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0. Introduction

In [6], Lazarov and Pasternack defined characteristic classes for Riemannian
foliations and investigated their properties very closely. Their theory is a spe-
cial case of the theory of characteristic classes for foliated bundles due to Kamber
and Tondeur [4]. From this point of view, the characteristic classes arc de-
fined by looking at the unique Riemannian connection on the orthonormal
frame bundle of the foliation, whose structure group is the orthogonal group
O(n) (n is the codimension of the foliation). However if we enlarge the struc-
ture group to E(n), the group of Euclidean motions on R", and if we look at
a system of differential forms defined by considering the Cartan connection,
then we obtain more charateristic classes than those defined by Lazarov and
Pasternack. The purpose of this note is to clarify this point. Thus this note
could be considered as an addendum to [6].

In §1 we give the main construction of the characteristic classes and in
§ 2, the concept of “p-th scalar curvature” is defined for every Riemannian mani-
fold. In §3 the cohomology of a truncated Weil algebra of ¢(n), the Lie algebra
of E(n), is determined and §4 is devoted to the study of continuous variation
of the new characteristic classes.

1. Construction of the characteristic classes

Let F be a Riemannian foliation on a smooth manifold M defined by a
maximal family of submersions

fo: Us — (R, g1)

from open scts U, in M to a Riemannian manifold (R}, g.) (g« is a Riemannian
metric on R") such that for every x& U, N Up there exists a local isometry 7p,:
neighborhood of f,(x)—neighborhood of fs(x) with fs=%p.fs near x. Now
let O(R}) be the orthonormal frame bundle of Rj. Since O(Rp)|7po(U)=
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7e5(O(R})| U) where U is a small neighborhood of f,(x), we can define a princi-
pal bundle O(F) over M such that O(F)|U,=f*(O(R})| fo(U.)). We call O(F)
the orthonormal frame bundle of the foliation F. Ncw since the canonical
form and the Riemannian connection form of Riemannian manifolds are pre-
served by isometries, we can define R" and 30(n) valued one forms 6, and 6, on
O(F) such that 6,|U,=f%(0%) and 6,|U,=f*(07), where 65 and 6% are the
canonical form and the Riemannian connection form of R}, respectively. We
call 4, and 0, the canonical form and the Riemannian connection form of F.
We may also consider the pair (6,, 6,) as an e(n)-valued one form on O(F)
whose restriction to U, is the pull back under f%* of the ¢(n)-valued one form
(65, 67) on O(R}), which may be considered as the unique torsionfree Cartan
connection form of Rj. With respect to the usual basis of e(n)=R"@80(n),
we can represent 6, and 6, by n forms €', 6%, .-, 8" and a skew symmetric matrix
of differential forms 6;. Now if we denote W(e(n)) for the Weil algebra of
e(n), then 0, and 0, define a d.g.a. map

@2 W(e(n)) — Q¥(O(F))

where Q* (O(F)) is the de Rham complex of O(F). Let o', o}, ¥, Q) W(e(n))
be the universal connection and curvature forms corresponding to the usual
basis of e(n). Then ¢ satisfies p(0’)=60' and @(w))=0;. Now we know the
following conditions (cf. [5]).

(i) dé'=—330;A\0’  (torsionfree-ness),
(i) doi= -3 0iN 0% 40,

where ©f = %Z Riu0* NG,
k0

(i1) DIO A0/ =0  (the first Bianchi’s identity).
7

(1.1)

In view of these conditions, we define an ideal I of W(e(#n)) as the one generated
by the following elements.

