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Introduction. S. Abhyankar, W. Heinzer and P. Eakίn treated the
following problem in [1]; if A[X]=B[Y], when is A isomorphic or identical to
5? Replacing the polynomial ring by the torus extension we shall take up
the following problem; if A[X, X^]=B[Y, F" 1], when is A isomorphic or
identical to B ? We say that A is torus invariant (resp. strongly torus invariant)
whenever A[X, X~ι]=B[Y, Y"1] implies A^B (resp. A=B). The rolles
played by polynomial rings in [1] are played by the graded rings in our theory.
A graded ring A=^Ai9 i^Zy with the property that ^4 tφ0 for each i E Z ,
will be called a ^-graded ring. Main results are the followings.

An afϊine domain A of dimension one over a field k is always torus invariant.
Moreover A is not strongly torus invariant if and only if A has a graded ring
structure. An affine domain of dimension two is not always torus invariant.
We shall construct an affine domain of dimension two which is not torus in-
variant. Let A be an affine domain over k of dimension two. Assume that
the field k contains all roots of *'unity" and is of characteristic zero. If A is
not torus invariant, then A is a ^-graded ring such that there exist invertible
elements of non-zero degree.

In Section 1 we study elementary properties of graded rings. Especially
we are interested in ^-graded rings with invertible elements of non-zero degree.
In Section 2 we discuss some conditions for A to be torus invariant. In Sec-
tion 3 we give several sufficient conditions for an integral domain to be strongly
torus invariant. Some relevant results will be found in S. Iitaka and T. Fujita
[2]. Section 4 is devoted to the proof of the main results mentioned above.
In Section 5 we fix an integral domain D and we treat only Z)-algebras and
Z)-isomorphisms there. We shall prove the following two results. When A is
a D-algebra of tr. degD A=\ and A is not Z)-torus invariant, A is a Z-graded
ring such that D is contained in Ao. If A is a iΓ-graded ring such as D=AOy then
the number of elements of the set of {Z)-isomorphic classes of Z)-algebras
B such that A[X, X~ι]=B[Y, Y"1]} is Φ(d), where d is the smallest positive
integer among the degrees of units in A and Φ is the Euler function.

Γd like to express my sincere gratitude to the referee for his valiable advices.



770 K. YOSHIDA

1. Some properties of graded rings

Let R be commutative ring with indentity. The ring R is said to be a
graded ring if R is a graded module, R=^Riy and RnRm^Rn+m.

Lemma 1.1. Let R be a graded domain. Then we have the following.
(1) The unity element of R is homogeneous.
(2) If a is homogeneous and a=bc, then b and c are both homogeneous. In

particular every invertibte element is homogeneous.
(3) If R contains a field k, then k is a subring of RQ.

Proof. (1) follows immediately from the relation 1 2=1. The proof of (2)
is easy and will be omitted. To prove (3) we can assume k is different from
F2 by (1). Let a be an element of k different from 1. Then I—a is homo-
geneous from (2). The unity 1 is homogeneous of degree 0 by (1). Hence a
should be homogeneous of degree 0.

We call a graded ring R=^>]Ri to be a ^-graded ring if i?t Φ0, for some ίG
Z+ and Z~.

Proposition 1.2. Let R be a Z-graded domain. Let S={i<=Z; JR,Φ0}.

Then S—nZ for a certain integer n.

Proof. Since R is a domain, S is a semi-group. Hence (1.2) is immedia-
tely seen by the following lemma.

Lemma 1.3. Let SS>Z be a semi-group. If Sf)Z+Φθ and SΓ\Z~Φ0,
then S is a subgroup of Z.

If R is a Z-graded domain, then we may assume i?, Φθ for any i

Proposition 1.4. Let R be a graded ring. If there is an invertible element
x in Ru then R=R0[x, x'1].

Proof. For any r ̂ Rn, r=r(x~1x)n=rx~nxn and rx~n is in i?0, therefore
r e R<?cn. Hence R=R0[x, x'1].

Corollary. Let R be a Z-graded domain. If Ro is a field, so R=R0[x,
x'^for every x^Rly

Proof. Choose non-zero elements x^Ru and y^Rχ. Since Ro is a
field, OΦry is invertible, therefore x and y are units in R} hence R=R0[x, ΛΓ1].

2. Torus invariant rings

A ring A is said to be torus invariant provided that A has the following
property:

If there exist a ring B, a variable Y over B, and a variable X over A such
that A[X, X"1] is isomorphic to B[Y, Y"1],
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then A is always isomorphic to B.
Especially if we have always Φ(A)=B in such case, we say that the ring

A is strongly torus invariant.
To show A is torus invariant (resp. strongly torus invariant) it suffices to

prove that A is isomorphic to B (resp. A=B) under the assumption: A[Xy

(2.0) We begin with some elementary observations. Assume that

(l) R = A[xy x~ι] = B[Y, y- 1 ] .

