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Introduction

By "a ramified set", we mean a partially ordered set X in which
for any element ay the set of all elements less than a makes a well-
ordered subset of X Such a set is called "un tableau ramifie" in [4]
and [5] or "a tree" in [6]. (In [4], by "un ensemble ramifie" is meant
a rather general set which is called "a tree" in [2]).

In connection with Sousliris Problem, investigation of ramified sets
has been proceeded by many authors including especially Prof. George
Kurepa whose contribution in this branch is distinguished (C4], [5], [6]).
But it seems that most works concerning those sets are concentrated to
the problem of finding conditions in order that a ramified set becomes
countable, or of finding propositions about ramified sets, which turn out
to be equivalent to Souslin's Problem, and that few results are obtained
about internal structures of ramified sets themselves or about reciprocal
relations which take place among them.

In this paper we are interested in the structures of ramified sets
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and a relation between them, especially comparison between them and
processes by which larger ramified sets are constructed of smaller ones>
and we obtained some results which seem fundamental in the theory
of structures of ramified sets themselves.

It is well-known that any topological space is uniquely decomposed
into the union of its perfect part and scattered part. Especially all
scattered sets, i.e., sets with void perfect parts, in the real line are well-
ordered by the order of homeomorphic imbedding. Similar situations
occur about ramified sets. A ramified set is uniquely decomposed into
the union of its resoluble part and perfectly irresoluble part (see Def.
7 and Th. 4).

As the means of comparison between ramified sets, in place of
homeomorphic imbedding for topological spaces, it seems suitable to apply
the relation °<= such that X°c Y implies the existence of an increasing
mapping of X into Yy which appears in the so-called comparison theorem
in the usual proof of Lusiris 2nd Principle (see [7], pp. 208-221) in the
theory of analytic sets. Since oc j s a quasi-ordering between ramified
sets, X and Y such that Xoc Y and Yoc X are regarded as equivalent.
Then we shall see in Theorem A all resoluble ramified sets with poten-
cies less than a given regular cardinal number Kβ̂ >K0 are well-ordered
by oc under the identification of equivalent sets, and that any resoluble
ramified set can be compared with any other one (resoluble or not).

Speaking of general ramified sets with potencies less than xβ9 in-
cluding irresoluble ones, they do not seem to be well-ordered by oc. In
fact, under the assumption of continuum hypothesis, they make neither
a ramified family nor a totally ordered family, and we shall see in
Theorem B continuum hypothesis implies the existence of a countable
descending sequence of ramified sets, and a pair of ramified sets which
are not comparable with each other.

It is the main purpose of this paper to prove Theorem A and
Theorem B.

Contents and composition of this paper are as follows.
We provide some preliminaries concerning ordinal numbers in Chapter

I. In §1, functions α:v(λ) assigned to each v such that l^S><Cωj3 are
defined. They are defined so that an ordinal number λ with λ = ωλ

β

is characterized by means of the function a2y and when 2 < ^ < ω / 3 , a
number λ with X=av(ω£) for any v<Cu *s characterized by means of av.
For a limit number λ, the least ordinal number v = gn (λ) such that
λ<^α:v(ω£) is especially interesting, and according to the number gn (λ)
and some properties of λ relating to functions α v , we shall set up a
classification of ordinal numbers less than a certain number β* in § 2.
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In Chapter II, central notion and Main Theorems are mentioned.
In § 1 definitions of ramified sets, relation oc and several notations are
given. In §2 our Main Theorems A and B are stated, and then the
proof of Theorem A is oriented. Briefly speaking, Theorem A is attributed
to the existence of a sequence %l of resoluble ramified sets Nλ, \<^β*y

each of which satisfies certain conditions D. 1), D. 2) and D. 3) mentioned
there. Principle 1 to construct Nλ is stated at the end of §2, where
by several operations on ramified sets similar to cardinal or ordinal
arithmetic operations on general partially ordered sets (see [2] or [3])
are studied in advance.

Chapter III is devoted to show that every Nλ constructed according
to Principle 1 satisfies D. 1), D. 2) and D. 3). In § 1 some lemmas con-
cerning Nλ are prepared. § 2, § 3 and § 4 correspond to the three cases
respectively to which every number less than /3tt is allotted by Definition
3, and consequently to the different form of iVλ given by Principle 1 in
each case.

Chapter IV consists of two parts. In § 1 we are interested in a
ramified set S} defined for each X=a^(ωζ

$

+1). S} is irresoluble, but it is
situated by oc at the least upper bound to the assending sequence N%,
ξ <^λ, within the family of all ramified sets with potencies less than Kβ,
and accordingly it is comparable by ex: with any other ramified set
(resoluble or not). § 2 is devoted to prove Theorem B, and examples to
confirm Theorem B are introduced by modifications of Sϊ.

Finally we add an appendix where we specify case β = l. In this
case not only the family of all resoluble ramified sets but also the
family of all ramified sets including irresoluble ones with potencies less
than κx is well-ordered by oc (Theorem C). The proof is obtained
similarly to Theorem A. By inserting S} defined in II, § 1 among se-
quence 9i, we get a sequence SDΪ where any term Mλ satisfies a certain
condition D. 2') besides D. 1). Theorem C follows from the existence of
such a sequence.

CHAPTER I. PRELIMINARIES ON ORDINAL NUMBERS

In this chapter, we shall provide some preliminaries concerning
ordinal numbers. In § 1 a function av(X) of ordinal numbers λ is defined,
which is assigned to each v such that l ^ S X ^ where ωβ is a fixed
regular initial number greater than ω0. In §2 we shall set up a classi-
fication of ordinal numbers less than a certain number β\ referring to
these functions <xv. This classification, as well as functions α:v, will
become a basis in constructing a certain sequence %l of ramified sets in
a latter chapter.
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1. Certain fuctions <xv on ordinal numbers

Throughout this paper small Greek letters are used to denote ordinal
numbers or ordinal-number-valued functions without stating special notice
in each occurrence. Letters ω and ωβ are used with usual meaning. iy k>
m and n stand for finite numbers. In terminologies: "limit numbers",
"isolated numbers", "regular numbers", "singular numbers", "segments",
urests", "cofinal to" etc. and operations cf(λ), ξ+ζ> ξζy ξζ etc., we
follow usual definitions (for example see [1]). To avoid confusion, we
distinguish between terms "a power" and "the potency" of an ordinal
number λ: the former means λέ, while the latter means λ. Capital
Greek letters are used to denote sets or sequences (not necessarily
countable) of ordinal numbers. Besides usual notations we shall define
the following.

DEFINITION 1. Is (λ) denotes the greatest limit segment of λ, i.e.,
Is (λ) is the greatest limit number which does not exceed λ.

f r (λ) denotes the greatest finite rest of λ, i.e., f r (λ) is the finite
number n with λ=ls(λ) + w.

pλ denotes the characteristic function of limit numbers, i.e., pλ = l
if λ is a limit number, and pλ = 0 if λ is an isolated number.

Let ωβ be an arbitrarily given regular initial number greater than ω0.
β will be fixed throughout this paper (however in proving Theorem A
(ii), it is utilized that β is arbitrarily given). Now we shall define
functions av(X) of λ assigned to each u such that l^Lv<^ωβ. These
functions will play a main role in this paper.

DEFINITION 2. (i). Put a1(X) = X, and α:v(0) = 0 for any » such that

Assume that v = η + 1 and av(X) is already defined for any λ, put

# v ( / £ + l ) = tt7,(
ωβ*v(μ)+p'χ), and

a-v(μ) = sup av(ξ) for a limit number μ.

Assume that v is a limit number such that l^^<Cωβ> a n d oίv(X) is
already defined for any λ and η such that l<Lη<^vy put μ=vδ+ζ where

and

a,(μ) = aζ(ωβW>+>) if

av(μ) = sup av(ξ) if ζ = 0 .

Finally /3* = sup <zv(l).
P

(ii). If v is an isolated number less than ωβ9 then Φ\ denotes the class
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of all limit numbers and Φv denotes the class of all isolated numbers.
If v is a limit number such that 0<^<Cωβ> t h e n Φ£ denotes the

class of all numbers with forms δ̂ and Φv denotes the class of all
numbers with forms vδ + ζ* where 0<^ζ<^v.

For λ<^/3#, φs

v(X) denotes the greatest number in Φv which does not
exceed λ and φl(X) denotes the number ζ such that \ = φl(\) + ζ. The
representation X = ξ+ζ where ξ = φft\) and ζ = φl(\) is called the φv-
decomposition of λ.

REMARK. If v is an isolated number, then <pξ(λ) = ls(λ) and φi(X) =
fr(λ). In general if μ€Φl, then φl(μJrξ) = φrv(ξ) for any ξ<^β*.

It follows from the definition that, if λeΦί,, then the function a^(μ)
of μ with a constant v is continuous at μ=X.

EXAMPLES. <*2(l) = ωβ> a2(2) = ωβ

ωβ, <x,(3) = ωβ

ωβ β etc.. In general
^v+i(l) = Λv(ωβ)- If ^ is a limit number and 0 < f < ^ O β , then acv(f)==

ζ

Hereafter we assume that a number denoted by v or η> which is
mainly used as the suffix of a function ctv or as the index of a power
ωv of ω, is greater than 0 and less than ωβ, without mentioning special
notices in each occurance.

Lemma 1.1 The function tfv(
ω£) of μ with a constant v is continuous

at any limit number μ^>0.
Proof. Since v<^ωβy ω£eΦί. Hence the function <xv(λ) of λ is

continuous at λ = ωg. Since the function ωg of μ is continuous at any
limit number μ^>0, #v(

ωβ) is continuous at any limit number

Lemma 1.2.
Proof. In the case where either v = l or μ=0y our lemma is trivial.
Assume θ<^av(θ) for any θ and η with li^η<^vy and ξ^ocv(ξ) for

any ?</*.
Case 1. v = ?7-j-l and μ=ξ + l.
In this case ^(ξ + l) = av(ωβ^^pή^ωβ

Λ^+pt^ωl+p^ If | is an iso-
lated number, then ω|^>^, since ω| is a limit number. If ξ is a limit
number, then /°ξ = l and ω|+1^>f + l. Hence in either case <%v(jr4-l)I>

Case 2. v is a limit number and /-&=vS + f where
In this case v̂(/̂  )
Case 3. μ £ Φί.
In this case αv(μ)

Hence our lemma is proved by double induction on μ and
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Lemma 1.3. If η<^v and /O>0, then <*„(*>£) <J
Proof. Since ω£eφ£ for any μ> £<Cωβ implies tfv(£)^ί
If v = 77 + l and μ=ξ + l, then ω^μ+1 and «*(

,(ωp-v f«+pμ)^Λ i |(ωj) by Lemma 1.2.
If v is a limit number and μ = f + l , then #v(

ωβ) 2^

If μ is a limit number and eithr v = η + l or v is a limit number,
then ^ v(

ωβ) = supΛv(ω|+ 1)^supα:n(α)|+ 1) = α: (ωg) (refer to the cases above).

Therefore our lemma is proved by induction on v.

REMARK. In general v<Cv does not imply ctv(μ)^Q^(μ). For ex-
ample, a3(l) = a2(ωβ)^:a2(2) = ωβ

ωβ>ωβ while ccn(l) = a1(ωβ) = ωβ.

Lemma 1.4. If ξ<Cμ, then oc^(ξ)<^a^(μ).
Proof. It is trivial for » = 1. For ^GΦί this lemma follows from

definition. If ^ = 77 + 1 and μ=ξ + l, then <xv(μ) = av(ωβ*^+pή^a^ξ). Hence
in the case ^ = 97 + 1 our lemma is proved by induction on μ.

Assume that v is a limit number and μ^vΰ + ζ where 0<^ζ<^vy

then aΛμ) = aζ(ωβ«^+1)^a,(vδ)= sup αv(f).
£<vδ

Hence ξ<^vS implies ^v(^)^Λv(/*)-
If p$<ξ<μ and g=v8+? where 0 < r / < ? , then αv(λ*) = Λf(V v C V β 5 + 1)

^αf/(ω/3

Λvc1;δ)+1) = Λv(|) by Lemma 1.3. Hence our lemma is proved also
in the case where v is a limit number.

Lemma 1.5. We have ω£ = λ if and only if \=a2(μ) for a limit
number μ^>0.

Proof. Assume that μ is a limit number, then oc2(μ) = &upoc2(ξ + 2)

ω «**> b y Lemma 1.1.

Conversely assume ω^ = λ. Since ^2(/^) is a continuous function of
μ and unbounded by μr^<x2(μ), there exists the greatest number μ such
that a2(μ)<L\. If μ, is an isolated number, then pfJl=0 and λ<^α2(yt6 + l)
= ωβ

Λ2^ ^ ω^ contradicting λ = ω^. Hence μ is a limit number. If
a2(μ)<C\ then putting λ=α: 2 (» + ξ where 0 < £ , we have ω^ = ω β

Λ 2 ^ + ί ^
ω/2^+1

 = α:2(/^-[-i)^>χ contradicting ω£ = λ. Hence ω^ = λ implies X = a2(μ)
for a limit number μ.

Theorem 1. If 6 + l ^ v , / / ^ /or α^j /*]>0, except the case where
v is a limit number, μ=vh+ζ and 0<^ξ*<^£, there exists an ordinal number
V,v,ε^>0 such that αv(μ) = αε(ωβV,v,s)φ

Proof. If v = 8+l and μ=ξ + l, then a^μ) = as(ω^+pή and Λ V (I) +
Hence λμfVf8 = αv(f) + /oδ. If v = 6 + l and /ί is a limit number
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greater than 0, then ay(μ) = mp av(ξ + 2) = sup a£ωβ«^+iη = az(ωβ"^) by

Lemma 1.1. Hence λμ v z = ay(μ).
Assume that our assertion is true for any v such that £<^v<Cv>

and we shall inductively show that there exists a λ μ 1 7 ε > 0 such that

Case 1. η = v + l and μ=
In this case put ζ=ωβ

Λvc^+p^9 then since ζ is a power of ωβ, the
sffguments ξ and v of a^(ζ) would not fall into the excepted case, and
there exists a \>v>ε such that a^(O = <*ε(ωβλ£'v'8) Since <*„(/*) = αv(?), putting
*7Mi,e = \fv,e> λμ „>ε satisfies the condition.

Case 2. η = v + l and μ is a limit number.
As we saw in Case 1, for any ξ<Cμ there exists a λ£+1 „ s such that

α,(£ + l) = α:8(ωβ

λf+w0. Put λ μ r ? ε = supλ e + ε then «,(/*) = sup α,( f+l) =

sup Λ8(ωβ

λί+w) = Λ8(ωβλίw) by Lemma 1.1. Hence λμ is the required

ordinal number.

Case 3. η is a limit number and μ=ηδ + β.
In this case ^(/^)-o:,(co^ S ) + 1 ), and putting λ ^ ^ α ^ δ j + l, λ μ r j ε

satisfies the condition.

Case 4. 97 is a limit number and μ^ηδ + ξ where €<C%<Cv-
In this case put ξ'=ωβVlϊδD+1, then since f is a power of ωβ, the

arguments ξ and ^ of ctξ(ζ) would not fall into the excepted case, and
there exists a Xζ^ 2^>0 such that Λ$(?) = Λ8(ωβ

λf,f.e). Since α:r?(/̂ ) = αg(ξ'),
putting \μ.tVf8 = λ f^ t8, λμr7 ε satisfies the condition.

Case 5. 7/ is a limit number and μ=ηδ.
Put S = { f | f = fl7δ' + f, δ '<δ, θ < F < 9 7 } , then Ξ is cofinal to ^δ. As

we saw in Case 3 and 4 for any ξeΞ there exists a λ ξ γ ? ε ^>0 such that
λμfllf8 = supλSί?I t8, then Λη(^) = sup α,(|) - sup av(ξ)

p ε ( β ) ε ( β , ε ) . Hence λμflI>8 is the number required.

Therefore in any case we can find a λμ v ε required in our assertion,
and the proof is completed.

Especially putting £ = 2, we can assert that, if ^2>3, then for any
μ^>0, except where v is a limit number and /Λ=vδ + 1, there exists a
λ μ v 2 such that av(μ) = a2(ωβ

λ^,2). Since λ = ωβ\«vf2 is a limit number,
following Corollaries 1-3 immediately follow from Lemma 1. 5.

Corollary 1. If vj>3 and μ^>0, except the case where v is a limit
number and μ=vδ + ly we have G>β*^ = <x^{μ).

Corollary 2. If v ^ 2 and μ^>0, then a^{μ) is a power of ωβ.
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Corollary 3. If v^2 and μ^>0, then av+1(μ + l) = o:v(α:v+1(^
If v is a limit number greater than 0, 8~^>1 and 2^ξ<^v, then a^

Corollary 4. If μ is a limit number and 2^v<^ω 0 , then

Proof. If y is a limit number, then ά v + 1(^) = ωβ

Λv+i^\ and hence

1(μ) = av+1(μ). Hence by Corollary 3 above,
v+i(/*) +1) = oc^a^a^iμ)) ωβ) ̂  αv + 1(μ) ωβ.
If v is an isolated number v + l9 then α:v(α:v+1(y^) + l)

ωβ) ^ av+1(μ) ωβ.

