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Introduction

By “a ramified set”, we mean a partially ordered set X in which
for any element a, the set of all elements less than a makes a well-
ordered subset of X. Such a set is called “un tableau ramifié¢” in [4]
and [5] or “a tree” in [6]. (In [4], by “un ensemble ramifié” is meant
a rather general set which is called “a tree” in [2]).

In connection with Souslin’s Problem, investigation of ramified sets
has been proceeded by many authors including especially Prof. George
Kurepa whose contribution in this branch is distinguished ([4], [5], [6]).
But it seems that most works concerning those sets are concentrated to
the problem of finding conditions in order that a ramified set becomes
countable, or of finding propositions about ramified sets, which turn out
to be equivalent to Souslin’s Problem, and that few results are obtained
about internal structures of ramified sets themselves or about reciprocal
relations which take place among them.

In this paper we are interested in the structures of ramified sets
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and a relation between them, especially comparison between them and
processes by which larger ramified sets are constructed of smaller ones,
and we obtained some results which seem fundamental in the theory
of structures of ramified sets themselves.

It is well-known that any topological space is uniquely decomposed
into the union of its perfect part and scattered part. Especially all
scattered sets, i.e., sets with void perfect parts, in the real line are well-
ordered by the order of homeomorphic imbedding. Similar situations
occur about ramified sets. A ramified set is uniquely decomposed into
the union of its resoluble part and perfectly irresoluble part (see Def.
7 and Th. 4).

As the means of comparison between ramified sets, in place of
homeomorphic imbedding for topological spaces, it seems suitable to apply
the relation o< such that XY implies the existence of an increasing
mapping of X into Y, which appears in the so-called comparison theorem
in the usual proof of Lusin’s 2nd Principle (see [7], pp. 208-221) in the
theory of analytic sets. Since o is a quasi-ordering between ramified
sets, X and Y such that XY and Yx<X are regarded as equivalent.
Then we shall see in Theorem A all resoluble ramified sets with poten-
cies less than a given regular cardinal number R; >R, are well-ordered
by o< under the identification of equivalent sets, and that any resoluble
ramified set can be compared with any other one (resoluble or not).

Speaking of general ramified sets with potencies less than R, in-
cluding irresoluble ones, they do not seem to be well-ordered by . In
fact, under the assumption of continuum hypothesis, they make neither
a ramified family nor a totally ordered family, and we shall see in
Theorem B continuum hypothesis implies the existence of a countable
descending sequence of ramified sets, and a pair of ramified sets which
are not comparable with each other.

It is the main purpose of this paper to prove Theorem A and
Theorem B.

Contents and composition of this paper are as follows.

We provide some preliminaries concerning ordinal numbers in Chapter
I. In §1, functions «,(\) assigned to each » such that 1<v< w, are
defined. They are defined so that an ordinal number A with A=}
is characterized by means of the function «,, and when 2< v< w4, a
number A with A=e,(w}) for any 5»<_» is characterized by means of «,.
For a limit number A, the least ordinal number r=gn (A) such that
A<a,(wp) is especially interesting, and according to the number gn (A)
and some properties of A relating to functions «,, we shall set up a
classification of ordinal numbers less than a certain number 3% in §2.
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In Chapter II, central notion and Main Theorems are mentioned.
In §1 definitions of ramified sets, relation o< and several notations are
given. In §2 our Main Theorems A and B are stated, and then the
proof of Theorem A is oriented. Briefly speaking, Theorem A is attributed
to the existence of a sequence M of resoluble ramified sets N,, A</B%,
each of which satisfies certain conditions D. 1), D.2) and D. 3) mentioned
there. Principle 1 to construct N, is stated at the end of §2, where
by several operations on ramified sets similar to cardinal or ordinal
arithmetic operations on general partially ordered sets (see [2] or [3])
are studied in advance.

Chapter III is devoted to show that every N, constructed according
to Principle 1 satisfies D.1), D.2) and D.3). In §1 some lemmas con-
cerning N, are prepared. §2, §3 and §4 correspond to the three cases
respectively to which every number less than 8% is allotted by Definition
3, and consequently to the different form of N, given by Principle 1 in
each case.

Chapter IV consists of two parts. In §1 we are interested in a
ramified set S} defined for each A=« (®5™). S; is irresoluble, but it is
situated by o at the least upper bound to the assending sequence Vg,
E<\, within the family of all ramified sets with potencies less than Rg,
and accordingly it is comparable by o with any other ramified set
(resoluble or not). §2 is devoted to prove Theorem B, and examples to
confirm Theorem B are introduced by modifications of S}.

Finally we add an appendix where we specify case 8=1. In this
case not only the family of all resoluble ramified sets but also the
family of all ramified sets including irresoluble ones with potencies less
than R, is well-ordered by o< (Theorem C). The proof is obtained
similarly to Theorem A. By inserting S¢ defined in II, § 1 among se-
quence I, we get a sequence M where any term M, satisfies a certain

condition D.2’) besides D.1). Theorem C follows from the existence of
such a sequence.

CHAPTER I. PRELIMINARIES ON ORDINAL NUMBERS

In this chapter, we shall provide some preliminaries concerning
ordinal numbers. In §1 a function @,(\) of ordinal numbers X\ is defined,
which is assigned to each » such that 1<v< w, where o, is a fixed
regular initial number greater than ,. In §2 we shall set up a classi-
fication of ordinal numbers less than a certain number /3%, referring to
these functions «,. This classification, as well as functions «,, will

become a basis in constructing a certain sequence M of ramified sets in
a latter chapter.
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1. Certain fuctions «, on ordinal numbers

Throughout this paper small Greek letters are used to denote ordinal
numbers or ordinal-number-valued functions without stating special notice
in each occurrence. Letters @ and o,z are used with usual meaning. ¢, &,
m and » stand for finite numbers. In terminologies: “limit numbers”,
“isolated numbers”’, “regular numbers”, “singular numbers”, ‘“segments”,
“rests”, “cofinal to” etc. and operations cf(\), £4-¢&, &, & etc., we
follow usual definitions (for example see [1]). To avoid confusion, we
distinguish between terms “a power” and ‘“the potency” of an ordinal
number A: the former means M\, while the latter means A. Capital
Greek letters are used to denote sets or sequences (not necessarily
countable) of ordinal numbers. Besides usual notations we shall define

the following.

DeriNITION 1. 1s (M) denotes the greatest limit segment of X, i.e.,
Is (\) is the greatest limit number which does not exceed A.

fr (\) denotes the greatest finite rest of A, i.e., fr(A) is the finite
number # with A=Is (\) + .

p, denotes the characteristic function of limit numbers, i.e., p,=1
if X is a limit number, and p,=0 if A is an isolated number.

Let @, be an arbitrarily given regular initial number greater than o,.
B will be fixed throughout this paper (however in proving Theorem A
(ii), it is utilized that @ is arbitrarily given). Now we shall define
functions «,(A) of A assigned to each » such that 1<v<wz. These
functions will play a main ro6le in this paper.

DerFINITION 2. (i). Put a,(A)=X, and «,(0)=0 for any » such that
l§9<w3.
Assume that v=7%+1 and «,(\) is already defined for any A, put
a,(p+1) = a, (0P and
ay(p) = gup a,(§) for a limit number .
<&
Assume that » is a limit number such that 1 <<v<7wg, and «,(\) is

already defined for any M and # such that 1<<#n<Tv, put x=v8+¢ where
0<¢<v and

ay(p) = ag(wp™ ™7 if £ >0,

a, () = ?uP a () if ¢=0.
Finally B* = sup a,(1).
\I<‘”s

(ii). If » is an isolated number less than wg, then ®! denotes the class
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of all limit numbers and ®! denotes the class of all isolated numbers.

If v is a limit number such that 0< v< wg, then ®! denotes the
class of all numbers with forms »8 and &) denotes the class of all
numbers with forms »8+¢ where 0< ¢{<».

For A< B*%, @i(\) denotes the greatest number in ®) which does not
exceed A and ®j(A) denotes the number ¢ such that A=@jA)+¢. The
representation A=§+¢ where £=@j(A) and {=@®}(\) is called the o,-
decomposition of A.

REMARK. If v is an isolated number, then @{(A)=Is(A) and @;(\)=
fr(A). In general if p€ @}, then @i(p+&)=pi(£) for any &< B

It follows from the definition that, if A€ ®!, then the function «, ()
of x with a constant v is continuous at g=A.

EXAMPLES. «,(1) =g, a,(2)=wy"?, a2(3)=w;’5wﬂ etc.. In general
a, (D=a,(wg). If v is a limit number and 0< ¢{<v< w4, then @, (&)=
aglg) =t (1).

Hereafter we assume that a number denoted by » or 5, which is
mainly used as the suffix of a function «, or as the index of a power
o' of w, is greater than O and less than g, without mentioning special
notices in each occurance.

Lemma 1.1. The function a,(of) of u with a constant v is continuous
at any limit number u_>0.

Proof. Since v<wg, g€ ®). Hence the function a,(A) of A is
continuous at A=wej. Since the function «f of x is continuous at any
limit number x>0, a,(»}) is continuous at any limit number x_>0.

Lemma 1.2. g<a,(u).

Proof. In the case where either »=1 or =0, our lemma is trivial.

Assume < «,(0) for any ¢ and » with 1<5<'», and §<«,(%) for
any &< pu.

Case 1. v=7+1 and p=§&+1.

In this case a,((+1)=«a (0,17 Zw* O Pt =wf™e. If £ is an iso-
lated number, then w§ >, since »f is a limit number. If & is a limit
number, then p¢=1 and «§" >£+1. Hence in either case «,(§+1)=
E+1=p.

Case 2. v is a limit number and p=v8+¢ where 0< &< v.

In this case @,(;)=a; (@) Zwpb*' >wp?2 >v6+¢.

Case 3. pe®l.

In this case “v(/b)=§l<llp av(f)gzgg E=p.

Hence our lemma is proved by double induction on . and ».
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Lemma 1.3. If 9<v and p >0, then o (of) <a,(of).

Proof. Since wje ®! for any u, £< wj implies a,(§) <ay(@p).

If v=9+1 and p=£&+1, then o >p+1 and «a,(0p)=a,(x+1)
=a, (0" ) >a,(0g) by Lemma 1.2.

If » is a limit number and p=£&+1, then a,(of) = a,(0f+7)
=, (0" P ) Z a,(0f ) =, (o).

If x is a limit number and eithr v=%+1 or » is a limit number,
then av(coﬁ):s‘glig “v(w§+l)gsel<1£ a, (i) =a,(wp) (refer to the cases above).

Therefore our lemma is proved by induction on ».

REMARK. In general < v does not imply «,(u)<ca,(x). For ex-
ample’ as(l) = az(wﬂ) 2“2(2) = wswﬂ>w3 while am(l) = al(CDB) =g,

Lemma 1.4. If £</1'» then av(f)gav(/‘)'

Proof. It is trivial for v=1. For g€ @ this lemma follows from
definition. If v=7%+1 and p=£&+1, then a,(u)=a,(0s»®* )=, (£). Hence
in the case v=7+1 our lemma is proved by induction on .

Assume that v is a limit number and p=v6+¢ where 0< &< v,
then «,(p)=a (0" =a,(v8)= %ng a,(8).

Hence £§<v6 implies «,(§) <a,(u).

If v8< 6<u and E=v8+¢ where 0< ¢’ < ¢, then a,(u)=a(wsH¥®+)
=au(0p ) =a,(§) by Lemma 1.3. Hence our lemma is proved also
in the case where v is a limit number.

Lemma 1.5. We have wj=X\ if and only if A=c,(u) for a limit
number p_>0.

Proof. Assume that ux is a limit number, then «&,(u)=sup a,(&+2)

=sup wem2(§+1)=a)652£¢2(§+1) E<u
E<p

Conversely assume oj=\. Since @,(ux) is a continuous function of
p# and unbounded by u<<a,(u), there exists the greatest number . such
that a,(x)<\. If p is an isolated number, then p,=0 and M<ea,(r+1)
= wp”™ < wj contradicting M=wj. Hence x is a limit number. If
a(u)< A, then putting A=a,(u)+& where 0< ¢, we have wp=wg%*"¢ =
0" = (1+1) >N\ contradicting w}=A. Hence wj=X\ implies A=a,(1x)
for a limit number .

=wg®*™ by Lemma 1.1.

Theorem 1. If &+1=<v, then for any p_>0, except the case where
v is a limit number, p=v8+§ and 0< <&, there exists an ordinal number
Nuy e >0 such that a,(p)=a (egv.e).

Proof. If v=¢&+1 and p=§+1, then a,(p)=a(0»® %) and «,(§)+
ps>0. Hence M., .=a,(&)+pe. If v=6E+1 and p is a limit number
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greater than O, then «.,(u)= sgup a(§+2)= sEup a (@) =, (0" ™) by
<w <

Lemma 1.1. Hence A, , . =a,(x).

Assume that our assertion is true for any » such that &< v<{9,
and we shall inductively show that there exists a A,,. >0 such that
a,(p)=a(oghns).

Case 1. 7=v+1 and p=&+1. _

In this case put {=w,*®", then since { is a power of wg, the
arguments & and » of «,({) would not fall into the excepted case, and
there exists a A;, , such that «,(§) =a.(wghve). Since a,(x)=a,(£), putting
Myne=MNyer My satisfies the condition.

Case 2. 7=v+1 and g is a limit number.

As we saw in Case 1, for any £<u there exists a A, , . such that
a,(E+1)=a(oe+1e). Put M,,,ﬁ:sggg Mgi1ye then “ﬂ(""):Sg‘iE a, (§+1)=

sup a (egMt+1ne) =a (0g*n¢) by Lemma 1.1. Hence M\, ,. is the required
E<i
ordinal number.

Case 3. # is a limit number and p=76+¢6.

In this case a,(x)=a.(@s*»*"), and putting A, .=a,(8)+1, N, .
satisfies the condition.

Case 4. 7 is a limit number and p=78+& where €< &< 7.

In this case put {=w*"*" then since { is a power of g, the
arguments ¢ and & of ay(¢) would not fall into the excepted case, and
there exists a Ay ¢, >0 such that ay({)=a.(0g¢e8). Since a,(p)=a:(l),
putting A, .=N;¢., M., . satisfies the condition.

Case 5. 7 is a limit number and wx=73.

Put E={{|E=98 +&, &< 8, e<E& <9}, then E is cofinal to 8. As
we saw in Case 3 and 4 for any %€ = there exists a A, . >0 such that
a,(5)=a(wghens).  Put kﬂ,,,,E:ssgqp M6, then an(/»)=s§ggan(5)=§§gg a,(§)
ZZEP a(0gen:)=a(wgne). Hence A, . is the number required.

Therefore in any case we can find a A, , . required in our assertion,
and the proof is completed.

Especially putting £€=2, we can assert that, if »=3, then for any
>0, except where v is a limit number and p=v8+1, there exists a
Ay such that a,(p)=a(eg2). Since A=ogwyz is a limit number,
following Corollaries 1-3 immediately follow from Lemma 1.5.

Corollary 1. [If v=3 and >0, except the case where v is a limit
number and p=v6+1, we have w>* =a, ().

Corollary 2. If v=2 and p_>0, then a.(u) is a power of wg.
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Corollary 3. If v=2 and x>0, then a,. (kp+1)=a,(a,. () @)
If v is a limit number greater than 0, 8=1 and 2<E<», then a,(v8+§)
= atg(@,(v9) - wp).

Corollary 4. 'If u is a limit number and 2 <v< wg, then
av(av+1(lu') + 1) gav-ﬂ(/-") *@g.
Proof. If v is a limit number, then «, . ,(x)=wg»+*, and hence
vat, ()=, (). Hence by Corollary 3 above,
ay(@y () + 1) =a(ay(a, (1) 0p) =, () - 0p.
If v is an isolated number »+1, then a,(a,,(x)+1)
= an(av(avﬂ(l”)) 'a’ﬁ) 2“*&1(/") *@g.