Then X and Y are units of R. It follows from (1.1) that we have

(2) X = vYf and Y - uXf\ VEΞB and u(ΞA ,

or equivalently

(3) v = u-fXι~ff/ and u - i Γ ' Ύ 1 " " ' .

In the rest of our paper we shall use the letters u and v to denote the elements
of A and B respectively satisfying the relations (2) and (3) whenever we en-
counter the situation (1).

(2.1) The element u is in B if and only if ff'=l. In this case we have A[Xy

X'ι]=B[X9 X'1], thus we have A^B.
Proof is easy and is omitted.

Proposition 2.2. Let k be a field and A be a k-algebra. If A* (the set of
all ίnvertible elements in A)=k*, then the ring A is torus invariant.

Proof. Let R=A[X, X" 1 ]=B[y, Y"1]. By (1.1) the field k is contained
in B. Since A*=k*, the unit element u of A is in ky hence in By It follows
from (2.1) that A is torus invariant.

Proposition 2.3. Let A=A0[tu t2, •••,*„, (fA' Ό""1] where t/s are inde-
pendent variable* over k-algebra AQ and A%=k*, then A is torus invariant.

Proof. Let R=A[X, X~l]=B[Y, Y"1]. Then by the lemma (1.1) Y=
uXf/ and X=vYf. Since u is invertible in A=A0[tly t2y •••, tny (t1'"tn)~'1]9 Y=
rtii -tl", r<=At=k*. We may assume that r = l , so Y=t{i—?Λ*Xf'.

On the other hand as t{ is invertible in R=B[Yy Y"1], ti=biY
fi9

Then we have that

ff'+Xetft=l.

Therefore the following natural homomorphism is surjective.
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Kh, h, '"> U) = * o / ' + Σ *>y

Since Z is P.I.D., we can construct a basis of Zin+1) containing this vector (/',
ei> "•> £»)• P u t ^ s basis

eo=(f',eu —,en)

ei = z \JhJil9 "">/»»)

and put ui=t{ii"'t{inX/i.

R = AO[UU ..., yβ> (^...n,)-1] [y, y-1] = ̂  x- 1] = B[y, y- 1].

Therefore 4̂ is isomorphic to B. Hence 4̂ is torus invariant.

(2.4) Let R=A[X, χ-ι]=B\Y, Y"1]. An ideal / of R is said to be vertical
relative to A if there exists an ideal J of A such that JR=I. If 7 is an ideal of
A such that JR is vertical relative to B, then we will simply say that J is vertical
relative to B. If A is a /t-affine domain, the prime ideals defined by the singular
locus of Spec A are vertical relative to B.

Proposition 2.5. Let R=A[X3 X~1]=B[Yί Y"1]. // there exists a maxi-
mal ideal of A which is vertical relative to B, then A[X, A'"1]=J5[-X', X" 1]. In
particular A and B are isomorphic.

Proof. Let m be a maximal ideal of A which is vertical relative to B. Then
there exists an ideal n of B such that mR=nR. Therefore RjmR=Alm[X>

X-l]=RjnR=Bln\Yy Y"1], where X=vY* and Y=uXf\ Since m is a maxi-
mal ideal, A\m is a field. Hence ΰ is in Bjn by (1.1). Therefore we obtain
/==±1 by (2.1). Thus 4̂ is isomorphic to B.

Corollary 2.6. Lei A be a k-affine domain with isolated singular points,

then A is torus invariant.

3. Strongly torus invariant rings

In this section we investigate strongly torus invariant rings.

Proposition 3.1. Let A[X, X'ι]=B[Y, Y'1]. //Q(A)^Q(B), then A=By

where Q{R) is the total quotient field of R.

Proof. Let x be an element of A> then there exist two elements b and V of
B such as x=bjb\ Hence b=b'x. In the graded ring B[Y, Y"1] the elements
b and b' are homogeneous of degree zero, thus x is also degree zero. Hence we
have AQB. Let b be an element of B. Then b=Y*ajX

i, a^A. By (2) of
(2.0) we have that b=^<*jVJYif. if / = 0 , then I E B . Thus A[X, X
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it's a contradiction, hence / φ θ . Since a^^B and Y is a variable over B,
b=ao<=A. Thus A=B.

Corollary 3.2. Let A denote the integral closure of A. If A is strongly torus
invariant, then A is also so.

Proof. It is easily seen that if A[X, χ-ι]=B[Y,Y-χ] then A[X, X~ι]=
B[Y, Y"1]. Since A is strongly torus invariant, A=B. Hence Q(A)=Q(B),
and we have that A=B.

Proposition 3.3. Let A be a domain withJ(A)Φθ, where J{D) is the Jacob-
son radical of a ring D. Then A is strongly torus invariant.

Proof. Let a be a non-zero element of J(A). Then ί-\-a is unit, so in
the graded ring B[Y, Y"1], \-\-a is homogeneous. Since the "unity 1" is a
homogeneous element of degree 0, the element a is also so. Thus the element
a is contained in B.