Lemma 1.6. Let u be an ordinal number greater than 1. Then
<xv(λ) = λ if and only if X = a^+1(μ) for a limit number μ.

Proof. If μ is a limit number, then a^+1(μ) = suρ# v + 1(£ + 2)

= supa u(a-υ+1(ξ + l)) = aΛav+1(μ)) by Corollary above.

Conversely assume λ = αv(λ). Since the function av+1(μ) of ^ is
continuous and unbounded, there exists the greatest number μ such
that <xv+1(μ)<Ξλ. If μ is an isolated number, then pμ = 0 and λ<jχ v + 1(μ + l)
= αv(αv+1(/-&))^α:v(λ), contradicting λ=<xv(λ). Hence μ is a limit number.
If λ^α:v+1(yC6) + l, then by Corollary 4 above λ = αv(λ)^α:v(α:v+1(/^) + l)
^α: v + 1 (^) ωβ. But then, since μ is a limit number, a υ(X)^a>J(av+1(μ)ωβ)
= a^,+1(μ-\-ΐ)^>X contradicting λ = αv(λ). Hence λ = α:v+1(^) where ^ is a
limit number.

Corollary 1. // η + 2r<Lv, then av(a^(μ)) = av(μ) for any μ^>0, except
where ι> is a limit number, μ=vδ + ξ and

Corollary 2. // v is a limit number greater than 0 and
then a-u

Proof. By Corollary 1 above α:v(^δ) = aξ+1(av(vδ)), and hence
δ + ξ) = ai:{ωβ«^+1) = tf6(ωβ-6+iCΛ*<*8»+i) = α 6 + 1 (α v (^δ) + 1 ) .

Lemma 1. 7. L^ί v be a limit number greater than 0. In order that
χ = ω^ = av(X) for any η<Cv> it is necessary and sufficient that λ = α:v(vδ)
with a δ > 0 .

Proof. If λ = α:v(^δ) and δ^>0, then λ = ω^ by Corollary 1 of Theorem
1. Assume ? ; O and put H = {£|£ = *δ' + f, δ ' < δ , η<¥<»}, then Ξ is
cofinal to yδ. By Corollary 1 of Lemma 1.6, α:,(α:v(f))==αv(lr) for any
ξ G Ξ. Hence αr̂ (λ) = sup ^ ( ^ ( l ) ) = sup a^(ξ) = av(^) = λ.

Conversely assume λ = ω^ = α:7?(λ) for any v<Cv By definition of
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a*(vδ) for δ^>0, the function a^(vS) of δ, with a fixed y, is continuous.
Hence there exists the greatest number δ such that <xv(^)<JX. If δ = 0,
then there exists a ξ such that £<> and λ<^αv(f). But then, since
αv(^) = αg(ω/3) = αfί+1(l)1and l<[λ, we have λ < ^ + 1 ( l ) < ^ + 1 ( λ ) contradicting
λ = αrg+1(λ). Hence δ>0. Since αv(v(δ + l))]>λ, there exists the least
number ξ such that l ^ f < > and λ<> v Oδ + f). If f > l , then αv(^δ + l)
< λ and λ<α v(^δ + f) = αs(ωβ

Λ^δ)+1) = αs(Λv(yδ4-l))^α:g(λ) contradicting
λ=αfi(λ). Hence f = l and tfv(*δ)^λ<α:v(*δ + l). If αv(^δ) + l < λ , then
λ<j2v(vδ +1) = ωβ**c v8)+1<ί ω£ contradicting λ = ω£. Hence we have λ = av(vδ)
where δ>0, which is to be proved.

Summing up Lemma 1. 5, 1. 6 and 1. 7, we have

Theorem 2. In order that X = av(ω£) for any η<lv> it is necessary
and sufficient that \ = a^(μ) with μ£Φl and

Lemma 1.8. av(μ)<^a »(μ +1) for any μ and v.

Proof. ccv(μ)<^av(μ+l) is already proved in Lemma 1.4. Our
assertion is trivial for v = l.

If v = η + l where η ̂ 1 , then α v(^ + l)-α'r7(ωβ

αJvw+V). If further μ
is a limit number, then pμ = l and α η K β v C W + 1 ) ^ α v W + l > α v W If /*
is an isolated number, then av(ωβ

avc^)^>av(μ) by Theorem 2. Hence in
either case αv(μ-f-l)>αv(μ).

Assume that ^ is a limit number. If further μEΦί, then a^,(μ-\-l)
-α:1(ωβV^+1)>α:v(^). If μ€Φl, then letting μ = ξ + ζ be the ^-decom-
position Of μ, r > 0 . ^(/ .+ I) = α v ( | + ξ' + l) = ̂ + 1 ( ω β ^ ^ 1 ) > ^ + 1 ( α v ( f ) + l),
since our lemma is already proved for an isolated number ? + l. Further-
more, by Corollary 2 of Lemma 1.6, ccζ+1(ccv(ξ) + ΐ) = (*„(£+ ζ) = a*(μ).
Hence our lemma is proved also for a limit number v.

For ^Ξ>2, <x y(μ) is a limit number by Corollary 2 of Theorem 1.
Here we have

Theorem 3. Assume v^2, then cf (av(μ)) = β for μ = Φ\y and
cf(a*(μ)) = cf(μ) for μ€Φί.

Proof. First we shall consider the case μ G Φ\.
Assume that v is an isolated number η + 1 where v^>0. If μ is the

next number to a limit number I, then a^(μ) = av(ωβ

a'uc^+1)=zsupav{ωβ^
c^ ζ).

Since the function α^(λ) of λ is increasing by Lemma 1. 8, for a sequence
Λ of ordinal number ζ<Cωβ cofinal to ωβ, the sequence {cxv(ωB

<*^).ζ)\ ζe A}
is also cofinal to αv(μ) Hence cί(av(μ)) = β.

Assume μ=ξ + \ where ξ is an isolated number and cί(a^(ξ)) = βy
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then cc(μ) = aJωβ**cb)= sup aJωί). Similarly as the above, for a sequence

Λ of ordinal numbers ζ<^a^(ξ) coίinal to a^(ξ), the sequence {av(ωζ

β) \ ζ e Λ}
is also confinal to <x-»(μ). Hence cί(av(μ)) = cf(av(ξ)) = β. Hence it is
inductively proved that for any isolated number v we have cί(av(μ))=β.

Next let v be a limit number such that 0<^<Cωβ If 0<^!<^,
then by Corollary 2 of Theorem 1 arv(^ + ̂ ) = ae+1(arv(vS) + l), and since
both ξ + 1 and #v(vδ) + l are isolated numbers, cf (α§+1(αv(vδ) + l))=/3.
Hence in either case that v is an isolated number or a limit number,
p^2 and μeΦl imply cf(a^(μ)) = β.

Next consider the case μ£Φl. For μ=0, our statement is trivial.
If μ^>0y then since a^(μ) = sup ΛV(?) and the function aj£) of ? is

ζ<t>-

increasing, we have immediately cf(a^(μ)) = cί(μ), and the whole proof
is completed.

and
Lemma
λ<αv(*

Proof.

1.

>β)-

If

9.

λ =

For any

is) for

λ</3*

any u

f there exists

<Zωβ> then λ =

a

= S1
v < ω β

2. A classification of ordinal numbers

Hereafter any number denoted by a small Greek letter in this paper
is assumed less than β*.

Lemma 1.10. Let j(μ) denote the least number ξ such that μ<^ξωy

then the following three conditions on μ are mutually equivalent.
(a). y(μ) = μ. (b). Any non-zero rest of μ is equal to μ.
(c). There exists a ξ^μ with μ=ωK
For the proof refer to [ I ] pp. 67-68. Here we omit it.

DEFINITION 3. (i). j(μ) denotes the number defined in Lemma 1.10.
A number μ which satisfies conditions in Lemma 1.10 is called a 7-
number (see [1], p. 67).

(ii). For λ</3*, the least number » such that ls(λ)<αv(ω^λ>)
(refer to Lemma 1.9) is called the genus of λ and denoted by gn(λ).

(iii). If λ=α:v(μ), then we write yi& α̂̂ Xλ-).
Put de(λ) = α:̂ 1

1

(λ5(ls(λ)), (derivation of λ).
(iv). Let Γ denote the set of all ordinal numbers less than /3#.
Γv denotes the set of all λGΓ with gn(λ) = v.
Γ° denotes the set of all λGΓ with cf(ls(λ))</3.
Γ1 denotes the set of all λ e Γ such that cf(ls(λ))=/3 and de(λ) is

not a γ-number.
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Γ2 denotes the set of all λ e Γ such that cf(ls(λ))=/3 and de(λ) is
a γ-number.

Put Γί = PΆΓ,, Γί= \J Γ* for ί = 0,l,2 and Γv = \J Γv.

REMARK, (i). gn(λ) and de(λ) depend only on ls(λ), or in other
wards, gn(λ+w) = gn(λ) and de(λ+w) = de(λ).

(ii). If gn(λ) = l, then de(λ) = ls(λ).
If l < v = gn(λ), then η < > implies av(ω^) = \s(\). Hence ls(λ)

= av(μ) where μ€Φl by Theorem 2, and μ=de(X).
Therefore de(λ) is defined for any λ< /̂3#, and de(λ)eΦ£nOO in

general.
Especially if *> = gn(λ)>l, then <4scλ) = ls(λ) and hence α^(de(λ))

= ls(λ)<^α:v(α)^cλ)) = αv(ls(λ)). Since α:v is increasing, de(λ)<^ls(λ).
(iii). If y<^v = gn(λ), then especially 1<CV and ls(λ) = ω^scλ). Hence

(iv). In general λ=αgnCλ)(de(

Lemma 1.11. (i). gn(de(λ))^gn(λ). (ii). cf (de(λ))=cf (ls(λ)).
Proof, (i). If gn(λ) = l, then de(λ) = ls(λ) and gn(de(λ)) = gn(ls(λ))

= gn(λ). If gn(λ) = v^>l, then by Remark (ii) above, de(λ)<^ls(λ).
Assume gn(de(X)) = y^>v, then by Remark (iii) above, de(λ) = <xv(de(λ))
= ls(λ) contradictrily. Hence gn(de(λ))<Jgn(λ) in general.

(ii) is a consequence of Theorem 3 and de(λ)GΦgnCλ>

Lemma 1.12. If lr^>0, then the least η-number μ such that d(μ)=β
and μ^>ξ is ξωβ.

Proof. Let ζ be the least number with μ^ξζ. £<Cμ implies l<^ζ.
If f r ( f ) ^ l (i.e., ζ is an isolated number), then ξ(ζ—l)<^μ and
μ = ξ(ζ — l) + θ where 0<^θ<Ξ*ξ<^μ contradicting that μ is a γ-number
(see (b) in Lemma 1.10). Hence ζ is a limit number, and necessarily
μ = ξζ. If ζ<Cωβ then cί(μ) = cί(ζ)<^β. Hence ζ^ωβm But ξωβ is
obviously a γ-number with cί(ξωβ)=β and ξωβy>ξ.

Corollary. In order that μ is a ^-number such that μ^>l and
ct(μ)=β it is necessary and sufficient that μ=ωε

β for an 8 which is either
an isolated number or a limit number with cί(£)=β.

In general any λ e Γ is represented as

where ^ = gn(λ), l = γ(de(λ)) and ^ = fr(λ). (Then ζ is uniquely deter-
mined).

Especially if λeΓ 1, then de(λ) is not a γ-number, and hence
0 < l < d e ( λ ) and 0<f<de(X).
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If Xe Γ2, then de(λ) is a γ-number and l = de(λ) and ξ = O. Further-
more, since cf (de(λ)) = cf (ls(λ)) = /3 by Lemma 1.11, (ii), it follows from
Corollary of Lemma 1.12 that de(λ) = ω£ and λ is represented as

(2) λ = tfv(ωg) + «,

where ^ = gn(λ), n = ίr(X) and μ is either an isolated number or a limit
number with ci(μ)=β.

DEFINITION 4. When λ e Γ1 or λ e Γ2, the right side of (1) or (2)
respectively is called the canonical decomposition of λ.

REMARK, (i). When XeΓ\ since 0 < f < d e ( λ ) and 0 < f < d e ( λ ) in
(1), we have a^(ξ)<^av(άe(λ)) = ls(X) and av(ζ)<^ls(X). Furthermore since
cf(ls(λ))=/3, we have αv(£) + ω<ls(λ).

(ii). When λ<GΓ2, since v = gn(λ) in (2), μ<ls(λ).
If further μ is an isolated number, then cf(ω^)=:0 and cf(ω£) = /3,

hence ω^φωj and consequently ωμ<^ω'β^ls(X). If /̂  is a limit number
with cί{μ) = βy then ωμ = μ. (Indeed putting μ = ωω δ + # where 0^^<^ωω,
Θ is necessarily 0. Hence ωμ = ω ωω δ = ωω δ = μ). Hence in either case

^ls(λ).
This Remark (i) and (ii) will be recalled in Principle 1 later.

Lemma 1.13. If X = a^(μ) + ω, then the least number ξ in
greater than λ is av(μ + ωβ).

Proof. ?6ΓV implies ls(f) = αv(δ) for a 8eΦ[. Since λ<^|,
Put δ = ̂ +f. If f < ω β , then cf(ls(f)) = cf(δ) = cf(?)</9 contradicting
ξfcY0. Hence ξ"^ω s and ξ is of the form a^(μ-\-ζ) + n. But among
numbers of this form, f = α:v(/̂  + ωβ) is the least number and obviously
contained in ΓjuΓ?. (Especially if μ^ωβy then ξeΓl).

Lemma 1.14. If λ = o:v(ωg) + ω, //̂ w / ^ ^ 5 ^ number ξ in Γ?wΓv+1

greater than λ /s c^vί̂ ^1)-
Proof. If feΓ v + 1 , then ls(f) = ̂ v(ωβCC)) Hence f€Γ?wΓv+1 implies

that ls(?) is of the form αv(ω^) where λ<^l implies μ<C^ Hence
ξeΓl\jTv+1 and λ < ? imply that ? is of the form O:V(G>£+8) + w where
θ ^ l . But among numbers of this form, ! = α:v(ω£+1) is the least number
and contained in Γ?.

CHAPTER II. MAIN THEOREMS

In this chapter, we shall introduce central notions and state Main
Theorems. Finally a brief orientation of the proof of Theorem A is
mentioned.
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1. Ramified sets and relation oc

DEFINITION 5. A ramified set X (which is called "un tableau ramifie"
in [4]) is a partially ordered set which satisfies the following condition:
for any xeX the set {a\aeX, a<^x] is a well-ordered subset of X.

By definition the following is obvious.

Lemma 2.1. (i). A subset of a ramified set is also a ramified set
with the original order-relation, (ii). A ramified set satisfies the descending
chain condition (see [2], p. 37). (iii). A totally ordered ramified set is a
well-ordered set. Conversely a well-ordered set is a ramified set.

In this paper capital Latin letters, as well as these with suffixes,
are used to denote ramified sets or their subsets. Especially W denotes
a well-ordered set. Wλ is the set of all ξ<^X with the natural order
between them. Small Latin letters stand for elements of ramified sets
or mappings into ramified sets (mostly from ramified sets), except iy ky

m and n which are finite numbers. Especially f,goτh is used to
denote a mapping of a ramified set into another (occasionally in itself).
Capital German letters are used to denote families or sequences of rami-
fied sets (or their subsets).

Concerning ramified sets we shall settle terminologies and notations
followingly.

DEFINITION 6. (i). For xeX, Lb(# X), or simply Lb(jt) (in the case
where x is contained in a definite set or it is apparent what set X is
referred to), denotes the set of all aeX with a<^x.

Lb7(jt: X)y or simply Vo\x)y denotes Lb(# X)\J {X}. (Lower bounds
of x).

(ii). \]b(x; X)y or simply Ub(#), denotes the set of all aeX with

a^>x.

Ub'(x;X) or Ub'(*) denotes Ub(* X)\J {x}. (Upper bounds of x).

(iii). r(χ X), or simply T(#), denotes the order-type, which is an

ordinal number, of Lb(#;X).

(iv). A subset Y of X is called a cut of X iί ye Y, xe X and x<^y

imply x £ Y.

(v). Segv(X), Layv(Z) and Csgv(X) denote the sets {x\xeX, r(χ)

<ω v }, {x\xeXy r(x) = ω'"} and {x\xeX, r(x)^ωv} respectively.

(vi). Let Y be a cut of X. Expv(Y X)y or simply Exp,(F), denotes
the subset of X which consists of all y£Y and all xeCsg^(X) such
that Lb(x X)r\Segv(X) is entirely included in Y.

