

Title	The artinian $\Lambda\text{-module}$ and the pairing on the cyclotomic Z ι -extensions
Author(s)	Akagawa, Yasumasa
Citation	Osaka Journal of Mathematics. 1991, 28(2), p. 263–284
Version Type	VoR
URL	https://doi.org/10.18910/5001
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Akagawa, Y. Osaka J. Math. 28 (1991), 263-284

THE ARTINIAN Λ -MODULE AND THE PAIRING ON THE CYCLOTOMIC Z_l -EXTENSIONS

YASUMASA AKAGAWA

(Received December 21, 1989)

Introduction

Let *l* be a prime number, Z_l the ring of the *l*-adic integers, and $\Lambda = Z_l[[T]]$ the formal power series ring of indeterminate T over Z_l . Let K be an algebraic number field containing ζ_1 (and $\sqrt{-1}$ if l=2) and $k_{\omega}=k(\zeta_{\infty})=k(\zeta_n|n=1, 2, \cdots)$ the cyclotomic Z_l -extension over k; $\zeta_n = \exp(2\pi i/l^n)$. Given an abelian extension M/k_{ω} which is Galois over k and restricted by some local conditions, we can regard the Galois group Gal (M/k_{ω}) as a Noetherian Λ -module and develope the socalled Iwasawa theory. In this paper we shall treat such Noetherian Λ -modules comming from Galois groups and their (twisted) duals, which are regarded as Artinian Λ -modules naturally. The main instrument for the study is a pairing Ψ on some two Artinian Λ -modules X and Y. In [4] a pairing works effectively but our Ψ is different from this essentially, Ψ is actually defined on the whole $X \times Y$ and non-degenerate except Λ -divisible parts and a finite factor. So we shall know that X and Y have similar types of Artinian Λ -modules each other. Specially if we take the maximal unramified abelian *l*-extension over k_{ω} fully decomposed at every prime spot over (l) on the one hand and an l-ramified abelian *l*-extension which is maximal under a local condition such that any $\zeta_n \in k(\zeta_n)$ is written as a local norm from this field to $k(\zeta_n)$ at every spot on the other hand, the results will be most typical. Actually the arguments of this case will be used effectively in the study of Leopoldt's conjecture.

1. Noetherian Λ -modules

Throughout this paper we fix a prime number l. Let \mathbb{Z}_l be the ring of the l-adic integers and $\Lambda = \mathbb{Z}_l[[T]]$ be the ring of formal power series of indeterminate T over \mathbb{Z}_l . It is well known that Λ is a local ring of Krull dimension 2, with the maximal ideal m = (l, T). A proper prime ideal p of Λ is always principal and written p = (l) or p = (P(T)) by a distinguished polynomial $P(T) \in \mathbb{Z}_l[T]$, i.e. the one of the form $P(T) = T^n + a_{n-1}T^{n-1} + \cdots + a_0 \equiv T^n \mod (l)$ in $\mathbb{Z}_l[T]$. The unit group Λ^{\times} of Λ has a subgroup $(1+T)^{\mathbb{Z}_l}$ isomorphic to \mathbb{Z}_l in the evident manner through multiplication-addition translation. Let Γ be a topological

group isomorphic to Z_i with a generator $\gamma: \Gamma = \langle \gamma \rangle = \gamma^{Z_i}$. A Z_i - Γ -module is a Λ -module as it were, defining the action of γ on it to coincide with the multiplication map of 1+T. Put $T_m = (1+T)^{/m} - 1 \in Z_i[T]$ a distinguished polynomial, and $Z_i[[T_m]] = \Lambda_m \subset \Lambda$. Put $\gamma_m = \gamma^{i^m}$, $\Gamma_m = \langle \gamma_m \rangle \subset \Gamma$; $m = 0, 1, \cdots$. A Λ -module or a Z_i - Γ -module is a Λ_m -module or a Z_i - Γ_m -module in the same time by the restrictions, making the correspondence $1 + T_m \rightleftharpoons \gamma_m$. A characterestic Λ_m -submodule of a Λ -module is a characteristic Λ -submosule as it were. From now on we treat only locally compact modules. For a Λ -module M, the torsion, the Λ -torsion, the divisibility, and the Λ -divisibility are denoted by

(1.1) Tor
$$M = \{ \sigma \in M | z\sigma = 0 \text{ for some } z(\pm 0) \in Z_i \}$$

(1.2)
$$\Lambda \operatorname{-tor} M = \{ \sigma \in M \mid f(T)\sigma = 0 \text{ for some } f(T) \ (\neq 0) \in \Lambda \}$$

(1.3)
$$l^{\infty}M = \{ \sigma \in M | \sigma = z\tau \text{ by a } \tau \in M \text{ for any } z(\pm 0) \in \mathbb{Z}_l \}$$

(1.4)
$$\Lambda^{\infty}M = \{ \sigma \in M \mid \sigma = f(T)\tau \text{ by a } \tau \in M \text{ for any } f(T) \ (\neq 0) \in \Lambda \}$$
.

We shall denote the direct sum of two modules M and N by $M \neq N$ and that of r copies of M by $\dot{r}M$. A Λ -homomorphism $\varphi: M \rightarrow N$ with finite kernel and finite cokernel is called a pseudo- Λ -isomorphism, and denoted by $\varphi: M \cong N$. Given M and N, when there is a $\varphi: M \cong N$ we denote $M \cong N$ and when $M \cong N$ and $N \cong M$, $M \cong N$. When a non-negative integer r and a set of prime power ideals $\{p_1^{e_1}, \dots, p_s^{e_s}\}$ in Λ are given, we put

$$E(r; \boldsymbol{p}_1^{e_1}, \cdots, \boldsymbol{p}_s^{e_s}) = \dot{r} \Lambda \dotplus \Lambda / \boldsymbol{p}_1^{e_1} \dotplus \cdots \dotplus \Lambda / \boldsymbol{p}_s^{e_s}.$$

We shall call this typical Noetherian Λ -module an elementary Noetherian Λ module and $\{r: p_1^{e_1}, \dots, p_s^{e_s}\}$ its invariant. Two elementary Noetherian Λ modules are pseudo- Λ -isomorph (actually Λ -isomorph) only when their invariants coincide. Use an abbreviation $E(0; p_1^{e_1}, \dots, p_s^{e_s}) = E(p_1^{e_1}, \dots, p_s^{e_s})$.

Theorem 1.1. (Iwasawa-Serre-Cohn and others [5]) For a Noetherian Λ -module M there is an elementary Noetherian Λ -module

$$E(M) = E(r; \boldsymbol{p}_1^{\boldsymbol{e}_1}, \cdots, \boldsymbol{p}_s^{\boldsymbol{e}_s})$$

such that

$$M \cong E(M)$$

The invariant of E(M) is uniquely determined depending only on M, not on $\varphi: M \cong E(M)$. For any $\varphi: M \cong E(M)$, Ker φ coincides always with the characteristic Λ -module Fin M the maximal finite Λ -submodule of M.

The pseudo-A-isomorphism $M \cong E(M) = E(r; p_1^{\epsilon_1}, \dots, p_s^{\epsilon_s})$ does not mean $E(M) \cong M$. But, if r=0 we can compose $E(M) \cong M$ easily. For example, if

 $\varphi: M \cong E(M)$ is injective with r=0 and $l^c \operatorname{Coker}(\varphi: M \cong E(M)) = \{0\}, c \ge 0$, we can form a Λ -homomorphism $\varphi': E(M) \cong M$ with trivial kernel and the cokernel such that $l^c \operatorname{Coker} \varphi' = \{0\}$ also easily.

We call the invariant of E(M) the invariant of M and denote it by inv M and define the characteristic polynomial of M by

$$f_{\mathcal{M}}(T) = \prod P_{i}(T)^{e_{i}} \quad (p_{i}^{e_{i}} = (P_{i}(T)^{e_{i}}) \in \operatorname{inv} M, p_{i} \neq (l))$$

and the essential exponent of M by

$$e(M) = \max e_i \qquad (p_i^{e_i} \in \operatorname{inv} M, p_i = (l))$$

(= 0 if there is no $p_i = (l)$).

When e(M)=0 namely $|\operatorname{Tor} M| < \infty$, M is said pseudo-torsion free. The minimal number e(M) such that $l^{e(M)}$ Tor $M=\{0\}$ is called exponent of M, e.g. $l^{e(M)}M$ is pseudo-torsion free and $l^{e(M)}M$ is torsion free.

Theorem 1.2. (Iwasawa) For a Noetherian Λ -module M, Λ -tor M is characterized as the maximal Λ -submodule (or Λ_m -submodule, $m \ge 0$) of M with finite Z_1 -rank therefore

$$\Lambda_m$$
-tor $M = \Lambda$ -tor M for any $m \ge 0$.

Put deg $f_M(T) = \lambda$. Then

(1.5)
$$\Lambda$$
-tor $M/\text{Tor } M \simeq \dot{\lambda} Z_l$ (as Z_l -modules).

Specially when M is pseudo-torsion free,

(1.6)
$$T_{m'}\Lambda \operatorname{-tor} M = l^{m'-m}T_{m}\Lambda \operatorname{-tor} M$$

for every $m \gg 0$ (every sufficiently large $m \ge 0$) and $m' \ge m$ and (1.5) can become precisely

(1.7)
$$\Lambda \operatorname{-tor} M = (\Lambda \operatorname{-tor} M)_{fr} + \operatorname{Fin} M \quad (\Lambda_m \operatorname{-direct})$$

for every $m \gg 0$ where $(\Lambda - \text{tor } M)_{fr}$ is a Λ_m -submodule of Λ -tor M (not unique) isomorphic to λZ_1 .