Let x be any element of A. Since xa is contained in J(A), xa is in B.
Hence A is contained in Q(B). By (3.1), we have that A=B.

Corollary 3.4. If A is a local domain, then A is strongly torus invariant.

Proposition 3.5. Let A be an affine ring over a field k and let A[X, X~ι]
=B[Y, Y"1]. Then A=B if and only if every maximal ideals of A is vertical
relative to B.

Proof. It suffices to prove the "if" part of the (3.5). By (3.3) we may

assume that J(A)=0. Let x be an element of B and let x=*ΣajXJ

9 where

s<t, a^A and α,Φθ and α sΦθ. For any maximal ideal m of A there exists a
maximal ideal n of B such as mR—nR, where R=A[X, X'1]. Let x denote
the residue class of x in B\n. Then X is algebraic over the coefficient field k,
hence there exist elements λ0, \l9 •• λll_1 in A:, such that f(x)=xn+\n.1x

n~1-\—
-\-X0^nR=mR. If ZΦO, then the highest degree term of f(x) with respect to
X is an

tx
nt^mR, thus at is contained in m for every maximal ideal in A. Since

J(A)=0, at=0. It's a contradiction. Therefore t=0. By the same way,
we have that s=0, hence x is in A. Thus A—B.

We denote the subring generated by all the units of A by Au.

Proposition 3.6. Let A be a h-affine domain with an isolated singular point.
If A is algebraic over Au> then A is strongly torus invariant.

Proof. Let A[X, X~ι

1=^B[Y, Y"1] and let m be the maximal ideal defined
by the isolated singular point. Then there exists a maximal ideal n of B such
as mR=nR. Let a be a unit element of A. In the graded ring B[ Y, Y"1], the
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element a is also invertible, so a=bY\ for some invertible element b in B and a
certain integer /. Since Ajm is algebraic over k> there exist elements X0,Xx, * ,λM

e/fc such that \na
tt-\- -\-X1a-\-\0^nιR=nR. If jφO, λwόn is in n> hence δ

is not invertible, it's a contradiction. Thus we have that AUS=B. By the
following lemma our proof is over.

Lemma 3.7. Let A[XS χ-ι]=B[Y, Y"1]. // A is algebraic over Af}B,
then A=B.

Proof. Since A is algebraic over A Π B, A is also algebraic over JS, but B
is algebraically closed in B[Yy Y"1], therefore A is contained in B. Thus we
have that A=B.

Let 4̂ be an integral domain containing a field k. We denote the set of
all automorphisms of A over k by AutΛ(-4).

Proposition 3.8. Let A be an integral domain containing an infinite field
k. If Autk(A) is a finite set, then A is strongly torus invariant.

Proof. Let R=A[X, χ-ι]=B[Y, Y"1]. Let Φλ, λGifc*, be an automor-
phism of R defined by Φλ(Y)=λY and Φλ(b)=b for b^B. Following the
notation of (2.0) we have X=vYf, thus Φλ(X)=\fX, therefore R=--Φλ(A) [X,
X'1]. Let p be the projection A[X, X^-^A defined by p(X)=-l and i be the
canonical injection A ^-*A\X, X'1]. Define crλ=goφλo/. Then σλ is an en-
domorphism of A. We shall show that σλ is surjective. Let x be an element
of A. Since R=Φλ(A) \Xy X'1], there exist elements a/s of A such as x=
Σ Φ λ ( # ; > . Hence x=ρ(x)=J]pΦx(aj). Let xf=^aj^Ay then σλ(*')=
yΣlpΦλ(aj)=x. Thus σλ is surjective. Next we shall show that σλ is injective.
Since Φ ^ ^ ^ - l ^ n Φ Λ ^ ^ - Φ x ' ^ - η j R n ^ - ^ - ^ - l ^ n ^ - O , we have
(X— l)RΠΦ{A)=0, therefore σλ is injective. Hence σλ is an automorphism
of A

We shall prove that the set {σλ|λe/b*} is infinite when A^FB. Since
u=v~fYι~ff\ σ\(u)=X1~~ff'u. Therefore our assertion is proved when 1—ff
Φ0. Suppose ff'=l. Then we may assume that R=A[X, X~ι]=B[Xy X'1].
If A £ 5 , then A=B, so there exists an element x of A not contained in B, say

jX
i

i t>s. Since ker p=(X-l)R and (X-ί)RΓiB=0, p(bj)^O for

Since σ λ (^)=Σ^(^ )λy and p(bj)φθ for some ΦO, the set {σΛ; λGA;*}
is infinite.

Next we shall give two cases of rings which are not strongly torus invariant.
If A has a non-trivial locally finite iterative higher derivation ψ: A-+A[T],
then A[T]=B[T]y where B=ψ(A) and A+B, as is proved in [4]. Hence
we have that A[Ty T-ι}=B[Ty T'1] and A^B. If A is a graded ring, then A
is not strongly torus invariant. Indeed, let X be a variable over A and let
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Bi={aiX
i\ a^Ai). Then 5, is an ^-module contained in A[X, X'1].