By definition we have obviously
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Lemma 2.2. (i). If xeYcX, then Lb(#; Y) = Lb(x; X)r\ Y. Simi-
lar equalities hold for Lb', Ub and Ub'. (ii). If x<^y, then r(y X)

Concerning Exp-»(Y;X) we have

Lemma 2.3. Let Y be a cut of X. (i). Exp^Y) is a cut of X.
(ii). Exp*(Segv(-X))=X (iii). FcExpv(Y). (iv). // Z is a cut of Yy

then Expv(Z; X)cExp,(F; X\ Expv(Z; Y) = Expv(Z; X)r\Y and
Expv(Expv(Z; Y) X) = Expv(Z; X). (v). // Z is a cut of Xy then
Expv(FvZ) = Expv(y)vExpv(Z). (vi). xe Expv(F)r\Csgv(X), if and only
if the type of hb(x)r\ Y is not less than ω\ (vii). If x is a minimal element
of Jf-Expv(Y), then xeSeg,(X). (viii). Expv(Exp,(r)) = Expv(F).

Proof. We shall show only (vii) and (viii), since the others are
trivial.

(vii). Assume τ(x) 2^ωv. Since x 6 X— Expv(F), the type of Lb(x)r\ Y
is less than ωv. Hence there exists an #GLb(#)— Y such that τ{a)<^^.
Since x is minimal within X— Expv(Y), aeExp »(Y). But by definition,
a e Expv (Y) — Y implies a € Csgv (X) contradicting τ{a) <^ ωv. Hence

(viii). Expv(Expv(F))5Expv(y) follows from (iii) and (iv). Assume
that D=Expv(Expv(y)) —Expv(F) is not void, and let x be a minimal
element in D. Since x is minimal in X— Expv(F), lτ"(#)<Cω\ while putting
Z=Exp v(F), #£Expv(Z)—Z implies Jt:GCsgv(X) contradictrily. Hence
J5 is void and Expv(Expv(F)) = Expv(F).

REMARK 1. By (iii), (iv), (v) and (viii) of Lemma 2. 3 the operation
Expv on cuts of a ramified set satisfies the conditions of the so-called
"finite-additive closure operation".

REMARK 2. In most cases where we are concerned with several
ramified sets, each of them is a subset of one of them, for instance X.
Then, when we write simply Ub(#), ^{x)y Expv(Z) etc., it means Ub(.r X)y

τ{x X)f Expv(Z X) etc. respectively, and according to Lemma 2.1 (i)
and Lemma 2.2 (iv), if Y is a subset or a cut of X, then Ub(:r; Y),
Expv(Z; Y) etc. are mostly expressed by Ub(x) r\Yy Expv(Z)nY etc.
respectively.

DEFINITION 7. Let X be a non-void ramified set. X is called resoluble
if for any non-void subset Y of X, there exists a y € Y such that
XJb (y)r\Y is totally ordered. (Of course a void set is regarded as a
totally ordered set). If X is not resoluble, then it is called irresoluble.
If for any xeXy Ub (x) is not totally ordered, then X is called perfectly
irresoluble.



Ramified Sets 89

For convenience a void set is regarded as resoluble and (perfectly)
irresoluble in the same time.

For a subset Y of X, let J(Y) denote the set of all ye Y such that
Vb(y)r\Y is not totally ordered. Put J0(X)=X, Jξ+1(X)=J(Jξ(X)) for
any ξ and Jt(X)= ί\Jζ(X) for a limit number ξ. If Jt+1(X)SΆ(X) for

any ζ<C\ then λ can not exceed the potency of X—Jλ(X). Hence there
exists a λ, whose potency does not exceed X, such that Jλ+1(X)=Jλ(X).
Put K(X)=Jλ(X) for such a λ, then since J(K(X))=K(X\ K(X) is per-
fectly irresoluble. If a subset Y of X is not included in K(X)9 then
there exists the least number ξ such that Jξ{X) does not include Y. ξ is
not a limit number or otherwise YcJΛX) for any ? < £ and YCf\Jζ{X)

=Jt(X) contradictorily. Put f = ? + l , then YcJζ(X). Let μ be any ele-
ment in Y-h{X\ then since yeJζ{X)-J^X\ XJb(y)πY(cUb(y)r\Jζ(X))
is totally ordered, i.e., Y is not perfectly irresoluble. Hence K(X) is
the largest (in the sense of inclusion) perfectly irresoluble subset of X,
which we shall call the perfectly irresoluble part of X. Similarly we
can see that X is resoluble if and only if K(X) is void. In general
X—K(X) is always resoluble, which we shall call the resoluble part of X

Summing up we have

Theorem 4. Any ramified set X is uniquely decomposed into the union
of its perfectly irresoluble part and resoluble part. X is resoluble if and
only if its perfectly irresoluble part is void.

Corollary. A subset of resoluble ramified set is also resoluble.

DEFINITION 8. (i). A mapping / (many-to-one in general) which
maps X into Y is called increasing if a<Ί) implies f(a)<^f(b) for any
a and b in X.

(ii). If there exists an increasing mapping of X into Y, then X is
called smaller than Y and Y is called larger than X in symbol Xoc Y.
If X<*Y and YocXy then X is called equivalent to Y; in symbol X~Y.
XΦY and XooY denote the negations of XocY and X~Y respectively.
If XocY and Y^X, then we write X^Y.

(iii). A one-to-one increasing mapping of X onto whole Y with an
increasing inverse is called an isomorphism of X to Y. If there exists
an isomorphism of X to Y, then X is called isomorphic to Y; in symbol
X=Y. XφY denotes the negation of X=Y.

(iv). For an increasing mapping / of X into Y and a subset Z of
X, f(Z) denotes the set {f(x)\xeZ}. f is called reduced if f(Z) is a
cut of Y for any cut Z of X

(v). κ{X) denotes the least ordinal number ξ such that
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Lemma 2.4. Let f be an increasing mapping of X into Y. Then,
(i) r(f(x))^>r(χ) for any xeX, (ii) / is reduced if and only if r(f(x)) = r(χ)
for any xeX.

Proof, (i). Since Lb(jtr) is a well-ordered set and / is increasing,
Lb(jt) is isomorphic to f(Lb(x)) which is a subset of Lb (/(#•)). Hence
the order-type τ(χ) of Lb(#) does not exceed the type τ(f(x)) of Lb (/(#))
by a well-known theorem on well-ordered sets. Hence r(x)f£r(f(x)).

(ii). Assume that there exists an # £ X such that *"(/(#)) ̂ >T(#). Let
Λ; be such a minimal element (see Lemma 2.1 (ii)). Since r(f(x))^>r(x\
there exists a unique element b such that τ(b) = τ(x) and b<^f(x). If
<2<^Λ:, then rr(f(α)) = τ(α)<^r(x) = r(b) and hence f(α)φb. Hence there is
no element α£Lb'(x) such that f(α) = b. Lb'(#) is a cut of X, while
since /(Lb'(#)) contains f{x) and does not contain b<^f(x), f(Lb'(x)) is
not a cut of Y. Hence / is not reduced.

Conversely assume r(f(x)) = tr(x) for any xeX, and let Z be a cut
of X If b<Cf(z) where 26Z, then, since r(b)<^r(f(z)) = T(z)y there exists
an α<^z such that r(α) = τ(b). Since r(f(α)) = r(α) = r(b) and both /(#)
and δ are contained in Lb(/(^)), f{α) coincides with b. Since Z is a cut
of X, αGZ and bef(Z). Hence f(Z) is a cut of Y and / is reduced.

Lemma 2. 5. //" Xcc Yy then there exists α reduced increasing mapping
of X into Y.

Proof. Xoc Y implies the existence of an increasing mapping g of
X into Y. For any xeX, since r(χ)^.r(g(χ)) by Lemma 2.4 (i), an
element f(x) of Y is uniquely determined by x in such a way that
f(x)^g(x) and r(/(#)) = τ(*). If * < * ' where *, / G l , then f(x)<g(x)

and hence f(x) and /(Λ:7) are contained in Όo'(g(x')). Since
is well-ordered and fr(f(x)) = r(χ)<^r(χ/) = τ(f(χ/))y we have

f(x)<Cf(x') and / is increasing. Further / is reduced by Lemma 2. 4
(ii), and our lemma is proved.

Corollary. // X^ Γ, then Segv(X)ocSegv(F) and Csg,(X)ocCsg,(y).

It is easily seen that the relation oc is a quasi-ordering between
ramified sets and the relation — is an equivalence relation (see [2], p. 4).

Theorem 5. (i). // κ(X) = μ+% then X~Wμ. (ii). If κ{X)<ιc{Y\
then XgSY.

Proof, (i). By the definition of κ(X), WμocX.
For any element xeX, τ(χ)<^μ} since Wμ+19tLb'(x). Put f(x) = τ(χ)

for any xeX, then obviously / is an increasing mapping of Xinto Wμ.
Hence XocWμy which shows X~Wμ.

(ii). Put μ = κ{X). Since μ<κ(Y), WμocY and there exists an
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increasing mapping g of Wμ into Y. Similarly as the above, the map-,
ping / of X such that f(x) = r(x) for any i G l i s an increasing mapping
of X into Wμ. Since gf is an increasing mapping of X into Y, X^ Y.
If YocXy then WμocX contradicting κ(X) = μ. Hence X^Y.

We shall say that X is comparable with F if either X^Y or Γ°cX;

Corollary. If κ(X) is an isolated number', /few X is comparable with
any Y.

2. Main Theorems

DEFINITION 9. Let ωβ be a fixed regular initial number greater than
ωQ as we assumed in Chapter 1, § 1.

(i). 9ϊβ denotes the family of all ramified sets with potencies less
than Kβ.

(ii). @β denotes the family of all resoluble ramified sets in 9ΐ3.
(iii). [_$tβ] denotes the family of all equivalence classes of sets

(iv). A class X in [9ϊβ] is called resoluble if it contains a resoluble
set. The family of all resoluble classes in \JRβ] is denoted by [@β].

(v). For £ and 2) in [3tβ], X<x2) means that there exists an i G ΐ
and a FG2) such that I o c 7 .

REMARK 1. [ββ] is not defined as the family of all equivalence
classes of sets in @β. But it is not a matter of much difference, and
[@β] may be taken for such a family without any modification in the
succeeding mention.

REMARK 2. Since the relation oc between ramified sets is a quasi-
ordering, it is an order-relation between classes in [3^]. It is obvious
that if ϊoc3) for 36 and 2) in [3tβ], then X^Y for a n y l G ί and

Lemma 2.6. Xe%iβ implies κ(
Proof. Since ωβ is regular and X<^Xβ, numbers τ(χ) with xeX,

which are obviously less than ωβ9 are not cofinal to ωβ. Hence putting
ξ = supr(χ), ξ<Cωβ and W^+19^X, i.e., κ(X)^ξ + l<^ωβ.

Our main purpose of this paper is to prove the following:

Main Theorem A. (i). The family [®β] of resoluble classes is well-
ordered by oc. (ϋ). A resoluble ramified set is comparable with any other
ramified set {resoluble or not).

Main Theorem B. Continuum Hypothesis (see [2], p. 45 or [8]) implies
that, (i) there exist ramified sets which are not comparable with each other\



92 T. OHKUMA

and, (ii) there exists a sequence of ramified sets Xi9 i = l, 2, ••• such that

Xi+1%BXi for any / < ω .
Of course examples to confirm Theorem B can not be obtained within

the confines of resoluble ramified sets as far as Theorem A is valid.
Theorem B will be proved in Chapter IV, §2, while hereafter up to the
end of Chapter III, we shall exclusively discuss about Theorem A.

Speaking of only Theorem A, (ii), it seems to be proved rather
easily by induction on the least number ξ with which Jξ(X) vanishes
for a resoluble ramified set X (see the mention above Theorem 4). But
by this induction the proof of Theorem A, (i) seems at least as laborious
as the discussion we shall proceed henceforth.

In this paper, in order to prove Theorem A, we shall construct a
certain sequence 9Ϊ = {Nλ\\<^β*} of sets Nλe&β starting from No = 0,
and show that

C) for any δ < ω β , there exists a λ^/3* with κ(Nλ)^>Sy and
D) each Nλ satisfies the following D. 1), D. 2) and D. 3):
D. 1) Nμ.&Nλ for any μ < λ .
D. 2) // Xe @β and X^Nμ for any /*<λ, then JVλocX
D. 3) Nλ is comparable with any X e 9 V
Note that

Lemma 2. 7. If a Nλ in 9i satisfies D. 1) and D. 2') mentioned below,
then Nλ satisfies D. 2) and D. 3).

D.2'). If Xe% and X^Nμ for any μ < λ , then NK^X.

Proof. It is obvious that Nλ satisfies D. 2). Let X be any set in
3ϊβ. If there exists a ^ < λ with X°cNμy then by D. 1) X°cNλ. If X^Nμ

for any μ<C\ then Nλ^X by D. 2'). Hence 7Vλ is comparable with X,
and Nλ satisfies D. 3).

REMARK. Hereafter, when we say that a set in 5ft, for instance N%>
satisfies D. 1), D. 2), D. 3) or D. 2'), it means that Nξ satisfies it in which
λ is replaced by ξ.

Before we actually construct this sequence 5R, we shall assume that
there exists a sequence 5Ji which satisfies C) and D), and consider the
consequence of its existence.

Lemma 2.8. If a sequence Sft of 7Vλe@β with No = 0 satisfies C) and
D), then for any l G @ β , there exists a λ</3* such that X~Nλ.

Proof. Since κ(X)<^ωβ9 there exists a λ < ^ such that κ(X)<^κ(Nλ)9

which implies X°cNλ by Theorem 5, (ii). Let λ be the least number
such that XocNλ. If λ = 0, then JVo = 0 and hence X=0y i.e., X=N0.
If λ > 0 , then X^Nμ for any ^ < λ , which implies Nλ<^X by D. 2).
Hence X~Nλ.
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Corollary. [@β] is well-ordered by °c {Theorem A (/))•
Proof. The order-type of [ββ~] is same as the type of sequence 31

by the lemma above, i.e., [@β] is well-ordered by °c in the type β*.

Lemma 2.9. Any XG@β is comparable with any Y6 9tβ.
Proof. By Lemma 22, there exists a λ</3* with X~Nλ. By D. 3),

Nλ is comparable with any YeϊRβ. Hence X is also comparable with Y.

Corollary. The existence of 31 for any regular number ωβ>ω 0, which
satisfies C) and D), implies Theorem A, (ii).

Proof. For any ramified sets X and Y, there exists sufficiently large
regular number ωβ^>ωQ such that X and Y are contained in 9tβ. Especially
if X is resoluble, then I"G@β. Hence X is comparable with Y by
the lemma above.

Thus Theorem A is proved if a certain sequence 31 of 7Vλ€@β with
No = 0 satisfies C) and D) (associating to every regular number ωβ>ω0).
Now we shall consider the construction of 31, and for this purpose we
shall define several operations on ramified sets.

DEFINITION 10. (i). Let Λ be a set of indecies, or especially a set
of ordinal numbers, and assume that a ramified set Xλ is assigned to
each λeΛ. \JXλ, or simply \/AXx ( o r occationally V X\> e t c )> de-

λ£Λ v<λ<ξ

notes the set of all pairs (λ, x) with λ e Λ and x 6 Xχy where (λ, x)<C(μ> y)
holds if and only if λ = μ and x<^y within Xλ.

For a subset Y of Xλ, the set {(λ,jc) | x G Y} is denoted by (λ, Y).
(ii). For an ordinal number λ and a ramified set X, Wλ + X denotes

the set which consists of all μ€Wλ and all terms X+x with xeX,
where the order-relation preserves original meaning within WλJ μ<^X + x
for any μ€ Wλ and x£X9 and \ + x<^\+y if and only if x<^y within X.

For a subset Y of X the set {X + x\x£Y} is denoted by λ-f Y.
(iii). For ramified sets X and Y and an ordinal number ^<Cωβ> the

ramified product XGVY is a set which consists of all xeX and pairs
(x, y) with Λ:GSegv(X) and ye Y, where order within Xpreserves orginal
meaning, x<C(x',y) if and only if x<Lxf within X, and (x, y)<^(x', / )
if and only if * = #' and j < ^ / within Y.

For a subset Z of Y, the set {(#, z)\zeZ} is denoted by (#, Z).

REMARK 1. \/AXλ and ΐ^λ + X are called <z cardinal sum and ŵ
ordinal sum respectively in [2] or [3]. But the first term of Wλ + X is
restricted to a well-ordered set in order that the resultant be a ramified set.

REMARK 2. In Wλ + Xy the notation X + x is used only to denote a
term, and the signeture + has no special meaning. But when X=W% and
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x = μe Wξy \+μ is taken for the usual sum of ordinal numbers. Thus
we have

( 3 ) Wλ+Wt=Wλ+t,

not only the equivalency of both sides.