Lemma 1.6. Let v be an ordinal number greater than 1. Then
a,(N)=N\ if and only if N=a,.,(p) for a limit number u.

Proof. If x is a limit number, then «a,. ,(x)= iup a,,(£+2)
<
:iup ay(ay(§+1))=a,(a, (1)) by Corollary above.
<k

Conversely assume A=a,(A). Since the function a,.,(x) of u is
continuous and unbounded, there exists the greatest number x such
that a,.,(x) <M. If xis an isolated number, then p,=0 and A« ,(z+1)
=a,(a, () < a,(\), contradicting A=«,(A). Hence p is a limit number.
If \=«a,,(x)+1, then by Corollary 4 above A=a,(A)=a,(a,,()+1)
=, (p)+®g. But then, since p is a limit number, a,(A) =a, (@, (1) ©p)
=a,,,(#+1) >N\ contradicting A=«a,(A). Hence A=«,. () where x is a
limit number. .

Corollary 1. If n+2=<v, then a,(a,(r))=a, () for any p_>0, except
where v is a limit number, p=v8-+§& and 0<_E<q9.

Corollary 2. If v is a limit number greater than 0 and 0<_E< v,
then a,(v8+&)=ag, (a,(v8)+1).

Proof. By Corollary 1 above a,(¥8) = a¢,,(a,(»8)), and hence
ay(u8+§):agfcogmv”““)=ag(w5‘”£+1“”v“8”“)=ag+l(av(v5)+1).

Lemma 1.7. Let v be a limit number greater than 0. In order that
A=wp=a,(\) for any n<», it is necessary and sufficient that A= a,(¥0)
with a 6 >0.

Proof. If A=, (¥8) and 8_>0, then A=, by Corollary 1 of Theorem
1. Assume n<_v and put E={§|E=v¥ + &, &<, n< &<}, then E is
cofinal to »5. By Corollary 1 of Lemma 1.6, «,(a,(§))=a,(f) for any
£e =. Hence a,(\)=sup a,(a,(5))=sup a.,(5)=a,(v8)=A.

EeE £CE

Conversely assume A=wp=a,(A) for any #n< v. By definition of
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a,(v0) for 6°>0, the function «,(»8) of 8, with a fixed v, is continuous.
Hence there exists the greatest number 6 such that «,(»0)<<\. If 6=0,
then there exists a & such that £&<’» and A<7«,(¥). But then, since
a,(&)=ag(wpg)=a, (1) and 1<\, we have A<"a;, (1) < a:,,(\) contradicting
A=a¢,,(A). Hence 6>0. Since «,(v(6+1))>>\, there exists the least
number £ such that 1<<(<7v and A< a,(»6+£). If £>>1, then a,(v6+1)
=X and A<a,(¥0+E)=a0,» ) =aia,(»3+1)) < ar(A) contradicting
A=ag(A). Hence £=1 and a,(»0) <A< a,(»6+1). If «a,(»8)+1<X, then
A<, (v6+1)=0,P" <w} contradicting A=wj3. Hence we have A=q, (v8)
where 6 >0, which is to be proved.
Summing up Lemma 1.5, 1.6 and 1.7, we have

Theorem 2. [In order that A=« (0}3) for any n<_v, it is necessary
and sufficient that A=, () with p€ @ and 1 >0.

Lemma 1.8. «a,(p)<a,(z+1) for any p and v.

Proof. «,(u)<a,(x+1) is already proved in Lemma 1.4. Our
assertion is trivial for v=1.

If v=7+4+1 where =1, then a,(z+1)=«,(@g** ), If further p
is a limit number, then p,=1 and a,(0s**™) =a,(z)+1 >a,(x). If u
is an isolated number, then «,(@g*»*)>a,(x) by Theorem 2. Hence in
either case «,(p+1) >a,(p). :

Assume that » is a limit number. If further p€®!, then «,(x+1)
=a,(0g ) >, (). If ped), then letting p=E&+& be the o,-decom-
position of 1, £ 0. av(/’/‘*’l)zav(i:"‘é‘+1):a§+1(a’ﬁm\‘(£)+1)>“§~1—1(av(’s)+ 1),
since our lemma is already proved for an isolated number & +1. Further-
more, by Corollary 2 of Lemma 1.6, a; (a,(§)+1)=a,(5+&)=a,(u).
Hence our lemma is proved also for a limit number ».

For v=2, «a,(x) is a limit number by Corollary 2 of Theorem 1.
Here we have

Theorem 3. Assume v =2, then cf (a,(w)=8 for u=®,, and
cf (a,(p))=cf(r) for pe di.

Proof. First we shall consider the case p€ ®).

Assume that v is an isolated number »+1 where » _>0. If xis the
next number to a limit number £, then «,(x)=«,(@p*©* 1)=§\<1p a (g ® ).

Since the function «,(\) of A is increasing by Lemma 1.8, for a sequence
A of ordinal number &< g cofinal to g, the sequence {a,(@s*®-)|& € A}
is also cofinal to «,(z). Hence cf («,(2))=25.

Assume p=£+1 where £ is an isolated number and cf («,(£))=2,
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then «, () =a,(0s*®)= sup «,(w). Similarly as the above, for a sequence
<@,

A of ordinal numbers & <Zx,,(§) cofinal to «,(£), the sequence {a,(»§)|& € A}
is also confinal to «,(w). Hence cf(a,(1z))=cf(a,(§))=B. Hence it is
inductively proved that for any isolated number » we have cf («,(u))=28.

Next let » be a limit number such that 0<v<w,. If 0<E<»,
then by Corollary 2 of Theorem 1 a,(¥0+&)=aq,, (a,(»8)+1), and since
both £+1 and «,(»8)+1 are isolated numbers, cf(ag. (a,(»8)+1))=4.
Hence in either case that » is an isolated number or a limit number,
v=2 and p€®) imply cf (a,(1))=5.

Next consider the case p€ ®i. For p=0, our statement is trivial.
If x>0, then since ay(,w)z?ip a,(¢) and the function «,(§) of ¢ is

increasing, we have immediately cf(«,(z))=cf(x), and the whole proof
is completed.

Lemma 1.9. For any A<{3* there exists a v such that 0<v<lwg
and N<_a,(@}).

Proof. If A=« (®}) for any »< g, then A=sup a,(@p)=sup a,(1)=45*
} V(mB V<“’ﬁ

2. A classification of ordinal numbers

Hereafter any number denoted by a small Greek letter in this paper
is assumed less than (3%

Lemma 1.10. Let v(u) denote the least number & such that p<fo,
then the following three conditions on w ave mutually equivalent.

(a). Y(w)=pwp. (b). Any non-zero vest of 1 is equal to p.

(¢). There exists a E<p with p=wt.

For the proof refer to [1] pp. 67-68. Here we omit it.

DermNITION 3. (i). 9(w) denotes the number defined in Lemma 1. 10.
A number x which satisfies conditions in Lemma 1.10 is called a -
number (see [17], p. 67).

(ii). For A< @B% the least number » such that Ils(A)<a,(oF™)
(refer to Lemma 1.9) is called the genus of A and denoted by gn()).

(ili). If A=a,(u), then we write p=a5'(}).

Put de(\)=agzin(Is(A)), (derivation of A).

(iv). Let I denote the set of all ordinal numbers less than 3

I, denotes the set of all AT’ with gn(A)=v.

I® denotes the set of all AeI" with cf Is(\))<7B.

I denotes the set of all AeT' such that cf(Is(A))=8 and de()) is
not a y-number.
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T? denotes the set of all A€ such that cf(Is(A))=8 and de(\) is
a y-number.
Put Di=TinT,, TV= \J I'Y for 1=0,1,2 and I',= \J T,.

Vé”l<"’ﬁ Vé"l("’ﬂ

Remark. (i). gn(d) and de(A) depend only on ls(A), or in other
wards, gn(A+#n)=gn(A) and de(A+#n)=de(r).

(ii). If gn(d)=1, then de(\)=1s()).

If 1<<v=gn(\), then < v implies a,(0fF®)=Is(A). Hence Is())
=a«, () where u€ ®, by Theorem 2, and p=de(A).

Therefore de(A) is defined for any A</B*% and de(d) € ®ly,, in
general.

Especially if »=gn(A)>1, then «f®=Is(A) and hence «,(de(r))
=ls (V)< a,(0F®)=a,(Is(\)). Since «, is increasing, de(A)<Is(A).

(iii). If »<v=gn(A), then especially 1< » and Is(A)=wg*. Hence
Is(\) =, (@5®) =a,(Is (V).

(iv). In general A=au(de(N))+1fr(n).

Lemma 1.11. (). gn(de(\)<gn(A\). (ii). cf(de(}))=cf(Is(\)).

Proof. (i). If gn(A)=1, then de(A\)=Is(\) and gn(de(A))=gn(Is(\))
=gn(A). If gn(A)=»_>1, then by Remark (ii) above, de(A)<Is(Ar).
Assume gn(de(\))=%_>», then by Remark (iii) above, de(})=«,(de(X))
=1s (A) contradictrily. Hence gn(de(}))<gn(M\) in general.

(ii) is a consequence of Theorem 3 and de()\) € ®l.,».

Lemma 1.12. If >0, then the least y-number u such that cf(u)=R
and p>§ is Ewg.

Proof. Let ¢ be the least number with <&, &< ux implies 1<¢.
If fr(¢)=1 (ie., & is an isolated number), then &(¢—1)<x and
p=&E(£—1)+0 where 0< 0<E<p contradicting that x is a y-number
(see (b) in Lemma 1.10). Hence ¢ is a limit number, and necessarily
p=8¢. If (< wg then cf(p)=cf({)<B. Hence ¢{=w,. But fwg is
obviously a y-number with cf(éwg)=8 and éw, >E.

Corollary. In order that pu is a vy-number such that p_>1 and
cf (p)=R8 it is necessary and sufficient that p=wg for an & which is either
an isolated number or a limit number with cf(&)=4.

In general any M€l is represented as
(1) A= a(f+)+n,
where v=gn(A), £=v(de(M)) and n=fr(A). (Then ¢ is uniquely deter-
mined).

Especially if AeI”, then de(\) is not a y-number, and hence
0<£<de(\) and 0< &< de(n).
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If xeI® then de(\) is a y-number and £=de(}) and £{=0. Further-
more, since cf(de(}))=cf(Is(A))=8 by Lemma 1.11, (ii), it follows from
Corollary of Lemma 1.12 that de(A\)=w} and A is represented as

(2) 7\':“‘/(&)2)4—”)

where v=gn(A), n=fr(X) and p is either an isolated number or a limit
number with cf (x)=2.

DerFINITION 4. When A €eI™ or A€I® the right side of (1) or (2)
respectively is called the canonical decomposition of \.

ReEMARK. (i). When M€Y, since 0< &< de(A) and 0<7&<’de()) in
(1), we have «a,(§)<a,(de(M))=Is(A) and «.({)< Is(A). Furthermore since
cf(Is()))=4, we have a,(5)+o<"Is()\).

(ii). When A €1 since v=gn(A) in (2), p<Is(}).

If further x is an isolated number, then cf(wpx)=0 and cf(w;)=23,
hence o/ =5 and consequently ep< wz<Is(A). If x is a limit number
with cf(z)=28, then oy=pu. (Indeed putting p=w-6+60 where 0 <0< 0,
0 is necessarily 0. Hence wu=w:0°8=0"-6=4). Hence in either case
op<Is(\).

This Remark (i) and (ii) will be recalled in Principle 1 later.

Lemma 1.13. If A=a,(u)+o, then the least number & in Ty Ul
greater than N is a,(p+og).

Proof. £€eT', implies Is(f)=a,(8) for a € ®,. Since A<'£, p< 8.
Put 8=p+¢ If < ws, then cf(ls(£))=cf(8)=cf({)< B contradicting
E¢1°. Hence {=w; and & is of the form «,(x+¢&)+n But among
numbers of this form, é=a,(x+®) is the least number and obviously
contained in I wI%. (Especially if u=wgz, then £€17).

Lemma 1.14. If A=« (@})+®, then the least number £ in 12Ul .,
greater than M\ is a,(wf™).

Proof. If ¢eT,,,, then 1s({)=a,(0%). Hence £€ 13U, implies
that Is(f) is of the form a.,(®}) where A<'% implies ©< 6. Hence
feriully,, and A<7£ imply that £ is of the form «.(®3™)+n where
&=1. But among numbers of this form, é=a,(@;™") is the least number
and contained in I'.

CHAPTER II. MAIN THEOREMS

In this chapter, we shall introduce central notions and state Main
Theorems. Finally a brief orientation of the proof of Theorem A is
mentioned.
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1. Ramified sets and relation o

DeFINITION 5. A ramified set X (which is called “un tableau ramifié¢”
in [4]) is a partially ordered set which satisfies the following condition :
for any x € X the set {a|le€ X, a<x} is a well-ordered subset of X.

By definition the following is obvious.

Lemma 2.1. (i). A subset of a ramified set is also a ramified set
with the original order-velation. (ii). A ramified set satisfies the descending
chain condition (see [2], p. 37). (iii). A totally ordered ramified set is a
well-ordered set. Conversely a well-ordered set is a ramified set.

In this paper capital Latin letters, as well as these with suffixes,
are used to denote ramified sets or their subsets. Especially W denotes
a well-ordered set. W, is the set of all §<_A with the natural order
between them. Small Latin letters stand for elements of ramified sets
or mappings into ramified sets (mostly from ramified sets), except Z, k&,
m and » which are finite numbers. Especially f, g or %4 is used to
denote a mapping of a ramified set into another (occasionally in itself).
Capital German letters are used to denote families or sequences of rami-
fied sets (or their subsets).

Concerning ramified sets we shall settle terminologies and notations
followingly.

DerINITION 6. (i). For x€ X, Lb(x; X), or simply Lb(x) (in the case
where x is contained in a definite set or it is apparent what set X is
referred to), denotes the set of all a€ X with a<7x.

Lb/(x ; X), or simply Lb/(x), denotes Lb(x; X)v {x}. (Lower bounds
of x).

(i)). Ub(x; X), or simply Ub(x), denotes the set of all ¢ € X with
a_>x.

Ub/(x; X) or Ub/(x) denotes Ub(x; X)v {x}. (Upper bounds of x).

(iii). *(x; X), or simply v(x), denotes the order-type, which is an
ordinal number, of Lb(x; X).

(iv). A subset Y of X is called a cut of X if y€ Y, x€ X and x<y
imply x€ Y.

(v). Seg,(X), Lay,(X) and Csg,(X) denote the sets {x|x¢c X, v(x)
<}, {x|xeX, 7(x)=0"} and {x|x€ X, 7(x) =w"} respectively.

(vi). Let Y be acut of X. Exp,(Y; X), or simply Exp.(Y), denotes
the subset of X which consists of all y€Y and all x¢€Csg.(X) such
that Lb(x; X)nSeg,(X) is entirely included in Y.

By definition we have obviously
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Lemma 2.2. (i). If x€ YCX, then Lb(x; Y)=Lb(x; X)nY. Simi-
lar equalities hold for LV, Ub and UbL. (ii). If x<y, then =(y; X)
=7(x; X)+1+7(y; Ub(x)).

Concerning Exp,(Y ; X) we have

Lemma 2.3. Let Y be a cut of X. (i). Exp(Y) is a cut of X.
(ii). Exp.,(Seg.(X))=X. (ii). YCExp(Y). (iv). If Z is a cut of Y,
then Exp.(Z; X)CExp,(Y; X), Exp,(Z; Y)=Exp,(Z; X)nY and
Exp,(Exp,(Z; Y); X)=Exp,(Z; X). (v). If Z is a cut of X, then
Exp (Y Z)=Exp,(Y)VExp,(Z). (vi). x€Exp(Y)nCsg(X), if and only
if the type of Lb(x)NY is not less than »*. (vii). If x is a minimal element
of X—Exp(Y), then x € Seg.(X). (viii). Exp,(Exp.(Y))=Exp,(Y).