Let B=*Σ± B{. Then B is a graded ring and we easily see that A[X9 X~ι]=B[Xy

X"1]. We shall show that X is a variable over B. Assume that there exist

elements b0, bly •••, bn in B such that Z>WΦO and bnX
n-\ [-b1X+b0=0. By the

definition of B we denote bi=^aiJX
J

y a^Aj. In the graded ring A[X, X'1]

the homogeneous term of degree t of this equation is that

Since A is a graded ring and a^ is a homogeneous element of degree j, we obtain

aij=0 for all index / andj, hence X is a variable over B.

By [4] we have that a /b-algebra A has a non-trivial locally finite iterative

higher derivation if and only if AutΛ (A) has a subgroup isomorphic to Ga~

Spec k[T], We easily see that A is a non-trivial graded ring if and only if

Autk(A) has a subgroup isomorphic to Gm=Spec(k[Ty T'1]).

Proposition 3.9, A k-algebra A is not strongly torus invariant, if Autu {A)

has a subgroup isomorphίc to Ga or Gm.

Assume that Aut* (̂ 4) is an infinite group. If AutΛ (A) has an algebraic

group structure, then there exists the following exact sequence;

0 -* T -> Aut* (A)o -+Θ-+0

where AutΛ(^4)0 is the connected component containing the identity IA, and T

is a maximal torus subgroup of Autk(A)Q and θ is an abelian variety. Let P

be an arbitrary closed point of Spec (A). If T=0, then there exists a regular

map

Φ: Aut* (A)o -> Spec (.4)

σ - σ ( P ) .

Since Im(Φ) is a projective variety contained in the affine variety Spec (A), the

set Im(Φ) consists of one point, it contradicts dim Aut*(yϊ)0>0. Hence we

have that TφO. Since T^Ga or Gmy we have the following result:

Proposition 3.10. If Autk(A) is not a finite set and has an algebraic group

structure, then A is not strongly torus invariant.

4. Affine domains of dimension ^ 2

Let A: be a field of characteristic zero which contains all roots of "unity".

In this section let A be an affine domain over k. We shall see that if dim A = l>

then A is always torus invariant. Moreover A is not strongly torus invariant

if and only if Aut*(A)^Gm. Let dim A^2. Then A is not always torus
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invariant. But if an integrally closed domain A is not a Z-graded ring, then
A is torus invariant.

For the proof we need a lemma.

Lemma 4.1. Let K be a finite separable algebraic field extension of a field

k. If A is a one-dimensional affine normal ring such that kaAζHK[Xy X'1],

then A is a polynomial ring or a torus ring over k' where k' is the algebraic closure

of k in A.

Proof. We may assume that k=k''. Following the similar device to the

proof of (2.9) in [1, p 322], we have Q(A)=k(θ) for some element θ of A.

Since k\θ]^Aczk(θ), A=k[θ] or A=k\θ, — \ for some polynomial
r i -i L ΛΘH

f(θ)<ΞΞk[θ]. Let A=k\θ,— [ Then we may assume that f(θ) has no
/(0) J

multiple factors. The element f(θ) is invertible in Ay so is also invertible in
K[X, X'1]. Thus we have f(θ)=βX\ β^K, Θ^K[Xy X'1]. We may

assume that rJΞ>0, if neccessary, by replacing X with X~ι. Then we easily
see that Θ^K[X]. The uniqueness of the irreducible decomposition in a
polynomial ring implies that degθ/(0)=l, since the polynomial f(θ) has not
multiple factors and f(θ)=βXr. Hence we may assume that f(θ)=θ and we

obtain ^ Λ Γtf,— 1.

Let A be an integral domain. If A is contained in K[X> X"1], then A is
a polynomial ring or a torus ring over k'.

Proposition 4.2. Let A be a one-dimensional affine domain over a field k

of characteristics zero. Then we obtain that

(1) A is torus invariant,

(2) A is not strongly torus invariant if and only if Autk(A) has a subgroup

isomorphic to G m . If A is not strongly torus invariant and A is integrally closed,

then A is a polynomial ring or a torus ring over the algebraic closure of k in A.

Proof. At first we shall prove (2). The sufficiency follows from (3.9). Let
R=A[Xy J?-1]==J3[y, y 1 ] in which AφB. If mRf]A^0 for any maximal
ideal m of B, then m is vertical relative to A, and we have A=B by (3.5). Hence
there exists a maximal ideal m such as mR Π A=0. Since ch k—0, B/m—K is
a finite separable algebraic field over k. The residue mapping of R to RjmR
yields (up to isomorphism) kdAQK[Yy Y'1] where Y is algebraiclly inde-
pendent over K. Therefore A is a polynomial ring or a torus ring by the lemma
(4.1). Thus the automorphism group Autjt̂ l contains a subgroup isomorphic
t o G . .

