complex representation of Z,, we have the associated complex
line bundle p,(q, pg) on L*(pg). As is observed in [8], it holds that

Pa(9> p9)=pa(1, p9)R - R p.(1, pq) (g-times).

Therefore, if there exists an equivariant map f : (L*(q), T,)—(S™*, T,),
then it holds that

F*e.(1, P)=pa(1,p9) @R pu(1,pq)  (g-times)
for the map f : L"(pq)—L™(p) induced by f.
pu(lq) .,
——> L

Szn+1 (q) f 5 S2m+1

pa(l, Pq\ lpf.(q,pq) lpln(l,P)
Trva) > I7(p)
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Therefore we have

Fre(pu(1, p)) = [g)(e(pa(1, £9)))
in A(L*(pq)). Since e(p,(1, p))”*"* =0 it holds that

([g)(e(pa(1, 2™ = 0O
in A(L"(pg)). This and Proposition 1 prove the desired result.

The conclusion of Theorem 3 applied to z=K*( ) is stated that ((x+1)?
—1)"*'eZ[x] is contained in the ideal generated by x"** and (x+1)??7—1.
Therefore, the argument similar to the proof of Lemma 1 in [5] proves the
following

Theorem 4. Let p be a prime, and suppose that there exists an equivariant

map of (L"(q), T,) to (§****, T,). Then we have
P'm=n,

where q=p°r, (p, r)=1.

RemArRk 1. This generalizes the result due to Vick [10].

REMARK 2. Shibata [8] proves this result by applying Theorem 3 to
h=U*( ).

(added in proof) Since the formal group law for the complex cobordism

theory is universal (see [1], [7]), we have the following corollary of Theorem 1 :
For any formal group law over a commutative ring R with unit, it holds that

dim A(f)<2d =
(g—1)/2 - i L
(1L @)™ (", [g)(x)) in R[] -
Similar for Theorem 3. This fact was pointed out by J. Morava.
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