Proof. We shall show only (vii) and (viii), since the others are
trivial.

(vii). Assume 7(x) =o". Since x € X—Exp,(Y), the type of Lb(x)nY
is less than ®*. Hence there exists an ¢ € Lb(x)—Y such that 7(¢)< .
Since x is minimal within X—Exp,(Y), a€ Exp,(Y). But by definition,
a€Exp,(Y)—Y implies a€Csg,(X) contradicting v(¢)< ®”. Hence
x € Seg, (X).

(viii). Exp,(Exp,(Y)) > Exp,(Y) follows from (iii) and (iv). Assume
that D=Exp,(Exp,(Y))—Exp,(Y) is not void, and let x be a minimal
element in D. Since x is minimal in X—Exp,(Y), 7(x)< ", while putting
Z=Exp,(Y), x€Exp,(Z)—Z implies x€ Csg,(X) contradictrily. Hence
D is void and Exp,(Exp,(Y))=Exp,(Y).

REMARK 1. By (iii), (iv), (v) and (viii) of Lemma 2.3 the operation
Exp, on cuts of a ramified set satisfies the conditions of the so-called
“finite-additive closure operation”.

REMARK 2. In most cases where we are concerned with several
ramified sets, each of them is a subset of one of them, for instance X.
Then, when we write simply Ub(x), 7(x), Exp,(Z) etc., it means Ub(x ; X),
7(x; X), Exp.(Z; X) etc. respectively, and according to Lemma 2.1 (i)
and Lemma 2.2 (iv), if Y is a subset or a cut of X, then Ub(x; YY),
Exp(Z;Y) etc. are mostly expressed by Ub(x)nY, Exp,(Z)nY etc.
respectively.

DeriNITION 7. Let X be a non-void ramified set. X is called resoluble
if for any non-void subset Y of X, there exists a y€Y such that
Ub(y)NY is totally ordered. (Of course a void set is regarded as a
totally ordered set). If X is not resoluble, then it is called irresoluble.
If for any x € X, Ub(x) is not totally ordered, then X is called perfectly
zrresoluble.
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For convenience a void set is regarded as resoluble and (perfectly)
irresoluble in the same time.

For asubset Y of X, let J(Y) denote the set of all y€ Y such that
Ub(»)NY is not totally ordered. Put J(X)=X, Je.(X)=J(J«(X)) for
any £ and ]g(X)=§/;\£]§(X) for a limit number & If [, (X)&J«(X) for

any £</A, then X can not exceed the potency of X—J,(X). Hence there

exists a A, whose potency does not exceed X, such that J,,,(X)=/(X).
Put K(X)=],(X) for such a A, then since J(K(X))=K(X), K(X) is per-
fectly irresoluble. If a subset Y of X is not included in K(X), then
there exists the least number & such that J,(X) does not include Y. & is
not a limit number or otherwise Y C J«(X) for any &< & and Y C g[<\§ J«(X)

= J{(X) contradictorily. Put £=¢+1, then Y J«(X). Let y be any ele-
ment in Y — Ji(X), then since y€ J(X)— J«(X), Ub(»)NnY( < Ub(y)N J«(X))
is totally ordered, i.e., Y is not perfectly irresoluble. Hence K(X) is
the largest (in the sense of inclusion) perfectly irresoluble subset of X,
which we shall call the perfectly irresoluble part of X. Similarly we
can see that X is resoluble if and only if K(X) is void. In general
X—K(X) is always resoluble, which we shall call the resoluble part of X.
Summing up we have

Theorem 4. Any ramified set X is uniquely decomgposed into the union
of its perfectly irresoluble part and resoluble part. X is resoluble if and
only if its perfectly irresoluble part is void.

Corollary. A subset of resoluble ramified set is also resoluble.

DeriniTION 8. (i). A mapping f (many-to-one in general) which
maps X into Y is called increasing if a<b implies f(a)< f(b) for any
@ and b in X.

(ii). If there exists an increasing mapping of X into Y, then X is
called smaller than Y and Y is called larger than X; in symbol X<Y.
If XocY and Yo X, then X is called equivalent to Y ; in symbol X~Y.
XY and XY denote the negations of XY and X~Y respectively.
If Xe<Y and Y %X, then we write X&Y.

(iii). A one-to-one increasing mapping of X onto whole Y with an
increasing inverse is called an isomorphism of X to Y. If there exists
an isomorphism of X to Y, then X is called isomorphic to Y ; in symbol
X=Y. X==Y denotes the negation of X=Y.

(iv). For an increasing mapping .f of X into Y and a subset Z of
X, f(Z) denotes the set {f(x)|x€Z}. f is called reduced if f(Z) is a
cut of Y for any cut Z of X.

(v). #(X) denotes the least ordinal number & such that W:«<X.
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Lemma 2.4. Let f be an increasing mapping of X into Y. Then,
(1) T(f(x))=7(x) for any x€ X, (ii) f is reduced if and only if v(f(x))=7(x)
for any x€ X.

Proof. (i). Since Lb(x) is a well-ordered set and f is increasing,
Lb(x) is isomorphic to f(Lb(x)) which is a subset of Lb(f(x)). Hence
the order-type 7(x) of Lb(x) does not exceed the type 7(f(x)) of Lb(f(x))
by a well-known theorem on well-ordered sets. Hence v(x)<=(f(x)).

(ii). Assume that there exists an x € X such that =(f(x)) >7(x). Let
x be such a minimal element (see Lemma 2.1 (ii)). Since T(f(x)) >7(x),
there exists a unique element & such that 7(b)=7(x) and o< f(x). If
a<_x, then 7(f(a))=7(a)<t(x)=7(b) and hence f(a)==b. Hence there is
no element @€ Lb’(x) such that f(a)=0b6. Lb'(x) is a cut of X, while
since f(Lb/(x)) contains f(x) and does not contain o< f(x), f(Lb/(x)) is
not a cut of Y. Hence f is not reduced.

Conversely assume 7(f(x))=7(x) for any x€ X, and let Z be a cut
of X. If b< f(2) where z€ Z, then, since 7(b)< 7(f(2))=7(2), there exists
an a<_z such that T(@)=v(b). Since 7(f(a))=7(a)=7(b) and both f(a)
and b are contained in Lb(f(2)), f(@) coincides with b. Since Z is a cut
of X, acZ and be f(Z). Hence f(Z) is a cut of Y and f is reduced.

Lemma 2.5. If X< Y, then there exists a reduced increasing mapping
of X into Y.

Proof. XocY implies the existence of an increasing mapping g of
X into Y. For any x€ X, since 7(x)<v(g(x)) by Lemma 2.4 (i), an
element f(x) of Y is uniquely determined by x in such a way that
f(x)=g(x) and 7(f(x))=7(x). If x<x’ where x, ' € X, then f(x)<g(x)
< g(x"), and hence f(x) and f(x’) are contained in Lb’(g(x’)). Since
Lb'(g(x’)) is well-ordered and «(f(x))=7(x)<7(x")=7(f(x")), we have
f(x)<f(x’) and f is increasing. Further f is reduced by Lemma 2.4
(i), and our lemma is proved.

Corollary. If XY, then Seg,(X)o<Seg,(Y) and Csg,(X)o<Csg,(Y).

It is easily seen that the relation o< is a quasi-ordering between
ramified sets and the relation ~ is an equivalence relation (see [2], p. 4).

Theorem 5. (i). If w(X)=p+1, then X~W,. ({i). If «(X)< x(Y),
then XxY.

Proof. (i). By the definition of «(X), W,x<X.

For any element x € X, 7(x)< p, since W,,, ¢ Lb'(x). Put f(x)=7(x)
for any x € X, then obviously f is an increasing mapping of X into W,.
Hence XocW,, which shows X~W,.

(ii). Put p=«(X). Since p<#(Y), W,<Y and there exists an
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increasing -mapping g of W, into Y. Similarly as the above, the map-
ping f of X such that f(x)=v(x) for any x€ X is an increasing mapping
of X into W,. Since gf is an increasing mapping of X into Y, XoY.
If Y<X, then W,o<X contradicting «(X)=x. Hence XVY.

We shall say that X is comparable with Y if either XY or Yo X,

Corollary. If «(X) is an isolated number, then X is comparable with
any Y.

2. Main Theorems

DerINITION 9. Let wg be a fixed regular initial number greater than
o, as we assumed in Chapter 1, §1.

(i). R denotes the family of all ramified sets with potencies less
than R,.

(ii). &g denotes the family of all resoluble ramified sets in Rs.

(iii). [Rs] denotes the family of all equivalence classes of sets
XeR,.

(iv). A class X in [Rg] is called resoluble if it contains a resoluble
set. The family of all resoluble classes in [R;] is denoted by [S;].

(v). For ¥ and 9 in [R;], ¥<9) means that there exists an Xe %
and a Y€ 9 such that X<V, '

REMARK 1. [&;] is not defined as the family of all equivalence
classes of sets in ©;. But it is not a matter of much difference, and
[&:] may be taken for such a family without any modification in the
succeeding mention.

REMARK 2. Since the relation o between ramified sets is a quasi-
ordering, it is an order-relation between classes in [R;]. It is obvious
that if X% for X and 9 in [R,], then Xc<Y for any X€ X and Y€ 9.

Lemma 2.6. X R implies w(X)< wyg.

Proof. Since g is regular and ):(<x3, numbers T(x) with x€ X,
which are obviously less than o4z, are not cofinal to wz. Hence putting
E=sup 7(x), §<wg and Wi, ¢ X, ie., w(X)<E+1<w,.

XEX

Our main purpose of this paper is to prove the following :

Main Theorem A. (i). The family [ &S] of resoluble classes is well-
ordered by <. (ii). A resoluble ramified set is comparable with any other
ramified set (vesoluble or not).

Main Theorem B. Continuum Hypothesis (see [2], p. 45 or [8]) implies
that, (i) there exist ramified sets which are not comparable with each other,
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and, (ii) there exists a sequence of ramified sets X;, i=1,2, -« such that
X, =X, for any i< o,

Of course examples to confirm Theorem B can not be obtained within
the confines of resoluble ramified sets as far as Theorem A is valid.
Theorem B will be proved in Chapter IV, §2, while hereafter up to the
end of Chapter III, we shall exclusively discuss about Theorem A.

Speaking of only Theorem A, (ii), it seems to be proved rather
easily by induction on the least number & with which J{X) vanishes
for a resoluble ramified set X (see the mention above Theorem 4). But
by this induction the proof of Theorem A, (i) seems at least as laborious
as the discussion we shall proceed henceforth.

In this paper, in order to prove Theorem A, we shall construct a
certain sequence N={N,|r<_B*} of sets N, €S, starting from N,=0,
and show that

C) for any 8<wg, there exists a MN<_3* with «(N,)_>8, and

D) each N, satisfies the following D.1), D.2) and D.3):

D.1) N.:N, for any p<A.

D.2) If Xe€®g and X+« N, for any u<X, then N,o<X.

D.3) N, is comparable with any X € R,.

Note that .

Lemma 2.7. If a N, in N satisfies D.1) and D.2') mentioned below,
then N, satisfies D.2) and D.3).

D.2). If XeRs and X+« N, for any p<\, then N,o<X.

Proof. It is obvious that N, satisfies D.2). Let X be any set in
Ry,  If there exists a p< A with X< N, then by D.1) XocN,. If X«¢N,

for any wu<A, then N,oX by D.2). Hence N, is comparable with X,
and N, satisfies D. 3).

ReEMARK. Hereafter, when we say that a set in M, for instance N,
satisfies D.1), D.2), D.3) or D.2'), it means that N; satisfies it in which
A is replaced by &.

Before we actually construct this sequence M, we shall assume that

there exists a sequence M which satisfies C) and D), and consider the
consequence of its existence.

Lemma 2.8. If a sequence N of N, €S, with N,=0 satisfies C) and
D), then for any X e &,, there exists a N<_[3* such that X~N,.

Proof. Since #(X)< g, there exists a A<_B* such that «(X)< x(N,),
which implies Xo<N, by Theorem 5, (ii). Let A be the least number
such that XocN,. If A=0, then N,=¢ and hence X=0, ie., X=N,.

If A>0, then X« N, for any x< A\, which implies N,<X by D.2).
Hence X~N,.
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Corollary. [&;] is well-ordered by o< (Theorem A, (1)).
Proof. The order-type of [&;] is same as the type of sequence 9t
by the lemma above, ie.,, [&,] is well-ordered by o< in the type 5%

Lemma 2.9. Any Xe€©&; is comparable with any Y € Rg.
Proof. By Lemma 22, there exists a A< B* with X~N,. By D.3),
N, is comparable with any Y€ R;. Hence X is also comparable with Y.

Corollary. The existence of N for any regular number oz >w,, which
satisfies C) and D), implies Theorem A, (ii).

Proof. For any ramified sets X and Y, there exists sufficiently large
regular number ®; >, such that X and Y are contained in Rz. Especially
if X is resoluble, then Xe€&;. Hence X is comparable with Y by
the lemma above.

Thus Theorem A is proved if a certain sequence M of N, € &; with
N,=0 satisfies C) and D) (associating to every regular number @z _>®,).
Now we shall consider the construction of :M, and for this purpose we
shall define several operations on ramified sets.

DermviTiON 10. (i). Let A be a set of indecies, or especially a set
of ordinal numbers, and assume that a ramified set X, is assigned to
each e A. \/X,, or simply \/, X, (or occationally \/ X,, etc.), de-

AEA v<a<g

notes the set of all pairs (A, x) with A€ A and x € X,, where (A, x)< (i, ¥)
holds if and only if A=g and x<7y within X,.

For a subset Y of X,, the set {\x)|x€ Y} is denoted by (», Y).

(ii). For an ordinal number A and a ramified set X, W, +X denotes
the set which consists of all € W, and all terms A+x with x€ X,
where the order-relation preserves original meaning within W,, u<A+x
for any p€ W, and x€ X, and A+x<_A+y if and only if x<y within X.

For a subset Y of X the set {A+x|x€ Y} is denoted by AM+Y.

(iii). For ramified sets X and Y and an ordinal number »< g, the
ramified product X©,Y is a set which consists of all x€ X and pairs
(x, ) with x€Seg,(X) and y€ Y, where order within X preserves orginal
meaning, x<_(x/, ) if and only if x<<x’ within X, and (x, )< («/, y)
if and only if x=x" and y<{y’ within Y.

For a subset Z of Y, the set {(x, 2)|z€ Z} is denoted by (x, Z).

REMARK 1. \/, X, and W,+X are called a cardinal sum and an
ordinal sum respectively in [2] or [3]. But the first term of W,+X is
restricted to a well-ordered set in order that the resultant be a ramified set.

ReEMARK 2. In W,+ X, the notation A4x is used only to denote a
term, and the signeture + has no special meaning. But when X=W; and
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x=p€ W, A+p is taken for the usual sum of ordinal numbers. Thus
we have

(3) WA+W£: WHE,

not only the equivalency of both sides.

Lemma 2.10. \/, X,, W,+X and XO,Y are ramified sets, and if
X, (for any M€ A), X and Y are resoluble, then \/, X, W+ X and X©O,Y
are resoluble.

We omit the proof since it is obvious.

Lemma 2.11. If X,<Y for any M€ A, then \/, X,<Y.

Proof. For any A€ A there exists an increasing mapping f, of X,
into Y. Put f((\, x))=f,(x) for any A€ A and x € X,, then obviously f
is an increasing mapping of \/, X, into Y and \/, X,<Y.