Proof. Only the last statement concerned to (1.7) will be required to prove. Since $|\operatorname{Fin} M| < \infty$, there is an $m_0 \ge 0$ such that $T_{m_0}(\Lambda \operatorname{-tor} M) \subset l^{e(M)}\Lambda \operatorname{-tor} M$. When we take as $(\Lambda \operatorname{-tor} M)_{fq}$ any \mathbb{Z}_l -direct complement of Fin M in Λ -tor M $(\rightrightarrows \lambda \mathbb{Z}_l \neq \operatorname{Fin} M)$ it is a Λ_m -submodule for $m \ge m_0$ therefore (1.7) will be obtained.

For a Noetherian Λ -module M, $l^{e(M)}M$ is pseudo-torsion free. In the remained part of this section we treat only pseudo-torsion free case.

Theorem 1.3. For a pseudo-torsion free Noetherian Λ -module M

(1.8)
$$M = M_{\Lambda tf} + \Lambda - \text{tor } M \qquad (\Lambda_m - direct)$$

for every $m \gg 0$, where $M_{\Delta tf}$ is a Λ_m -torsion free Λ_m -submodule of M (not nesessarily unique). So, combining this with (1.7),

(1.9)
$$M = M_{\Lambda tf} \ddagger (\Lambda \text{-tor } M)_{fr} \ddagger \text{Fin } M \qquad (\Lambda_m \text{-direct})$$

for every $m \gg 0$.

Proof. Let $\varphi: M/\Lambda$ -tor $M \cong \dot{r}_0 \Lambda = \dot{r} \Lambda_m (m \ge 0, r = r_m = r_0 l^m)$. Since $|\operatorname{Coker} \varphi| < \infty$, $T_m \operatorname{Coker} \varphi = \{0\}$ for $m \gg 0$. Then by the elementary divisor theory we may put

(1.10)
$$\operatorname{Im} \varphi = (l^{c_1}, T_m) \ddagger \cdots \ddagger (l^{c_r}, T_m) \subset \dot{r} \Lambda_m; m \gg 0.$$

Fix such an *m* and put max $\{c_k\} = c$, m+c=m'. Take $\sigma_1, \dots, \sigma_r$ and $\tau_1, \dots, \tau_r \in M$ such that

 $\varphi(\sigma_k) = l^{c_k} \in (l^{c_k}, T_m)$ the k-th direct factor of (1.10) $\varphi(\tau_k) = T_m \in$ the same.

Put $T_m \sigma_k - l^{\epsilon_k} \cdot \tau_k = \rho_k$ which is in Λ -tor M. From (1.6) we may assume, renewing m by a large one if necessary, $T_m(\Lambda$ -tor $M) \subset 2l(\Lambda$ -tor M) accordingly

$$N_{m'm}(\Lambda$$
-tor $M) \subset l^{c}(\Lambda$ -tor $M)$

where

(1.11)
$$N_{m'm} = T_{m'}T_{m}^{-1} = 1 + (1 + T_{m}) + \dots + (1 + T_{m})^{l^{c-1}} \in \mathbb{Z}_{l}[T_{m}].$$

So, we can take $\rho'_k \in \Lambda$ -tor M such that $N_{m'm}\rho_k = l^c_k \cdot \rho'_k$. Then

(1.12)
$$T_{m'}\sigma_k - l^c_k (N_{m'm}\tau_k + \rho'_k) = 0.$$

Put $r' = rl^c$ and determine $\sigma'_1, \dots, \sigma'_{r'}, \tau'_1, \dots, \tau'_{r'} \in M$ so that

$$\sigma_{k+1}' = \begin{cases} \sigma_{j+1} & \text{if } k = l^c j, \ 0 \le j < r \\ T_m^j \tau_j & \text{if } k = i + l^c j, \ 1 \le i < l^c, \ 0 \le j < r \\ \tau_{k+1}' = \begin{cases} N_{m'm} \tau_{j+1} + \rho_{j+1}' & \text{if } k = l^c j, \ 0 \le j < r \\ T_{m'} \sigma_{k+1}' & \text{if } k = i + l^c j, \ 1 \le i < l^c, \ 0 \le j < r \end{cases}$$

and then $c'_1, \dots, c'_{j'} \ge 0$ by

$$c'_{k+1} = \begin{cases} c_{j+1} & \text{if } k = l^{c}j, \ 0 \le j < r \\ 0 & \text{if } k = i + l^{c}j, \ 1 \le i < l^{c}, \ 0 \le j < r. \end{cases}$$

From (1.12)

$$T_{m'}\sigma'_{k} = l^{c'_{k}} \cdot \tau'_{k}; k = 1, \dots, r'$$

therefore

$$\langle \sigma'_1, \cdots, \sigma'_{r'}, \tau'_1, \cdots, \tau'_{r'} \rangle \cong (l^{c'_1}, T_{m'}) \dotplus \cdots \dotplus (l^{c'_{r'}}, T_{m'}) \subset \dot{r}' \Lambda_{m'}$$

namely this can be adopted as $M_{\Lambda tf}$, then (1.8) is $\Lambda_{m'}$ -direct.

We define $c = c(M) \ge 0$ by

$$l^{c} =$$
exponent of Coker ($\varphi: M/\Lambda$ -tor $M \cong \dot{r}_{m}\Lambda_{m}$); $m \gg 0$,

which is used already in the above proof. Every sufficiently large $m \ge 0$ will be said steadily large, when it admits the Λ_m -direct decomposition (1.7), T_m Fin M=0, T_m Coker $(\varphi: M/\Lambda$ -tor $M \cong \dot{r}_m \Lambda_m)=0$, and $T_{m'}\Lambda$ -tor $M=l^{m'-m}T_{m'}\Lambda$ -tor $M \subset 2l\Lambda$ -tor M for any $m' \ge m$.

Proposition 1.4. Let M be a torsion free Λ -torsion Λ -module. Then $M \simeq \dot{\lambda} Z_i$ as Z_i -module. Let $E(M) = E(p_1^{e_1}, \dots, p_s^{e_s})$. Then there are Λ -submodules M_1 , $\dots, M_i \subset M$ such that $E(M_i) = E(p_i^{e_i}), M_i \cap \Sigma_{j \neq i} M_j = \{0\}$ (so $\Sigma_i M_i = \dot{\Sigma} M_i$), and $|M: \Sigma_i M_i| < \infty$.

Proof. The first assertion $M \simeq \lambda \mathbf{Z}_i$ is a direct consequence of Theorem 1.2. Fix a $\varphi: M \simeq E(M)$ and decompose $E(M) = E(\mathbf{p}_i^{e_1}) \ddagger \cdots \ddagger E(\mathbf{p}_s^{e_s})$. Put $M_i = \varphi^{-1}(\operatorname{Im} \varphi \cap E(\mathbf{p}_i^{e_i}))$. The three properties for M_i will be easily checked.

When $E(M) = E(\mathbf{p}^{e})$ we say the Noetherian Λ -module M is pseudo-indecomposable. From the above arguments, pseudo-indecomposable torsionfree M is characterized as a Noetherian Λ -module such that $|\mathbf{p}^{e}M| < \infty$ but $|\mathbf{p}^{e^{-1}}M|$ $= \infty$ for some prime $\mathbf{p} = (P(T))$ ($\pm l\Lambda$) in Λ and e > 0. This e is determined by rank_{\mathbf{z}_{l}} $M = e \cdot \deg P(T)$.

2. Artinian Λ -modules

Let **R** be the additive group of the real numbers, **Z** that of rational integers, and T = R/Z be the 1-torus. Let $T_i = Q_i/Z_i$, Q_i being the *l*-adic rational numbers. From now on we fix a $\kappa \in 2lZ_i$ and define an *l*-divisible group W by

(2.1)
$$W \simeq \lim_{n \to \infty} \Lambda/(l^n, T - \kappa)$$

where the injective limit is given by the *l*-times map

(2.2)
$$\Lambda/(l^n, T-\kappa) \to \Lambda/(l^{n+1}, T-\kappa)$$
$$(F(T) \mod (l^n, T-\kappa) \mapsto lF(T) \mod (l^{n+1}, T-\kappa))$$

namely, $W \simeq T_i$ abstructly and $Tw = \kappa w$; $w \in W$. We denote for a Λ -module M

$$\hat{M} = \text{Hom}(M, W)$$

which is a Z_{l} - Γ -module, so a Λ -module by the usual right γ -action

(2.3)
$$x^{\gamma}(\sigma) = (x(\sigma^{\gamma^{-1}}))^{\gamma} = x((1+\bar{T})\sigma); x \in \hat{M}, \sigma \in M$$

where $\bar{T} = (1+\kappa) (1+T)^{-1} - 1 \in \Lambda$.

For $F(T) \in \Lambda$ we denote $\overline{F}(T) = F(\overline{T})$. Then $F(T) \mapsto \overline{F}(T)$ defines an involutive automorphism (i.e. $\overline{F}(T) = F(T)$) of Λ . Since Λ is a pro-*l* group, the Pontrijagin dual $M^* = \text{Hom}(M, T)$ of a Λ -module M with left γ -action (i.e. $x^{\gamma}(\sigma) = (x(\sigma^{\gamma}))^{\gamma^{-1}} = x(\sigma^{\gamma})$) can be identified to Hom (M, T_i) which is, regardless the Γ action, equal to \hat{M} . When a \mathbb{Z}_i - Γ -module M is given, we made it a Λ -module identifying the action of γ to that of (1+T)-multiplication, conserving the same notation M. If we identify the action of γ to $(1+\overline{T})$ -multiplication on the other hand, we obtain a new Λ -module which we shall denote by \overline{M} . From (2.3)

(2.4)
$$\hat{M} = \bar{M}^* (= (M^*)^- = (\bar{M})^*$$
 being the same).

As we are treating always locally compact modules the following facts are held

i) $\hat{M} = M$

ii) \hat{M} is Artinian if and only if M is Noetherian

iii) $l^{\infty} \hat{M} = \hat{M}$ if and only if Tor $M = \{0\}$

iv) $\Lambda^{\infty} \hat{M} = \{0\}$ if and only if Λ -tor M = M.