Lemma 2.10. \/AXλy Wλ + X and XΘ^Y are ramified sets, and if
Xk (for any λeΛ), X and Y are resoluble, then \JAX, Wλ + X and XQ^Y
are resoluble.

We omit the proof since it is obvious.

Lemma 2.11. If Xλoc Y for any λ<ΞΛ, then \JAXX^Y.

Proof. For any λ e Λ there exists an increasing mapping fλ of Xλ

into Y. Put /((λ, x))=fλ(x) for any λeΛ and x€Xλ, then obviously /
is an increasing mapping of \JAXλ into Y and V Λ ^ ^ ^

Corollary. Let Xλ and yλ/ be ramified sets assigned to each λ e Λ
and λ' e Λ' respectively. If for any λ e Λ there exists a V G Λ 7 such that
X λocr λ /, then V Δ * Λ ~ V A ' I V .

Further the following lemma is easily seen and we omit the proof.

Lemma 2.12. (i). // X°cX' and Yocγ't then WX + X^WX + X' and

(ii). Putting A=Layv(Z), Csgv(X)= \/Όb'(a).
a£ A

(iii). XocWj + Y, if and only if Csgv(X)°cY.
(iv).
(v). κ(V Λ * λ ) = sup«(Xλ). // max(«(Z), *(F), ω')^β>% then

)^ω\ If ic(X)^
(vi).

(vii). // Z w a cut of X, then Expv(Z; XQ^Y) = Expv(Z X). If Z is
a cut of VA^X, then Expv(Z; V A ^ ) = VX€ AEXPV(ZAZX Xλ).

Lemma 2.13. // 77 /s αw isolated number less then ωv, ίfe^ PF̂  + X

Proof. Wv has a greatest number ξy and fG Segv(TΓw). The mapping
/ such that f(μ) = μ for μ€Wv and /(?7 + #) = (£, Λ:) for jt GXis obviously
an increasing mapping of W^ + X into TF,ΘVX Conversely the mapping
g such that g(μ) = μ for μ€Wv, and #((/*, Λτ)) = ί7 + Λ for any /i6 W^ and
Λ G X is an increasing mapping of WVQ-»X into Wv + X. Hence W

Corollary.
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Lemma 2.14. // Y is not void, then ZΘv(ΓΘvZ)~(ZΘvY
;)ΘvZ.

Proof: Here temporarily let x, y and 2 denote elements in X, Y and
Z respectively and x' and y/ denote elements in Segv(X) and Segv(F)
respectively. XO^(YΘ<»Z) consists of all terms x,{x',y) and (#', (/, z))
while (XQ^Y)Q^Z consists of all terms x, (x', y), ((#', / ) , z) and (x\ z).
(remark that (*', y)e Seg^XΘ^Y) if and only if yeSeg^Y)). The map-
ping / such that f(x) = xy f((x\ y)) = (x', y) and /((*', (/, z))) = ((x'y / ) , z)
is an increasing mapping of XQ^(YQ^Z)) into (XQ^Y)Θ-,Z. Let yό be
any element in Segv(l^). The mapping g which is the inverse of / in
the range of / and g((x\ z)) = (x\ (jVo, z)), is an increasing mapping of
(XΘ-,Y)QVZ into XΘvCFΘvZ) and hence we have our equivalency.

Lemma 2.15. // X is not void and ?7<Cω\ then WV + (XQVY)

Proof. We use notations x, y, xr and / with same meaning in the
proof of Lemma 2.14, and μ as an element in W^. Wv-\-(XQvY) con-
sists of all terms μ, ηΛ-x and v + (x',y) while (WΎ) + X)QVY consists of
all terms μ, η+x, {v + x',y) and (μ, y). WΎI + (XΘ^Y)oc(WΎ) + X)Θ^Y is
obvious. Let x'o be any element in Segv(X), then the mapping/such that
f(μ)=μ, f(vJrχ) = v+χ, f(ίv+χ', y)) = v + (χ\y) and f((μ,y)) = vJr(χΌ,y)
is an increasing mapping of (WV + X)Q^Y into W^ + iXQ^Y). Hence we
have our equivalency.

We assume that for any limit number λ<^/3*, a set Λλ of ordinal

numbers μ<C^ is selected by axiom of choice, so that Λλ = κcf(λ:> and Λλ

is cofinal to λ. For an isolated number λ put Λλ=Λ l sCλ). Besides, put
σ-e = ω if cf(ls(f))=/3 and ^ = 0 if cf (Is(£))<& Λ̂ λ in 9Ϊ is inductively
defined along the following principle.

PRINCIPLE 1. Put No = 0 and Nn=Wn.
Case λ e Γ°. Then put

Case λGΓ1. Let X = <x-v(ξ + ζ) + n be the canonical decomposition of λ
(see Definition 4), and put

Case λGΓ2. Let λ = α:v(ω|) + # be the canonical decomposition of λ.
If ξ is a limit number {and necessarily cf(ξ)=β)> then put

If ξ is an isolated number ζ + 1, then put
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REMARK 1. According to Remark below Definition 4, the index
attached to each N which appears in the right sides of four formulae
in Principle 1 is surely less than λ, and the definition of Nλ is inductive.

REMARK 2. Let λ be a limit number in Γ°. Of course the set Nλ

itself, as well as Nλ+n> is determined depending on the choice of Λλ,
but it is easily seen that, under the assumption that Nμ with any μ<Λ
satisfies D. 1), the equivalence class which contains iVλ is determined
independently of the choice of the sequence Λλ cofinal to λ. (Refer to
Corollary of Lemma 2.11).

Referring to Lemma 2.10, we can see that any Nk is contained in
&β. For λ = α*(ωβ), Nλ=Wω* + N0=Wω »9 and *<#„) = ωv + l, from which
it follows that 31 satisfies C). Therefore in proving Main Theorem A,
it is remained only to prove that each Nλ in 31 satisfies D. 1), D. 2) and
D. 3). Next chapter is devoted to this proof.

CHAPTER III. PROOF OF MAIN THEOREM A

In this chapter we shall show that any Nκe3l satisfies D. 1), D.2)
and D. 3) to complete the proof of Main Theorem A. First we prepare
some lemmas on Nλ (§ 1), and next discuss about Nκ for each case
λ e Γ°, λ e Γ3 and λ e Γ2 in § 2, § 3 and § 4 respectively.

1. Preliminaries on Nλ

Lemma 3.1. // λeΓίuΓ? and v<Cω\ ^ e n

(4) W% + Nk~Nx.

Proof. If λeΓ?, then iVλ is of the form Wy + X where 77<ωv<ωv '.
Since Wv

JrWy=Wv+y=Wyy we have (4) trivially. Especially (4) is
true for λ = αv(ωβ) which is the least number in ΓϊwΓ? (see Lemma
1.13). Assume λ'eΓϊ and (4) is true for any λGΓlwΓ? with λ < λ ' .
Let X/ = a^'(ξ+ζ) + n be the canonical decomposition of λ', and then

av,c&+σr Since f is a limit number with cί(ζ)=β,
and by assumption Wv + NaV^+n^Nav^+n which is

not void. Hence by Lemma 2.15, Wv + N^=Wv + (NΛVCO+nQ^NΛVΦ+H)
^ ( t ^ + i V ^ φ + J Θ v ' N ^ and (4) is proved
for \ = X'.

Corollary. If Xe Γ1 u Γ2, then

Assume 2^><^ωβ, and letting μ=ξ + ζ be the ^-decomposition of
μ (see Definition 2, (ii)), ζ = φrv(μ)^>0. Now we define tav(μ) (tail of μ)
by
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tav(μ) = ω' f if p = η + i (and accordingly

tav(//0 = ω ^ if v is a limit number.

Lemma 3.2. Under the same assumption as above, putting tav(//,)=£,

5 ) NάyfiV+n = W

Proof. We shall prove (5) only for the case » = η + l, since the proof
for the case that v is a limit number is similarly obtained.

αv(? + l) = tt,(VvCδ)+1)e Γv > and hence Na^+O+H = Wωv + N^a,+<rξ+n

(since ω a^(ξ) = av(ξ) refer to Corollary 2 of Theorem 1), which shows
(5) for ζ = l. Assume that (5) is true for ζ=k^l. atf+k + l) =

Γ* and NΛ^+k+o+n= Wj + N^+»+n=Wωv + Wωv.k+NΛ^+σs+H

φ+σξ+n which shows (5) for ζ = k + l. Hence (5) is proved
by induction on ζ<Cω-

Corollary. If 2<Jv<^ωβ, μ^>0, φl(μ)=0 and ta v0*)=£, then

6 ) N

In proving that Nλ satisfies D. 1), D. 2) and D. 3), it is assumed that
Nξ with any £ < λ satisfies them. In the following three lemmas, which
are used to prove that iVλ satisfies D.I), D. 2) and D. 3), especially D. ί)
is assumed for N% with any §<CΛ> a n ( i under this assumption, for a
limit number ζe Γ° with ζ^Lλ and for any sequence Δ£ of ordinal numbers
less than and cofinal to ξ9 \Zχ/ζNμ.—VΛ^A^,—Nζy as we remarked below
Principle 1.

Lemma 3.3. // ξ is a ^-number greater than 1 and
then putting X = ξJ

r

( 7 )

Proof. If ζ is a finite number greater than 0, then Nξ+σξ+ζ= ς
^'NζΘ1Nξ+σξ by Corollary of Lemma 2.13, and (7) is proved for finite
numbers ξ. Now assume that ω<^ζ<^ξω and Nt+σς+μ.~NμιO1Nζ+a.£ for
any μ with 0<^μ<^ζ.

In the case ?GΓ°, Nλ = Wn+\/AλNμ where « = fr(λ), and referring
to the remark above,

\/^Aζ (Nμ Θ, N^^) (by assumption),

μ) Θ1 iVfi+<rf) (by Lemma 2.12, (iv)),
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: - ( W k M V * A C Λ7,)) OiAi+σj Xby Lfcmma 2.15);

and (7) is proved for ζeΓ°.
If fGΓVΓ 2 and accordingly cf (Is (?))=£, then XeΓ\ and γ(λ) = £,

and (7) immediately follows from the definition of Nλ.

Lemma 3,4. Assume that ξ is a η-number not less than ωβ,
.0<?<fω and 2 ^ > < ω β , /Ae« putting X = a^

(8) . Nλ~

except where n = φs

X)(ζ) = 0.

Proof. Since | 6 Φ ί , 9>ϋ(? + f) = 9>ζ(?). Hence putting £ = tav(?)>

If ^v(?) = 0> then 9>ζ(f+ ?) = ?. In this case, excepting where n = 0,

+v^n (by. (5)),

~ Wε 4- Wn + iV-v(€)+σe (since αv(f) + <re € Γ°),

~ Wε+n Ov ^cίί+σg (by Lemma 2.13 and Λ > 0 ) ,

~ ^ v C D + w Θ v Λ ^ v c έ ) + σ e (by (6)),

and we have (8).
Assume 9>ί(?)>0 and N^a+θ^n^-Nΰύ^^+nΘvNoύ^+^ for any (9 such

that 0 < ^ < ^ with similar exceptions. We distinguish three cases.

Case 1. Putting <pl(ζ) = δ, cf(S)</3.
In this case, since φl(ξ-\-ζ) = ξ + δ,

+ δ ) + w (by (5) and cf(δ)</3)

+ ( V^-vcί+ m) (by cf(S)<iS and

V (N^C(»+1Q*NΛ^h+σξ)) (by assumption),

( V N^w+1))Θ,Na^)+n (by Lemma 2.15),
θΛ

% ^ S (5)),

and we have (8).
Case 2. ζ is a limit number with cί(ζ) = β (then necessarily fGΦϊ).
In this case, λ£Γj and y(ζ + ζ) = ζ. Hence (8) follows from the

definition of Nλ.

Case 3. Letting δ + η be the ^-decomposition of ξ", cf(δ)=/5 and
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In this case,

n (by (5)),

~ WB+H + ( V (NΛ^+k Θv NΛ^+^)) (by assumption),(V
+n + ( ( V #«vce>+*) Θv #evce>+ere) (by Lemma 2.12, (iv)),V

(Wt+H + ( V ΛW*>+*)) ©v i V * ^ ^ (by Lemma 2.15),V

~ N»vΦ+nO* N»v&+<rξ (by (5)),

and we have (8).
Hence for any possible case concerning ζ we have (8) and the proof

is completed.

Corollary. Assume that ξ is a y-number not less than ωβy

and ζeΦl. Put λ = £ + σδ + ? + o^ if v = l, and X = ayι{ξ

if v^>l, then

Proof. If either v = \ or v > l and cf (ζ)<C@ (and accordingly σ? = 0),
(9) is a special case of (7) or (8). For the case where ^^>1, cf(ξ*)=/3
and accordingly σ ζ = ω9 see the proof of Case 3 in the lemma above.

REMARK. Assume that λ is a limit number in Γ1, and let λ = α v

be the canonical decomposition of λ. Put Ψλ= {μ\ω2<Zμ<Zζ} if v = l>
Ψλ={μ\ω<Cμ<ίζ} if v is a n isolated number greater than 1 and
^?x= {μ\v<Zμ<Zζ} if v is a limit number. Then the numbers a^ξ + μ)
with μ£Ψλ are cofinal to λ. For v = l, Ψλ is defined so that μ€Ψλ

implies ξJrσ-^J

Γμ = ξ-{-μ. Hence it follows from Lemmas 3.3 and 3.4
that in general μ£Ψλ implies

(10) -Λ̂ vCS + μί+n ~ -^rtvCμ)+« Θv Navφ+σς .

This Remark is the foundation of the proof that Nλ with a limit
number λ e Γ1 satisfies D. 1), D. 2) and D. 3).

We shall say that a ramified set X satisfies condition Ev) if there
exists no maximal totally ordered subset of X whose type is less than ω\

Lemma 3.5. If X = a^(μ) + Θ where ^β^μ^β* and 0^LΘ<^ωβ> then
there exists a N'λe&β such that N'λ~Nx and Nί satisfies Ev).

Proof. If μ = ωβ and θ = n<^ωy then Nλ = Wω^+n which itself is a
totally ordered set with type ωv + ̂ ^ ω v and satisfies Ev).
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Assume that μ, and Θ where ω<^#<^ωβ are given and that for any
ff with 0 ^ ^ < ^ , putting \f = a^{μ) + θ\ there exists a Λft/ e @β such that
M/~iVλ/ and iV(/ satisfies Ev). Put Nf

λ=WfΐCθ^+ \J NLc&+e'> obviously

N'λ-^Nλ. Since every maximal totally ordered subset A of N'κ has a
from Wfrc0) + (0', -A7) where ffeKθ and A7 is a maximal totally ordered
subset of NίvW+0'9 A=ίτ(θ) + Ά^ω\ Hence N'λ satisfies Ev).

Hence in order to prove our lemma, we need to consider only the
case θ = n<^ω.

Assume ωβ<Cμ<Cβ* and that for any μ with ^β^μ<Cμ and ff
with 0 ^ ^ < ω β , putting X' = a*Xμ) + θ'y there exists a Λ^/G@β such that
Λ^/~7Vλ/ and JV*/ satisfies Ev). Put θ = n<Cω We distinguish five cases.

Case 1. μ£Φl.
Put φl(μ) = ξ and ta v0*)=£ where μβΦl implies θ > 0 . Put N'k

= We + Nί^φ+σξ+H9 then by (5), Λ^(~Λ^λ. Since any maximal totally
ordered subset A of JV£ has a form TFg + ̂ 4' where A is a maximal
totally ordered subset of N^φ\-σξ+n> the type A, as well as A', is not less
than ω\ i.e., iVί satisfies Ev).

Case 2. /*€Φί and cf(^)</5.
In this case, the sequence Λ'λ= {av(μ)\ωβ<^μ/<^μy μ eAμ} is cofinal

to ls(λ) = tfv(/*). Put ΛΓ^ΐFfK^+VΛ'λiVi/, then N'λ~Nλ and ^(satisfies
Ev) similarly as we saw in the case ω

Case 3. μ£.Φ\, cί{μ)=β and μ=
In this case μeΓ^ where i/^>v. Put iVX = "Ŵ v + iVλ, then by Lemma

3.1, Nf

k~Nλ. Since any maximal totally ordered subset of N'λ includes
Wj, N'λ satisfies Ev).

Case 4. μ£Φ\, cί(μ)=β, μ<^ay(μ) and μ is not a γ-number.
In this case λGΓϊ and putting μ = ξ + ζ where ξ = j(μ) and N'k

= N'ayt&+nQ)*N'Λ^to+σv we have N'λ~Nλ. Since any maximal totally
ordered subset of Nk is either included in NίvCζ)+n

 o r °f *he form
Lb/(jc;iVivc^+n) + i4./ where Λ: G Segv(iVίΐC^+n) and A7 is a maximal totally
ordered subset of (x, Nίvφ+σ^9 N'λ satisfies Ev).