Corollary. Let X, and Y, be ramified sets assigned to each M€ A
and N € N respectively. If for any M€ A there exists a N € N’ such that
X,o<Y,r, then \/y Xyoc \/n Yy

Further the following lemma is easily seen and we omit the proof.

Lemma 2.12. (i). If X<X’' and Yo<Y', then W,+Xo<W,+ X’ and
X0, Y X' O,Y".
(ii). Putting A=Lay,(X), Csg,(X)= \E/4Ub’(a).

(iii). X<W_ v+7Y, if and only if Csg,(X)o<Y.
(iv). (\V/aX)O Y= \/ses (X, OY).
@) (/o X) = supw(X).  If max (e(X), w(Y), o) o, then

(X0, V)=S0 If e(X)<w* and £< o then «(We+X) <",
(vi). Csgy(\/a X))~ \/Csgy(X,). If Xo<Y and n<v, then Csg,(X©,Y)
AEA

~Csg(YO,X)~Csg(Y). If E< @, then Csg,(Wi+ X)=Csg.(X).
(vii). If Z is a cut of X, then Exp(Z; XO,Y)=Exp(Z; X). If Z is
a cut of \/xX,, then Exp(Z; \/x X,)=\/scx Exp.(ZN X, ; X,).

Lemma 2.13. If 75 is an isolated number less then °, then W, +X
~W,0,X.

Proof. W, has a greatest number &, and £€ Seg,(W,). The mapping
f such that f(x)=p for we W, and f(n+x)=(&, x) for x € X is obviously
an increasing mapping of W,+ X into W,©,X. Conversely the mapping
g such that g(p)=p for p€ W,, and g((z, x))=n+x for any p€ W, and
x€ X is an increasing mapping of W,©,X into W,+X. Hence W,+X
~W,O0.X.

Corollary. W, +X~W, O.X for any v with 0< v<wg.
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- Lemma 2.14. If Y is not void, then XO,(Y 0,Z)~(XO,Y)O,Z.

Proof: Here temporarily - let x, y and z° denote elements in X, Y and
Z. respectively and x’ and 5/ -denote -elements in Seg,(X) and Seg,(Y)
respectively. XO,(Y©,Z) consists of all terms x, (x/, ) and (¥, (¥, 2))
while (XO,Y)O,Z consists of all terms x, (x/, »), ((«/, ¥), 2) and (&, 2).
(remark that («/, y) € Seg.(X©,Y) if and only if y€Seg.(Y)). The map-
ping f such that f(x)=x, f((x, )=, y) and f((&', (¥, 2))=(, ¥), 2)
is an increasing mapping of X©,(Y©,Z)) into (XO,Y)O,Z. Let y; be
any element in Seg.,(Y). The mapping g which is the inverse of f in
the range of f and g((«/, 2))=(x/, (3, 2)), is an increasing mapping of
(XG0, Y)O,Z into, XOL(Y©,Z) and hence we have our equivalency.

Lemma 2.15. If X is not void and n< ®*, then W,+(X0O,Y)
~(W,+X)O,Y.

Proof. We use notations x, y, 2’ and ¥ with same meaning in the
proof of Lemma 2.14, and p as an element in W,. W,+(X®,Y) con-
sists of all terms g, 7+« and 7+ (x’, y) while (W,+X)®,Y consists of
all terms w, n+2x, (+4/, y) and (g, ¥). W,+(XOY)e<(W,+X)O,Y is
obvious. Let x4 be any element in Seg,(X), then the mapping f such that
fw)=p fr+2)=n+x, f(n+x,9)=n+(,y) and f((x, y)=n+ (x5, y)
is an increasing mapping of (W,+X)®,Y into W,+(X©,Y). Hence we
have our equivalency.

We assume that for any limit number A< 8% a set A, of ordinal

numbers < \ is selected by axiom of choice, so that A,=R., and A,
is cofinal to A. For an isolated number A put A,=Ay,,. Besides, put
oe=0 if cf(Is(£))=B and o;=0 if cf(Is(§))<B. N, in N is inductively
defined along the following principle.

PriNcIPLE 1. Put N,=0 and N,=W,.
Case NeI°. Then put

| NA = Wfr(m‘i‘(\/m N;L) .

Case neI". Let A=a,(5+&)+n be the canomical decomposition of \
(see Definition 4), and put

Nx = Nw«,({)+n ON va(§)+¢75 .

Case NeT”. Let M=a(0f)+n be the canonical decomposition of \.
If & is a limit number (and necessarily cf(§)=R), then put

N, =W, +N;.,.
If & is an isolated number {+1, then put
Ny =Wy +Nyiorin-
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REMARK 1. According to Remark below Definition 4, the index
attached to each N which appears in the right sides of four formulae
in Principle 1 is surely less than A, and the definition of N, is inductive.

REMARK 2. Let A be a limit number in I*. Of course the set N,
itself, as well as N,,,, is determined depending on the choice of A,,
but it is easily seen that, under the assumption that N, with any p<M
satisfies D.1), the equivalence class which contains N, is determined
independently of the choice of the sequence A, cofinal to A. (Refer to
Corollary of Lemma 2.11).

Referring to Lemma 2.10, we can see that any N, is contained in
&s. For A=ay(wg), N,=W_ v+ N,=W_, and «(N,)=0"+1, from which
it follows that 9 satisfies C). Therefore in proving Main Theorem A,
it is remained only to prove that each N, in WM satisfies D.1), D.2) and
D.3). Next chapter is devoted to this proof.

CuaprTER III. PrROOF OF MAIN THEOREM A

In this chapter we shall show that any N, € 9t satisfies D. 1), D. 2)
and D. 3) to complete the proof of Main Theorem A. First we prepare
some lemmas on N, (§1), and next discuss about N, for each case
AeD, AeT” and A€ in §2, §3 and §4 respectively.

1. Preliminaries on N,
Lemma 3.1. If AeTY Ul and n<w®, then
( 4 ) W,, + N)\ -~ N)\ .

Proof. If A€I%, then N, is of the form W,v +X where < o*<o".
Since W,+W v =W, =W/, we have (4) trivially. Especially (4) is
true for A=a.(wg) which is the least number in T, wI? (see Lemma
1.13). Assume N €I% and (4) is true for any AeIjul$ with A<V,
Let M=a,(6+¢)+n be the canonical decomposition of N, and then
Ny=Nyyct51aOv Noyctyiop.  Since ¢ is a limit number with cf($)=28,
a(§)+nelul¥ and by assumption W,+ N, in~Nyyctr+n, which is
not void. Hence by Lemma 2.15, W,+Ny=W,+(NaytrenOv Nuyctrsop)
~(W71+Nw\,’(§)+n)QV’NMV’(5)+U§~NMV’C§)+n Q‘V/va’(éwro"g: v, and (4) is proved
for A=\,

Corollary. If Ac1"Ul® then W,+ N,~N,.

Assume 2<v <7w,, and letting p=E&+¢ be the ®,~-decomposition of

w (see Definition 2, (ii)), {=9%(x) >0. Now we define ta,(x) (tail of u)
by
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ta,(u) = 0"+¢ if v=n+1 (and accordingly {< w)

and
ta,(u) = ¢ if v is a limit number.
Lemma 3. 2. ‘Under the same assumption as above, putting ta,(p)=F¢,
(5) Nav(ﬂ)+n = We+Nmu($)+o'£+n .

Proof. We shall prove (5) only for the case v=7%-+1, since the proof
for the case that v is a limit number is similarly obtained.

ay+1) = a,(0g»®) T}, and hence Nuytipin= W1+ Nuytriopin
(since oa,(£)=ay(§); refer to Corollary 2 of Theorem 1), which shows
(5) for &=1. Assume that (5) is true for ¢{=k=1. «a(f+k+1)=
.an(mﬁwv(hk)) € Ff, and va(5+k+1)+n= W » +va(g+k)+n= W+ Wo,n,k+va(g)+l,£+”
=W 1k + Naytriop+» Which shows (5) for {=k+1. Hence (5) is proved
by induction on ¢<e.

Corollary. If 2<v<wg, >0, ¢i()=0 and ta,(u)=E&, then
( 6 ) wa(l-")'\"n = W2+n .

In proving that N, satisfies D.1), D.2) and D. 3), it is assumed that
N; with any &<\ satisfies them. In the following three lemmas, which
are used to prove that NV, satisfies D.1), D.2) and D. 3), especially D. 1)
is assumed for N; with any £<7A, and under this assumption, for a
limit number &€ 1™ with { <X and for any sequence A; of ordinal numbers

less than and cofinal to {, \/w, Nu~\/a, Nu~ N, as we remarked below
Principle 1.

Lemma 3.3. If & is a v-number greater than 1 and 0< &< %o,
then putting N\=&+o:+ ¢,

(7) N, ~ N; ©, Ne.o,

Proof. If { is a finite number greater than 0, then Ng, o ¢= Wi+ Ne.og
~N;©O,Ng.,, by Corollary of Lemma 2.13, and (7) is proved for finite
numbers {. Now assume that o <{<fw and Ngiepu~N.O,Ng,, for
any p with 0<p<¢.

In the case &eI®, Ny=W,+\/s,N. where n=fr(\), and referring
to the remark above,

Nx -~ Wn+ \/MGAg N§+o'£+'ll-
~ Wyt Vuerg N O, Ng.oy)  (by assumption),
~ W+ ((Vuesg Nu) ©) Neioy)  (by Lemma 2. 12, (iv)),
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= (Wt (Maesg M) Oy Nergg' “(by Lemma 2.15);
~ N, 4 ®1 N; Erog s

and (7) is proved for ¢eTI™
If ¢eT'uI” and accordingly cf(Is(¢))=4, then AeTIi and vy(\)=§,
and (7) immediately follows from the definition of N,.

Lemma 3.4. Assume that & is -a y-number not less than wg,
0<¢< b0 and 2<v<wg, then putting x=a,(§+&)+mn,

(8) Ny~ va<§)+n O Nah,(&)—ﬂrg .
except where n=@i(¢)=0.
Proof. Since &e®i, @l(§+¢&)=i(¢). Hence putting ¢&=ta,({),

E=ta,(§+9).
If 3(§)=0, then @(§4+¢)=¢. In this case, excepting where n=0,
N, ~ WE+va(£)+65+n (by (5)),

~ W AW, +Noytriop (since ay(§)+o€1),
~ Wei Oy Nuytr o (by Lemma 2.13 and #_>0),
~ Ny O+n ON Nw~,(§)+o-g (by (6)),

and we have (8).

Assume 93(§) >0 and N, trorin™~ _mn,(9)+n®vNa«,(§)+crg for any 6 such
that 0<6< ¢ with similar exceptions. We distinguish three cases.

Case 1. Putting P3(E)=46, cf(8)<B.
In this case, since @§(E+&)=£+6,

Ny~ W+ Nyt i 55n (by (5) and cf(8)<R)
~ W+ W”_'_(ge\;{ Noctio041) (by cf(8)<B and 6+0)
5

~ e+,.+(9>l{ (Nayor+1Ov Nayctr+0p))  (Dy assumption),
8
~ (W€+n+(0€\1{ Noyor+1) Oy Nmycbwg (by Lemma 2. 15),
]
-~ (Ws+va(8)+n)®v va<€>+ag
-~ wv(§)+n®vav(§)!-a'g (by (5))’
and we have (8).
Case 2. ¢ is a limit number with cf({)=4 (then necessarily ¢ ¢ ®?).
In this case, A€} and (6+&)=£& Hence (8) follows from the
definition of N,.
Case 3. Letting 6+% be the @,-decomposition of &, cf(6)=B and
n>0.
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In this case,

Ny~ W+ Noti5r10in (by (5)),
~ W.+ Wn+ (Iz\</“’ Nw\,(£+8)+k)

~W..,+ (kM (va(s)wz ON vacé)ﬁrg)) (by assumption),
-~ We+n+((k\<4 Noycsriw) Oy Nm\,(E)wg) (by Lemma 2.12, (iv)),
~ (Weint (k\l) va(b‘)«kk)) OX vacb—wg (by Lemma 2.15),

-~ (We+ va(8)+w+n) O} va(5)+a'5
~ WNay(O+n ®V wa(f)-ra-g (bY (5))»

and we have (8).
Hence for any possible case concerning ¢ we have (8) and the proof

is completed.

Corollary. Assume that & is a y-number not less than wg, 0< v<wg,
o0o<¢{<fo and € ®,. Put \=E5+oe+C+op if v=1, and r=a,(5+8)+o;
if v>1, then

( 9 ) N,\ -~ Nm‘,(g)-\’—o'g Q‘u Nw,,(SH—a'E .

Proof. If either »=1 or »_>1 and cf(£)< B (and accordingly o,=0),
(9) is a special case of (7) or (8). For the case where v >1, cf({)=8
and accordingly oy;=w, see the proof of Case 3 in the lemma above.

ReEMARK. Assume that )\ is a limit number in I, and let A=, (§4+)
be the canonical decomposition of A. Put ¥, = {u|o*< p< &} if v=1,
v, ={plo<w<g if v is an isolated number greater than 1 and
V= {p| v<pw< ¢} if v is a limit number. Then the numbers «.(5+ u)
with x €W, are cofinal to A, For v=1, ¥, is defined so that peV,
implies &+o¢+p=&+pu. Hence it follows from Lemmas 3.3 and 3.4
that in general p € ¥, implies

(10) Nw,,cs+u>+n ~ Ve (wtn O, Nmy<£>+a5 .

This Remark is the foundation of the proof that N, with a limit

number A €I™ satisfies D.1), D.2) and D. 3).
We shall say that a ramified set X satisfies condition E,) if there
exists no maximal totally ovdered subset of X whose type is less than o.

Lemma 3.5. If A=a.(np)+0 where os<pu<B* and 0<0< w4, then
there exists a Ny &, such that Ny~ N, and Nj satisfies E,).

Proof. If p=wg and @=#n< o, then N,=W_v,, which itself is a
totally ordered set with type o*+#n=0" and satisfies E,).
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Assume that x and 6 where « <6< w, are given and that for any
¢ with 0<<¢' <6, putting M =a,(1z) + ¢, there exists a N{ € &, such that
Njy~N,, and Njs satisfies E,). Put N{=Wy+ \/ Niw+e’> Obviously

6’en,

i~ N,. Since every maximal totally ordered subset A of N; has a
from Wi+ (0, A’) where # € A, and A’ is a maximal totally ordered
subset of Ni e, A=1r(d)+A =w*. Hence NJ satisfies E,).

Hence in order to prove our lemma, we need to consider only the
case 0=n<o,.

Assume wg<_p< B* and that for any p with 0a<p'<p and &
with 0<<¢ < wg, putting N =a.,(/)+ ¢, there exists a N}s€ & such that
N/~ N, and Nj, satisfies E,). Put §=n<w. We distinguish five cases.

Case 1. ued].

Put @i(x)=£% and ta,(u)=& where p€®, implies & >0. Put N}
=W.+Na tri0+n, then by (5), Ni~N,. Since any maximal totally
ordered subset A of N; has a form W.+ A where A’ is a maximal
totally ordered subset of N t>40p10, the type A, as well as A, is not less
than , i.e., N} satisfies E,).

Case 2. pe® and cf (u)<B.

In this case, the sequence Al= {a,(p)|wp<p/' <, ¢/ €A} is cofinal
to Is(\)=a(p). Put Ni=Weon+ \/w, N, then N{~N, and NJ satisfies
E,) similarly as we saw in the case o <6< w,.

Case 3. pe®i, cf(u)=F and p=a,(p)=Is(A\).

In this case x €1y, where v’ _>v». Put N{=W_»+N,, then by Lemma
3.1, N{~N,. Since any maximal totally ordered subset of N} includes
W v, N{ satisfies E,).

Case 4. pe®@!, cf(u)=R, p<a,(p) and g is not a y-number.