When M is Noetherian Λ -module we denote

$$M(n) = M/l^n M; n \gg 0$$

and when X is Artinian

$$X(n) = \{x \in X \mid l^n x = 0\}; n \gg 0$$

(so $M(n) = (\hat{M}(n))^{\wedge}$). E.g. $Z_{l}(n) \simeq T_{l}(n) \simeq Z/l^{n}Z$. When F is Noetherian and Artinian in other words $|F| < \infty$, we use only $n \ge e(F)$, so there will come out no confusion. We call the typical Artinian Λ -module

$$\begin{split} \dot{E}(r; \mathbf{p}_1^{\epsilon_1}, \cdots, \mathbf{p}_s^{\epsilon_s}) &= (E(r; \mathbf{p}_1^{\epsilon_1}, \cdots, \mathbf{p}_s^{\epsilon_s}))^{\wedge} \\ &= \dot{r} \hat{\Lambda} \dotplus (\Lambda/\mathbf{p}_1^{\epsilon_1})^{\wedge} \dotplus \cdots \dotplus (\Lambda/\mathbf{p}^{\epsilon_s})^{\wedge} \end{split}$$

an elementary Artinian Λ -module. We have streightfoward versions of Theorems 1.1 \sim 1.4 as follows.

Theorem 2.1. For an Artinian Λ -module X there is an elementary Artinian Λ -module $E(X) = \hat{E}(r; p_1^{e_1}, \dots, p_s^{e_s})$ such that $E(X) \cong X$. The invariant of $(E(X))^{\wedge} \{r; p_1^{e_1}, \dots, p_s^{e_s}\}$ is uniquely determined dependig only on X but not on the choice of $\varphi: E(X) \cong X$. For any $\varphi: E(X) \cong X$, Im φ is always coincided with

Cofin X the minimal Λ -submodule of X with finite index.

We call the invariant of $(E(X))^{\wedge}$ the invariant of X and denote it by inv X namely under the notations of Theorem 2.1 inv $X = \{r; p_1^{\epsilon_1}, \dots, p_i^{\epsilon_i}\}$. The characteristic polynomial of X, the essential coexponent of X, and the coexponent of X are given by $f_X(T) = f_X(T) = \prod P_i(T)^{\epsilon_i} (p_i = (P_i(T))), c(X) = \max_i p_{i-(i)} e_i,$ $l^{c(X)} = (\text{the exponent of } X/l^{\infty}X)$. When c(X) = 0, X is called pseudo-*l*-divisible.

Theorem 2.2. For an Artinian Λ -module X, $\Lambda^{\infty}X$ is characterized as the minimal Λ -submodule (or Λ_m -submodule, $m \ge 0$) of $l^{\infty}X$ with the factor module of finite T_i -rank so uniquely determined for any $m \ge 0$ by

$$\Lambda^{\infty}_{m}X = \Lambda^{\infty}X; \, m \geq 0 \, .$$

Put deg $f_X(T) = \lambda$. Then

(2.6)
$$l^{\infty}X/\Lambda^{\infty}X \simeq \dot{\lambda}T_{l}$$
 (as Z_{l} -module).

Specially if X is pseudo-l-divisible,

$$l^{n}$$
 Ker $T_{m'} =$ Ker T_{m} ; $T_{m'}$, $T_{m} \in$ Endomorphism $(l^{\infty}X/\Lambda^{\infty}X)$

for any $m \gg 0$ and $m' = m + n \ge m$, and

(2.7)
$$X/\Lambda^{\infty}X = (X/\Lambda^{\infty}X)_{fr} \ddagger \operatorname{Fin} X \qquad (\Lambda_m - direct)$$

where $(X|\Lambda^{\infty}X)_{fr}$ is the Λ_m -submodule of $X|\Lambda^{\infty}X$ isomorphic to λT_l and FinX is a maximal Z_l -direct factor with finite order (not unique), so $(X|\Lambda^{\infty}X)_{fr} = l^{\infty}(X|\Lambda^{\infty}X)$.

Theorem 2.3. For a pseudo-1-divisible Artinian Λ -module X

$$(2.8) X = \Lambda^{\infty} X + X_{\Lambda df} (\Lambda_m - direct)$$

for every $m \gg 0$ where $X_{\Lambda df}$ is a Λ_m -divisibility-free submodule of X (not unique) so, combining with (2.7)

(2.9)
$$X = \Lambda^{\infty} X \ddagger l^{\infty} (X_{\Lambda df}) \ddagger \operatorname{Fin} X; \ m \gg 0.$$

Corollary 2.4. When X is Artinian in general,

(2.10)
$$X = (\Lambda^{\infty} X \ddagger l^{\infty} (X_{\Lambda d_f})) + (\text{bounded exponent})$$

Theorem 2.5. Let X be a Λ -divisibility-free and l-divisible Artinian Λ module. Then $X \cong \lambda T_i$; $\lambda = \deg f_X(T)$. Fix a $\varphi: E(X) \cong X$ and let $E(X) = \hat{E}(\mathbf{p}_1^{\epsilon_1}, \cdots, \mathbf{p}_s^{\epsilon_s}) = \hat{E}(\mathbf{p}_1^{\epsilon_1}) + \cdots, + \hat{E}(\mathbf{p}_s^{\epsilon_s})$. When we put $\varphi(\hat{E}(\mathbf{p}_i^{\epsilon_i}) = X_i, we obtain three facts: i) E(X_i) = \hat{E}(\mathbf{p}_i^{\epsilon_i})$, ii) $X = X_1 + \cdots + X_s$, and iii) $|X_i \cap \Sigma_{j+i} X_j| < \infty$; $i = 1, \cdots, s$.

As we have seen in Section 1, $E(X) \cong X$ does not mean $X \cong E(X)$. But if $\Lambda^{\infty} X = \{0\}$, after easy discussion we can form the inverse.

When $E(X) = \hat{E}(\mathbf{p}^{e})$ we say the Artinian Λ -module X is pseudo-indecomposable, similarly as Noetherian case. The pseudo-indecomposable *l*-divisible Λ -module is characterized as an Artinean Λ -module such that $|\mathbf{p}^{e}X| < \infty$ but $|\mathbf{p}^{e^{-1}}X| = \infty$ for some prime $\mathbf{p} = (P(T))$ ($\neq (l)$) in Λ and e > 0. Then $E(X) = \hat{E}(\mathbf{p}^{e})$ and $X \cong T_{l}^{e^{-\deg P(T)}}$ abstractly.

3. Pairing

We denoted the l^n -torsion of an Artinian Λ -module X by

$$X(n) = \{x \in X \mid l^n x = 0\}.$$

In this section X and Y are Artinian Λ -modules. Assume that there are pairing maps

$$\psi_n: X(n) \times Y(n) \rightarrow W(n)$$

at all $n \ge 1$ satisfying

(3.1)
$$\psi_n(x+x', y) = \psi_n(x, y) + \psi_n(x', y)$$
$$\psi_n(x, y+y') = \psi_n(x, y) + \psi_n(x, y')$$

(3.2)
$$\begin{aligned} \psi_n(lx'', y) &= \psi_{n+1}(x'', y) \\ \psi_n(x, ly'') &= \psi_{n+1}(x, y'') \end{aligned}$$

for any $x, x' \in X(n), y, y' \in Y(n), x'' \in X(n+1), y'' \in Y(n+1)$. Then we call the set $\psi = \{\psi_n\}$ a pairing of $X \times Y$. When a topological group Δ acts on X, Y, and W and ψ satisfies further

(3.3)
$$\psi_n(x^{\delta}, y^{\delta}) = \psi_n(x, y)^{\delta}; \quad \delta \in \Delta$$

for $x \in X(n)$ and $y \in Y(n)$, we call ψ a Δ -pairing of $X \times Y$. A Γ -pairing is specially called Λ -pairing, for which (3.3) is equivalent to

(3.4)
$$\psi_n(F(T)x, y) = \psi_n(x, \overline{F}(T)y); \quad F(T) \in \Lambda$$

because, if (3.3), $\psi_n(Tx, y) = \psi_n((1+T)x, y) - \psi_n(x, y) = \psi_n(x, (1+T)^{-1}y)^{\gamma} - \psi_n(x, y) = \psi_n(x, \overline{T}y)$ and vise versa. Let $X' \subset X$ and $Y' \subset Y$ be Λ -submodules. We put

$$X'^{\perp}(\psi_n) = \{ y \in Y(n) | \psi_n(x, y) = 0 \text{ for any } x \in X'(n) \}$$
$$Y'^{\perp}(\psi_n) = \{ x \in X(n) | \psi_n(x, y) = 0 \text{ for any } y \in Y'(n) \}$$

Since

$$X'^{\perp}(\psi_n) \subset X'^{\perp}(\psi_{n+1})$$
 and samely $Y'^{\perp}(\psi_n) \subset Y'^{\perp}(\psi_{n+1})$

because of (3.2), we can define

$$X'^{\perp}(\psi) = \lim_{\longrightarrow} X'^{\perp}(\psi_n) \subset Y \text{ and } Y'^{\perp}(\psi) = \lim_{\longrightarrow} Y'^{\perp}(\psi_n) \subset X$$

which are Λ -submodules respectively if ψ is Λ -pairing. In general

 $X'^{\perp}(\psi)(n) \supset X'^{\perp}(\psi_n)$

and the equality is held if X' is divisible, because of (3.2). Similar facts will be held for Y'. When $l^d(Y^{\perp}(\psi)) = \{0\}$ for some $d \ge 0, \psi$ is said left pseudo-nondegenerate and the minimal d_i of such d is called the left degeneracy of ψ . When $d_i=0, \psi$ is said left nondegenerate. The terminologies about right hand side will be used similarly. We put max $\{d_1, d_r\} = d(\psi)$ and call it merely degeneracy of ψ .