Case 5. μGΦt, cί(μ)=β, μ<C^(μ) = ls(X) and μ is a γ-number.
In this case λGΓξ and Λ̂ λ is of a form Wω* + X. Hence iVλ itself

satisfies Ev).
Thus in any case we can inductively find a N'λ required, and we

complete the proof.

2. Case λGΓ°

By the aid of preliminary lemmas shown in § 1, we shall prove
that for any
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Proposition 1. Nλ satisfies D. 1), D. 2) and D. 3).
As we have seen in Lemma 2. 8 and 2. 9 and their Corollaries, if we

complete the proof of Proposition 1 for any λ< /̂3#, then Main Theorem
A is also proved. In proving Proposition 1 for a λ<^/3*, it is assumed
that any Nξ with ξ<^X satisfies Proposition 1 in which λ is replaced by
ξy and hence Lemma 3. 3 and 3. 4 can be applied on any iVλ/ with λ'<Jλ
without any restriction. Occasionally for some λ we can show

Proposition 2. Nλ satisfies D. 1) and D. 2') (see Lemma 2. 7),
and as we noticed in Lemma 2. 7, Proposition 2 implies Proposition 1.

Proposition 2 trivially holds for Nn with n<^ω. We shall show
that any Nλ with λ€Γ° satisfies Proposition 2.

Proof of Proposition 2 for a limit number X e Γ°.
Assume μ<^X. Let ξ be the least number in Λλ such that μ<^ξ>

then by assumption D.I) on Nξy N^N^. By the definition of iVλ, it
includes a subset isomorphic to N%. Hence N^^Nξ^Nλ and Nλ satis-
fies D. 1).

Let X be a set in ίΛβ such that X^Nμ, for any μ<^\. By assump-
tion D. 3) on Nμ with /*<λ, Nμ^X. Hence Nλ=\JAλNμocX by Lemma
2.11, and Nλ satisfies D.2').

Lemma 3. 6. Let λ be a limit number in Γ°. If X has the least element
and X^Nλy then there exists a μ<^X such that X^Nμ,.

Proof. Let a be the least element of X and / be an increasing
mapping of Xinto Nλy then there exists a μ£Λ λ such that f{a) £(μ, iVμ),
and X=-XJb'(a) is entirely mapped into (μ, Nμ) which is isomorphic to Nμ,
i.e., XocNμ.

Corollary. // λ is a limit number in Γ° and aeNλy then there exists
a μ<\ such that Ub'^ociVμ.

Lemma 3.7. Let λ be a limit number in Γ°. If μ<CXy then

Proof. If μeΓ°y then W. + N^N^, by definition. If μG
then W^Nμ^Nμ. by Lemma 3.1. Hence our lemma follows from D. 1)
on Nλ.

Corollary. Let λ be a limit number in Γ°. If NχocW1Λ-X> then
Nλ^X.

Proof. Since W^N^N^W^X, N^X for any /*<λ Hence
NλocX.

Proof of Proposition 2 for an isolated number λ = λ' + lGΓ°.
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Put £ = ls(λ') = ls(λ), » = fr(λ') then Nk, = WH + Nt and ΛΓλ=

First we shall show Nλ'^Nλ. iVλ/ocΛΓλ is obvious. Assume Nλ^Nλ^γ

and let/be an increasing mapping of Nλ into iVλ/, then r(f(n))'^r(ri) = n.
Hence there exists an a£Nξ such that f{n) = nΛ-ay and /maps Ub(n;Nλ)
into \Jb(n + a; Nλ') which is isomorphic to \Jb(a;Nξ). Since \Jb(n;Nλ)
=Nζy

 w e have iVg ©c Ub (a JVg) contradicting Corollary of Lemma 3.6.
Hence Nλ'<?£ Nλ and μglλ' implies Nμ.'&Nx by D.I) on ΛΓλ/. Hence Nλ

satisfies D. 1).
Assume XζΐRβ, and X^Nλ/ (and accordingly X^Nμ, for any μ ^'λf

by assumption D. 1) on Nλ'). Let Y denote the set of all y £ X such
that r(jy) = w. If Ub'(jy)oc7Vξ for any jG F, then similarly to Lemma 2.11,
we have X°cWn + N$=Nλ' contradicting X<?tNλ'. Hence there exists a
yeY such that \Jbf(y)^Nξ. By assumption D. 3) on Nξy N^Ub'(y)
= {y} +Ub(j). Hence Λ^ocUb(j) by Corollary of Lemma 3.7, and
Nλ=Wu+1 + Nt<χLb'(y) + ϋb(y)cX which shows that Nλ satisfies D.20-

3. Case λGΓ1

In this section we shall show that for any λ £ Γ1 Proposition 1 holds
and for some cases Proposition 2 also holds. In order to show it, we
prepare a definition of a notation.

DEFINITION 11. We shall say that an xeXsupports Y if Y°c\Jb(x X).
Spt(X Y) denotes the set of all xeX which support Y. Let %)={Yλ;
λeΛ} be a family of ramified sets. Spt(X S)) or Sρt(X;F λ , λeΛ)
(or occasionally Spt(X; Yλ, λ><Cμ) etc.) denotes the set of all xGX

which supports every Yλe2). Expv(Spt(Z; 2))) is denoted by Sp?(X; 3))
and Segv(Spt(X; ?))) is denoted by Sptv(Z; ?))-

REMARK. Let Z be a subset of X. In general Sρt(Z; Y) does not
agree with Spt(X; Y)r\Z. If xeSpt(Z Y), then yocUb(jc;Z), while
x£Spt(X;Y)r\Z implies Y^\Jb(x X). Hence we can assert only
Spt(Z;Y)cSpt(X; Y)r\Z.

The following is obvious.

Lemma 3. 8. (i). Spt (X ?)) is α cut of X {and hence Expv(Spt {X 3)))
can be defind).

(ii). // X^Xf then Spt(X; 2))ocSpt(X/ 2)) and similar relations hold

for Sptv and Spt v.

(iii). If for any Ye?) /fer<? ejtrwfc <2 Y'G?)7 5wcA that YocY'9 then

$pt(X;W)CSpt(X;W, and especially if Y<*γ' then Spt(X; Y')C
Spt(X; Y). Similar inclusions hold for Sptv and Sρtv.
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(iv). For a family {Xλ> X'£ A>}, Spt ( VA' Xχ> W ~ V Spt (Xλ/ D).
λ'6Λ'

Similar equivalencies hold for Sptv
 ΛMC? Spt

Lemma 3.9. If y&Y implies YVUb(j), then Spt (XΘVF; Y) = X.
Proof. For any x £ SegvQO, Ub(* XΘ, Y) include the subset (x, F)

isomorphic to F, and x 6 Spt(XΘvF F). Hence Segv(Z) c Spt(XΘ,F F)
and ZcSpt^XΘvF F). On the other hand, for any *eSeg,(X) and
yβY, Ub((Λr, y);XΘ^Y) = Ub(y;Y), and (ΛΓ, ^) does not support F by

assumption, i.e., Spt(XΘ v F; Y)CX. Hence SpT(XΘ vF; Y)CX by
Lemma 2.1, (vi) and we have the lemma.

Lemma 3.10. SpT(X; F)ΘV Y<*X.

Proof. If Spt(X; Y) is void, then Spt (X; Y) and Spt (X; Y)Θ,Y
are void and the inequality is trivial. Assume that Spt(X; Y) is not void.
Since xeSpt(X Y) implies Y°c\jb(x), there exists an increasing map-
ping fx of Y into Ub(Λr) for any #6Spt(X; Y). Put f(x) = x for any
*eSpF(X; y) and f((x, y))=fx(y) for any *eSpt v(X; y) and any ye Y,
then obviously / is an increasing mapping of Sptv(X; Y)Θ^Y into X
and the lemma is proved.

Lemma 3.11. If Y is comparable with any X' G3ΐ3, and Z satisfies

Ev) (see Lemma 3.5), then for any Xe3ΐβ, Sptv(X; Y)^Z implies
XocZΘ.Y.

Proof. Let g be a reduced increasing mapping of Sptv(X; Y) into

Z and M be the set of all minimal elements of X— Sptv(X; Y). aeM
implies r(<z)<^ωv by Lemma 2.3 (vii), and Lb(a) C Sptv(Z Y). Since r̂

is reduced, the type of the set g"(Lb(#)) is equal to r(a) which is less
than ωv. Hence by Ev) on Z, g(Lh(ά)) is not maximal totally ordered
subset of Z, and there exists an a' £Z such that r{a') = r(μ) and g(Lb(a))
= Lb(a'). Let g' be the extension of g such that g\a) = af for any aeM.
Since aeM implies y^Ub(^), \]h(a)ocγ by assumption on Y. Let fa

be an increasing mapping of Ub (a) into y for any aeM. X is decom-
posed into a union \J \Jb (a) \J(M\J Spt" (X Y)). Let / b e a mapping of X

into Z Θ v y such that f{a)=g/{a) for MvS^Γ(X; Y) and f{b) = (g\a\faφ))
for δeUb(^) where aeM, then obviously / is increasing and X°cZΘvy.

Lemma 3.12. Assume λGΓ 1 <2wJ /̂ / 'λ = ctv(ξ+ζ) + n be the canonical
decomposition of λ, then

(i). Λ λ̂ocX implies ^

(ii).
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(iii). Spt (X Λ U c ^ ) §S N^φ+n implies

(iv). N^cζ,+nocSpt\X Na^+(Tξ) implies NλocX.
Proof, (i). Since <x^ξ) + σ-ξ€Γ°, aeNa)Jφ+H implies N^φ+σ^

by Corollary of Lemma 3.6. Hence Sptv(iVλ N^φ^) = NΛ^φ+n by
Lemma 3. 9. Hence (i) follows from 3. 8 (ii).

(ii). Since ωβ^?<j®*> there exists a iV£vφ+w€@β which is equi-
valent to Na^ζ)+n and satisfies Ev) by Lemma 3.5. By Lemma 3.11,

Sptv(Z; N^φ^ocN^o^^N^+n implies X^Nί^φ+nΘ^NΛ^φ+<r^Nλ.
(iii) is a consequence of (i) and (ii).
(iv) follows from Lemma 3.10 and Lemma 2.12 (i).

Now referring to the remark below Lemma 3.4, we shall obtain the
Proof of Proposition 1 for λer\ (Besides let \ = a*(ξ + ξ) + n be the
canonical decomposition of λ. Proposition 2 holds for λ if Proposition 2
in which λ is replaced by Θ holds for θ = av(ζ)J

rn. In brackets of the
following proof, we shall consider about this case.)

Let λ = α\(f + ζ) + n be the canonical decomposition of λ. First we
shall show that Nλ satisfies D. 1).

Case Λ = fr(λ)=0. If μ<Cλ=<**(£+£)> then there exists a f 6 Ψ λ

such that μ<C<x-»(ξ + ψ) (see the remark bellow Lemma 3.4), and by
assumption D.I) on NΛ^+^9 iVμ gs Λ^ct+ψ). Since N ^ C Ψ ^ Λ U Φ , N«vc*+*)
= NΛ^Θ^Na^+HocN^COGvNΛ,φ+(rξ = Nλ by Lemma 2.12, (i). Hence
Nμ, §S iVλ and Nλ satisfies D. 1).

Case n = ίr(X)^>0. It suffices to show NΛ^+ζ^n-ι ^ N^cξ+ζ^+n
SpΓ(N«vcδ+£)+»-i Nΰύ^^σt)=N^cζ,+n-1^ N^cζ^n by Lemma 3.9 and as-
sumption D.I) on N*vCζ)+n. Hence N^^+ζ^^^Nλ by Lemma 3.12, (iii)
and Nλ satisfies D. 1).

Next we shall show that Nλ satisfies D. 2) (resp. D. 2') in the case
where Nav^+n satisfies D. 2')). Assume I e @ β (resp. Xe3ΐβ) and that
X<?tNμ for any μ<^\.

Case w = fr(λ) = 0. By assumption D. 3) on iVμ with μ<C^> N^^X
for any μ<CX. Especially for any ψGΨλ, N^^+ψ^X and hence N^^

= 3pt\NΛ^ξ+i0 Na^+^)ocSpi\X; N^φ-^σξ) by Lemma 3.9 and Lemma
3. 8 (ii). Hence N^cζ^Spt\X; Navφ+σξ) by assumption D. 2) (resp. D. 2'))
on iVrtvC .̂ Hence Nλ = Noύ^ζ^ΘvNoύvφ+σξocX by Lemma 3.12 (iv) and Nλ

satisfies D.2) (resp. D.2r)).
Case n = ίr(X)^>0. It suffices to show that X96Nΰύ^+ζ^+n-1 implies

By Lemma 3.12 (ii), X^Na^+ζ^n^ implies SpΓ(X;
ζi+n-i which implies N^cζ^n<^Spi\X NΛ^+H) by assump-

tion D.2) (resp. D.2')) on NΛ^ζ>+M. Hence Λ λ̂ocχ by Lemma 3.12 (iv).
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Finally we shall show that Nλ satisfies D. 3). Assume Xe%. By
assumption D. 3) on NΛ^ζ>+H9 either Sptv(X; NΛ^^+σ^) & N*<»&+n or
Na^+nocSpi\X Λ^,cξ)+σp holds, hence either X^Nλ or Nλ°cX holds
accordingly by Lemma 3.12, (iii) and (iv), and Nλ satisfies D. 3).

4. Case λ€Γ 2

We distinguish three cases. First we shall consider the case
\ = <xv(ωβ) + n, next the case λ = #v(ω£+1) + w where 0<^ζ and finally the
case X = a^(ωc

β) + n where ζ is a limit number with cί(ζ)=β and ξ*<^ls(λ).

Lemma 3.13. Assume XeίRβ, λGΓ2, fr(λ) = 0 and that any N^ with
μ<C^ satisfies D. 1). Put F=Spt(X; NM μ<Z^>), then there exists a ξ<CX
such that for any x£X, N^\Jb(x) implies xeY.

Proof. If xeX— Yy then there exists a ξ(x)<Cλ such that NξCx^
Ub(jtr). Since X<C^β and cf(λ)=/3, numbers ξ(x) with xeX—Y are not
cofinal to λ. Hence there exists a ί < λ such that ξ(x)<^ξ and accordingly
Ntω&Nξ for any xeX-Y. Then xeX and N^oc\Jb(x) imply xeY.

Proof of Proposition 1 for λ = αv(ωβ). (fr(λ) = 0).
λ is the least number in ΓϊwΓ? (see Lemma 1.13), i.e., μ<C?^ im-

plies μeΓ°\j\J Γv. Hence applying Lemma 2.12, (v), we can inductively

see that μ<^λ implies /c(Λ^μ)<ωv, while κ{Na^ωβ)) = fc{Wω^) = ωv + 1. Hence
by Theorem 5, μ<CΛ implies Nμ^Nλy i.e., Nλ satisfies D.I).

Assume ZG@β and X^N^ for any μ<C^> then by assumption D. 3)
on Nμ, Nf,ocχ for any /^<λ. Put F=Sρt(X Nμ, /6<λ), then by Lemma
3.13, there exists a ξ<C^ such that x€X and N^Ub(x) imply x£Y.
Since ordinal numbers a-JJf) where θ£Φι

v and θ<^ωβ are cofinal to
λ=α: v K), wemay assume that ξ = av(θ) where θeΦl and θ<^ωβ without
loss of generality. Then cί(ξ) = cf(θ)<^β by Theorem 3 and accordingly
ξ G Γ° and <Tξ = 0. Now we shall show that

(a), for any £ < ω v and y£Y, W, + N^oc\Jb(y X).
If f = 1, then since I is a limit number in Γ°, Wn + Nξ = N^+n^\Jb(y)

for any n<^ω.
Next assume v^2. If ι> = η + ly then let f be the least finite number

such that S<^ωv'ξ and put & = ώη ζ. If v is a limit number, then let
ζ be the least number such that £<^ω£ and put £' = ωί. In either case
put μ = θ + ζy then 6> + f is the ^-decomposition of /z-, μ<Cωβ and £<^£'
= tav(/^) (see the mention above Lemma 3.2). Hence by Lemma 3.2,

Hence Assertion (a) is proved for any u with 0<^»<^ωβ. Next we
shall show that
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(b). for any S with 0 < £ < > v and y£Y, there exists a zeXJb(y)r\Y
such that r(z; Ub(;y))=£.

Indeed, Wζ+1-\-N^oc\]b(y) by (a) above. L e t / b e a reduced increasing
mapping of Ws+1 + Nξ into Ub(j), then / maps se Wξ+1 onto a zeUb(y).
Since Λ^°cUb(£ Ws+1 + Nξ)y N^Ub(z) which implies ze Y by assumption
on ξ. Since / is reduced, r(z ΊJb (y)) = τ(S Wζ+1) = S and (b) is proved.