Assume that A is not integrally closed. Then prime divisors in A of the
conductor t(A/A) are vertical relative to B. Hence we may assume X^ Y by
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(2.5). The above lemma (4.1) implies that A=k'[t, Γ1] or A=k'[t] where k'
is the algebraic closure of k in A.

Firstly let A=k'[t]. Since A^B, there exists an element ί in β such as
B=k'[s\. Since R=A[X,χ-ι]=B[X,X"ι\ we have k'[X,χ-1] [t\=k'[X,X'1]
[s], hence we easily see that t=f1(X)s+f(X) and s=g1(X)t+g(X) where fλ(X)
gι{X)=l and/(X), g(X)ek'[X, X'1]. We may assume that t=Xns+f(X) and
s=X~nt+g(X). Let n b e a prime divisor in A of the conductor t(A/A).

Then there exists a maximal ideal ΐn of B such as ΰR=mR. Since 4̂/w is
algebraic over k> there exist elements λ0, λ :, •• ,λ r f_1eA such that ί^Π-X^
^"M \-XoζΞmR=nR. Hence we have that {Xns+f{X))d+Xd.ι{Xns+f(X))d-χ

-4- +λ0EΞήi?. The constant term of this polynomial with respect to s is
the following;

f(X)d+\d-ιf(X)d-1+-+\oenk'[s] [X, X-1].

Therefore f(X)=f^k'. Hence we may assume that t—Xns. We shall show
that A is a graded ring. Let a be an element of A. Since α is contained in
A=k'[t] and t = X\ we have that α = 2 λ i ί i = Σ λ J Λ i " , XJSJ<=ΞB. On the
other hand, as the element # is contained in B[X, X'1], a=^biX

i

y

Comparing the coefficient of the each term in the following; 'Σj\js'XJ'n

we have bi=\/ (t=jn) and ^.=0 (i$nZ). If J. φO, then biX
i=Xjs

jX^n==
\jVeB[X, X-1]{\A=A[X, X~1]Γ)A=A. Therefore A has a graded ring
structure.

Secondary let A=k'[t91"1]. Then B=k'[s9s~1]. Since / and s are invertible
in R, we may assume that t=s*X" and s=t'Xm, then t={tiXm)iXn=tiίXim+n^
therefore y = l . Hence we may assume t=sXn. By the same method as in the
case ^4=A:7[i] we have that 4̂ is a graded ring.

Proof of (1). If A is not integrally closed, then the prime divisors of the
conductor t(A/A) are vertical relative to B. Since non-zero prime ideals
of A are maximal, the ring A is isomorphic to B by (2.5). If A is integrally
closed and A is neither a polynomial ring nor a torus ring, then A is strongly torus
invariant, hence A is torus invariant. If A is either a polynomial ring or a
torus ring, A is torus invariant by (2.2) and (2.3).

Next we shall consider the case; the coefficient field k has all roots of "unity"
and its characteristic is zero. Then we prove the following:

Theorem 4.3. Let A be an integrally closed k-affine domain of dimension

two, where the field k has all roots of "unity" and ch /b=0. If A is not torus in-

variant, then A is a Z-graded ring which contains units of non-zero degree.

Proof. Assume that A is not torus invariant. Then there exist a λ -algebra
B and independent variables X, Y such that A is not isomorphic to JB and R=
A[XyX~l]=B[Y, y 1 ] . By (2.0) and (2,1) we obtain / / ; φ l . We shall show



778 K. YOSHIDA

that it follows from jJjΓ'φ 1 that A is a ^-graded ring. We may only consider
the case l—ff>0. Let x be « (l-ff)-th root of u and let y=x'f\X. Then
yι-ff'=υ. Since (y~f'y)ι~ff'=u, x=Xy~fΎ for some (l-ff)-th root λ of
"unity". From the relations; y=x~fX and Y=tt-X7/, we have λ = l .

Since y=x~fX and Λ ^ J Γ ^ Y are invertible, we have A[x] [X, X~1]=B[y]
[Y, Y"x]=i4[^] [y, y~ι]=B[y] [x, x'1]. Define a surjective homomorphism
j:A[x] \y,y~ι]-*A[x\ by j(y)=l. Let A0=j(B[y])QA[x], We shall show
that A[x]=A0[x, x'1]. Let a be an element of A. Then fl=ΣM'', £>,<=£.
Since j{a)=a and y(#)=#, we have that Λ=Σi(^i)Λ;ί>i(^i)Gi^o Thus i4[#]=
-40[#, ΛΓ1] and x is algebraically independent over Ao. By the same way J5[jy] =

B0[y,y-ιl
Since the every (\—ff')—th roots of "unity" is contained in k and cλ k=0

and 4̂ is normal, the extension A[x]/A is a Galois extension with a cyclic group
G=<σ> (cf. [3] p 214). Indeed when | G | = » , n\\—ff and there exists a
primitive w—ίλ root λ of "unity" such that σ(x)=Xx and the invariant subring
(A[x]Y=A and i4[*]=il+ilxH \-Axn~ι is a free ^-module.