Proposition 3.1. i) Let X, X', Y, and Y' be Artinian Λ -modules. Assume there are Λ -homomorphisms

$$\varphi_X : X \to X', \quad \varphi_Y : Y \to Y'$$

If a Λ -pairing $\psi': X' \times Y' \rightarrow W$ is given, we can define a Λ -pairing $\psi: X \times Y \rightarrow W$ by

$$\psi_n(x, y) = \psi'_n(\varphi_X(x), \varphi_Y(y)).$$

ii) Assume both φ_X and φ_Y are surjective and there are $c \ge 0$ and $c' \ge 0$ such that

$$l^{c}(\operatorname{Ker} \varphi_{X}) = \{0\} \text{ and } l^{c'}(\operatorname{Ker} \varphi_{Y}) = \{0\}.$$

If there exists a Λ -pairing $\psi: X \times Y \rightarrow W$, we define $\psi'_n: X'(n) \times Y'(n) \rightarrow W(n)$ by

$$\psi'_n(\varphi_X(x), \varphi_Y(y)) = \psi_n(l^c x, l^{c'} y).$$

Then ψ'_n is well-defined and $\psi' = \{\psi'_n\}$ is a Λ -pairing on $X' \times Y'$. The succession of this map $\psi \rightarrow \psi'$ after the one $\psi' \rightarrow \psi$ given in i) coincides with $l^{c+c'}$ -times map $\psi' \rightarrow l^{c+c'}\psi'$

When specially X and Y are divisible (accordingly so are X' and Y'), $\psi'=0$ will follow only if $\psi=0$.

Proof. Only the last assetion will be required to prove. From the divisibilities of X and Y any $x \in X(n)$ and $y \in Y(n)$ have $l^{-c-c'}x \in X(n+c+c')$ and $l^{-c-c'}y \in Y(n+c+c')$. If $\psi'=0$,

$$\begin{split} \psi_{n}(x, y) &= \psi_{n+c+c'}(l^{-c-c'} x, y) \\ &= \psi_{n+c+c'}(l^{c}(l^{-c-c'} x), l^{c'}(l^{-c-c'} y)) \\ &= \psi_{n+c+c'}'(\varphi_{X}(l^{-c-c'} x), \varphi_{Y}(l^{-c-c'} y)) = 0. \end{split}$$

Our interests are on the pseudo-nondegeneracy of ψ , so the discussion will

be limitted in the case where X and Y are divisible.

Theorem 3.2. Let X and Y be divisible Artinian Λ -modules and $f_X(T)$ and $f_Y(T)$ have no common prime factor. Then any Λ -pairing $\psi: X \times Y \rightarrow W$ is trivial.

Proof. Case 1. One of X and Y is $\hat{\Lambda}$ -free, say $X = \dot{r}\hat{\Lambda}$. Take $x \in X(n)$ and $y \in Y(n)$. Since both X and Y are injective limits of finite *l*-groups, there is $m \gg 0$ such that

$$T_m x = 0$$
, $T_m y = 0$, and $T_m W(n) = 0$.

Since $\Lambda = \lim_{\substack{\longleftarrow \\ m,n \ }} (\Lambda/(l^n, T_m))$, we have $\hat{\Lambda} = \lim_{\substack{\longrightarrow \\ m,n \ }} (\Lambda/(l^n, T_m))^{\wedge}$ so $X(n) = \dot{r}(\lim_{\substack{\longrightarrow \\ m \ }} (\Lambda/(l^n, T_m))^{\wedge})$.

Here $(\Lambda/(l^n, T_{m'}))^{\wedge} \cong (\Lambda/(l^n, T_{m'}))^*$ as Λ_m -modules if m' > m because of $T_m W(n) = 0$ and $\Lambda/(l^n, T_{m'}) \cong Z_l(n) [\Gamma(m')]$ a self-dual Λ_m -module. Put $\Gamma(m, m') = \Gamma^{l^m/n} \Gamma^{l^m/n} \subset \Gamma(m') = \Gamma/\Gamma^{l^m/n}$. Since $Z_l(n)[\Gamma(m')]^{\Gamma(m,m')}$ (the submodule of $\Gamma(m, m')$ -invariant elements) coincides with the norm group $N_{\Gamma(m,m')} Z_l(n)[\Gamma(m')]$ we can write with $x' \in X(n)$ and m' = m + n,

$$x = N_{m'm} x' = [1 + (1 + T_m) + \dots + (1 + T_m)^{n-1}] x'.$$

So

$$\psi_n(x, y) = \psi_n(N_{m'm}x', y) = \psi_n(x', \overline{N_{m'm}}y)$$
$$= \psi_n(x', l^n y) = 0.$$

Case 2. One of X and Y is Λ -divisible, say $\dot{r}\Lambda \cong X$ surjective. Think of this $\dot{r}\Lambda \to X$ and $Y \xrightarrow{\text{id.}} Y$. From the results of Case 1 and Proposition 3.1, $l^c \psi = 0$ if $l^c(\text{Ker}(\dot{r}\Lambda \to X)) = 0$. So, from (3.2) and the divisibilities of X and Y, $\psi = 0$. Case 3. $\Lambda^{\infty}X = \{0\}$ and $\Lambda^{\infty}Y = \{0\}$. Since $E(X) \cong X$ and $E(Y) \cong Y$ are both surjective from the divisivilities of X and Y, we have

$$f_X(T)X = \{0\}, f_Y(T)Y = \{0\}.$$

From GCM $\{f_X(T), f_Y(T)\} = 1$ we can find $A(T), B(T) \in \Lambda$ and $m \ge 0$ such that

$$A(T)f_{X}(T)+B(T)f_{Y}(T)=l^{m}.$$

Here, for any $x \in X(n)$ and $y \in Y(n)$ we take $l^{-m}x \in X(m+n)$ and $l^{-m}y \in Y(m+n)$ then

$$\begin{split} \psi_n(x, y) &= \psi_{m+n}(x, l^{-m}y) \\ &= \psi_{m+n}(B(T)f_Y(T)l^{-m}x, l^{-m}y) \\ &= \psi_{m+n}(B(T)l^{-m}x, l^{-m}\bar{f}_Y(T)y) \\ &= 0. \end{split}$$

General case. Using Theorem 2.3 we decompose

$$X = X_{\Lambda df} + \Lambda^{\infty} X, \quad Y = Y_{\Lambda df} + \Lambda^{\infty} Y.$$

From the above results, the four restrictions $\psi|_{X \wedge df \times Y \wedge df}$, ... etc. are all naught pairings.

Corollary 3.3. When X and Y are divisible and $\psi: X \times Y \rightarrow W$ is a Λ -pairing,

$$Y^{\perp}(\psi) \supset \Lambda^{\infty} X, \quad X^{\perp}(\psi) \supset \Lambda^{\infty} Y.$$

By the similar calculations used in the above proof Case 3, the next theorem is easy therefore the proof is omitted.

Theorem 3.4. Let X and Y be divisible Artinian pseudo-indecomposable Λ -modules such that $E(X) = \hat{E}(\mathbf{p}^e)$, $E(Y) = \hat{E}(\mathbf{\bar{p}}^f)$ with $e, f \ge 1$ where \mathbf{p} is a prime in Λ . Then, for any Λ -pairing $\psi: X \times Y \rightarrow W$,

$$Y^{\perp}(\psi) \supset \overline{p}^{f} X$$
 and $X^{\perp}(\psi) \supset p^{e} Y$.

Therefore if e > f (or e < f) ψ is left (or right resp.) degenerate, accordingly if $e \neq f$, ψ is degenerate.

Let

 $X = \Lambda^{\infty} X + (l^{\infty} X)_{\Lambda df} + (\text{bounded exponent})$ $Y = \Lambda^{\infty} Y + (l^{\infty} Y)_{\Lambda df} + (\text{bounded exponent})$

as in Corollary 2.4. From Corollary 3.3

$$\psi|_{\Lambda^{\infty}X\times *}=0 \text{ and } \psi|_{*\times\Lambda^{\infty}X}=0.$$

Of course

$$\psi|_{(\text{bounded exp-})\times *}$$
 and $\psi|_{*\times(\text{bounded exp-})}$

have both bounded exponents. So, about the pseudo-nondegeneracy of ψ only to investigate

$$\psi|(l^{\infty}X)_{\Lambda df} \times (l^{\infty}Y)_{\Lambda df}$$

is interseting. When the last is pseudo-nondegenerate, we say ψ is essentially pseudo-nondegerate.

Theorem 3.5. Let X and Y be divisible Λ -divisibility-free Artinian Λ -modules and $\psi: X \times Y \rightarrow W$ be a pseudo-nondegenerate Λ -pairing. When $E(X) = \hat{E}(\mathbf{p}_1^{e_1}, \dots, \mathbf{p}_s^{e_s}), E(Y)$ is of the form

$$E(Y) = \hat{E}(\overline{p}_1^{\epsilon_1}, \cdots, \overline{p}_s^{\epsilon_s}).$$

Put

$$X = X_1 + \dots + X_s, \quad |X_i \cap \Sigma_{j \neq i} X_j| < \infty$$

where $E(X_i) = \hat{E}(\mathbf{p}_i^{\epsilon})$ the *i*-th direct factor of E(X) (cf. Theorem 2.5). Then we can put

$$Y = Y_1 + \cdots + Y_s, \quad |Y_i \cap \Sigma_{j \neq i} Y_j| < \infty$$

where $E(Y_i) = \hat{E}(\bar{p}_i^{\epsilon_i})$ the *i*-th direct factor of E(Y) and

$$\psi|_{x_i \times y_j}$$
 is

$$\begin{cases} pseudo-nondegenerate & if \quad i=j\\ 0 & if \quad i\neq j. \end{cases}$$

Proof. Let $E(X) = \hat{E}(\boldsymbol{p}_1^{e_1}, \dots, \boldsymbol{p}^{e_s})$ and $E(Y) = \hat{E}(\boldsymbol{q}_1^{f_1}, \dots, \boldsymbol{q}_t^{f_t})$. Put $X_2 + \dots + X_s = X_1' (=0 \text{ if } s=1)$. Then

$$X = X_1 + X_1'$$
 and $l'(X_1 \cap X_1') = 0$ for some $e \ge 0$.