In this case M€} and putting p=E£+¢ where £=9(z) and Nj
= Naytyin Oy Nayctr+op, We have Ni~N,. Since any maximal totally
ordered subset of N is either included in N/ ., or of the form
Lb'(x; Niygren)+ A where x€Seg.,(Na,) and A’ is a maximal totally
ordered subset of (x, Ni :s), Ni satisfies E,).

Case 5. pe®i, cf(w)=B, p<a,(z)=Is(A) and g is a y-number.

In this case A€T? and N, is of a form W_»+X. Hence N, itself
satisfies E.).

Thus in any case we can inductively find a N} required, and we
complete the proof.

2. Case L€V

By the aid of preliminary lemmas shown in §1, we shall prove
that for any A<5,
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Proposition 1. N, satisfies D.1), D.2) and D. 3).

As we have seen in Lemma 2.8 and 2.9 and their Corollarles if we
complete the proof of Proposition 1 for any A<(/&*% then Main Theorem
A is also proved. In proving Proposition 1 for a A< g¥ it is assumed
that any N with £<\ satisfies Proposition 1 in which A is replaced by
&, and hence Lemma 3.3 and 3.4 can be applied on any N, with <\
without any restriction. Occasionally for some A we can show

Proposition 2. N, satisfies D.1) and D.2’) (see Lemma 2.7),
and as we noticed in Lemma 2.7, Proposition 2 implies Proposition 1.
Proposition 2 trivially holds for N, with n<e. We shall show
that any N, with A€ satisfies Proposition 2.

Proof of Proposition 2 for a limit number N\ €I,

Assume p< M. Let & be the least number in A, such that u<[§,
then by assumption D.1) on N¢, N.£N¢. By the definition of N,, it
includes a subset isomorphic to N¢. Hence N, $£N¢x<N, and N, satis-
fies D.1).

Let X be a set in Ry such that X« N, for any p<A. By assump-
tion D.3) on N, with <A, N,o<X. Hence N,=\/;, No><X by Lemma
2.11, and N, satisfies D.2’).

Lemma 3.6. Let N be a limit number in I°. If X has the least element
and X<N,, then there exists a p<\ such that Xo<N,.

Proof. Let a be the least element of X and f be an increasing
mapping of X into N,, then there exists a x €A, such that f(@) € (x, N,.),
and X=Ub'(a) is entirely mapped into (x, N,) which is isomorphic to N,,
ie., X<N,.

Corollary. If \ is a limit number in I° and a € N,, then there exists
a <\ such that Ub'(@)e<N,.

Lemma 3.7. Let )N be a limit number in I°. If w<\, then
W,+N,<N,.

Proof. If p€I* then W,+N,=N,., by definition. If peIrul®,
then W,+N,~N, by Lemma 3.1. Hence our lemma follows from D. 1)
on N,.

Corollary. Let N be a limit number in I°. If N,<W,+X, then
N, <X.

Proof. Since W,+N,><N,<W,+X, N,><X for any wx<_A. Hence
N, <X.

Proof of Proposition 2 for an isolated number A=\ +1¢€ 1",
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Put é=1s(\)=1s(\), n=fr(\') then Nyy=W,+N; and N,=W,+ {n}
+ Ng.

First we shall show N,/$$N,. N,/o<N, is obvious. Assume N,><N,s,
and let f be an increasing mapping of N, into N,s, then r(f(n))=7(n)=n.
Hence there exists an a € N such that f(n)=#n+a, and f maps Ub(%; N,)
into Ub(n+a; Ny/) which is isomorphic to Ub(a; N:). Since Ub(n; N,)
=N;, we have Ni<Ub(a; N¢) contradicting Corollary of Lemma 3.6.
Hence N,»%¢ N, and p <)\ implies N, N, by D.1) on N,». Hence N,
satisfies D. 1).

Assume X e R;, and X ¢ N,s (and accordingly X N, for any <<\
by assumption D.1) on N,). Let Y denote the set of all y€ X such
that 7(y)=n. If Ub/(y)<N; for any y€ Y, then similarly to Lemma 2. 11,
we have Xo<W,+ Ny=N,, contradicting X «¢N,,. Hence there exists a
y€Y such that Ub'(y)¢Ne. By assumption D.3) on N;, Neo<Ub/'(y)
={y} +Ub(y). Hence N;><Ub(y) by Corollary of Lemma 3.7, and
N,=W, ,+Ng<Lb/(»)+Ub(y)C X which shows that N, satisfies D.2’).

3. Case eI

In this section we shall show that for any A €I" Proposition 1 holds
and for some cases Proposition 2 also holds. In order to show it, we
prepare a definition of a notation.

DeriNiTION 11. We shall say that an x € X supports Y if Yo<Ub(x; X).
Spt(X;Y) denotes the set of all x€ X which support Y. Let 9={Y,;
AeA} be a family of ramified sets. Spt(X; %) or Spt(X;Y,, A€A)
(or occasionally Spt(X; Y,, A< x) etc.) denotes the set of all xeX
which supports every Y, €%. Exp.,(Spt(X;9)) is denoted by Spt’(X; 9)
and Seg.(Spt(X; 9)) is denoted by Spt,(X; D).

ReEMARK. Let Z be a subset of X. In general Spt(Z;Y) does not
agres with Spt(X; Y)NnZ. If x€Spt(Z;Y), then Yo<Ub(x; Z), while
x€Spt(X;Y)NZ implies Yo<Ub(x; X). Hence we can assert only
Spt(Z;Y)cSpt(X;Y)NZ.

The following is obvious.

Lemma 3.8. (i). Spt(X;9) is a cut of X (and hence Exp,(Spt(X ;D))
can be defind).

(). If XocX’ then Spt(X; 9)ocSpt(X'; Q) and similar relations hold
for Spt” and Spt,.

(ili). If for any Y€ there exists a Y €% such that Y<Y', then
Spt(X; 9)CSpt(X; ), and especially if YooY’ then Spt(X;Y’)C
Spt(X; Y). Similar inclusions hold for Spt’ and Spt,.
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(iv). For a family {X, ;N €A}, Spt(\/w Xy;?))ﬂvy\e{vSpt(Xy; ).
Similar equivalencies hold for Spt’ and Spt,.

Lemma 3.9. If y€Y implies Y «Ub(y), then Spt (XO,Y; Y)=X.

Proof. For any x € Seg,(X), Ub(x; X©,Y) include the subset (x, Y)
isomorphic to Y, and x € Spt(X©,Y; Y). Hence Seg,(X)<Spt(XO,Y;Y)
and XCSpt'(X®,Y;Y). On the other hand, for any x € Seg,(X) and
yeY, Ub((x, y); XO,Y)=Ub(y;Y), and (x, y) does not support Y by
assumption, ie., Spt(X®,Y;Y)cX. Hence Spt(XO,Y;Y)cX by
Lemma 2.1, (vi) and we have the lemma.

Lemma 3.10. Spt'(X;Y)®,Y«<X.

Proof. If Spt(X;Y) is void, then Spt'(X;Y) and Spt'(X;Y)O,Y
are void and the inequality is trivial. Assume that Spt(X; Y) is not void.
Since x €Spt(X; Y) implies Yo<Ub(x), there exists an increasing map-
ping f. of Y into Ub(x) for any x€Spt(X;Y). Put f(x)=x for any
x€Spt’(X;Y) and f((x, y))=f.(») for any x€Spt,(X;Y) and any y€ Y,
then obviously f is an increasing mapping of Spt(X;Y)®,Y into X
and the lemma is proved. '

Lemma 3.11. If Y is comparable with any X' € Rs, and Z satisfies
E,) (see Lemma 3.5), then for any Xe€R,, Spt' (X;Y)o<Z implies
Xx<ZO,Y.

Proof. Let g be a reduced increasing mapping of Spt’(X;Y) into
Z and M be the set of all minimal elements of X—Spt'(X;Y). aeM
implies 7(a¢)< ®” by Lemma 2.3 (vii), and Lb(a)CSpt,(X;Y). Since g
is reduced, the type of the set g(Lb(a)) is equal to 7(e¢) which is less
than «*. Hence by E,) on Z, g(Lb(a)) is not maximal totally ordered
subset of Z, and there exists an @’ € Z such that v(a’)=7(a) and g(Lb(a))
=Lb(a’). Let g’ be the extension of g such that g’(a)=a’ for any a € M.
Since a€ M implies Y ¢ Ub(a), Ub(a)<Y by assumption on Y. Let f,
be an increasing mapping of Ub(e) into Y for any e € M. X is decom-
posed into a union ,,\ELUb (@) v (MuSpt’(X;Y)). Let f be a mapping of X
into ZO,Y such that f(@)=g’(a) for MuSpt’ (X;Y) and £(b)=(g'(a), f.(b))
for b€ Ub(a) where a € M, then obviously f is increasing and Xo<Z(©,Y.

Lemma 3.12. Assume MeT" and let A=a,(5+&)+n be the canonical
decomposition of N, then

(i). Nyo<X implies NuytrenoSPE (X 5 Nayctrrog) -

(ii). X ¢N, implies S—ptv(X; wa(€)+a'g)9éNa\.(§)+n .
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(iii). S_ptv(X; Nmy(?)—ko’g) % Nyycorrn tmplies X % Ny .

(iv). Nayrin ‘X_S_B?(X; va(‘s‘)wg) implies Nyo<X.

Proof. (i). Since a\(£)+0:€ ", @€ Nuyty1s, implies Ny,tr10p % Ub(a)
by Corollary of Lemma 3.6. Hence Spt’(Ny; Nuytrio)) =Naytrin bY
Lemma 3.9. Hence (i) follows from 3.8 (ii).

(ii). Since wp,<<{<B% there exists a Na,¢, €S which is equi-
valent to N,,+» and satisfies E,) by Lemma 3.5. By Lemma 3.11,
SPtV(X; Nm(E)wg)OCNm\,<§>+,.~N;\,(§)+n implies Xo<Ng, 451, Os Nmy(E)+u‘E~NA-

(iii) is a consequence of (i) and (ii).

(iv) follows from Lemma 3.10 and Lemma 2.12 (i).

Now referring to the remark below Lemma 3.4, we shall obtain the
Proof of Proposition 1 for AeI™. (Besides let A=a,(6+¢)+n be the
canonical decomposition of A. Proposition 2 holds for A if Proposition 2
in which A is replaced by 8 holds for €=a,({)+#n In brackets of the
following proof, we shall consider about this case.)

Let A=ay(§+&)+n be the canonical decomposition of A. First we
shall show that N, satisfies D.1).

Case n=1fr(A\)=0. If pu<A=a,(§+¢{), then there exists a Yy €W,
such that p<a,(5+) (see the remark bellow Lemma 3.4), and by
assumption D. 1) on Nm\,(§+l!l)’ N Nyyct gy Since Ny Naytys Nyt
= Nuyts Oy Nayctys0t < Nayer Oy Naytrroe =Ny by Lemma 2.12, (i). Hence
N.% N, and N, satisfies D. 1).

Case n=fr(A)>0. It suffices to show N, titrin-1 % Nayctetrin-
Spty(Nw\/(s+§)+ﬂ—l; Nayctrs0t) =Nayctrin-1 Z Nuyctr+n by Lemma 3.9 and as-
sumption D.1) on N,,ty:,. Hence Ny ti¢)in-1 5 Ny by Lemma 3. 12, (iii)
and N, satisfies D. 1).

Next we shall show that N, satisfies D.2) (resp. D.2’) in the case
where N, .. satisfies D.2')). Assume X€S; (resp. X€R;) and that
XN, for any p<A.

Case n=fr(A\)=0. By assumption D.3) on N, with p<A, N,xX
for any p<A\. Especially for any € WV,, N, ¢y,>cX and hence N, y,
=Spt" (Nayctt> 5 Nayctr10) <SPt (X ; Nayctriop) by Lemma 3.9 and Lemma
3.8 (ii). Hence N, <Spt’(X; Noyctr+0¢) by assumption D. 2) (resp. D. 27))
on N,,. Hence Ny=N,y Oy Noytrio,<X by Lemma 3.12 (iv) and N,
satisfies D. 2) (resp. D. 2)).

Case n=fr(A)_>0. It suffices to show that X o¢N, t+¢)+,-, implies

Noyt:iin<X. By Lemma 3.12 (ii), X ¢ N,y ti04,-; implies Spt'(X;

Noyctriog) % Nauyctria-, Which implies chg>+n°<§5f”(X; Naytr10) DY assump-
tion D.2) (resp. D.2')) on N,,¢.,. Hence N,ocX by Lemma 3.12 (iv).
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Finally we shall show that N, satisfies D.3). Assume X€®R;. By
assumption D.3) on N,y.,, either Spt’ (X; Nuytriop) % Nayctrin OF

Noyct40°SPt (X ; Naytrssp) holds, hence either X% N, or N,<X holds
accordingly by Lemma 3.12, (iii) and (iv), and N, satisfies D. 3).

4. Case L€eT™

We distinguish three cases. First we shall consider the case
AM=a,(0p)+n, next the case A=a,(og"")+n where 0< ¢ and finally the
case M=a,(®§)+n where ¢ is a limit number with cf(§)=A and &< Is(\).

Lemma 3.13. Assume X Ry, M€, fr(\)=0 and that any N, with
w<\ satisfies D.1). Put Y=Spt(X; N,, u<\), then there exists a <\
such that for any x € X, Ngo<Ub(x) implies x €Y.

Proof. If x€ X—Y, then there exists a &(x)<A such that N, ¢

Ub(x). Since X< R; and cf(\)=/, numbers &(x) with x€ X—Y are not
cofinal to . Hence there exists a £<_\ such that £(x)< & and accordingly
Neoye Ne for any x€ X—Y. Then x€ X and N¢e<Ub(x) imply x€ Y.
Proof of Proposition 1 for r=a,(wg). (fr(A)=0).
A is the least number in I'}vI? (see Lemma 1.13), ie., ;<A im-
plies p€ I'O\J"\!v I',. Hence applying Lemma 2. 12, (v), we can inductively

see that <\ implies #(N,)<®", while /c(NWwB)):fc(WQV):w‘HLl. Hence
by Theorem 5, x< M\ implies N, N,, ie., N, satisfies D.1).

Assume X€&; and X« N, for any x<_A, then by assumption D. 3)
on N, N,<X for any p<\A. Put Y=Spt(X ; N., »<A), then by Lemma
3.13, there exists a €<\ such that x€X and Ng<Ub(x) imply x€Y.
Since ordinal numbers «.,(0) where 6€ ®) and 0< wg; are cofinal to
A=a,(wg), we may assume that E=«,(¢) where 6 € @} and < w,; without
loss of generality. Then cf(§)=cf(6)< 8 by Theorem 3 and accordingly
£eI° and o:=0. Now we shall show that

(a). for any €< " and y€Y, W,+N;<Ub(y; X).

If »=1, then sihce £ is a limit number in T°, W,+ N:=N;.,o<Ub(y)
for any n<o.

Next assume v=2. If v=9%+1, then let ¢ be the least finite number
such that &< w"-¢ and put &=0"-¢. If v is a limit number, then let
¢ be the least number such that é< ¢ and put & =w¢. In either case
put x=0+¢, then 6+¢ is the o,~decomposition of u, < wg and <&
=ta,(x) (see the mention above Lemma 3.2). Hence by Lemma 3.2,
WE+N€OCWs’+N€=wa(IJ~)O<Ub(y)°

Hence Assertion (a) is proved for any » with 0<»<Twg. Next we
shall show that
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(b). for any & with 0< < 0" and y€ Y, there exists a 2€ Ub(y)nY
such that (z; Ub(y))=¢&.

Indeed, W,,,+ N:o<Ub(y) by (a) above. Let f be a reduced increasing
mapping of W,,,+ N; into Ub(y), then f maps E€ W,., onto a z2€ Ub(y).
Since Ngo<Ub(E; W,.,+N:), N:o<Ub(2z) which implies z € Y by assumption
on £ Since f is reduced, 7(z; Ub(y))=7(&; W,.,,)=¢ and (b) is proved.