Similarly as the above, Y itself includes a subset isomorphic to Ws

for any £<Cω\ and especially Y is not void. Since l G @ β , i.e., X is
resoluble, there exists a y£Y such that XJb(y)r\Y is a well-ordered
subset of X. Since for any £ < ω v , there exits a 2 6Ub(;y)nF such that
r(z; Ub(y)) = S the type of XJb(y)r\Y is at least ωv and hence N λ = P F ω

v

o c U b ( j ) n 7 c ! and Nλ satisfies D. 2).
It follows from Corollary of Theorem 5 that Nλ satisfies D. 3).
By the way we shall show

Lemma 3.14. If either v is an isolated number or a limit number
with cf(y) = 0, then Nλ with λ = ̂ (ω β ) satisfies D. 2'). {Hence Proposition
2 holds for λ).

Proof. In either case cf (ωv) = 0 and there exists a countable (strictly)
ascending sequence €19 £2, ••• , Smy ••• cofinal to ωv.

Assume Xeϋ\β and X^Nμ, for any μ<^\. It is all the same as (b)
in the proof above that for any y€-Y=Spt(X; Nμ, μ<^λ) and £<C ω \
there exists a ze\Jb(y)r\Y such that r(z ;Ub(y)) = £. Especially Y
itself is not void. Let y1 be an element in Y such that τ(y1; X) = Sly

and after we have a ym G Y, let ym+1 be the element in λJ>b{ym)r\Y such
that τ ( j ' m + 1 ; Z ) = £Wf+1, then we have a sequence Λ,.y2, ••• , ym, ••• of
elements in Y such that yw<Cym+1 for any m<^« and r(ym; X) = Sm.
Let W be a maximal totally ordered subset of X, which contains every
ymy m<Cωy then since for any £<C ω \ W contains a w such that r(w) = 69

the type of 17 is at least ωv. Hence Nλ=Wω*<*X and Nλ satisfies D. 2'),
and the proof is completed.

Proof of Proposition 2 for X = a-v(a>p)Jrn with
><Nλ) = ic(Wω*+H) = ω» + n + l while κ(N^ωβ,+

Hence iVΛvcω^+»-i§g^Vα»vc«̂ +» = V̂λ by Theorem 5 and iVλ satisfies D.I).
Assume Xe% and X<£NΛ^ωβ<)+u-1. Then since ic(iVfl,vc»^+»-i) = ®v

is an isolated number, ωv + ̂ <^/c(X), i.e., ωv + w + l^/c(X). Hence by
definition of κ(X), Nλ=Wω-»+nocX, and Nλ satisfies D.2').

Next we shall consider the case λ = α:v(ω£+]) where ? > 0 .
Put ζ' = G>β and σ̂  = cr̂ /, i.e., σ̂  = 0 if ζ is a limit number with

and σ-̂  = ω otherwise.

Lemma 3.15. Put 6 = αv(ω£) + σf

ζ, /few Csgv(Ns)~Nωζ+(Tζ
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P r o o f . C a s e 1. ζ = θ + l.[
In this case oJ

ζ = ω9 σζf=σ9 and Na^Jβ-)+n=Wω^ + Nωθ+σθ+n. Hence

(Na<JβHn)=NωΘ^θ+n. Since Λ ς v ( c φ + ω ~ V ^ ( 4 ) + w by Remark 2

below Principle 1, Csgv(Λ^ v ( φ + σ .p~ w V c sgv(Λ^ v ( ω | ) + w )~\£N n 9 + < r 0 + n ~«

Nωθ+<TΘ+ω = Nω(θ+Ό+σθ=Nωζ+σζ b y L e m m a 2 . 1 2 , (vi).

Case 2. ξ" is a limit number with cf(ζ)=β and f=α:v(ω£).

In this case σ'ζ = σζ = ω, ωζ = ζ (see Remark (ii) below Definition 4) and

ζ=a^(ωζ

β) eVl+1\jVl+1. Hence Na^Jβ)+n^W^ + Nζ+n by Lemma 3.1 and

Λ ^ v ( ω | ) + J ~ ^ + w . Hence similarly as Case 1, Csg v (Λ^ v ( ω | ) + c r p~

Case 3. ξ" is a limit number with cί(ζ)=β and
In this case σ£ = σ-£ = ω, ωζ = ζ and Λ^ v(ω |)+ w=T7ωv + ΛΓ +̂w. Hence

( Λ ς v ( ^ ) + w ) = ^ + w and similarly as Case 1, Csg v (Λ^ v ( ω | ) + ( r p~ V ^ + w

Case 4. ξ* is a limit number with
In this case </ζ = σζ = 0, a^ω$)eτ°9 and Λ^ε~ V ^ V ( » S + 1 ) = V

ωβ+σβ). Hence Csg v (Λ^ v ( 4))~ V Csgv(Λ^v( <M-I))~ V
p θ€A θ£A

Lemma 3.16. // o : ^ ) + < < 6 < a ^ + 1 ) , then Csgv(Nt)~Nωζ+σξ.

Proof. <^v(
ωβ+1) is the least number in Γv

2wΓv+1 greater than

ay(ωζ

β) + σ'ζ by Lemma 1.14, i.e., £€Γ ° v V7 Γju \J Γ?. By Lemma 3.15

the equivalency is true for £ = α (̂ω£) + σ-£. Hence we can inductively
prove our equivalency referring to Lemma 1.12 (vi).

Lemma 3.17. Assume that Xe 3ϊβ and N^X for any

Put Y' = $pt(X;Nμy /*<λ) and Y= Exp v(F X) =
ye YnSeg v(X), Λ ^ v ( ω | ) + ^

Proof. By Lemma 3.12, there exists a f < λ such that jp6_X' and
imply JICGY7. Without loss of generality we may assume

^ where ξ is a γ-number such that ωβ<£<Cωβ+1 (remark that
if l<^ω| + 1 , then |ω<^ω| + 1 and ξω is a γ-number). Put θ = ξ + σ-g + ω| + σ-̂
if v = l, and ^ = α v ( f+ ωβ) + CΓ? if ^ ^ 2 , then by Corollary of Lemma 3.4,
Nβ~Nav(ωζ

β)+<r'ζQ»Na^φ+σ£ of which we shall denote the right side by Z.
If ye FnSegvUOC Y\ then since 6><<λ, Λ^ocUb(^) and there exists a
reduced increasing mapping f of Z into Ub(j ). If ^ e Segv(Λ^v(ω^)+(r0,
then since ^ v ( ξ ) + σ ξ o c U b ( ^ Z)°c\Jb(f(a) Ub(y)), f(β)€Y' by the defini-
tion of ξ'. Hence / maps Segv(Λ^v(ω |)+cr/) entirely into XJb(y)r\Y'm
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Hence / maps #«„(„*)+*•£ into Ub(^)AExpv(Yy) = Ub(j)Ay (refer to

Lemma 2.12, (vii)) and Na^+^ζoc\Jb(y)r\Y.

Lemm 3.18. If X is comparable with any set in 3tβ, then Wω* + X
is comparable with any Yeϋϊβ.

Proof. If \Jb'(a)ocχ for any «GLayv(F), then Yocψj + X by
Lemmas 2.12, (iii). If there exists an flGLayv(F) such that
then Xoc\Jb'(a) by assumption on X. Since Lb(a)=Wω-», ΫFωv
υ U b ' ^ C y. Hence in either case Wω » + X is comparable with Y.

Proof of Proposition 1 for \ = a^β

+1). (fr(λ) = 0).
If μ<C\ then there exists an £ such that μ<^€ and α:v(ω|

Since Csg^(Ns)~Nωζ+σζ by Lemma 3.16, NsocWω^ + Nωζ+σζ = Nλ by Lemma
2.12 (ii). Hence Np^N^Nx by assumption D.I) on Ns and iVλ satis-
fies D. 1).

Assume lG@β and X<£Nμ for any μ<^X. Put y=Spt v(Z; iVμ, μ<C^)>

then it follows from Lemma 3.16 that for any ye Yr\Seg>£X)9 Λ^v(ω|)+cr/

ocUb {y)r\Y. Similarly Λ v̂( <)+(r/ ^Y and y is not void. Hence

is not void. Since XG@β and X is resoluble, there exists a

UQ such that \Jb(y)r\ ynSegv(X) is totally ordered. Put

Z=XJb(y)r\Y, then since N ^ ^ ^ Z , Zr\Seg^X)=Wω^ and Nωζ+σζ~

Csgv(Λςv(ω|)+(rpocZACsgv(Z). Hence Nλ = Wj +Nωζ+σζocWj + (Zr\

Csg*(X))=ZcX and Λ̂ λ satisfies D.2).
It follows from Lemma 3.18 that Nλ satisfies D. 3).

Proof of Proposition 2 for X = av(ωζ

β

+1)-\-n where n^>0.

Obviously Ni-^Wj + N^^^ocWj + W^^-Ni. If N^N^
then by Corollary of Lemma 2.5, Nωζ+(Tζ+n^Csg^(Nλ)^Csg^(Nλ-1)^
Nωζ+vζ+n-i contradicting assumption D. 1) on Nωζ+σζ+n. Hence Nλ^^Nλ

and by assumption D.I) on Nλ-19 Nλ satisfies D.I).
Assume X£?ftβ and X^Nλ^ly then there exists an <z£Layv(X) such

that ^Jb\a) 9^ Nωζ+σζ+n.1. Since ωf + σ-̂  + wGΓ0, it was already proved
that Nωζ+σζ+n satisfies D. 2'). Hence Ub'(tf) 9̂  Nωζ+σζ+n-x implies Nωζ+σζ+n

oc\Jb\a). Hence Nλ=Wω» + Nωξ+σζ+n<χ\Jb(a)\jLb'(a)CX and Λ̂ λ satisfies
D. 20.

Finally consider the case X = av(ωζ

β)
Jrn where ζ is a limit number

such that ?<ls(λ) and cί(ζ) = β.

Proof of Proposition 1 for X = av(ωζ

β) (fr(λ) = 0). (Besides it can be
proved that if Proposition 2 holds for λ = ζ9 then Proposition 2 also
holds for λ = αv(ωj|). In brackets of the following proof we shall consider
this case).

If μ<C^y then there exists a θ<^ζ such that μ<C<Xv(ωl+1) Since
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β <ωf = f, Nlί&N^a*β+i) = Wj+N*+V9ocWj + Nζ=Nk and ΛΓλ satis-

fies D. 1).
Assume Xe@β (resp. Ze5R3 if Nζ satisfies D.2')) and X^N^ for

any μ<^\. Put 4̂ = Layv(X). If for any a£A there exists a ξ(a)<^ζ
such that Ub'(#)°<:iVξCα), then the numbers ξ(a)y aeA, are not cofinal to

ξ since X < > 5 and cί(ζ)=β. Hence there exists a £ ' < ? with ί ( α ) < ?
for any β ί A Without loss of generality we may assume that f has
a form f = ωf + σ€ where f<ξ\ Then since VUb'(β) = Csgv(X)^iVωδ+σ£,

XocWωy-\-Nωξ+σ^ = Na^Jβ+i) while α v ( ω f + i χ λ contradicting assumption.

Hence there exists an aeA such that \Jb'(a)&Nξ for any ? < ? . By
assumption D. 2) (resp. D. 2')) on NζyNζ^ XJb'(a). Hence ΛΓλ oc Wωv + Ub\a)
= Lb(a)\j\Jb'(a)cX and iVλ satisfies D.2) (resp. D. 2')).

It follows from Lemma 3.18 that Nλ satisfies D. 3).

Proof of Proposition 1 for X = a^(ωc

β) + n where ξ"<^ls(λ.) and n^>0.
(Besides, under assumption that Nζ+n satisfies D. 2'), Proposition 2 holds
for λ).

Proof for D. 1) and D. 2) (resp. D. 20) are obtained almost samely
as the case X = av(ωζ

β

+1) + n where ζ^>0 and n^>0. For D. 3), refer to
Lemma 3.18.

Now we complete the proof that Nλ in $ft satisfies Proposition 1 in
any case, and as we noticed at the head of § 2 of this chapter, the proof
of Theorem A is also completed.

REMARK. It will be worth to notice that for most λ<^/3*, Proposition
2 is satisfied, i.e., Nλ satisfies D. 1) and D. 2'). Indeed by a careful study
of proofs in this chapter, we can see that λ = α:v(ω|+1) is the only case
where we can not assert Proposition 2 for λ<^/3* even under the assump-
tion that any Nζ in 5ft which is refered to define iVλ satisfies D. 1) and
D. 2'). Even for λ = αv(ω|+1)> if f = 0 and v is either an isolated number
or a limit number with cf(ĵ ) = O, then D.2') also holds (Lemma 3.14).

This remark will be recalled in the appendix at the end of this
paper.

CHAPTER IV. PROOF OF MAIN THEOREM B

In § 1 we shall define an operation—the ramified power—of ramified
sets. It is, in a sense, a limit operation of repeated ramified products.
Applying it we shall find a ramified set S} for any v and ζ with 0<^v
<Cωβ and ζ<Cβ\ which is situated by the order oc at the least upper
bound of sets Λ̂ μ with μ<C^Xωβ+1) within 9tβ. In §2 we shall find sets
which are examples to confirm Theorem B, (i) or (ii).
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1. The sets

DEFINITION 12. Let P&X) denote the set of all sequence p={p($),
β(2), — , p(n)\ of length n such that p(k)e$eg^(X) for k = l, 2, ••• , « - l
and p(n)eX. The ramified power X& of X is the set \JP£(X) within

ω

which we have • K ί ' for peP*(X) and p'ePXX), if and only if

either w<V, p(k)=p'(k) for any k<Ln — 1 and p{n)<Lp\ri)

or n=n\ p(k)=p'(k) for any fe^w-1 and p(n)<ZP'{n)y

For pePl(X), Dig(/0 (digitation of />) denotes the set of all
p'ePZ+1(X) such that p'{k)=p(k) for any fc^w. (If £(«) € Csg*(X), then
Dig(/>) is void.) len(^) denotes the number w such that peP*(X).

The set PnCX") and Dig(^) ίor p€Xθv are considered as a ramified
subset of Xθ\ If Dig(^) is not void, i.e., ^(len(^))6Segv(X), then
obviously Όig(p) is isomorphic to I It is easily seen that a ramified
power of a ramified set is always a ramified set and if X6 3ΐa then
Z©vG3ϊβ for any u with 0 < > O β . Further if κ(X)^ω\ then X&v is
irresoluble. The following is obvious, and we omit the proof.

Lemma 4.1. (i). τ(/>;lθv)<ω v if and only if r(p(len(p))
(ii). Csgv(P^Z)) = PXX) A Csgv(Xθv).

(iii). Vy^(^) is a cut of Xθ\ and Expv(V7 Pl(X))= \J Pl(X).

Corollary 1. Cegv(X®»)~Cegv(X).

Corollary 2. // κ(Z)>α)v, then κ{χG->) = κ(

Corollary 3.

Lemma 4.2.

Proof. Obviously P ί ( X ) = X If «=w + l where w > 0 , then PZ(X)
is the union of all Dig(^) where q 6 Pl(X). Since />€ Dig(ί), p' e Dig(^)
and ί=t=^' for # and ί' in PISJC) imply that ^ and p' are disordered,

= V Dig(ί) Since Dig(ί)~X for ί€Pi(X)ASegv(χG>-) and

= 0 for ieP^(X)ACsg,(XGv)

Lemma 4.3. // /> e Seg.CX©1'),
Proof. Ub(/»)ocχΘv i s obvious. Put « = len(/>). />6Seg,(χGv) im-

plies Xw)GSegv(X) (see Lemma 4.1 (i)). For #eX®\ put f(q) = qf where
q'(k)=p{k) for & Îw and q'{n + k) = q{k) for &^len(#), then it is easily
seen that / is an increasing mapping of X&v into Ub(/>) and ®

Corollary 1. If η^v then

Corollary 2. If v<^ then
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Now we shall find a set S£e9ΐβ which is situated by the order

relation °c at the least upper bound of sets Nμ with μ<C^(ωβ+1) within

9ϊβ. (N^J^1-) is the least upper bound of them within @β). It was

already seen that if either v is an isolated number or a limit number

with cf(v) = 0, then N^Ca>& ί s t h e least upper bound of sets Nμ with

μ<Ca^(ωβ) within 9ΐβ (Lemma 3.14).

If v is a limit number with cf (v)>0 (where β is assumed greater

than 1), then put Sl = NQj^. In general (i.e., v is any number with

0 < > < ω β ) , if ξ > 0 , then put Sζ=pf®£ωζ^+(r,. And we shall show that

a proposition similar to Proposition 2 for Nλ with λ = αv(ωjjj"ί~1) holds
for S}.