Put $Y_1 = l^{\infty}(X'_1^{\perp}(\psi))$ and $Y'_1 = l^{\infty}(X^{\perp}_1(\psi))$. Since $l^{\ell}(X_1(n) \cap X'_1(n)) = 0$, it follows that

$$\begin{array}{c} \mathcal{L}^{e}Y(n) \subset X(e)^{\perp}(\psi_{n}) & (n \geq e) \\ \subset X_{1}^{\perp}(\psi_{n}) + X_{1}^{\prime \perp}(\psi_{n}) \end{array}$$

and consequently

$$Y = l^{e}Y = Y_{1} + Y'_{1}$$
.

From this we know that $s \ge 2$ means $t \ge 2$. Interchanging X and Y, s=1 if and only if t=1. The proof will be done by the induction about s easily from here.

4. Λ -modules comming from Galois theory of the cyclotomic Z_l -extension

We fix an algebraic number field k having a finite degree over the rational numer field Q and its algebraic closure k^{alg}/k . The algebraic closure of the local field k_p , the completion of k at a prime spot \mathfrak{p} , is obtained by the composite of k_p and $k^{alg}: k_p^{alg} = k_p k^{alg}$. An algebraic extension of k is always taken in k^{alg}/k and the local one in k_p^{alg}/k_p . We put

$$\zeta_n = \exp\left(2\pi i/l^n\right) \in k^{alg}; \quad n = 0, 1, \cdots.$$

For a local or global field F the rational integer $\nu \ge 0$ such that $\zeta_{\nu} \in F$ but $\zeta_{\nu+1} \notin F$ will be denoted by $\nu(F)$. When a Galois extension of a field has a pro-l group as its Galois group, we call this extension a Galois *l*-extension and a subfield of a Galois *l*-extension merely *l*-extension. Let $\infty > \nu(F) = \nu \ge 1$ (≥ 2 if l=2). We put $F_n = F(\zeta_{\nu+n})$; $n \ge 0$, the cyclotomic cyclic extension of degree l^n and $F_{\omega} = F(\zeta_{\omega})$

= $F(\zeta_n | n=1, 2,...)$ the cyclotomic \mathbb{Z}_l -extension. Let Gal $(F_{\omega}/F) = \Gamma = \langle \gamma \rangle$ and $\gamma: \zeta_n \mapsto \zeta_n^{1+\kappa}, \kappa \in 2l\mathbb{Z}_l, n=1, 2, \cdots$. We define an involutive automorphism $F(T) \to F(T)$ in Λ as in Section 3. Assume we are given a Galois *l*-extension Ω/F containing F_{ω} . Put

$$M = \operatorname{Gal}\left(\Omega/F_{\omega}\right)/\operatorname{Gal}\left(\Omega/F_{\omega}\right)^{c}$$

where Gal $(\Omega/F_{\omega})^{c}$ denotes the commutator subgroup of Gal (Ω/F_{ω}) . After any extending of γ in Gal (Ω/F) , via the inner automorphism $\sigma \mapsto \gamma^{-1}\sigma\gamma$, M becomes a \mathbb{Z}_{l} - Γ -module, accordingly a Λ -module. By Kummer theory we can identify

$$\hat{M}(n) = (\Omega^{l^n} \cap F^{\times}_{\omega})/(F^{\times}_{\omega})^{l^n}.$$

Therefore, noting that $((\Omega^{l^n} \cap F_{\omega}^{\times})/(F_{\omega}^{\times})^{l^n})^{\Gamma} = (\Omega^{l^n} \cap F^{\times})/(F^{\times})^{l^n} \langle \zeta_{\nu(F)} \rangle$ where $(*)^{\Gamma}$ means the subgroup of the Γ -invariant elements, we know

Lemma 4.1. (4.1)
$$(M/\overline{T}M)^{\wedge}(n) = (\Omega^{i^n} \cap F^{\times})/(F^{\times})^{i^n} \langle \zeta_{\nu(F)} \rangle$$
.
Therefore

(4.2)
$$(M/\bar{T}M)^{\wedge} = \lim_{\rightarrow} (\Omega^{l^{n}} \cap F^{\times})/(F^{\times})^{l^{n}} \langle \zeta_{\nu(F)} \rangle$$

being defined by the l-times map $(\Omega^{l^n} \cap F^{\times})/(F^{\times})^{l^n} \langle \zeta_{\nu(F)} \rangle \to (\Omega^{l^{n+1}} \cap F^{\times})/(F^{\times})^{l^{n+1}} \langle \zeta_{\nu(F)} \rangle$ such that $x \mod (F^{\times})^{l^n} \langle \zeta_{\nu(F)} \rangle \mapsto x^l \mod (F^{\times})^{l^{n+1}} \langle \zeta_{\nu(F)} \rangle$.

When Gal (Ω/F) is a free pro-*l* group with *r* free generators we call Ω/F a free pro-*l* extension of rank *r*.

Lemma 4.2. Assume Ω/F is a free pro-lextension of rank r. Fix an $m \ge 0$ and put $\operatorname{Gal}(F_m/F) = \Gamma(m) = \Gamma/\Gamma^{l^m}$. Then

$$(4.3) M \simeq (r-1)^{\bullet} \Lambda$$

(4.4)
$$\lim_{n} ((\Omega^{l^n} \cap F_m^{\times})/(F_m^{\times})^{l^n}) \simeq \langle \zeta_{\nu(F)+m} \rangle \times (r-1)^* \mathbb{Z}_l[\Gamma(m)]$$

being defined by the canonical map $(\Omega^{l^{n+1}} \cap F_m^{\times})/(F_m^{\times})^{l^{n+1}} \to (\Omega^{l^n} \cap F_m^{\times})/(F_m^{\times})^{l^n}$ (x mod $(F_m^{\times})^{l^{n+1}} \mapsto x \mod (F_m^{\times})^{l^n}$).

Proof. Take $\{\gamma, \sigma_1, \dots, \sigma_{r-1}\}$ a free generator system of Gal (Ω/F) so that γ is as above and $\sigma_i|_{F_{\infty}} = \text{id.}, i=1, \dots, r-1$. We know for the free pro-*l* group Gal (Ω/F) and its normal subgroup Gal (Ω/F_n) with finite cyclic factor group $\Gamma(n) = \Gamma/\Gamma^{l^n}$,

$$\operatorname{Gal}\left(\Omega/F_{n}\right) = \langle \gamma^{l^{n}}, \gamma^{-j}\sigma_{i}\gamma^{j} | 1 \leq i \leq r-1, 0 \leq j \leq l^{n}-1 \rangle$$

a free pro-*l* group of rank $(r-1)l^n+1$. (Schreier's Theorem, regardless pro-*l* topology. To modify it in the case of pro-*l* group is an elementary work.) Therefore

$$\operatorname{Gal}\left(\Omega/F_{\omega}\right)/\operatorname{Gal}\left(\Omega/F_{n}\right)^{c} \cong (r-1)^{\bullet} \boldsymbol{Z}_{l}[\Gamma(n)].$$

Taking lim,, we have

$$M \simeq (r-1)^{\bullet} \Lambda$$
.

The next (4.4) is a direct consequence of (4.1) and (4.3).

Now, at each \mathfrak{p} in k we shall fix a free pro-l extension $\Omega^{\mathfrak{p}}/k_{\mathfrak{p}}$ satisfying

$$(4.5) \qquad \qquad \Omega^{\mathfrak{p}} \supset k_{\mathfrak{p}\omega} \,.$$

When \mathfrak{p} is not on (*l*), $\Omega^{\mathfrak{p}}$ is necessarily the unramified \mathbb{Z}_{l} -extension. For any finite *l*-extension K/k and a prolongation $\mathfrak{P}|\mathfrak{p}$, we put

$$\Omega^{\mathfrak{P}} = \Omega^{\mathfrak{p}} K / K_{\mathfrak{B}}$$

which is also a free pro-*l* extension, because we can regard $\operatorname{Gal}(\Omega^{\mathfrak{B}}/K_{\mathfrak{B}})\subset \operatorname{Gal}(\Omega^{\mathfrak{P}}/k_{\mathfrak{p}})$ with finite index. Let $\overline{K_{\mathfrak{B}}} = \lim_{n} K_{\mathfrak{B}}^{\times}/K_{\mathfrak{B}}^{\times n}$ the pro-*l*-closure of $K_{\mathfrak{B}}^{\times}$. Any element $\xi \in \overline{K_{\mathfrak{B}}^{\times}}$ is written as

$$\boldsymbol{\xi} = \lim \left(\boldsymbol{\xi}_n \mod (K_{\mathfrak{B}}^{\times})^{l^n} \right); \, \boldsymbol{\xi}_n \in K_{\mathfrak{B}}^{\times}, \quad \boldsymbol{\xi}_n \equiv \boldsymbol{\xi}_{n+1} \mod (K_{\mathfrak{B}}^{\times})^{l^n}.$$

We call ξ an $\Omega^{\mathfrak{B}}$ -element if

$$K_{\mathfrak{B}_{\omega}}(\sqrt[l^n]{\xi_n}) \subset \Omega^{\mathfrak{B}}; \quad n = 1, 2, \dots.$$

The group of the $\Omega^{\mathfrak{P}}$ -elements will be denoted by $E_{\mathfrak{P}}$, which is nothing but the left hand side of (4.4). Therefore

Proposition 4.3. Let rank Gal $(\Omega^{\mathfrak{p}}/k_{\mathfrak{p}})=r_{\mathfrak{p}}$. Let $k_{\mathfrak{p}\mathfrak{m}}=K_{\mathfrak{B}}$. We have $\overline{K_{\mathfrak{B}}^{\times}} \supset E_{\mathfrak{B}} \supset \langle \zeta_{\mathfrak{p}(\mathfrak{B})} \rangle$; $\nu(\mathfrak{P})=\nu(K_{\mathfrak{B}})$, and

$$E_{\mathfrak{P}} \simeq \langle \zeta_{\mathfrak{v}(\mathfrak{P})} \rangle \times (r_{\mathfrak{p}} - 1) \cdot \mathbf{Z}_{l}[\Gamma(m)] \qquad (direct) \,.$$

Regard $\overline{k_{\mathfrak{p}}^{\times}} \subset \overline{K_{\mathfrak{R}}^{\times}}$ canonically, the former being composed of all the Gal $(K_{\mathfrak{P}}/k_{\mathfrak{p}})$ invariant elements. Then $E_{\mathfrak{p}} = E_{\mathfrak{P}} \cap \overline{k_{\mathfrak{p}}^{\times}} = N_{K_{\mathfrak{P}}/k_{\mathfrak{p}}} E_{\mathfrak{P}}$.