Similarly as the above, Y itself includes a subset isomorphic to W,
for any €< " and especially Y is not void. Since X€ &g, ie., X is
resoluble, there exists a y€Y such that Ub(y)nY is a well-ordered
subset of X. Since for any &< ", there exits a z€ Ub(y)nY such that
7(2; Ub(y))=¢& the type of Ub(y)NY is at least * and hence N,=W,’
o<Ub(»)nY C X and N, satisfies D.2).

It follows from Corollary of Theorem 5 that N, satisfies D. 3).

By the way we shall show ;

Lemma 3.14. If either v is an isolated number or a limit number
with cf(v)=0, then N, with M=«a.(o,) satisfies D.2'). (Hence Proposition
2 holds for ).

Proof. In either case cf(»*)=0 and there exists a countable (strictly)
ascending sequence &, &,, -+, &, , --- cofinal to .

Assume Xe€R; and X ¢ N, for any p<A. It is all the same as (b)
in the proof above that for any y€ Y=Spt(X; N., p<A) and &< w?
there exists a z€ Ub(y)nY such that «(z; Ub(y))=¢&. Especially Y
itself is not void. Let y be an element in Y such that =(y,; X)=¢&,,
and after we have a y,, €Y, let y,,., be the element in Ub(y,)NY such
that +(y,.,; X)=¢,,,,, then we have a sequence ¥,,¥., **, ¥, -+ Of
elements in Y such that y,<y,., for any m< e and 7(y,,; X)=¢,,.
Let W be a maximal totally ordered subset of X, which contains every
Ym>» Mm<_o, then since for any €< w”, W contains a w such that 7(w)=¢,
the type of Wis at least »*. Hence N,=W_vo«<X and N, satisfies D.2’),
and the proof is completed.

Proof of Proposition 2 for A=a(wg)+n with n>0.

(N = k(W) =e"+n+1 while £(Ngyprin-1)=r(W,ri,-)=0"+n.
Hence chm5>+n-1%Nm,(wﬁ,nn:Nx by Theorem 5 and N, satisfies D. 1).

Assume X € Rg and X o¢ Nyycoprin-i- Then since £(Naycugin-1)=0"+n
is an isolated number, ®+n<#(X), ie.,, @ '+n+1<«(X). Hence by
definition of «(X), Ny=W v, ,<X, and N, satisfies D.2’).

Next we shall consider the case A=a,(o§™") where & >0.

Put {=w§ and oi=0y, ie, of(=0 if § is a limit number with
cf ()< B and o,=w otherwise.

Lemma 3.15. Put é=a,(wf)+0%, then Csgu(N)~N,zio;-
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Proof. ' Case 1. ¢&=6+1. )

In this case ot=wo, o¢=0, and Nav(w§)+n=Ww”+‘Nwe+ao+n- Hence
CSg‘v(vaQog)+n)ENw9%0'a+n' Since Nav(wg)+w~"\<{any(wg)+n by Remark 2
below Principle 1, ngy(Nav(wg)+,f€)~n\<{ong,,(va(wg)+n)~MNwo+,9+,,~,
Y

(o]

0+0pte — LY +D+og— LV wl+oy by Lemma 2.12, (vi).

Case 2. ¢ is a limit number with cf({)=8 and &=a,(®}§).

In this case o}=0;=w, of={ (see Remark (ii) below Definition 4) and
E=an(0f) €154, UIY,,. Hence Noy(u$)+n~W,»+N;i, by Lemma 3.1 and
ngv(va@g)Jrn)va;M. Hence similarly’ as Case 1, ngv(Nav<w’§)+,,é)~
”\<{,N§+”~N‘§+m:Nm§+U’§‘

Case 3. ¢ is a limit number with cf({)=8 and &< a,(®}).
In this case o;=o0;=0, ©f=¢{ and Nav(wg)ﬂ,: W_v+N¢.,. Hence
ngv(va(mg) +n)=N¢,, and similarly as Case 1, ngv(Nay(mg>+,,f§)~ﬂ\<4 N¢in

~N§+m: w§+0'§'
Case 4. ¢ is a limit number with cf (£)<7B.
In this case o}=0;=0, a,(o§) €1’ and NE~0>I< Neyofrny=\/ (W
¢ e
+N,o+0,). Hence CSgV(va<mg))~OM§CSgV(va(wg+l))~0M§N«u0+60~Nw§‘

Lemma 3.16. If a,(0f)+0t=&<a(05™), then Csgu(N)~N,z.o;-
Proof. a,(w§™) is the least number in I?uI',,, greater than
a,(0)+0; by Lemma 1.14, ie, €€®v\/Iv\J/I'%2. By Lemma 3.15
<y n<v
the equivalency is true for &é=a,(®§)+o;. Hence we can inductively
prove our equivalency referring to Lemma 1.12 (vi).

Lemma 3.17. Assume that X € Rg and N, <X for any p<A=a, ("),
Put Y’ =Spt(X; Ny, p<M) and Y=Exp(Y"; X)=Spt' (X; N,, p<\),
then for any y€ Y nSeg,(X), va(wg)+‘,/§o<Ub(y)r\ Y.

Proof. By Lemma 3. 12, there exists a &<\ such that x€ X and
Ny ocUb(x) imply x€ Y’. Without loss of generality we may assume
& =a,(£)+o¢ where & is a y-number such that wi<é< w0§" (remark that
if £<w§*, then éo<w§" and £ is a y-number). Put 0=£+op+of+0f
if v=1, and 0=« (§+o§)+0} if v=2, then by Corollary of Lemma 3.4,
Ny~ a,,(wg)w'g@va»(EHag of which we shall denote the right side by Z.
If ye YNnSeg,(X)CY’, then since <A, N,o<Ub(y) and there exists a
reduced increasing mapping f of Z into Ub(y). If aESegy(va@g)ﬂ&),
then since N0 < Ub(a; Z)<Ub(f(a); Ub(y)), f(a)€ Y’ by the defini-
tion of &. Hence f maps Segv(Nav(ng,g) entirely into Ub(y)nY".



108 T. OHKUMA

Hence f maps No,(.f) +a} into Ub(»)NExp,(Y)=Ub(y)NY (refer to
Lemma 2. 12, (vii)) and va(wg)Jr,&ocUb (y)nY.

Lemm 3.18. If X is comparable with any set in Rs, then W v+ X
is comparable with any Y €Rg.

Proof. If Ub’(a) <X for any ae€Llay,(Y), then Yo<W_++X by
Lemmas 2. 12, (iii). If there exists an a € Lay,(Y') such that Ub/(a)+ X,
then Xo<Ub’(@) by assumption on X. Since Lb(@)=W v, W v+ XoLb(a)
vUb/(a)C Y. Hence in either case W »+X is comparable with Y.

Proof of Proposition 1 for A=a,(w§™). (fr(x)=0).

If x<\, then there exists an € such that u< & and a,(@f)+o; << .
Since Csgu(N.)~N,¢.,, by Lemma 3. 16, N,o< W v+ N, ., =N, by Lemma
2.12 (ii). Hence N,% N.><N, by assumption D.1) on N, and N, satis-
fies D. 1).

Assume X € &; and X « N, for any p<_\. Put Y=Spt'(X; N., p< ),
then it follows from Lemma 3. 16 that for any y€ YN Seg.(X), va(a,g)Jr(,g,
o<Ub(y)NY. Similarly Nav<wg)+,,gocY and Y is not void. Hence
YNnSeg,(X) is not void. Since X€&; and X is resoluble, there exists a
y€ YNnSeg,(X) such that Ub(y)nYNSeg,(X) is totally ordered. Put
Z=Ub(y)nY, then since va(wg)+(,/§O<Z, ZnSeg(X)=W,» and N, ~
Csgu(Nay(w§) +0,) < Z N Csgu(X).  Hence Ny=W,v+ Nogiop < Wr +(Z 1
Csg(X))=ZcC X and N, satisfies D.2).

It follows from Lemma 3. 18 that N, satisfies D. 3).

Proof of Proposition 2 for A=a.,(e5™")+n where n_>0.

Obviously Ny ,=W v +Nutiorin-1 W+ Wetioriw=Ny. If Nyo<N,_,
then by Corollary of Lemma 2.5, N,isp,= Csgi(N,)o<Csgy(Ny-,)=
No¢iopin-1 contradicting assumption D. 1) on N,¢i61,. Hence Ny, % N,
and by assumption D.1) on N,_,, N, satisfies D.1).

Assume X€R; and X ¢ N, _,, then there exists an @ € Lay,(X) such
that Ub'(@) % No¢iopin-1- Since of+oy+n€l®, it was already proved
that N,¢. 0.+, satisfies D.2). Hence Ub'(a) % N,¢ioin-, implies No¢ioin
o<Ub'(@). Hence Ny=W_ + N, s 1,o<Ub(a) VLD (a) CX and N, satisfies
D. 2.

Finally consider the case A=a,(»})+#n where ¢ is a limit number
such that &< Is(A\) and cf({)=4.

Proof of Proposition 1 for r=a,(w§) (fr(A)=0). (Besides it can be
proved that if Proposition 2 holds for A = ¢, then Proposition 2 also
holds for A=a,(»§). In brackets of the following proof we shall consider
this case).

If <X, then there exists a 0< ¢ such that p<a,(o3™). Since
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w0+00<wZ:§’ N#%va(wg+l)=WwV+Nm0+ﬁo<x me+N§:N)\ and NA SatiS'
fies D. 1). '

Assume X €&, (resp. X€R; if N, satisfies D.2)) and X« N, for
any p< A Put A=Lay,(X). If for any a€ A there exists a &a)<¢
such that Ub’(a)o<cNg,,, then the numbers £(a), a€ A, are not cofinal to
¢ since X<'®; and cf(¢)=B. Hence there exists a &< ¢ with £a)< &
for any e € A. Without loss of generality we may assume that & has
a form & =w5+o0; where £<¢. Then since \/4Ub’(a)Engv(X)ochg+aE,

ag

X< Wy+ N tpo= w(eftyy While a(@§™)<\ contradicting assumption.
Hence there exists an a€ A such that Ub'(e) ¢ N; for any £§<¢. By
assumption D. 2) (resp. D. 2')) on Ny, N;<Ub'(¢). Hence N, W »+Ub'(a)
=Lb(a)vUb/(a) C X and N, satisfies D. 2) (resp. D. 2)).

It follows from Lemma 3. 18 that N, satisfies D. 3).

Proof of Proposition 1 for A=a,(e5)+n where < Is(\) and n_>O0.
(Besides, under assumption that N.,, satisfies D.2’), Proposition 2 holds
for ).

Proof for D.1) and D.2) (resp. D.2)) are obtained almost samely
as the case A=a,(0§™")+n where { >0 and #_>0. For D.3), refer to
Lemma 3. 18.

Now we complete the proof that N, in N satisfies Proposition 1 in
any case, and as we noticed at the head of §2 of this chapter, the proof
of Theorem A is also completed.

REMARK. It will be worth to notice that for most A< /3%, Proposition
2 is satisfied, i.e., N, satisfies D.1) and D.2’). Indeed by a careful study
of proofs in this chapter, we can see that A=a,(@§*") is the only case
where we can not assert Proposition 2 for A<_3* even under the assump-
tion that any N in ¢ which is refered to define N, satisfies D.1) and
D.2). Even for A=a,(w;™"), if {=0 and v is either an isolated number
or a limit number with cf(»)=0, then D.2’) also holds (Lemma 3. 14).

This remark will be recalled in the appendix at the end of this

paper.

CHAPTER IV. ProOOF OF MAIN THEOREM B

In §1 we shall define an operation—the ramified power—of ramified
sets. It is, in a sense, a limit operation of repsated ramified products.
Applying it we shall find a ramified set S; for any » and ¢ with 0<»
< wg and &< B, which is situated by the order o< at the least upper
bound of sets N, with p<a,(ef™) within R;. In §2 we shall find sets
which are examples to confirm Theorem B, (i) or (ii).
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1.. The sets S}

’ DeriniTION 12. Let Py(X) denote the set of all sequence p={p(1),
p2), -+, p(n)} of length n such that p(k)€ Seg.(X) for k=1, 2, -+, n—1
and p(n) € X. The ramified power X~ of X is the set \/Pi(X) within
which we have -p<p’ for péP;(X ) and p’ € Py/(X), if and only if
either n<#/, p(k)=p/(k) for any k<n—1 and p(n)<p'(n)
or n=n/, p(k)=p'(k) for any k<n—1 and p(n)<p'(n),

For pePy(X), Dig(p) (digitation of p) denotes the set of all
P ePy (X) such that p'(k)=p(k) for any k<n. (If p(n)€ Csg,(X), then
Dig(p) is void.) len(p) denotes the number » such that pe€ Py(X).

The set PY(X) and Dig(p) for p€ XOv are considered as a ramified
subset of X® If Dig(p) is not void, ie., p(len(p))€ Seg.(X), then
obviously Dig(p) is isomorphic to X. It is easily seen that a ramified
power of a ramified set is always a ramified set and if X é€R; then
X®Ove R, for any » with 0<v< ws. Further if «(X)=o" then XC is
irresoluble. The following is obvious, and we omit the proof.

Lemma 4.1. (i). 7(p; XOV< 0" if and only if (p(len(p)); X)< .

(ii). Csgu(PUX))=PuX)NCsgy(X).

(iii). \J PUX) is a cut of X, and Exp,(\J P}(X))=\J PyX).

k<n k=<0 k=n

Corollary 1. Csg,(X©Ov)~ Csgy(X).

Corollary 2. If x(X) >w”, then t(XO¥)=r(X).

Corollary 3. XCvoc W v+ Csgy(X).

Lemma 4.2. P(X)~X.

Proof. Obviously P}(X)=X. If n=m+1 where m >0, then PJX)
is the union of all Dig(g) where g€ P, (X). Since p€ Dig(q), p’ € Dig(q’)
and ¢=+¢ for ¢ and ¢ in P,(X) imply that p and p’ are disordered,
PiX)= \/( )Dig(q). Since Dig(¢)~X for g€ P;(X)nSeg.(X©¥) and

q€PyX
Dig(g)=0 for g€ Py(X)nCsgy(X®), PAX)~X.

Lemma 4.3. If pcSeg,(X©¥), then Ub(p)~XCv.

Proof. Ub(p)<X®> is obvious. Put n=len(p). p€ Seg, (X im-
plies p(n) € Seg.(X) (see Lemma 4.1 (i)). For g€ X®» put f(¢)=¢ where
g (R)=p(k) for k<mn and ¢'(n+k)=gq(k) for k<len(g), then it is easily
seen that f is an increasing mapping of X©v into Ub(p) and X©»oc Ub(p).

Corollary 1. If n<v then XO"O, XCv~ X,

Corollary 2. If n<_o” then W,+XOv~XCv,
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Now we shall find a set S;€R; which is situated by the order
relation o< at the least upper bound of sets N, with p< a,(w§™") within
Rs. (va(w;;H) is the least upper bound of them within &). It was

already seen that if either » is an isolated number or a limit number
with cf(v)=0, then N,,,, is the least upper bound of sets N, with
p<_a(wg) within R (Lemma 3. 14).

If v is a limit number with cf(»)>>0 (where B is assumed greater
than 1), then put sgzNS}n). In general (i.e.,, » is any number with
0< v<"wp), if £>>0, then put s;:Nggwg> tap- And we shall show that

i

a proposition similar to Proposition 2 for N, with A=a,(o§"") holds
for S;.

ReEMARK. If v is a limit number with cf(») >0, then «,(»)=sup «.(u)

w<v
=sup a,(wg) and hence N, ,~ \/ Nopcopp= \/ W,. Hence a,(») is the
w<y BEN, “EN,

least number among numbers § with «(Ng)=o". Similarly when ¢ >0
(and v is any number), a,(w$)+o; is the least number among numbers
& with ngv(Ng)~Nm§+01§5ng,,(va@g’”)).