Since the element u is a unit of 4̂ and ch(k)=0, the extension 4̂[x]/A is όtale.
Since 4̂ is a normal domain, A[x], hence 4̂0[̂ > χll> iS a ^ s o a normal domain.
From this we see that Ao is always normal.

We shall show that there exists a subring Aό in A[x] such that ^4[ΛJ]=^4O[^,

x'1] and σ(AΌ)=AΌ. If ^40 is strongly torus invariant, then σ(A0)=A0; for
σ(A0) [xy x~1]=A0[xi x'1], therefore Ao satisfies the conditions. If Ao is not
strongly torus invariant, then A0=k'[f\ or—k'[t, t~ι] by (4.2). Firstly let
AQ=k'[t]. Since k'[x, x'1] [i]=k'[x9 x'1] [σ(t)]> we easily see that σ(t)=μx*t+
/(x), μ^k* and f(x)^k'[Xy x'1]. The order of σ is w, i.e. σM=Identity, so

σ

n(t)=t, the other hand σn(t)=μn\(1+''n-'1)ixittt+g(x)>g(x)<^kf[x, x'1], therefore
we have that ι=0, thus σ(t) = μt+f(x) and μn=\. Let f(x)=^fix

i and define
the set Δ={j<ΞZ; λ y φ μ } . Let A ( Λ I ) = : Σ ^ » where hj=f^—\j)~\ and put

ί=ί+A(Λ;). Then σ(s)=μs+J]fjx\ hence σ " ( ί ) = ^ + Λ ^ " " 1 ( Σ / . ^ f ' ) = ί + w ^ 1 1 " 1

(Σ/;#')• Since σn(^)=ί, we have σ(s)=μs. We set ^4ί=Λ:'[^], then 4̂o satisfies

the conditions.
Secondary let A0=k'[t9 Γ1]. Since k'[xy x~l] [t, Γι]=k'[x, x~ι] [σ(t), σ(ί)"1],

we easily see that σ(t)=μxit or σ(f)—μxH~ly /iGA;'*.
Case(i); σ(t)=μxit. Since σM(0=μwλ ( 1 + ' +M"1)VI'ί and σn(t)=t, we have

that σ(t)=μty so cr(iίo)=i4o.
Case (ii); σ(ί)=^Λ?l'r1. If w is odd, 'say n=2m+l, then σn(t)=μXimxir\

but this is imposible for σ

M (ί)=ί. Therefore n is even, say n=2m. Then
crw(£)=λIWIJ. Since λ is a primitive n—th root of "unity", the integer i is
even, say i=2j. Let s=x~jt and i4{=Λ'[ί, ί"1]. Then i4{ satisfies the condi-
tions.
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Next we shall show that A has a Z-graded ring structure. Let a be an
element of A. Since a^AΌ[x> x~ι], a=^aix

i. Then a=σ{a)=^Σiσ{at)\ixi

and σ(tf, ) ̂ A'o. Comparing the coefficient of each [term in the equality; 2 ^ ' =
Σ σ ^ λ V , we have that ai=σ(ai)Xi

) then σ{aix
i)=aix

i. Thus a{x
l is an

element of A. Therefore A is a graded ring. Since there exists units of
non-zero degree, A has a Z-graded ring structure.

REMARK. The converse of this theorem is false. Indeed we find by
(2.3) that the ring k[T] [X, X'1] is a Z-graded ring with respect to X which is
torus invariant.

EXAMPLE. We shall construct an example of an affine dimension A of
dimension two which is not torus invariant.

Let D be an integrally closed domain of dimension one over an algebraically
closed field k and D*=λ;*. Let a be a non-unit of D and as=ay αeZλ Assume
that D is noetherian and D[a] is strongly torus invariant. Since an affine do-
main oί dimension one whose totally quotient field has a positive genus is strongly
torus invariant by (4.2), this assumption can be satisfied fot a suitable choice
of Zλ Let T be a variable over D and A=D[aT, T\ T~5]. Let X be a variable
over A and S=T2X and Y=T5X2. Let B=D[aS\ S\ S'5]. Since T=
S~2Y and X = S 5 Y"2, we have that A[X, X'ι\=B[Y, Y"1]. By (1.1) invertible
elements in the graded ring A are homogeneous. Since Z)*=&*, we obtain
A*={ηT5i; η^k* and ί G Z } . Hence the quotient A*/k* is generated by
Γ5. Similary B*/Λ:* is generated by S5. We shall show that A is not isomor-
phic to B. We assume that there exists an isomorphism σ of A to B. Since
σ is a group-isomorphism of A* to J3*, we have σ(T5)=μS5 or σ(T5)=μS~5,
μ,e/b*. We shall only consider the case: σ(T5)=μS5> since the proof of the
other case is the similar. Let σ be an isomorphism of A[T] to B[S] defined
by σ = σ on A and σ(T)=ζS, ζ5=μ. Then we have that D[a] [S, S-λ] =
σ(D[ά\) [Sy 5"1], therefore σ(D[a])=D[a]; for D[α] is strongly torus in-
variant. Since σ(D)QD[a] Γ)B=D, we have σ(D)=D, therefore we easily
see that σ is an isomorphism as graded rings. Thus we have σ((aT)D)=
(a2S)D, hence σ(a)^a2D. Since the element a is not a unit, a2Dξ^aDy thus
σ(a)DQa2D^aD, so aD^σ~1(a)Di hence we have a proper ascending chain
{σ~tt(a)D}y but it contradicts the netherian assumption of D. Hence A is
not torus invariant.