A local abelian *l*-extension $F/K_{\mathfrak{B}}$ will be called an $\Omega^{\mathfrak{P}}$ -orthogonal extension if

$$E_{\mathfrak{P}} \subset \overline{N_{F/K_{\mathfrak{P}}}} \overline{F^{\times}} (= \cap K_{\mathfrak{P}} \subset F' \subset F, [F' : K_{\mathfrak{P}}] < \infty N F'/K_{\mathfrak{P}} \overline{F'^{\times}} \subset \overline{K_{\mathfrak{P}}^{\times}}$$

a compact subset)

For example, if \mathfrak{P} is not on (*l*), then $\Omega^{\mathfrak{P}} = K_{\mathfrak{B}\omega}$. When $\Omega^{\mathfrak{P}} = K_{\mathfrak{B}\omega}$, $E_{\mathfrak{P}} = \langle \zeta_{\nu(\mathfrak{P})} \rangle$ and an $\Omega^{\mathfrak{P}}$ -orthogonal extension is the compound of all the \mathbb{Z}_l -extensions or one of its subextensions.

Proposition 4.4. If \mathfrak{B} is not on (1), an $\Omega^{\mathfrak{B}}$ -orthogonal extension of $K_{\mathfrak{B}}$ is nothing but the cyclotomic (or samely, unramified) \mathbb{Z}_1 -extension $\Omega^{\mathfrak{B}}/K_{\mathfrak{B}}$ or its subexten-

sion. If \mathfrak{P} is on (l), the maximal $\Omega^{\mathfrak{P}}$ -orthogonal exension of $K_{\mathfrak{P}}$ is a $([K_{\mathfrak{P}}; \mathbf{Q}_{l}]+2-r_{\mathfrak{P}})pl_{\mathfrak{r}} \mathbf{Z}_{l}$ -extension:

Gal (max. $\Omega^{\mathfrak{P}}$ -orth./ $K_{\mathfrak{P}}$) $\simeq ([K_{\mathfrak{P}}: \mathbf{Q}_{l}] + 2 - r_{\mathfrak{P}})^{\cdot} \mathbf{Z}_{l}$

where $r_{\mathfrak{B}}=$ rank Gal $(\Omega^{\mathfrak{B}}/K_{\mathfrak{B}})$. In the case $k_{\mathfrak{p}}\subset K_{\mathfrak{B}}\subset k_{\mathfrak{p}\omega}=k_{\mathfrak{p}}(\zeta_{\infty})$, an abelian extension $F/k_{\mathfrak{p}}$ is $\Omega^{\mathfrak{p}}$ -orthogonal if and only if so is $K_{\mathfrak{B}}F/K_{\mathfrak{B}}$.

Anyway, any abelian extension in $\Omega^{\mathfrak{P}}/K_{\mathfrak{P}}$ is $\Omega^{\mathfrak{P}}$ -orthogonal.

Proof. We may treat only the case $\mathfrak{P}|(l)$. By Artin-Waples theorem

$$\overline{K^{ imes}_{\mathfrak{B}}}/{\langle}{\zeta}_{\mathfrak{v}(\mathfrak{B})}{
angle}\cong([K_{\mathfrak{B}}:oldsymbol{Q}_{l}]\!+\!1)^{ullet}oldsymbol{Z}_{l}$$
 ,

Using the local class field theory and Lemma 4.2 we can determine the type of Gal (max. $\Omega^{\mathfrak{P}}$ -orth./ $K_{\mathfrak{P}}$) as asserted. Since (after extension to $\overline{k_{\mathfrak{p}}^{\times}}$) norm residue symbol $(\xi, F/k_{\mathfrak{p}})=$ id. for any $\xi \in E_{\mathfrak{p}}$ if and only if $F/k_{\mathfrak{p}}$ is $\Omega^{\mathfrak{p}}$ -orthogonal, we can conclude our proof because $(\xi', K_{\mathfrak{P}}F/K_{\mathfrak{P}})=(N_{K_{\mathfrak{P}}}/k_{\mathfrak{p}}\xi', F/k_{\mathfrak{p}}); \xi' \in E_{\mathfrak{P}}$ and $N_{K_{\mathfrak{P}}}/k_{\mathfrak{p}}$ $E_{\mathfrak{P}}=E_{\mathfrak{p}}$ by Proposition 4.3.

Next we shall define global matters. From now on we fix k such that

$$\nu(K) \ge 1$$
 (≥ 2 if $l=2$).

Let K/k be a finite *l*-extension, again. If L/K is an *l*-extension and every $K_{\mathfrak{B}}L$ is in $\Omega^{\mathfrak{B}}$, then we say L/K is an Ω -extension. If M/K is an abelian *l*-extension and every $K_{\mathfrak{B}}M/K_{\mathfrak{B}}$ is an $\Omega^{\mathfrak{B}}$ -orthogonal extension, we say M/K is an Ω^{\perp} -extension. An abelian Ω -extension is always Ω^{\perp} -extension by Proposition 4.3 and an Ω^{\perp} -extension is always *l*-ramified, i.e. unramified at every \mathfrak{P} not on (*l*). Noting that the compound of Ω -extensions is again an Ω -extension and samely for Ω^{\perp} -extensions, we can define

 $\Omega^{ab}(K) =$ the maximal abelian Ω -extension of K $\Omega^{\perp}(K) =$ the maximal Ω^{\perp} -extension of K.

For infinite extension k_{ω}/k we put

$$egin{aligned} \Omega^{ab}(k_{\omega}) &= \ \cup_{n < \omega} \Omega^{ab}(k_n) \ \Omega^{\perp}(k_{\omega}) &= \ \cup_{n < \omega} \Omega^{\perp}(k_n) \,. \end{aligned}$$

Since both $\Omega^{ab}(k_{\omega})$ and $\Omega^{\perp}(k_{\omega})$ are Galois over k and contained in the maximal abelian *l*-ramified *l*-extension $k^{(l)-ram}/k$,

$$M = \operatorname{Gal} \left(\Omega^{ab}(k_{\omega}) / k_{\omega} \right)$$

 $N = \operatorname{Gal} \left(\Omega^{\perp}(k_{\omega}) / k_{\omega} \right)$

are Noetherian Λ -modules by Lemma 4.1. Further we put

$$X = \hat{M}$$
$$Y = \hat{N}$$

which are Artinian Λ -modules. We can set

$$egin{aligned} X(n) &= (\Omega^{ab}(k_\omega)^{l^n} \cap k_\omega^{ imes})/(k_\omega^{ imes})^{l^n} \ Y(n) &= (\Omega^{\perp}(k_\omega)^{l^n} \cap k_\omega^{ imes})/(k_\omega^{ imes})^{l^n} \end{aligned}$$

by Kummer theory.

5. A pairing defined by the triple symbol

Here we shall define a pairing $\Psi: X \times Y \to W$ using the triple symbol ([1]). The symbol $(x, y, z | k)_{i^n}$ is defined when $\zeta_n \in k$, x and y are strictly orthogonal, and three elements x, y, and z are orthogonal in some conditions. Specially if l=2, the definitions are complicated, but if $\zeta_{n+2} \in k$ they are a little simpler (cf. Introduction of [1]). We shall recall them here. Take

$$\begin{aligned} \bar{x} &= (x \mod (k_{\omega}^{\times})^{l^{n}}) \in X(n), \quad x \in \Omega^{ab}(k_{\omega})^{l^{n}} \cap k_{\omega}^{\times} \\ \bar{y} &= (y \mod (k_{\omega}^{\times})^{l^{n}}) \in Y(n), \quad y \in \Omega^{\perp}(k_{\omega})^{l^{n}} \cap k_{\omega}^{\times} \end{aligned}$$

and $m \gg 0$ so that $x, y, \zeta_n \in k_m$ (then $x \in \Omega^{ab}(k_m)^{l^n} \cap k_m^{\times}$ and $y \in \Omega^{\perp}(k_m)^{l^n} \cap k_m^{\times}$ for some $m' \ge m$. From Proposition 4.4 we have also $y \in \Omega^{\perp}(k_m)^{l^n} \cap k_m^{\times}$). Then three elements $\{x, y, \zeta_{\nu+m}\} \subset k_m^{\times}$ are orthogonal mod $(k_m^{\times})^{l^n}$ i.e.