Besides, Proposition 2 for above A does not hold.

Hereafter until the end of this section, when we say =0, we
automatically assume that v is a limit number with cf(»)>0. (When
¢ >0, this restriction is omitted).

Lemma 4.4. Put A=a,(03"). (). If p<\ then N, % S¢.

(ii). If XeRs and X ¢ N, for any p<\, then S;o<X.

Proof. Put 8=a,(») if &=0 and d=a,(ws)+o; if £ >0. N is the
least number greater than 6 within I'?Ul',,, (see Lemma 1.14). Hence
0< <\ implies p€ I‘°un\<jv1‘,‘, uﬂ\({ A

(i). Of course x< 6 implies N,o<N£¥=Sy. Assume 8< ;< A and
N,o<S; for any 6<_u, and we shall show N, % S;.

Case p€1” In this case N,.o<S; follows from D.2) on N, immedi-

ately.
Case pe \J1;. Let p=a,(5+0)+n be the canonical decomposition

né:‘l
of 4. By assumption N, p»<S; and N, - -,>S;. Hence by Corollary
1 of Lemma 4.3 and n=v, N.=N, in OnNa,ctrs oS¢O, SE~SE.
Case pe \JI2. Let p=a,(@g)+n be the canonical decomposition of
n<v

w. Put =0 if 0 is a limit number with cf(6)=8 and ¢ =w(@—1)+0,
if 6 is an isolated number. By assumption N,.,o<S¢. Since 7<»,
N.,=W_n+ Ny poc Win+S;o<S; by Corollary 2 of Lemma 4. 3.

Hence N,o<S} for any <A, and hence N, % N, oS¢ which proves (i).
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(ii). Assume X€R, and X« N, for any p<A. By D.3) on N,,
N,><X for any u<_A. Put Y=Spt'(X;N,., x<_\) then for any y in
YNnSeg,(X), Ns<Ub(y)nY (refer to the proof of Proposition 1 for
A=a,(wg) in the case {=0 or to Lemma 3.17 in the case ¢ >0).
Especially Ns<Y.

Let f, be a reduced increasing mapping of Pi(N;), which is equivalent
to N; by Lemma 4.2, into Y, and assume that f, is extended to a
reduced increasing mapping f, of \/ Pi(N;) into Y. Put A,=P,(Ns)

k<M

NSeg,(S¢), then P, (N;)= \J Dig(a). Put y=f,(a) for ac A,, then
acAy,

yeSeg,(X)NY. Since Dig(a)=N;<Ub(y)nY, there exists a reduced

increasing mapping g, of Dig(a) into Ub(y)nY. Put f,.,(x)=g.(x) for

x€Dig(a) and a€ A, and f,.,(x)=f.(x) for x€ \J P;(N;), then f,., is an
k=0

extension of f, and a reduced increasing mapping of \J P;(V;) into Y.
~ TR+l

Finally put f(x)=f,(x) for x€ P}(N;), then f is an reduced increasing
mapping of S? into Y X. Hence S¢o<X and (ii) is proved.

Corollary. S¢ is comparable with any X € R,.

Hence S! is the least upper bound of sets N, with p< a,(0f")
within R; as we noticed. Moreover,

Lemma 4.5. S} % N, where A=, (0f™).

Proof. Let & be the same number defined in the proof of previous
lemma.

Case {=0. It suffices to show «(Sg)=w”, since Ny=W, and «(N,)
=w”+1 (see Theorem 5). Of course «(S§)=w«(N;)=w".

Let W be a maximal totally ordered subset of Sy. If there exist a
pe W and a n< o such that Ub/(p)~ W< PYNs), then let p be such a
least element. If n=1 then W P}(N;)~N; and W<_«(N;)=w". If
n_>1, then p is contained in a Dig(q) where g€ P)_(N;), and obviously
T(p)=7(¢)+1. Since Dig(q) is not void, 7(¢)< »* while the type of
Ub'(p)n W is less than «(PY(N;))=«(N;s)=w". Hence W=(q)+1+TUb'(p)
/\."W(:(o’,

If for any mn<_w, there exists a p, in PyN;)~ W, then let p, be
such a least element. Similarly as the above 7( p,,;NSQ"“)<:co" for any
n<_o. But there is no we W such that p,<w for any n< e, and
numbers =( p,,;NSG'“) with n< o are cofinal to W. By assumption » is
a limit number with cf(r) >0, and cf(®*)=cf(v)_>0. Hence the number
W, to which a countable sequence of numbers less than ' is cofinal,
is less than ©”. '
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Hence W< N&” implies W<_o” and «(N&¥)=® which is to be proved.

Case ¢>0. Since ngv(SZ)=ngv(Ns)=Nw§+,,;;=ngy(N)\) (see Corol-
lary 1 of Lemma 4.1), SZ<><W,,,erNc,,Hc,/gzNX (Lemma 2. 12, (iii)).

Assume N,o<S} and let f be a reduced increasing mapping of N,
into SY. Let a be any element in Lay,(,), then f(a) falls onto a
p€Py(N;), and f maps the subset W,v of N, = Wu,v—l—NmH,,& into

\J PX(N). Hence f(N,) € Exp,( f(W,»);S1) < Exp.(\ Pi(N3); N&*)=\J Pi(Ny)

(;ee Lemma 4.1 (iii)). Besides there exists a we W, > such thatrnf(w)e
P(N;), or otherwise f maps any element w in W » into \J Pi(NV;s) and
k<n .

S(NY) C\J Pi(N;) similarly as the above, contradicting p=f(a) € P;(N;).

Then f maps Ub'(w; N,) entirely into Py(N;) while Ub'(w; N)=W
wLng-Jﬂ,évaA contradicting Py(N;)~N; %< N,. Hence S;% N, which is
to be proved.

In Chapter 3 we did not assert that Proposition 2 holds for A=, (»§"")
where either { >0 or » is a limit number with cf(»)~>0, but Lemmas
4.4 and 4.5 shows that surely it does not hold for such A.

Finally we add

Lemma 4.6. Assume & >0 and an X e Ry satisfies the following
conditions: (a) the potency of Lay,(X) is at most R,, and (b) for any
a € Lay,(X), Expv(Lb(a))ochv(mg)“&; then Xo<S}.

Proof. Put é=a,(w§)+o} similarly as previous lemmas. Let 2 be
the family of all maximal totally ordered subsets A of Seg,(X) such
that Exp,(4A)"Lay.,(X) is not void. Then the type of A€ is »*. By
(@), the potency of 2 is at most 8,. Let A4,, 4,, -+, 4,, -+ (n< o) be
a sequence which consists of all A€2. Here we shall consider only
the case A=R, and assume A,=-A, if k==n. For the case A<'R,, the
sequence ceases at a #<_® and we can proceed the following proof with
slight modifications.

Since Exp,(4,)<N;, there exists a reduced increasing mapping g,
of Exp.,(4,) into Py(N;). Assume that g, is extended to a reduced in-
creasing mapping g,., of k\</n Exp,(A,) into k\<-£ P}(Ns) where n_>1. Since

A,—\J A, is not void (or otherwise A, coincides with an A, where
k<

k< m, for m is finite, contradictrily), there exists a minimal element a
in it.
-If a is minimal within X, then let & be any minimal element in

\</A,¢. If a is not minimal in X, then Lb(e) is included in an A, where
r<n

k< n. Since the type of A, is »* and 7(a)< *, there exists uniquely
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a b in A, such that 7(b)=v(a). In either case that ¢ is minimal within
X or not, we have a be \/ A, such that Lb(b)=Lb(a). Since g,., is

k<n
is reduced, 7(g,-,(0))=7(b)=7r(a)< _®*. Since Exp,(A,)NUb(a)<N;, there
exists a reduced increasing mapping g, of Exp.,(4,) " Ub(a) into
Dig(g,-,(b)) which is isomorphic to N;. Put g.,(x)=g,_,(x) for x€\J

k<n

Exp.(A4s), g.(@)=g,-,(b) and g,.(x)=gi(x) for x € Exp.,(4,)"Ub(a), then g,

is'an extension of g,_, and a reduced increasing mapping of \/Exp.(A;)
k<2

into \J P}(N).
=
Let M be the set of all minimal element of X-—\/ Exp.(A4,,), then
mw

similarly as the above, for any a€ M there exists a #<® and a b€ A,
such that Lb(a)=Lb(d). a € M implies «(Ub’(a))<®*+1 while «(Exp.(A4,)
NUb/ (b)) =w”+2. Hence there exists a reduced increasing mapping 7%,
of Ub’(a) into Exp,(A4,)NUb'(d).

Put f(x)=g.(x) for x € Eva(A")_,e\E/nAk and f(x)=fh,(x) for x € Ub'(a)

and a€ M, then f is a reduced increasing mapping of X into S;, and
X< St

2. Proof of Main Theorem B
Now we shall intend to find examples to confirm Theorem B i) or ii).

DerFiNITION 13. i), Put L= \/ W,,, and S=LO:,

. 3 k<@

ii). A denotes the family of all maximal totally ordered subsets of
Seg,(S) and put A=W — {Lb(a)|a € Lay,(S)}.

iii). Let £, denote a term assigned to each A€ and put
B={t,| Ae}.

Put T=SuB where order within S preserves orginal relation and
a<_t, holds if and only if a€ A. (¢,<_x does not occur for any x€ T).

For any subset C of B, SUC is regarded as a ramified subset of 7.

iv). A subset C of B is called barren if S\uCc<S.

The followings are obvious and we omit the proofs.

Lemma 4.7. (i). L~Nug+o and hence S~Si. Especially L% S.

(ii). If A is a maximal totally ordered subset of S, then either A=o
or ©+3<A< -2, (Remark that the type of any maximal totally ordered
subset of L is at least »43).

iii). S=N, and B=T=2%.

(iv). For any A€, Exp,(A; T)nLay,(T) consists of one and only
one element.

(v). If a,€ P(L) and a,< a,,, for any n<_o, then the sequence
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{a,|n<"w} wuniquely determines a maximal totally ordered subset W of
Seg,(T) such that a,c¢ W for any n<_w, and W is contained in 2.
(vi). If aeSeg(T), then Ub(a)~T. (See Lemma 4.3).

(vii). If C¢ B and C<R,, then C is barren. (See Lemma 4. 6)‘;

Lemma 4.8. S=T.

Proof. S« T is obvious. Assume TS and that there exists a
reduced increasing mapping f of 7 into S. Let « be any minimal
element of T then f(a,) € Pi(L). Assume that an «,€ T is already deter-
mined in such a way that v(a,)< o and f(a,) € P:(L). Since Ub(a,)~T
and PY(L)~ LS, Ub(a,) s PiL) and f(Ub(a,)) is not included in Py(L).
Let a,., be a minimal element in Ub(a,) which is mapped by f in
Ub( f(a,))— P. (L), then obviously f(a,.,) € Py,,(L). Furthermore 7(a,.,)< o,
or otherwise, since Lb(a,.,)"Seg,(T) is mapped by f into k\g PyL), a,.,

is mapped in Exp,(\J P}(L); S)=\J Pi(L) contradictorily. Thus we have
k=n k="

a sequence a,, @,, *** , @, + (n< ) such that ¢,< a,.,, a,€Seg,(T) and
fla,) € P,(L) for any n<_w. By Lemma 4.7, (iv) and (v), there exists a
teLay(T) such that a@,<¢ for any n<w. f(#)€S and hence f(f) is
contained in a Pj(L), but then since f(a,.,)€ P;.,(L), f(a,.,) is not less
than f(¢), contradicting a,.,<_¢ and that f is increasing. Hence T %« S
and accordingly S« T.

Lemma 4.9. If f is a veduced increasing mapping of T into itself,
then the restriction f' of f on S is a reduced increasing mapping of S
into itself. Conversely if f' is a reduced increasing mapping of S into
itself, then there exists a wunique reduced increasing mapping of T into
itself which is an extension of f'.

Proof. Assume that f is a reduced increasing mapping of 7 into
itself, but there exists an x€ S such that f(x)e B=T-S, then f(x)=¢,
for an A€ . Since f is reduced, 7(x¥)=7(f{,)=w. But by the definition
of L and S, for any x € Lay,(S), Ub(x) is not void, while Ub(¢,) is void,
contradicting f(Ub(x))C Ub(¢,). Hence x €S implies f(x)€ S and the re-
striction f’ of £ on S is a reduced increasing mapping of S into itself.

Conversely let f’ be a reduced increasing mapping of S into itself.
For any t,€ B=T—-S, A=Lb(¢,) € and since f’ is reduced, f'(A)e A"
By Lemma 4.7 (iv) there exists a unique element b, € Exp,(f'(4); T)n
Lay,(T). Put f(¢4)=b, and f(x)=f'(x) for x €S, then it is obvious that
f is the unique reduced increasing mappping of T into itself, which is
an extension of f’.

Corollary. For any subsets C and D of B such that S\ Co<SuD,
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a reduced ‘increasing mapping of S\ C into S\ D can be uniquely extended
to a reduced increasing mapping of T into itself.

Now we shall introduce topology. in Lay,(7) and B. For x € Seg,(T)
put V,=Lay(T)nUb(x). If V, intersect with V., then one is entirely
included in the other, and if V,C V,,, then x’<<x. Hence if the inter-
section of a family {V, |k<n} is not void, then the set {x,/k=n} is
totally ordered. Let x be the greatest element of this set, then kQ,V"k: V..

Hence the family {V.|x¢€ Seg,(7T)}, which will be denoted by %, makes
a basis of open sets, by which a topology is defined on Lay,(7). Since
Seg,(T) is countable, ¥ is countable. It is easy to see (or rather well-
known) that the topological space Lay,(7) thus defined is a totally
disconnected Hausdorff space.

B is a topological subspace of Lay,(T) with relative topology. Put
Vi=BN'V, for x€Seg,(T), and ¥ = {V,|x€Seg,(T)}, then ¥ is a basis
of open sets of B. ,

For a reduced increasing mapping f of 7, let f” denote the restric-
tion of £ on Lay,(T). Since f is reduced, f”(Lay,(T))< Lay,(T).

Lemma 4.10. If f is a reduced increasing mapping of T into itself,
then f7 is a continuous mapping of Lay (T) into itself.

Proof. Assume b€ Lay,(T), ¥'=f7(b) and that V is an open set
which contains &', then there exists a V€% such that ¥e V. V.
Let x be the unique element in Lb(d) such that «(x)=7(x’). Since f is
reduced, f(x)=x". Now b€V, and f7(V,)C V,,C V which shows that f”
is a continuous mapping of Lay,(7) into itself.

For a subset C of Lay,(T), put C :M Exp,(Lb(d)).

Lemma 4.11. If a subset C of Lay(T) is closed, then Exp,(C)=C.

Proof. Assume x¢C. If v(x)< o, then x ¢ Exp,(C) by the definition
of Exp,. If 7(x) =, then let b be the unique element in Lay,(7)NLb'(x).
Of course b¢C. Since C is closed, there exists a V, €% such that be V,
and V,nC=0. Since x€ Ub(y) and Ub(y)nC=0, x ¢ Exp,(C) and hence
Exp,(C) ¢ C.

- Lemma 4.12. [In order that a subset C of B is barven, it is necessary
and sufficient that C is a subset of a union of at most countable barren
subsets of B which are closed within B. '

Proof. If C is barren, then there exists a reduced increasing map-
ping f’ of SUC into S. f’ is uniquely extended to a reduced increasing
mapping f of T into itself (see Corollary of Lemma 4.9). f maps every
te C into_Lay,(S) which consists of countable elements b,, b,, -+, b,, -
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Let C, be the set of all £€ B such that f”(¢{)=b,, then since f7 is
continuous, each C, is closed in B. Since f(S\vC,)CS, each C, is barren,
and hence C is a subset of the union of countable barren subsets C, of
B each of which is closed in B.