(4.4) Now let A = yΣiAi be an integrally closed Z-graded domain which
contains invertible elements of non-zero degree. Let e be an invertible element
of A with the smallest positive degree d. Let a be a unit of Af then a is a
homogeneous elements with deg a=jd for some integer j , and there exists an
element ξ of Af such as a=ξej. Let i be any positive integer and x be one
of the ijd-th roots of a, say xijd=a. Since A[x] is a Z-graded ring with the
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invertible elements x of degree one, ^4[Λ:]=^4O[#> X'1] by (1.4) where Ad contains
AQ. Let/ and/' be integers such as ff'-\-ijd=\ and let X be a variable over
A. Put y=χ-'X and Y=aXf'. Then x=y~^Y and X=yWY*. Therefoie
i4ί[*, ΛΓ1] [X, X"1]=i4S[y,y1] [Y, Y"1]. Since the every fi-Λ roots of "unity"
is contained in k and 4̂ is integral closed, the extension A[x]/A is a Galois
extension with a cyclic group G—<σ>. Indeed |G|=έ// and there exists a
primitive Λ'-fλ root λ of "unity" such as σ(x)=\xy and (A[x]Y=A. Since
4̂o is algebraic over AOy σ{A'o) is also so, hence σ(AΌ) is algebraic over A'Oy but
4̂$ is algebraically closed in Ad[x, aΓ1], therefore σ(^4o)=-4o Since σ-(y)=\- fy,

σ is an automorphism of A'0[y, y"1]. Let B=A'O \yy y~ιγ and σ be an auto-
morphism of AQ\X, x'1] [X, X'1] defined by σ(X)=X and σ—σ over 4̂o[#, x~1].
Since *(Y) = Y and σ(X) = X, we obtain B[Y, Y"1]=i4ί[y, j " 1 ] [Y, Y" 1] '

Proposition 4.5. L ί̂ A be an integrally closed k-affine domain of dimension
2. // A[X, X"1]=B[Y, Y"1] andff'^1, then A has a Z-graded ring structure
and B is isomorphic to one of algebras constructed in (4.4).

Proof. The first statement is already mentioned in the proof of (4.3)
and we obtained A'0[x, x'1] [X, X'l]=AfJ{y, y~ι] [Y, Y"1] and σ(iί$)=i4«. Let
B'=A{\y, y'T- T h e n B> i s o n e o f algebras in (4.4). Since B'[Y, Y-']=
B[Y, Y"1], B is isomorphic to B'.

5. D-torus invariant

Let D be an integral domain contining a field k of characteristic zero and
A be a D-algebra. The ring A is called D-torus invariant; if A[X, X" 1]=S[Y,
Y"1] for a certain Z)-algebra β and independent variables X and Y, then we
have always A^ΌB. Then we have the following result:

Proposition 5.1. Let A be an integrally closed domain over D and tr. degD

A=l. If A is not D-torus invariant, then A is a Z-graded ring containing units
of non-zero degree.

Proof. Let A[X, X~ι]=B[Y, Y"1], where B is a D-algebra and not D-
isomorphic to A. By (2.0) and (2.1) we easily see that ff'=l. Then we may
assume l—ff>0. Let x be a (l-ff')-th root of u and y—x~fX. Then we
have that A[x]=A0 [x, x~ι] and B[y]=B0[y, y'1] as the proof of (4.3), where Ao

and Bo are respectively subalgebras of A[x] and B[y] containing D. Let σ
be a generator of the cyclic Galois group of the extension A\x\\A. We shall
show that σ(A0)=A0. Since tr. degD^40[tf, X " 1 ] = l , Ao is algebraic over D,
thus σ(-40) is also so. Since Ao is algebraically closed in Ao \xy ΛΓ1], we have
that σ(A0)=A0. Following the similar devise to the proof of (4.3) we obtain
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that A is a ^-graded ring, and D is contained in A.
In the following we shall consider the case where A is a iΓ-graded ring

and A0=D. We consider only ^-isomorphisms of Z)-algebras.

Theorem 5.2. Let A be an integrally closed Z-graded ring. Assume that

the subring Ao contains an algebraically closed field k and that Af=k*. Let d be

the smallest positive integer among the set of degrees ofuaίts in A. Then the number

of the ίsomorphίc classes of A0-algebra as B such that A[X, X~V\=B\Y> Y'1] equals

to Φ(d)y where Φ is the Euler function.