REMARK. If v is a limit number with cf(y)^>0, then a-»(v) = sup a »(μ)

= s u p α > β ) and hence Λ ^ c v ) ~ \/ NΛμC ^= V W>. Hence αv(v) is the

least number among numbers f with /c(Nξ) = ωv. Similarly when ζ^>0
(and v is any number), av(ωζ

β) + <r'ζ is the least number among numbers
ξ with Csg,(Nξ)^Nωζ+σ^Csg,(N^(Jβ^l

Besides, Proposition 2 for above λ does not hold.
Hereafter until the end of this section, when we say ζ = 0, we

automatically assume that y is a limit number with cf(^)>0. (When
?^>0, this restriction is omitted).

Lemma 4.4. Put \ = av(ωζ

β

+1). (i). // μ < λ then Nμ^S}.

(ii). If Xe% and X^Nμ for any /*<λ, then S}^X.

Proof. Put S = a,(v) if ζ = 0 and δ-αv(ω|) + σ-̂  if ? > 0 . λ is the

least number greater than δ within Γ?wΓv+1 (see Lemma 1.14). Hence

δ < ^ < λ implies μ € Γ°\J \J Γj W \J Γ?.

(i). Of course /*<δ implies N^Npv = Sς. Assume δ < ^ < λ and
NθocSζ for any Θ<^μ> and we shall show N^^S}.

Case μGΓ0. In this case NμocSv

ζ follows from D. 2') on Λfμ immedi-

ately.
Case μ e V7 Γj Let /* = a,(f + 0) + « be the canonical decomposition

of μ. By assumption N^^+n^S} and Λ ^ c ^ ^ S ^ . Hence by Corollary
1 of Lemma 4 .3 and ^ < y , Nμι = NΛvCΘ)+nΘΎ)NcύΎ]φ,.σξocSv

ζΘΊ]Sζ^Sζ.

Case Λ&6 W Γ». Let μ = aJωl) + n be the canonical decomposition of
>7<V

μ. Put ^ = ̂  if Θ is a limit number with cί(θ)=β and 6>/ = ω((9-
if θ is an isolated number. By assumption Nθ>+n^Sς. Since
Nμ=Wωv + Nθ',rnocWωv + S}°cS} by Corollary 2 of Lemma 4.3.

Hence N^S} for any μ<i\ and hence Nμ

Γ^Nμ,rl^S} which proves (i).
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(ii). Assume Xe% and XφNμ for any /*<λ. By D. 3) on

for any μ<^X. Put F=Spt(X;Λ^,, μ<^X) then for any y in
Nδ^XJb(y)r\Y (refer to the proof of Proposition 1 for

λ = αv(ωβ) in the case ζ = 0 or to Lemma 3.17 in the case f > 0 ) .
Especially Nδ oc y.

Let fx be a reduced increasing mapping of Pl(Nδ), which is equivalent
to Nδ by Lemma 4.2, into Y> and assume that fλ is extended to a
reduced increasing mapping fn of \J Pv

k(Nδ) into y. Put An = Pl(Nδ)

then Pv

a+1(NS)= \J Dig(α). Put j=/„(«) for α e i a , then

A y. Since Όig(a)=Nδ°c\Jb(y)r\ Y, there exists a reduced
increasing mapping gβ of Dig(<z) into XJb(y)r\Y. Put fn+i(x) = ga(x) f ° r

JF.€Dig(e) and ^ G Λ and fH+1(x)=fn(x) for JCG \J Pv

k(Nδ), then / w i l is an

extension of f1 and a reduced increasing mapping of \J Pl(Nδ) into Y.

Finally put f(x)=fn(x) for xeP^(Nδ)y then / is an reduced increasing
mapping of Sς into 7 c X Hence S}ocχ and (ii) is proved.

Corollary. S} is comparable with any XG9ϊβ.
Hence Sς is the least upper bound of sets Nμ with μ.<Ca*(a>$+1)

within 3ΐβ as we noticed. Moreover,

Lemma 4.5. S}^NX where λ = α:v(ω£:1).

Proof. Let δ be the same number defined in the proof of previous
lemma.

Case ζ = 0. It suffices to show κ(S^) = ω\ since Nκ=Wj and κ(Nκ)
= ωv + l ( s e e Theorem 5). Of course κ{Sv

0)^4Nδ) = ω\

Let W be a maximal totally ordered subset of So. If there exist a
peW and a w < > such that XJb'(p)r\WcPn(Nδ), then let p be such a
least element. If « = 1 then WcPί(Λ^δ)~Λ^δ and TF<>(ΛΓδ) = ω\ If
« > 1 , then /? is contained in a Dig(#) where q€P?lτl(N&), and obviously
IΓ(/!) = <Γ(ί') + l. Since Dig(#) is not void, τ(q)<^ωv while the type of
\Jb'(p)r\W is less than «(Pj(iV8)) = «(iVΓβ) = ωv. Hence l ^ = 3

If for any w<^ω, there exists a /?w in P?ϊ(ΛΓ

δ)A^, then let pn be

such a least element. Similarly as the above τ(ρn Λ̂ δ ) < C ω " f ° r a n Y
»<^ω. But there is no weW such that pn<iw for any w<^ω, and

numbers r(/?w Λ^pv) with w<^ω are cofinal to W. By assumption u is
a limit number with cf (^)>0, and cf (ωv) = cf (^)>0. Hence the number
T ,̂ to which a countable sequence of numbers less than ωv is cofinal,
is less than ωv.
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Hence We Np" implies W<^ω'" and κ(./v£'v)=ωv which is to be proved.

Case r > 0 . Since Csgv(S^ = Csgv(iVδ)=iVωί+σ,=Csgv(iVλ) (see Corol-

lary 1 of Lemma 4.1), Sl^W^+Nωi+σ'ζ = Nx (Lemma 2.12, (Hi)).
Assume Nk<^S} and let / be a reduced increasing mapping of Nκ

into Sς. Let a be any element in LayvC/VJ, then f(a) falls onto a
pePZ(Ns), and / maps the subset Wj of Nk=Wj+NaC+r>ζ into
\JPl(Ns). Hence /(JVλ) C Exp,(/(Wj) S}) C Expv( \J F"k{Nt) iV^) = \JP\{NS)

(see Lemma 4 .1 (iii)). Besides there exists awe Wj such that f(w) e

or otherwise / maps any element w in Wω-» into \J Pl(Nδ) and
*<«

KJPKNs) similarly as the above, contradicting p=f(a)£Pv

n(Nδ).

Then / m a p s W O Nλ) entirely into PH(NS) while \Jb'(w Nλ)=Wωy
+ Na>c+<r'^Nx contradicting PXN8)<—N8%ί Nλ. Hence S}&Nλ which is
to be proved.

In Chapter 3 we did not assert that Proposition 2 holds for X = av(ωζ

β

i*)
where either ξ*̂ >0 or v is a limit number with cf(^)^>0, but Lemmas
4. 4 and 4. 5 shows that surely it does not hold for such λ.

Finally we add

Lemma 4.6. Assume ζ^>0 and an Xe$iβ satisfies the following
conditions: (a) the potency of Layv(X) is at most Ko, and (b) for any
tfGLayv(X), Expv(L.b(Λ))ocΛ^v(ω|)+^; then X^S}.

Proof. Put δ = αv(ω|) + σ^ similarly as previous lemmas. Let Sϊ be
the family of all maximal totally ordered subsets A of Segv(X) such
that Expv(τ4)nLayv(X) is not void. Then the type of A G S I is ω\ By
(a), the potency of SI is at most κ0. Let Aly A2y ••• , Any ••• {n<iω) be
a sequence which consists of all A 6 SI. Here we shall consider only

the case 21 = κ0 and assume AkφAn if έφw. For the case W<^«0, the
sequence ceases at a w<^ω and we can proceed the following proof with
slight modifications.

Since E x p ^ A ) ^ ^ , there exists a reduced increasing mapping gλ

of ExpvCAJ into Pι(Nι). Assume that gx is extended to a reduced in-
creasing mapping gn-1 of \J Expv(Ak) into \J Pl(N5) where n^>l. Since

An—\JAk is not void (or otherwise An coincides with an Ak where

k<^n, for n is finite, contradictrily), there exists a minimal element a
in it.

If a is minimal within X, then let b be any minimal element in
\J Ak. If a is not minimal in X, then Lb (#) is included in an Ak where
*<«

Since the type of Ak is ωv and τ(β)<α)v, there exists uniquely
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a b in Ak such that r(b) = r(a). In either case that a is minimal within
X or not, we have a b£\J Ak such that Lb(£) = Lb(#). Since ^w_1 is

is reduced, fr(gn_1(b)) = r(b) = r(a)<^ωv. Since Expv(AM)nUb(tf)ocΛΓδ, there
exists a reduced increasing mapping g'a of Έxpv(An) r\XJb(a) into

(̂ )) which is isomorphic to iVδ. Put gH(x)=gn-i(x) for xe\J
k<n

), gn{a)=gn-1{b) and £„(*)=££(#) for * e Expv(;4w)nUb(tf), then £M

is an extension of ^ . j and a reduced increasing mapping of \JExp*XAk)
into \JPί(Nδ). k~n

Let M be the set of all minimal element of X— \J Expv(AJ, then

similarly as the above, for any a£M there exists a n<^ω and a b£An

such that Lb(α) = Lb(6). «GMimplies ^(Ub'C^))^ωv +1 while κ(Expv(A,)
Λ Ub / (J))^ω v + 2. Hence there exists a reduced increasing mapping hα

of LMtf) into Exp,G4w)nUb'(ό).
Put f(x) = gn(x) for x e Exp»(An)-\JAk and f(x)=fhα(x) for * e Ub'(«)

*<"
and αeMy then / is a reduced increasing mapping of X into S}, and
XocS£.

2. Proof of Main Theorem B

Now we shall intend to find examples to confirm Theorem B i) or ii).

DEFINITION 13. i). Put L= V Wω+k and S = LΘi,

ii). W denotes the family of all maximal totally ordered subsets of
Segx(S) and put Sl = Sl/-

iii). Let tA denote a term assigned to each A 6 SX and put

Put T=S\JB where order within S preserves orginal relation and
holds if and only if #6 A (tA<^x does not occur for any JtrG T).

For any subset C of β, SυC is regarded as a ramified subset of T.
iv). A subset C of B is called barren if S\JC°^S.

The followings are obvious and we omit the proofs.

Lemma 4.7. (i). L~_/Vωβ+ω tfwd hence S~S{. Especially L^S.
(ii). // A is a maximal totally ordered subset of S, then either A = ω

or ω + 3 < A < ω 2. (Remark that the type of any maximal totally ordered
subset of L is at least ω.+3).

iii). S = K0 and B=Ί=2**.
(iv). For any AeW, Expx(A T)ALayx(T) consists of one and only

one element.
(v). If anePl(L) and an<^an-ΛΛ for any «<>> then the sequence
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{an\n<"ω} uniquely determines a maximal totally ordered subset W of

Seg/T) such that ane W for any n<^ωy and W is contained in 31.
(vi). // aeSeg^T), then Vb(a)—T. (See Lemma 4.3),
(vii). If CCB and C^K0, then C is barren. (See Lemma 4.6).

Lemma 4.8. S?ϊT.

Proof. S<^T is obvious. Assume TocS and that there exists a
reduced increasing mapping / of T into S. Let a be any minimal
element of Tthen f{a^)eP\{L). Assume that an aneT is already deter-
mined in such a way that φ κ ) < ω and f(an)e Pl(L). Since Ub(tfΛ)~T
and Pl(L)^L%ίS, \Jb(an)^Pl(L) and /(Ub(O) is not included in Pl(L).
Let aVλ be a minimal element in Ub(<zM) which is mapped by / in
Ub (f(an)) - P{L)y then obviously f(an+1) e PJ+1(L). Furthermore τ(^n+i)<ω,
or otherwise, since Lbfe^jASegXT) is mapped by / into \J P](L)9 an^1

is mapped in Exp^V/ Pl(L) ',S)=\J P](L) contradictorily. Thus we have

a sequence a19 a2, ••• , an, ••• (n<^ω) such that an<^anuu ^w€Segj(T) and
f(an)ePl(L) for any w<^ω. By Lemma 4.7, (iv) and (v), there exists a
/€Layx(T) such that an<Ί; for any w<^ω. f(t)eS and hence /(/) is
contained in a Pl(L), but then since f(an+1)€ Pl_rl(L)y f{an+^) is not less
than/ ( / ) , contradicting anAι<^t and that / is increasing. Hence
and accordingly

Lemma 4. 9. // / is a reduced increasing mapping of T into itself,
then the restriction f of f on S is a reduced increasing mapping of S
into itself. Conversely if f is a reduced increasing mapping of S into
itself", then there exists a unique reduced increasing mapping of T into
itself which is an extension of / ' .

Proof. Assume that / is a reduced increasing mapping of T into
itself, but there exists an xeS such that f(x)£B=T—S, then f(x) = tA

for an 4̂ € 31. Since / is reduced, t^(x):=^(tA) = co. But by the definition
of Land S, for any jtrGLay^S), Ub(#) is not void, while Ub(^) is void,
contradicting /(Ub(#)) C Ub(tA). Hence xeS implies f(x) 6 S and the re-
striction f/ of / on S is a reduced increasing mapping of S into itself.

Conversely let / ; be a reduced increasing mapping of S into itself.
For any tAeB=T-Sy A = Lb(tA)e^i and since / ' is reduced, f'(A)eW.
By Lemma 4.7 (iv) there exists a unique element bA e Exp^/'CA) T)r\
Lay^T). Put f(tA) = bA and f(x)=f'(x) for #eS, then it is obvious that
/ is the unique reduced increasing mappping of T into itself, which is
an extension of / ' .

Corollary. For any subsets C and D of B such that S\jC<^S\jDy
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a reduced increasing mapping of S\JC into S\JD can be uniquely extended
to a reduced increasing mapping of T into itself.

Now we shall introduce topology in LayXT) and B. For #6SegXT)
put F^LayXTJnUbOe). If Vx intersect with V>, then one is entirely
included in the other, and if Vxc V>, then x'^>x. Hence if the inter-
section of a family {VXk\k<ίή\ is not void, then the set {xk\k<ίn} is
totally ordered. Let x be the greatest element of this set, then f\Vx. = Vx.

Hence the family {Vx\xeSegι(T)}, which will be denoted by 3$, makes
a basis of open sets, by which a topology is defined on LayXT). Since
SegXT) is countable, 3ί is countable. It is easy to see (or rather well-
known) that the topological space LayXT) thus defined is a totally
disconnected Hausdorff space.

B is a topological subspace of Lay^T) with relative topology. Put
VZ = Br\Vx for *€ SegXT), and W={VZ\xeSegι(T)}, then W is a basis
of open sets of B.

For a reduced increasing mapping / of T, let / Γ denote the restric-
tion of / on LayXT). Since / is reduced, /Γ(Lay1(T))cLay1(T).

Lemma 4.10. // / is a reduced increasing mapping of T into itself,
then fF is a continuous mapping of Lay XT) into itself.

Proof. Assume δ€ LayXT), b'=fr(b) and that V is an open set
which contains b\ then there exists a Vj £ 55 such that bf e V̂ / C V.
Let x be the unique element in Lb(6) such that τ(Λ:)=τ(jr/). Since / is
reduced, f(x) = xf. Now beVx and /Γ(VΛ)C VΛ/C V which shows that / Γ

is a continuous mapping of LayXT) into itself.
For a subset C of LayXT), put C=\JExp1(Lb(b)).

Lemma 4.11. If a subset C of LayXT) is closed, then ExpXC) = C.

Proof. Assume x £ C. If τ(#)<"ω, then x £ ExpXC) by the definition
of ExPi If τ(jtτ)2>ω, then let b be the unique element in LayXT)ALb/(Λ:).
Of course b £ C. Since C is closed, there exists a Vy e SJ such that be Vy

and VyAC = 0. Since xeUb(y) and Ub(^)AC = 0, JC £ ExpXC) and hence
ExpXC) CC.

Lemma 4.12. /w order that a subset C of B is barren, it is necessary
and sufficient that C is a subset of a union of at most countable barren
subsets of B which are closed within B.

Proof. If C is barren, then there exists a reduced increasing map-
ping / ' of S\JC into S. / ' is uniquely extended to a reduced increasing
mapping / of T into itself (see Corollary of Lemma 4. 9). / maps every
ΓG C into LayXS) which consists of countable elements b19 b29 ••• > -&Λ, ••••
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Let Cn be the set of all teB such that fΓ(t) = bny then since fF is
continuous, each Cn is closed in B. Since f(S\jCn)cSy each Cn is barren,
and hence C is a subset of the union of countable barren subsets Cn of
B each of which is closed in β.

Conversely assume that a subset C of B is included in a union C
of at most countable barren subsets Cn of By where each Cn is closed
in B. Let Cn be the closure of Cn in Lay^T), then since Cn is closed
in By Cnr\B=Cn. Put C" = Layx(S) - \J Cn, then C" is at most countable.