Conversely assume that a subset C of B is included ‘in a union -C’
of at most countable barren subsets C, of B, where each C, is closed
in B. Let C, be the closure of C, in Lay,(T), then since C, is closed
in B, C,nB=C,. Put C"=Lay1(S)-n\€[n C,, then C” is at most countable.

Let ® be the family of all sets C, and all {d} where {d} is the set
which consists of a single element in C”. Notice that any set D in
® is closed in Lay,(7) and, since DN B is either void or coincidental
with a C, which is barren, DwSec<S.

D contains at most countable sets (it can be proved that the potency
of ® is not finite, but we need not use the fact here). Let D,, D,, ---,
D,, - (n<_®) be an arrangement of all sets in ® into a sequence,
where repeats of same sets are admitted. Layl(SuC’):n\JﬂD,,, and

Sve'=Cv \J Exp(lb(@)= \/ Exp(Lb(@)=\/ \/Exp,bla)

N a€Lay(S aclay,(S
=\/D,.

nw

Since D,C D,wScS, there exists a reduced increasing mapping f, of

D, into S. Assume that f, is extended to a reduced increasing mapping

f» of \JD, into S. Put E,=\J D,, then E,=\J D,. Since E, is closed,
k=0

Ie"\t'.'!‘ - = kg'i’b
Exp,(E,)=E, by Lemma 4.11. Hence for any minimal element @. of
(SuC)—E,, 7(@)< o by Lemma 2. 3 (vii). Let M, be the set of all minimal
elements of (SvC')—FE,, then (SuC)—E,c \J Ub/(a;T). Put D,., =
agM,

D,..nUb'(a) for a€ M, and let M, be the set of all a € M}, where D, ., , is
not void. (M, itself may be void). Then D,.,=\/ D,.,, and D,.,,CS

acM,
uD,. ,<S. If aeM,, then since 7(a)< o, either 7(a¢)=0 or a has an
immediate ascendant &’ in E,. If v(a)=0, then let g, be any reduced
increasing mapping of D,.,, into S. If a has an immediate ascendant
@ in E,, then since =(f,(a');S)=7(@)<® and Ub(f,(a@);S)~S by
Lemma 4.3, we have a reduced increasing mapping g, of D, ., ,nUb/(a)
into Ub(f(@);S). Put f,..(x)=f.(x) for x€E, and f,. (x)=g.(x) for
xeD,,;Mf\Ub’(a) and e¢€M,, then as easily seen, f,., is a reduced
increasing mapping of k<\1/+1ﬁ’” into S. Finally put f(x)=f,(x) for x€ D,,

then f is a reduced increasing mapping of SuC’'=\J D, into S and
: k<@ :

hence Su(C’«S, ie., C’ is barren. Hence the subset C of C’ is also
barren. '
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Hereafter, until the end of this section, we assume continuum hypo-
thesis. The following Lemma is essentially a consequence of Proposition
P, of [8]

Lemma 4.13. If a subset C of B is not barren, then there exists a
subset D of C such that S SvuDz= S\C. ’

, Proof. Let € be the family of all barren subsets of B which are
closed in B. Since the basis ¥’ of open sets of B is countable, the
potency of © is at most 8, by continuum hypothesis. Let ¥ be the
family of all reduced increasing mappings of SuC into itself, and &
be the family of all reduced increasing mappings of S into itself. As
we have seen in Lemma 4.9 and its Corollary, there exists a one-to-one
correspondence between all mappings in ¥ and (not necessarily all)
mappings in § such that, if f€ ¥ is corresponding to f’ €, then f’ is
the restriction of £ on S. Since S= 8,, the potency of ¥ is at most R,
by continuum hypothesis. Hence the potency of § is also at most X,.
Since C is not barren, it is not countable (see Lemma 4.7 (vii)), while
the potency of B is 2% =n, (see Lemma 4.7 (iii)). Hence C=R,

Let {C,|v< w,} be a transfinite sequence formed of all sets in €,
{fvl»<<®]} be a transfinite sequence formed of all mappings in %, and
{by|v<_®} be a transfinite sequence formed of all elements in C, where
in the former two sequences, repeats of same terms (sets or mappings)

are admitted if they are necessary, but since C=®,, we may assume
b,==bys if v=l=v'. Put Di=f(SvC)nB. Since f; is a reduced increasing
mapping of SuC into itself, D;CC. D; is not barren, or otherwise,
there exists a reduced increasing mapping g of SuD; into S, and gf:
is a reduced increasing mapping of SuC into S, contradicting that C is
not barren.

Now we shall define two increasing sequence {A\|£<_®} and
{¢t|6< ®} of ordinal numbers less than «,, which satisfy following
conditions: (i) if #<7&, then p,< Ae<"pe, (i) by,€D¢ and (iii)
b, €C—\JC,.

v<g

Since D, is not barren, it is not void. Let A, be the least ordinal
number such that &, € D,, and put z,=X,+1. Assume that for an ordinal
number £< w,, sequences {\,|7<_£} and {u,|n<_&} are already obtained.
Let {; be the least ordinal number such that p,< {¢ for any #<Z&.
Since the sequence {u,|7n< £} is not cofinal to o,, &< o, and &r=R,.
Let E¢ be the union of the set {b,|v<_¢{;} and all sets C, with v< &
Since E¢ is a union of at most countable barren sets which are closed
in B, E; is also barren by Lemma 4.12. Since D is not barren, D;—E;
contains more than countable elements. Let \¢ be the least ordinal
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number such that b,,€ D;—E;, and u; be the least ordinal number such
that b,, € Dy—E¢— {b\,;}, (remark D;CC). Thus we can inductively define
sequences {A¢|E<w} and {u¢|6< w,} which obviously satisfy (i), (ii)
and (iii). ,

Let D be the set which consists of all b, with §< e,. Since no
repeats of same elements are admitted in the sequence {b,|v< ®}, and
there is no number common to both sequences {A¢|E< @} and {ue|E<w}
by (i), D does not contains &,, for any {<o,.

We shall show S SuDESUC. SxSuD«xSuUC is obvious. First
D is not barren, or otherwise D is included in a union of countable sets
C,,,C,,, - in €, but since the sequence {v,|#< ®} can not be cofinal
to ©,, there exists a £&< o, such that »,<’§ for any n< w. D contains
b.. which is not contained in v\(jEC\, by (iii), contradicting DcC K\ij,,,,.

Hence D is not barren and S SuD. Next we shall show SUC « SuD.
Assume on the contrary, that there exists a reduced increasing mapping
f of SuC into SuD. Since SuUD is a subset of SUC, f itself may be
regarded as a reduced increasing mapping of SuC into itself. Hence f
coincides with a f; in §. But b € fe(SVC) by (ii), while b,, is not
contained in DvLay,(S), contradicting f¢(Lay,(S\wvC))C DuLay,(S). Hence
SuC « SuD and accordingly SuD% SuC.

Proof of Main Theorem B (ii).

The set B itself is not barren by Lemma 4.8. Hence putting D,=B,
we can inductively define a sequence D,, D,, --- of subsets of B such
that S SuD,,,£SuD, for any #<_® by Lemma 4.13. Hence, putting
X,=SvuD,, the sets X,,, n< o, satisfy the condition of Theorem B (ii).

Proof of Main Theorem B (i).

By Lemma 4. 13, there exists a subset C of B such that S SuUC%T.
Let s, be an element assigned to each ¢€C, and put E={s,|t€C} and
U=SuCVE where each s,€ E is maximal in U and we have x<_s, for
x€SyUC and t€C if and only if x<¢ within SuUC.

First assume UccT, and let f be a reduced increasing mapping of
Uinto T. Since 7(s)=w-+1 for any s€ E and 7(f)=w for any ?€ B, any
s€ E is not mapped by f (since f is reduced) on any ¢€ B, i.e., f(s)€S.
Since S is a cut of 7 and f(#)<_f(s,) for any t€C, C is mapped by f
into S. Finally f(S)CS by Lemma 4.9. Hence the restriction of f
on SuC is a reduced increasing mapping of SuC into S contradicting
Sz SuC. Hence U« T.

Next assume T U, and let g be a reduced increasing mapping of
T into U. Since g is reduced, any ¢€ B is not mapped on any s€E.
Further by the definition of L and S, any x€ S with 7(x)=w+1 is not
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maximal within T (see Lemma 4.7 (ii)), while s€ E is maximal within
U. Hence we have never f(x)€E for x€ S, and there is no element in
T which is mapped by g into E. Hence g maps T entirely into the
subset SUC of U, contradicting SWC%T. Hence T «¢U.

© . Thus we have ramified sets T and U which are not comparable
with each other, completing the proof of Main Theorem B (i).

APPENDIX. CASE B=1.

Here we shall consider the special case B8=1. Of course every
statements hitherto mentioned holds unaffectedly, except these about Sp
(see Chapter 4, §1) where we assumed S >>1. Besides, in the case
B=1, -Main Theorem A can be fairly sharpened, and it will be proved
that not only [ &,] is well-ordered by o<, but also

Theorem C. [N,] is well-ordered by o<.

In order to prove this, we shall define a sequence M= {M,|r<1%}
such that each M, satisfies |

- D.1) <\ implies M, M,, and :

D.2") XeR, and X« M, for any n<\ imply M, <X.

It is all the same as Lemma 2.8 and its Corollary that, under the
assumption that I is already constructed, for any X € R, there exists a
A<_1* such that X~M, and hence [R,] is well-ordered by o in the
type 1%

DerINITION 14. A, and A, denote sets of ordinal numbers less than
1* such that:

In the case A€ 1%, always A€ A,.

Assume that for any < M, it is decided whether € A, or 7€ A,.

In the case AMe 1Y, letting M=a.(6+¢)+n be the canonical decomposi-
tion of A, A€ A, or A€ A, according as «a,(£) € A, or a,(£) € A, respectively.

In the case AeI? letting A=a,(o})+#n be the canonical decomposi-
tion of A, we distinguish three cases;

if =1, then A€ A,,

if » is an isolated number greater than 1, then A€ A, and

if g is a limit number with cf(x)=1, then A€ A, or A€ A,
according as p€ A, or i€ A, respectively.

Then any number less than 1* is allotted to A, or A,.

The sequence M is defined according to the following Principle.

PrinciPLE II.
If 7\.6 Ao, then M;\=N,\.
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For M€ A,, we distinguish four cases:
In the case that N\ is an isolated number N +1, then M,=N,/.

In the case N=a,(0$*") where £>0, then My, =St=NSy NEFTE

Assume that \-is a limit number m A, and for any ?I<7v M,
already defined.

In the case NeTL, letting A=a,(E+§) be the canomical decomposition
of 7" M,= my(§)® vacbwg

In the case M€’ and, letting. M=« (oY) be the canonical decomposztzon
of N, o is a limit number with cf()=1, then Mr—W v+ M,.

ReMARK. In M, all sets N, in M are disposed retaining the original
order within R, and for any limit number A in A, a set M,, which is
utterly new and not contained in 9, is inserted. Remark that for any
limit number A, numbers »<_A such that M, €% are cofinal to A, and
hence if M,=N,, (either A=\ or A=A +1) and N,  satisfies D.1) and
D.2) within R, then M, satisfies.them within I, reserving the case
where A is next to a limit number in A, for the proof mentioned later.

If xeTI" and A=a,(6+&)+n is the canonical decomposition of A,
then put A)=a,({)+xn If A€ and a,(®))+n is the canonical decom-
position of A, where p is a limit number with cf(x)=1, then put 4(7)
=p+n AEDUI? implies (V) € I uI®. If further, either it is the case
O(\)€T" or the case (A)€I™ and, letting ay (@{1)+# be the canonical
decomposition of (M), u, is a limit number, then we can define 6*(A)
60=(0(\)). In general, putting 6*"'(\)=60(6%(\)), since @¥"'(A)< 6 (\), we
shall finally arrive at a number m<_® such that 8”(\)€1”, and letting
a,,(@im)+n be the canonical decomposition of 6™(\), u, is an isolated
number. Then whether 6”(\) € A, or ”(\) € A, is decided by 8™(\) itself ;
the former in the case p,=1 and the latter in the case s, _>1. Put
O(A)=6"(\) for such a final m, where m=0 and O(\)=A, if A€1” and,
latting A=« (®%)+n be the canonical decomposition of A, x itself is an
isolated number.

For MeI"ul® we have M€ A, or M€ A, according as O(A)€ A, or
O(\) € A, respectively.

Now we shall briefly show that any M, in 9 satisfies D.1) and
D. 2).

First assume M€ ["UI® It was proved in each case for A<1% that
if Ny, satisfies D.1) and D.2’), then N, also satisfies D. 1) and D. 2’).
Hence if Ny, satisfies D.1) and D. 2’), then N, satisfies them. Especially
if d\)€ A, then 80\) €T? and letting «,/(»%)+n be the canonical decom-
position of 8(A), it falls to x'=1. If =0, then since v’ is either isolated
number or a limit number with »'< e,, and accordingly cf(+')=0, Nju,
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satisfies D.1) and D.2’) by Lemma 3. 14.

It is already seen that if A=a,(w§)+n where n_>0 and » is an
isolated number (then A €1?), then N, satisfies D.1) and D.2’) in any
case. . . o ‘

U If xean(Mul®), then d\) € A,NTI° Hence Ny, as well as N,,
satisfies D. 1) and D. 2"). _

Since A€ I” (and accordingly A€ A,) implies that N, satisfies D.1)
and D.2), for any M€ A,, M, satisfies D.1) and D.2’). Hence for any
re A, My(=N,) is seen to satisfy D.1) and D.2’) under assumption of
induction (remark that A< w} implies A€ A)).

Similarly for any isolated number X, N, is seen to satisfy D.1) and
D.2). For re A, if fr(\)=2, then, putting A=) +1, M,=N,, and
fr(\) >>0. Hence under assumption of induction, it follows from results
on N,/ that M, satisfies D.1) and D.2’) (About the mention above, see
the remark at the end of Chapter III).

Now it remains the case where A€ A, and fr(A)=0 or 1.

First consider the case d(A)=A, ie., AeI” and letting A=« (®5)+n
be the canonical decomposition of A, x=¢+1 where & >0.

Case n=0. MA—S¢~N 3 Then by Lemma 4.4 (i), EN
e )tap”

implies N¢ M,. Since the numbers £<_A with M;=N; are cofinal to
A, it follows from assumption D.1) on M; with £§<\ that M, satisfies
D.1). Similarly it follows from Lemma 4.4 (ii) that M, satisfies D.2’).
" Case n=1. Since M,_,=S; and M, =N, 5+, it follows from
Lemma 4.5 that M,_, = M,, i.e., M, satisfies D. 1).

Assume X e R, and X« M,_,. Since X< R,, X satisfies (a) of Lemma
4.6. Hence X does not satisfies (b) of Lemma 4.6, or otherwise, Xo<S}
=M,_-,. Hence there exists an @€ Lay,(X) such that Exp,(Lb(a))
Nav(wl)_f_gg By D. 3) on va(wx)"i'ffg va(ml)_i_o.&OCEXp,,(Lb(a)). Since
No,(+,,2~ng\,(Nav(ml)+, ,) o< Csg,(Exp, (Lb(a)), M, = W, + Nw§+,f§ oc
Exp,(Lb(a)) C X, and M, satisfies D.2’).

Therefore M€ A, with 6(x)=X, we have proved that M, satisfies
D.1) and D.2).

For A e A, with 6(A)<', it is inductively proved that M, satisfies
D.1) and D.2’) all the same as we considered for N, € N.

Hence any M, with A<_1* satisfies D.1 and D.2’) and this fact
implies Theorem C as we noticed below it.

(Received November 14, 1960)
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