Proof. Let i be an integer such as l^i<d and (/, d)=l. Since (z, d)=l,
ij-\-dh=l for some integers j and h. Moreover we may assume /z^ O. Fix a
unit e of degree d. Let x be one of the d-th roots of e. Then we have that
[̂#]==,<4o[#> x'1] for a subring A'o containing Ao by (1.4). Let σ be a generator

of the cyclic Galois group of the extension A[x]/A. Then σ(x)=\x, where λ
is a primitive d-th root of "unity". Since A'o is algebraic over Ao and algebrai-
cally closed in A&[xy x'1], we obtain. cr(Ao)=A'0. Let X be a variable over A
and let y=x~*X and Y=ehx>. Then we have that A'0[xy x~ι] [Xy χ-ι]=A'J[y,
y~ι] [Y9 Y'1]. Define Bi=A'0\yy v"1]σ and let σ be an isomorphism of A'0[x,
x-1] [X, X~ι] denned by σ(X)=X and σ = σ on A'0[x, x'1]. Since Y=ehX\
0(Y)=Y, therefore we obtain that A[X,χ-ι]=Bi[Y,γ-1]. We can easily
see that B{ is a -X-graded ring and {Bt\=^AQ. Especially we have B^A.

Let iγ and i2 be integers such as \^iι<i2<d and (ily d)=(i2, d)=ί. Let
B'=AΌ\y, y~Ύ and B"=A'0[z, z'1]' where σ(y)=χ-hy and σ(z)=\~i2 i.e.,
B'=B{l and B"=Bi2. We shall show that B' and B" are not isomorphic.
Assume that there exists an ^40-isomorphism ψ of Br to B". Let a be a unit
in 2?' of non-zero degree, say degree a=n, nΦO. Let i be a homogeneous
element of B' and degree b=t. Then we have bn~raf for an element r in the
coefficient ring A0) hence ψ(bn)=Λ]r(b)n=rψ(at). Since r and ^(α') are homo-
geneous, Λjr(b) is also homogeneous by (1.1), therefore ψ is an isomorphism
as graded rings.

Let c be a homogeneous element in B' of degree one. Then c=sxy for an
element sx in 4̂Q Since σ(c)=c and σ-(y)=λ""'1ty, we have σ(s1)=\^s1 hence
if is in B'. Since ^r{sλy) is a homogeneous element of degree one, we obtain
-ty(sxy)=s2z for an element s2 in 4̂o. Since σ{s2z)=s2z and σ(^)=λ"''2^, we
have σ(s2)=V*s2, hence 4 is in B". By the relations; sίψiy^ψ^y)^
ψ(Sly)d=sίzd, we obtain 4='Ψ l(y0JS"έfίί Since yjr(yd)z~d is an invertible element
in Bn and degree zero, we have ζ=Λ]r(yd)z~d&At=k*y therefore we have s2—ηs1

for some v^k, ηd=ξ. Hence σ(s2)=X^s2y but it contadicts the fact that σ(s2)
=λf'2J2

 a n d λ is a primitive J-ίA root of "unity". Therefore B'^B".

Finally we shall show that if A[Xy X~ι]=B[Yy Y~ι] then B is isomorphic
to Bi for some i satisfying 0<i<d and (i} d) = \. The invertible element u
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in (2.0) is homogeneous. Let n be the degree of u. If n=0, then A is isomor-
phic to B by (2.1), hence B^BX. Assume rcΦO. Let c be a non-zero homo-
geneous element of degree 1 and put η=cnu~1. Then η is an element of Ao.
In the graded ring B[Y, Y"1] the elements u and η are homogeneous, hence c
is also homogeneous, thus we denote c=bYj for some element b in B and some
integer j . Then we obtain that cn=bnYnj. On the other hand we have cn=

Vu=riv-f'Yl-ff' by (2.0). Therefore we have l-ff'=nj.

By the minimality of d we obtain n=ld for some integer I and u=ξe,
£e^4ίf=Λ;*. Since the field k is algebraically closed, we may assume ξ=l,
then the d-th root x of £ is an n-th root of ί/. Since the element λ is a primitive
d-th root of "unity", there exists the unique integer / such that \~f=\~\ 0 <
f<έ/,then(i,έ/)=l since(/,rf)=l. Let y'=x-'X* and β ' ^ S j y , / - 1 ] ) * . Then
σ(;y')==λ~/y'=^λ~iy, hence Bf==B{. We can easily show that x=y'~fΎJ\
therefore we obtain i4{[*, tf"1] [X, X-ι]=A',[y\y'-1] [Y, y 1 ] . Since σ(X)=X
and σ(Y)= Y, we have A[X, X-l]=B;[Y, Y"1], hence β[Y, y 1 ] = J B ί [ y , Y"1].
Thus we have β ^ β t .
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