$$\left(\frac{x, y}{\mathfrak{p}}\right)_{l^n} = \left(\frac{y, \zeta_{\mathfrak{v}+\mathfrak{m}}}{\mathfrak{p}}\right)_{l^n} = \left(\frac{\zeta_{\mathfrak{v}+\mathfrak{m}}, x}{\mathfrak{p}}\right)_{l^n} = 1$$

at any \mathfrak{p} in k_m about Hilbert-Hasse symbol and specially $\{x, \zeta_{\nu+m}\}$ are strictly orthogonal mod $(k_m^{\times})^{l^n}$, i.e. moreover

$$k_{ml}(\sqrt[l^n]{x}, \sqrt[l^n]{\zeta_{\nu+m}}) \subset \Omega^l$$

at any l|(l) in k_m . (Samely as the case $l \neq 2$, in case l=2 and $\zeta_{n+2} \in k_m$, we say x and $\zeta_{\nu+m}$ are strictly orthogonal mod $(k_m^{\times})^{l^n}$ if some one in $x(k_m^{\times})^{l^n}$ and the other in $\zeta_{\nu+m}(k_m^{\times})^{l^n}$ are strictly orthogonal. When l=2, some more conditions than the above inclusion are required outside l for the strict orthogonality, but in the present case where $\zeta_{n+2} \in k_m$, we may check further only that x and $\zeta_{\nu+m}$ are orthogonal mod $(k_m^{\times})^{2^{n+1}}$. These will be known easily if we compair the original definition of strict orthogonality and the present modified one. Of course x and $\zeta_{\nu+m}$ are orthogonal mod $(k_m^{\times})^{2^{n+1}}$.) Since $y \in \Omega^{\perp}(k_m)^{l^n} \cap k_m^{\times}$ it follows that $(\xi, y|k_{mq})_{l^n}=1$ for $\xi \in (\Omega^{q})^{l^n} \cap k_m^{\times}$. So, using the statements at p169 [1], (the *l*-independence of $\{x, \zeta_{\nu+m}\}$ is not essential as seen in ii) 3 [1]) the symbol in extended sense

$$(x, \zeta_{\nu+m}, y; \zeta_n | k_m)_{l^n}$$
 (=(x, $\zeta_{\nu+m}, y)_{l^n}$ by abbrev.)

can be defined. Fix an identification $W = \langle \zeta_{\infty} \rangle = \langle \zeta_n | n \ge 1 \rangle$ corresponding $w_n = (1 \mod (l^n, T - \kappa)) \in W$ to ζ_n . We put

(5.1)
$$\Psi_n(\bar{x}, \, \bar{y}) = (x, \, \zeta_{\nu+m}, \, y)_{l^n} \, .$$

Denote the set of all the l in k_m over (l) by $S(k_m)$ or simply by S.

Proposition 5.1. By means of (5.1) $\Psi_n(\bar{x}, \bar{y})$ is well-defined, namely the value $(x, \zeta_{\nu+m}, y)_{l^n}$ in W does not depend on the choice of $m \ge 0$ and $x, y \in k_m$ such that ζ_n (and ζ_{n+2} if $l=2) \in k_m$, $\bar{x}=(x \mod (k_{\omega}^{\times})^{l^n})$, and $\bar{y}=(y \mod (k_{\omega}^{\times})^{l^n})$.

Proof. At first we fix an $m \ge 0$ as above and assume \bar{x} is of order l^n , i.e.

$$(5.2) x \in (k_m^{\times})^l \langle \zeta_{\nu+m} \rangle.$$

Put $k_{m+n} = K$. As it is shown in Proposition 1 [1] we can find $a \in K^{\times}$ satisfying

$$a^{1-\sigma} \equiv x \mod (K^{\times})^{k^{n}}$$

for $\sigma \in \text{Gal}(K(\ell^n \sqrt{x})/k_m(\ell^n \sqrt{x}))$ such that $\zeta_{\nu+m+n} = \zeta_n \zeta_{\nu+m+n}$

(5.4)
$$\operatorname{Gal}\left(K({}^{l^{n}}\sqrt{x}, {}^{l^{n}}\sqrt{a})/K\right) \cong \operatorname{Gal}\left(K({}^{l^{n}}\sqrt{x}, {}^{l^{n}}\sqrt{a})/k_{\mathfrak{m}}({}^{l^{n}}\sqrt{x})\right) \\ \cong \mathbb{Z}_{l}(n) \times \mathbb{Z}_{l}(n)$$

(5.5)
$$k_{m\mathfrak{l}}(\zeta_{\nu+m+n}, \sqrt[l^n]{x}, \sqrt[l^n]{a}) \subset \Omega^{\mathfrak{l}} \text{ at any } \mathfrak{l} \in S.$$

Then the principal ideal (a) in K can be written as

$$(a) \equiv \mathfrak{a} \pmod{l^n}\text{-power, mod } S) \qquad \text{in } K$$

where a is an ideal in k_m , having no-S-factor, namely (a) = a except l^* -th power ideal and S-factor in K. After these preliminary, the triple symbol is well-defined by

$$(x, \zeta_{\nu+m}, y)_{l^n} = \left(\frac{y | k_m}{a}\right)_{l^n}$$

using the Hilbert symbol on the right hand side. Here we remark that the condition (5.4) is equivalent (under (5.3)) to the splitting of the canonical exact sequence

$$1 \rightarrow \text{Gal} \left(K({}^{i^n}\sqrt{x}, {}^{i^n}\sqrt{a})/K \right) \rightarrow \text{Gal} \left(K({}^{i^n}\sqrt{x}, {}^{i^n}\sqrt{a})/k_m \right) \\ \rightarrow \text{Gal} \left(K/k_m \right) \rightarrow 1$$

in other words

(5.6)
$$l^n \sqrt{a^{\sigma^{l^n}-1}} = 1$$
.

Y. AKAGAWA

As far as we use (5.6) instead of (5.4), the first assumption (5.2) is of no use for the definition of triple symbol ([1], p175 ii) § 3) so (5.6) is more useful than (5.4). After *m* is fixed the choices of *x*, $y \in k_m$ are free by the multiplying of elements of $k_{\omega}^{I^n} \cap k_m^{\times} = (k_m^{\times})^{I^n} \langle \zeta_{\nu+m} \rangle$ therefore *x* and *y* may be replaced by $x\zeta$ and $y\zeta'$; ζ , $\zeta' \in (k_m^{\times})^{I^n} \langle \zeta_{\nu+m} \rangle$. But, even this replacement we can use the same *a* because $x\zeta \equiv x \mod (K^{\times})^{I^n}$, therefore *a* is reserved and

$$\left(\frac{\zeta'}{\mathfrak{a}}\right)_{l^n} = \left(\frac{\zeta''|K}{\mathfrak{a}}\right)_{l^n}$$

using $\zeta'' \in (K^{\times})^{l^n} \langle \zeta_{\nu+m+n} \rangle$ such that $N_{K/k_m} \zeta'' \equiv \zeta' \mod (k_m^{\times})^{l^n}$ and continuing the calculation

$$= \Pi \mathfrak{P} \text{ in } \mathfrak{a}, \text{ in } K \left(\frac{a, \zeta'' | K}{\mathfrak{P}} \right)_{l^n}$$
$$= \Pi \mathfrak{P} | (l) \left(\frac{\zeta'', a | K}{\mathfrak{P}} \right)_{l^n}$$
$$= 1$$

by (5.5). Accordingly

$$\left(\frac{y\zeta'}{a}\right)_{l^n} = \left(\frac{y}{a}\right)_{l^n}.$$

Thus, we may show the independence of our symbol about the choice of m. Let m' > m. The remained task is to show

(5.7)
$$(x, \zeta_{\nu+m'}, y; \zeta_n | k_{m'})_{l^n} = (x, \zeta_{\nu+m}, y; \zeta_n | k_m)_{l^n}$$

Assume in a time being

$$(5.8) y \in \Omega^{ab}(k_m)^{l^n} \cap k_m^{\times}$$

samely as x. Since $\zeta_{\nu+m} = N_{k_{m'}/k_m} \zeta_{\nu+m'}$, from the transgression theorem of triple symbols ([1], Theorem 1 IV)) we have (5.7). When not necessarily (5.8) is held, let $a' \in K' = k_{m'+n}$ satisfy the equivalents of (5.3), (5.6), and (5.5), over $k_{m'}$. Put $L = k_m(\zeta_{\nu+m'+n}, \sqrt[l^n]{x}, \sqrt[l^n]{a}, \sqrt[l^n]{a'})$ (or $= k_m(\zeta_{\nu+m'+n+1}, \sqrt[l^{n+1}]{x}, \sqrt[l^n]{a}, \sqrt[l^n]{a'})$ if l=2). Since

 $k_{ml}L \subset \Omega^{l}$ at each $l \in S$

we have

$$y \in N_{k_{ml}L/k_{ml}}(k_{ml}L)^{\times}$$
 at each $l \in S$

(c.f. Lemma 1 [1]) so, using the density theorem in the class field theory we can find $z \in L^{\times}$ such that

Artinian Λ -Module and Pairing

(5.9)
$$N_{L/k_m} z \equiv y \mod ((k_m L)^{\times})^{l^m} \text{ at each } I \in S$$

(5.10)
$$(z) = 3 \pmod{S(L)},$$

3 being a prime in L fully decomposed in L/k_m .

Put

$$N_{L/k_m} z = y' \in k_m$$
.