Let 55 be the family of all sets Cn and all {d} where {d} is the set
which consists of a single element in C"'. Notice that any set D in
55 is closed in Lay^T) and, since Dr\B is either void or coincidental
with a Cn which is barren, D\JS^S.

55 contains at most countable sets (it can be proved that the potency
of 55 is not finite, but we need not use the fact here). Let Dιy D2y ••• ,
Dny -•- (n<\[ω) be an arrangement of all sets in © i n t o a sequence,
where repeats of same sets are admitted. Lay1(SwC/)= \J Dny and

S^C'=C'^ \J^ Exp1(Lb(α))= ^ V7 ^ ExPl(Lb(a)) = U \J ExP l(Lb(^))

Since D^D^S^S, there exists a reduced increasing mapping/ x of

A into S. Assume that fx is extended to a reduced increasing mapping

Λ of \jBk into S. Put En=\J Dky then En=\JDk. Since d i s c l o s e d ,

Exp1(J?w)=£Γ

w by Lemma 4.11. Hence for any minimal element a of

{β\Jθ)-Eny τ ( ^ ) < ω by Lemma 2. 3 (vii). Let M^ be the set of all minimal

elements of (S\jC)-Eny then (S\jC)-EnC \J Ub'(tf T). Put .D n + l f β =

/)„,.!AUb^fl) for «eM^ and let Mw be the set of all aeM^ where Dn,1>β is

not void. (MM itself may be void). Then DH+1=.\J Dn l a and Dn lacS

\jDn,:1ocS. If aeMny then since τ(tf)<^ω, either T(Λ) = 0 or a has an

immediate ascendant αr in Z£w. If τ(^) = 0, then let ga be any reduced

increasing mapping of BnΛla into S. If a has an immediate ascendant

af in £ w , then since τ(fn(aϊ) S) - τ(β / )<ω and Ub(/„(</) S ) ~ S by

Lemma 4.3, we have a reduced increasing mapping ga of Dn λ ar\\3bf{ά)

into Ub(/w(e0 S). Put fn+1(x)=fn(x). for Λ : G £ W and fnll(x)=ga(x) for

xeDn,1>Cιr\XJb'(a) and aeMny then as easily seen, / n + 1 is a reduced

increasing mapping of \J Dk into S. Finally put f(x)=fn(x) f ° r x<^Bny

then / is a reduced increasing mapping of S\JC' = \J B^ into S and

hence SΛJC'^S, i.e., C is barren. Hence the subset C of C is also

barren.
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Hereafter, until the end of this section, we assume continuum hypo-
thesis. The following Lemma is essentially a consequence of Proposition
Ps of [8].

Lemma 4.13. If a subset C of B is not barren, then there exists a
subset D of C such that S&S\JD&S\JC.

Proof. Let (£ be the family of all barren subsets of B which are
closed in B. Since the basis SB' of open sets of B is countable, the
potency of © is at most ^ by continuum hypothesis. Let % be the
family of all reduced increasing mappings of S\JC into itself, and %'
be the family of all reduced increasing mappings of S into itself. As
we have seen in Lemma 4. 9 and its Corollary, there exists a one-to-one
correspondence between all mappings in % and (not necessarily all)
mappings in g' such that, if / € S is corresponding to f 6 $', then f is
the restriction of / on S. Since S = K0, the potency of S' is at most **!
by continuum hypothesis. Hence the potency of % is also at most Kr.
Since C is not barren, it is not countable (see Lemma 4. 7 (vii)), while

the potency of B is 2*° = *̂  (see Lemma 4.7 (Hi)). Hence C^*^
Let {CM^<Cωi} be a transfinite sequence formed of all sets in (£,

{/v|^<Cωi} be a transfinite sequence formed of all mappings in S, and
{̂ vl̂ <Cωi} be a transfinite sequence formed of all elements in C, where
in the former two sequences, repeats of same terms (sets or mappings)

are admitted if they are necessary, but since 'C"=K1, we may assume
bvφbϊ' if vφi/. Put Ds=fξ(S^jC)r\B. Since /§ is a reduced increasing
mapping of S\JC into itself, D^CC. D$ is not barren, or otherwise,
there exists a reduced increasing mapping g of SwDξ into S, and gf%
is a reduced increasing mapping of SυC into S, contradicting that C is
not barren.

Now we shall define two increasing sequence {^\ζ<Zωi} a n d
{μ ξ\ζ<Zωi} of ordinal numbers less than ωly which satisfy following
conditions : (i) if η<^ξ, then μv <" λ ξ<^μ ξ, (ii) bHe D$ and (iii)
b^eC-\JC,.

Since Do is not barren, it is not void. Let λ0 be the least ordinal
number such that bλo e Doy and put ^0 = λ0 + l. Assume that for an ordinal
number ξ<^ωίy sequences {\\y<^S} and {μJ?;<Cf} a r e already obtained.
Let ζξ be the least ordinal number such that μv<Cζξ for any ?/<Cf
Since the sequence {/*J*7<C£} is not cofinal to ω19 f g O i and ?$ = K0

Let Eξ be the union of the set {&*!*>-<?$} and all sets Cv with *><£.
Since Eξ is a union of at most countable barren sets which are closed
in By E$ is also barren by Lemma 4.12. Since Dξ is not barren, D$ — Eξ
contains more than countable elements. Let λξ be the least ordinal
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number such that bλξ€D$ — Eξ, and μ$ be the least ordinal number such
that b^eDξ — Eξ— {bλ(}, (remark DξCC). Thus we can inductively define
sequences {^ξ\ξ<Cωi} a n ( i {^\^<Cωi} which obviously satisfy (i), (ii)
and (iii).

Let D be the set which consists of all bμ^ with ξ<^ω19 Since no
repeats of same elements are admitted in the sequence {b »\v<Cωi}> and
there is no number common to both sequences {λξl^^ωj and {μξ|ί<Cωi}
by (i), D does not contains bλξ for any £<C°V

We shall show S^S\JD^S\JC. SOCS\JDOCS\JC is obvious. First
D is not barren, or otherwise D is included in a union of countable sets
CVl,Cv2, ••• in ©, but since the sequence {^w|̂ <Cω} c a n n°t be cofinal
to ωl9 there exists a £<Cωi such that vn<C% for any n<^ω. D contains
bH which is not contained in \J Cv by (iii), contradicting DC \J CVw.

Hence D is not barren and S^SKJD. Next we shall show S\JC <?^S\JD.

Assume on the contrary, that there exists a reduced increasing mapping
/ of S\JC into S\JD. Since SwD is a subset of S\JC, f itself may be
regarded as a reduced increasing mapping of S\JC into itself. Hence /
coincides with a fξ in %. But bkξefξ(S\jC) by (ii), while bλξ is not
contained in DuLay^S), contradicting /g(Lay1(Sv7C))CZ?vLay1(S). Hence
S\JC<?£S\JD and accordingly S\JD^S\JC.

Proof of Main Theorem B (ii).
The set B itself is not barren by Lemma 4. 8. Hence putting Do = 2?,

we can inductively define a sequence Doy Dly ••• of subsets of i? such
that S^S\jDn+1^S\jDn for any w<]ω by Lemma 4.13. Hence, putting
Xn = S\jDn, the sets Xny n<Cω, satisfy the condition of Theorem B (ii).

Proof of Main Theorem B (i).
By Lemma 4.13, there exists a subset C of B such that S^S\JC^T.

Let st be an element assigned to each teC, and put E={st\teC} and
U=S\JC\JE where each st£E is maximal in ί/ and we have x<^st for
xeSxjC and /GC if and only if x<,t within S\JC.

First assume U^ T, and let / be a reduced increasing mapping of
ί/into T. Since τ(s) = ω + l for any seE and τ(ί) = ω for any teB, any
s£i? is not mapped by / (since / is reduced) on any t£B7 i.e., f(s)€S.
Since S is a cut of T and f(t)<Cf(st) for any teC, C is mapped by /
into S. Finally f(S) C S by Lemma 4.9. Hence the restriction of /
on SυC is a reduced increasing mapping of S\JC into S contradicting
S^S\JC. Hence JJΦT.

Next assume Toe U, and let g be a reduced increasing mapping of
T into [/. Since g is reduced, any £ 6 β is not mapped on any 5 6 J5.
Further by the definition of L and S, any Λ:GS with τ(χ) = ω + l is not
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maximal within T (see Lemma 4.7 (ii)), while s£E is maximal within
U. Hence we have never f(x) eE for xβS, and there is no element in
T which is mapped by g into E. Hence g maps T entirely into the
subset S^C of U, contradicting SKJCΪZT. Hence T^U.

Thus we have ramified sets T and U which are not comparable
with each other, completing the proof of Main Theorem B (i).

APPENDIX. CASE β=l.

Here we shall consider the special case /3=1. Of course every
statements hitherto mentioned holds unaffectedly, except these about So
(see Chapter 4, § 1) where we assumed β^>l. Besides, in the case
/8=1,/Main Theorem A can be fairly sharpened, and it will be proved
that not only [@J is well-ordered by c>c, but also

Theorem C. [3ϊJ is well-ordered by <*.
In order to prove this, we shall define a sequence 9Ji={Mλϊ|λ<^l*p}

such that each Mλ satisfies

D.I) ?/<]λ implies Mv^Mλy and

D.2') Xe% and X^MV for any ?/<λ imply MλocX,

It is all the same as Lemma 2. 8 and its Corollary that, under the
assumption that 9JΪ is already constructed, for any X G 3ftx there exists a
λ<^l# such that X ~ M λ and hence [ ϊ t j is well-ordered by °c in the
type 1*.

DEFINITION 14. Δo and Δt denote sets of ordinal numbers less than
V such that:

In the case λ e Γ°, always λ e Δo.
Assume that for any v<C\ it is decided whether ^GΔ0 or yZA^
In the case λ e r \ letting X = av(ξ + ζ)-{-n be the canonical decomposi-

tion of λ, λ e Δo or λ e Δx according as <**(?) ̂  \ or av(ζ) G A1 respectively.
In the case λGΓ2, letting X = a^{ω\)^-n be the canonical decomposi-

tion of λ, we distinguish three cases
if μ — ly then λ£Δ 0 ,
if μ is an isolated number greater than 1, then λGΔi and
if μ is a limit number with cf(#) = l, then λeΔ 0 or λGΔj

according as μ G Δo or μ G Δx respectively.
Then any number less than F is allotted to Δo or Δx.
The sequence 2Jί is defined according to the following Principle.

PRINCIPLE II.

// λGΔ0, then Mλ=Nλ.
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For λGΔj, we distinguish four cases:
In the case that X is an isolated number λ'-f-l, then Mλ = Nλ'.

In the case X = a^ω{^1) where Γ > 0 , then Mλ = S} = N®lω'ζy+ά;.

Assume that Xis a limit number in~A1 and for any η<CX, M^ is
already defined.

In the case X£Γ\ letting X = av(ξ + ζ) be the canonical decomposition
of λ, Mλ=Ma^ΘvNάvcb+σV

In the case λ £ Γ 2 and, letting λ=Λv(ωϊ) be the canonical decomposition
of λ, μ is a limit number with cf(μ) = l, then Mλ=Wω^ + Mμ..

REMARK. In 2Jί, all sets Nλ in 91 are disposed retaining the original
order within ϋJi, and for any limit number λ in A1 a set M λ , which is
utterly new and not contained in 9̂ , is inserted. Remark that for any
limit number λ, numbers η<C^> such that Mve^l are cofinal to λ, and
hence if Mλ=Nλ' (either λ = λ' o r . λ ^ λ ' + l) and iVλ/ satisfies D.I) and
D. 20 within ϊi, then Mλ satisfies them within 5Πί, reserving the case
where λ is next to a limit number in Δx for the proof mentioned later.

If λ e Γ 1 and ~λ> = a,,(ξ + ζ) + n is the canonical decomposition of λ,
then put Θ(λ) = a^(ζ)Jrn. If λGΓ 2 and a^D + n is the canonical decom-
position of λ, where μ is a limit number with ci(μ) = l, then put ^(λ)
= μ+n. λ G Γ ' u Γ 2 implies fi(λ)eΓ!υΓ2. If further, either it is the case
^(λ)eΓ 1 or the case Θ(X)e Γ2 and, letting αrVl(

ωίXl) + w be the canonical
decomposition of #(λ), μx is a limit number, then we can define #2(λ)
θ=\θ(\)). In general, putting θk+\X) = θ(θk(\))y since <9*+1(λ)<0*(λ), we
shall finally arrive at a number m<^ω such that θm(X)€Γz

y and letting
^vm(ωiw) + w be the canonical decomposition of #m(λ), μm is an isolated
number. Then whether θm(X) e Δo or θm(X) e A, is decided by 0m(λ) itself
the former in the case μm = l and the latter in the case μm^>l. Put
θ(X) = θm(X) for such a final m7 where m = 0 and θ(X) = λy if λ e Γ 2 and,
latting X = a^{ω^) + n be the canonical decomposition of λ, μ itself is an
isolated number.

For λGΓ x wΓ 2 we have λGΔ 0 or X^Aλ according as θ(X)eA0 or
Θ(X) G A1 respectively.

Now we shall briefly show that any Mλ in 93ί satisfies D.I) and
D.20-

First assume λ e Γ ' v Γ 2 . It was proved in each case for λ<^l*, that
if NΘCλ, satisfies D. 1) and D. 20, then iVλ also satisfies D. 1) and D. 2').
Hence if Λ^(λ) satisfies D. 1) and D. 20, then Λfλ satisfies them. Especially
if Θ(X)€AO then θ(X)eΓ2 and letting a^(ω\)-\-n be the canonical decom-
position of #(λ), it falls to μ' = l. If n = 0, then since \>' is either isolated
number or a limit number with ^<C ω i , and accordingly cf(i/) = 0, Λ^(λ)
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satisfies D. 1) and D. 2') by Lemma 3.14.
It is already seen that if λ = α:v(ω£)-{-w where n^>0 and μ is an

isolated number (then λeΓ2), then Nλ satisfies D.I) and D.2') in any
case.

""If ••λ6Δ0A(Γ1uΓ),' then 5(λ)6Δ0ΛΓ2. Hence Λfc», as well as ΛΓλ,
satisfies D. 1) and D. 2').

Since λ e r ° (and accordingly λ€Δ0) implies that Nκ satisfies D. 1)
and D.2'), for any λ£Δ 0 , Mλ satisfies D.I) and D.2')v Hence for any
λ€Δ 0 , Mλ( = Nλ) is seen to satisfy D.I) and D.2') under assumption of
induction (remark that λ<^ω? implies λeΔ0).

Similarly for any isolated number λ, Nλ is seen to satisfy D. 1) and
D. 2'), For λ€Δ l f if fr(λ)^2, then, putting λ = λ' + l, Mλ-ΛΓλ/ and
fr(λ')>0. Hence under assumption of induction, it follows from results
on Nv that Mλ satisfies D. 1) and D. 2') (About the mention above, see
the remark at the end of Chapter III).

Now it remains the case where λ€Δj and fr(λ) = 0 or 1.
First consider the case Θ(X) = X, i.e., λGΓ2 and letting \ = <xv(<*>%) + n

be the canonical decomposition of λ, μ = ζ + l where ξ"̂ >0.
Case n=0. Mλ = Sϊ = N®{ωft+σ,. Then by Lemma 4.4 (i), f < λ

implies Λ^^sMλ. Since the numbers ξ<CX with • M$ = Nξ are cofinal to
λ, it follows from assumption D. 1) on M% with ξ <^λ that Mλ satisfies
D. 1). Similarly it follows from Lemma 4. 4 (ii) that Mλ satisfies D. 2').

Case n = l. Since Mλ-1==S} and Mλ = Nav^+i^f it follows from

Lemma 4.5 that Mλ-λ^MXy i.e., Mλ satisfies D.I).

Assume Xe^ and X<^Mk-1. Since Xt^X0> X satisfies (a) of Lemma
4.6. Hence X does not satisfies (b) of Lemma 4.6, or otherwise, X^Sζ
= Mλ_1. Hence there exists an ae LayV(Z) such that Expv(Lb(«)) 9̂
^v(ωί)-f^ By D.3) on Na)f(Jl)+&>ζ, Na^JiHσ,ζocExp,(Lb(a)). Since

Nωζ+σ,ζ ~ Csgv(Λςv (4 ) + ( rp oc Csg,(Expv (Lb(a)), Mλ = Wω* + NωC+tr,ζ -
Exp,(Lb(«))cX, and Mλ satisfies D. 2').

Therefore λeΔ x with 0(λ) = λ, we have proved that Mλ satisfies
D. 1) and D. 2').

For λ6Δj with (9(λ)«<λ, it is inductively proved that Mλ satisfies
D. 1) and D. 2') all the same as we considered for Λ̂ λ € ?i.

Hence any Mλ with λ<^l* satisfies D. 1 and D. 2') and this fact
implies Theorem C as we noticed below it.

(Received November 14, 1960)
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