Then from the definition we have easily

$$(x, \zeta_{\nu+m}, y'; \zeta_n | k_m)_{l^n} = \left(\frac{y' | k_m}{a}\right)_{l^n} = 1,$$

$$(x, \zeta_{\nu+m'}, y'; \zeta_n | k_{m'})_{l^n} = \left(\frac{y' | k_{m'}}{a'}\right)_{l^n} = 1,$$

of course after the checking of the posibility of definition. So, for (5.7) we may prove

(5.11)
$$(x, \zeta_{\nu+m}, yy'^{-1}; \zeta_n | k_m)_{i^n} = (x, \zeta_{\nu+m'}, yy'^{-1}; \zeta_n | k_{m'})_{i^n}.$$

But in this time $\{x, \zeta_{\nu+m}, yy'^{-1}\}$ in k_m are strictly orthogonal $\operatorname{mod}(k_m)^{l^n}$ by (5.9) and (5.10) accordingly so are $\{x, \zeta_{\nu+m'}, yy'^{-1}\}$ in $k_{m'}$. By the same reason as the case of (5.8) we can obtain (5.11).

Now, our $\Psi_n: X(n) \times Y(n) \to W(n)$ satisfy (3.1) because of Theorem 1 [1]. When $\bar{x}=(x \mod(k_{\omega})^{n+1}) \in X(n+1)$ and $\bar{y}=(y \mod(k_{\omega})^{n}) \in Y(n)$, $l\bar{x}=(x \mod(k_{\omega})^{n}) \in X(n)$ and $\bar{y}=(y^{l} \mod(k_{\omega})^{l^{n+1}}) \in Y(n+1)$ therefore

$$\Psi_n(l\bar{x}, \bar{y}) = (x, \zeta_{\nu+m}, y)_{l^n} \quad (x, y \in k_m)$$
$$= (x, \zeta_{\nu+m}, y^l)_{l^{n+1}}$$
$$= \Psi_{n+1}(\bar{x}, \bar{y})$$

which means the former of (3.2). The latter will be obtained by the alternative arguments samely. As (3.3) follows from Theorem 1 III [1] we can conclude

Theorem 5.2. Our $\Psi = \{\Psi_n\}$ is a Λ -pairing $X \times Y \rightarrow W$.

6. Quasi-nondegeneracy of Ψ

Lemma 6.1. Let $\zeta_n \in k$ and an ideal \mathfrak{a} in k have no S-factor. Assume

(6.1)
$$\left(\frac{y|k}{a}\right)_{l^n} = 1 \quad \text{for any} \quad y \in \Omega^{\perp}(k)^{l^n} \cap k^{\times}$$

Then there is an element $c \in k^{\times}$ such that

(6.2)
$$(c) \equiv a \pmod{l^n}$$
-th power, mod S)

(6.3)
$$k_{\mathbf{r}}({}^{l^{n}}\sqrt{c}) \subset \Omega^{\mathbf{I}} \text{ at every } \mathbf{I}|(l).$$

Proof. Let the idele group of k be J_k , the principal idele group P_k , and the idele class group C_k . From the class field theory we can set

$$J_k^{l^n} \cap P_k = P_k^{l^n}$$

so the canonical sequence

$$1 \rightarrow P_k / P_k^{l^n} \rightarrow J_k / J_k^{l^n} \rightarrow C_k / C_k^{l^n} \rightarrow 1$$

is exact. Any element $y \in \Omega^{\perp}(k)^{l^n} \cap k^{\times}$ defines an idele class character $\chi_y \in \hat{C}_k \subset \hat{J}_k$ by

$$\chi_{\mathbf{y}}(\mathbf{x}) = \Pi_{\mathrm{all} \, \mathfrak{p}} \left(x_{\mathfrak{p}}, \, y \, | \, k_{\mathfrak{p}} \right)_{l^{n}}; \, \mathbf{x} = (\cdots, \, x_{\mathfrak{p}}, \, \cdots) \in J_{k}$$

using local Hilbert-Hasse symbol $(x_p, y | k_p)_{l^n}$. Define a character group $\overline{\mathcal{X}}$ by

$$\overline{\mathfrak{X}} = \{\mathfrak{X}_{y} \in \widehat{J}_{k} \mid y \in \Omega^{\perp}(k)^{l^{n}} \cap k^{ imes}\} \subset \widehat{C}_{k} \subset \widehat{J}_{k} \;.$$

The class field theory again says the kernel of $\overline{\mathfrak{X}}$ in $C_k/C_k{}^{l^n}$ is $(\prod_{all \mathfrak{p}} E_{\mathfrak{p}})C_k{}^{l^n}/C_k{}^{l^n}$. If $\mathbf{c} = (\cdots, c_{\mathfrak{p}}, \cdots) \in J_k$ is such one that $(\mathbf{c}) = \mathfrak{a}$ and $c_1 = 1$ at every $I \in S$, then (6.1) says $\mathbf{c} \in (\prod E_{\mathfrak{p}})P_k J_k{}^{l^n}$ so there is $c \in P_k \cap \mathbf{c}(\prod E_{\mathfrak{p}})J_k{}^{l^n}$ which will satisfy (6.2) and (6.3) by itself.

Proposition 6.2. Take $\bar{x} = (x \mod (k_{\omega}^{\times})^{l^{n}}) \in X(n)$. Fix $m \ge 0$ such that $x \in k_{m}$ and an $e \ge 0$. If

$$l^e \psi_n(\bar{x}, \bar{y}) = 0$$

far any $\bar{y}=(y \mod (k_{\omega}^{\times})^{l^n}) \in Y(n)$ defined in k_m (i.e. $y \in k_m$) then we can find $b \in K$ = k_{m+n} such that

$$(6.5) b^{1-\sigma} \equiv x^{t^{\sigma}} \mod (K^{\times})^{t^{n}}$$

for $\sigma \in \operatorname{Gal}(K/k_m)$, $\sigma \colon \zeta_{\nu+m+n} \mapsto \zeta_n \xi_{\nu+m+n}$, and

(6.6)
$$K({}^{t^{n}}\sqrt{x}, {}^{t^{n}}\sqrt{b}) \subset \Omega^{ab}(K) .$$

(Note that, in (6.4), *m* is fixed previously and then \bar{y} runs in Y(n).)

Proof of Proposition 6.2. Take $a \in K$ and determine \mathfrak{a} in k_m as in Proposition 5.1. From (6.4)

$$\left(\frac{y|k_m}{\mathfrak{a}}\right)_{l^n}^{l^n} = 1 \quad \text{for} \quad y \in \Omega^{\perp}(k_m)^{l^n} \cap k_m^{\geq n}$$

namely

$$\left(\frac{y|k_m}{\mathfrak{a}^{l^{\mathfrak{o}}}}\right)_{l^n}=1.$$

From Lemma 6.1 there is $c \in k_m$ such that

$$(c) \equiv \mathfrak{a}^{l^{e}} \pmod{l^{n}-\text{th power}}$$
$$k_{m_{\mathfrak{l}}}K({}^{l^{n}}\sqrt{c}) \subset \Omega^{\mathfrak{l}} \text{ at every } \mathfrak{l} \in S(k_{m})$$

So, we may put

$$\mathbf{b} = a^{l'} c^{-1}.$$

Proposition 6.3. Assume $\lambda(X) \neq 0$ and fix two numbers $n > e \ge e(X)$. Take an $\bar{x} \in (l^{\infty}X)_{\Lambda df}(n)$ such that $l^{e}\bar{x} \neq 0$. Then

(6.7)
$$\Psi_n(\bar{x}, \bar{y}) \neq 0 \text{ for some } \bar{y} \in Y(n).$$

Proof. Let $m_0 \ge 0$ be the number such that any $m \ge m_0$ is steadily large. Since $(l^{\infty}X)_{\Delta df} \simeq \lambda T_i$, we know for the given *n* and *e*, $|(l^{\infty}X)_{\Delta df}(n-e)| < \infty$, so there is an $m \gg m_0$ such that

(6.8)
$$T_m(l^{\infty}X)_{\Lambda df}(n-e) = 0$$

and \bar{x} is defined in k_m *i.e.*

$$\bar{x} = (x \bmod (k_{\omega}^{\times})^{l^n}); x \in k_m.$$

Assume on the contrary of (6.7)

$$\Psi_n(\bar{x}, \bar{y}) = 0$$
 for every $\bar{y} \in Y(n)$.

From Proposition 6.2 we can find a $b \in K = k_{m+n}$ s atisfying conditions (6.6) and (6.5) in other words, we can set $\vec{b} = (b \mod (k_{\omega}^{*})^{l^{n}}) \in X(n)$ such that

$$-T_m \bar{b} = \bar{x}$$

These imply

$$(6.9) l^e \bar{x} = -T_m l^e \bar{b} \in T_m (l^e \cdot X(n)).$$

On the other hand, from (6.8) and the Λ_m -direct decomposition

$$l^{e}X = (l^{\infty}X)_{Adf} + \Lambda^{\infty}X + (\text{finite})$$
 (cf. Theorem 2.3)

we know

$$l^{e}(l^{\infty}X)_{\Lambda df}(n) \cap T_{m}(l^{e} \cdot X(n)) \subset (l^{\infty}X)_{\Lambda df}(n-e) \cap T_{m}((l^{e}X)(n-e)) = 0$$

Since $l^{e}x \neq 0$, this contradicts to (6.9).

With the alternative assertion to Proposition 6.3 interchanging X and Y, we obtain the next theorem.

Theorem 6.4. Let $\Psi: X \times Y \to W$ be the Λ -pairing defined in Section 5. This Ψ has the left degeneracy $d_X \leq e(X)$ and the right $d_Y \leq e(Y)$, and consequently Ψ is essentially pseudo-nondegenerate.

References

- [1] Y. Akagawa: A tripling on the algebraic number field, Osaka J. Math. 23 (1986), 151–179.
- [3] K. Iwasawa: On some modules in the theory of cyclotomic fields, J. Math. Soc. Japan, 16 (1964), 42-82.
- [4] ----: On \mathbb{Z}_i -extensions of algebraic number fields, Ann. of Math. (2), 98 (1973), 246-326.
- [5] L-C. Washington: Introduction to Cyclotomic Fields, 1983.

Department of Mathematics Nara Women's University Nara, 630 Japan