(l)l Qi’
(i1)’ elements whose “length” [ is greater than n, where [ is
(1.2) defined by the conditions: /(})=1(Q)=0, /(0’)=1 and
1(Q))=2.

i)y QA

Then it is easy to see that I is a subcomplex of W(e(n)). The condition (1.1)
shows that @(I)=0. Therefore, if we denote W(e(n))= W(e(n))/I, then @
induces a d.g.a. map

p: Wie(n) — QXO(F)) .
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Now suppose that the normal bundle of F is trivialized by a cross section
s: M — O(F), then we obtain

*

5

H*(W(e((n))) = HER(O(F)) —> HER(M).
Since this construction is functorial, we finally obtain
(L.3) H*(W(e(n))) > H*(BRT,; R)

where BRT', is the classifying space for codimension # Riemannian Haefliger
structures with trivial normal bundles (cf. [6]). In the general case we have

H*(W(e(n)o(n) — H*(RRT,; R)

(4 H*(W(e(n))soc) — H*BRTY ; R),

where the left hand sides are the cohomology of subcomplexes W(e(n))oc
(resp. W(e(n))socy) of O(n) (resp. SO(n)) basic elements of W(e(n)) and BRT,
(resp. BRT';) are the classifying space for the Riemannian (resp. oriented
Riemannian) Haefliger structures. This is our construction of the characteri-
istic classes for Riemannian foliations. Now if we ignore the canonical form
8,, then we obtain

H*(W(&o(n))) - H*(BRT,; R)

where W(8o(n))=W(30(n)) modulo the ideal I N W(8o(n)). This is nothing but
the characteristic classes defined by Kamber and Tondeur [4] and is the same
as those defined by Lazarov and Pasternack [6].

2. Scalar curvatures

In this section, we define the notion of “p-th scalar curvature” for every
Riemannian manifold M of dimension n, where p is an even integer =n. First
of all we recall the concept of p-th sectional curvature v, defined by Allendoer-
fer and studied by Thorpe [8]. Let G,(M) be the Grassman bundle of tangent
p-planes of M. For every p-plane (x, P)=G,(M), v,(x, P) is defined to be the
Lipschitz-Killing curvature at x&M of the p-dimensional submanifold of M
geodesic at x and tangent to P at x. Thus 7, is a smooth function on G,(M).
In terms of the curvature tensor R of M, v, is expressed by

oy
(2.1) Vp(x, P) = (2 ﬁ/i;T 2 5g0 (o) sgn(Mg(R(Uow), Ue@)thzr)y %)

o G(R(Ug(y-1)y Ua(p))thr(p-1)s Ur(p))

where g is the metric tensor of M, u,,-++, %, is an orthonormal basis for P and
o, T range over the p-th symmetric group S,. Now if we average this 7, over
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each fibre of G,(M)— M, then we obtain a real valued smooth function R, on M.
Let us call this function the “p-th scalar curvature” of M. In terms of the cur-
vature tensor R, R, is expressed by the formula,

—1)2
(2.2) R,(x) = D S1yw, Py,
zﬁlzp! (n) i
p
Here the sum ranges over all p-tuples i=(i(1), ---,#(p)) with 1=¢(1) <+ <i(p)=n
and P; is the p-plane at x&M spanned by u;, -+, u,(, Where u,, -++, u, is any

orthonormal frame at x. R, is the usual scalar curvature of M (up to a non-zero
constant) and R, is the Lipschitz-Killing curvature if z is even. Now as in
§1, let €%, i=1, ---, n and 6} be the canonical form and the Riemannian con-
nection form of M. Thus they are one forms defined on O(M), the orthonormal
frame bundle of M. Let us define a smooth function R!;; on O(M) by

df; = —310in05+6],

1

(2.3) . :
O = - SVRi, 0¢ NG .
2 &1

For every even integer p=<#, we define a smooth function R, on O(M) as follows.
We consider the n-form:

det((n-p)9, (P/Z)@) = ; Sgn(o-)eo'(l)/\ ves Ag”(n"ﬁ)/\@ggz_—_gjég/\ vee /\9:8;)_1),

where o ranges over the n-th symmetric group S,. Then R, is defined to be a
function satisfying the equality.

(2.4) det((n—p)0, (p/2)©) = R,0'A -+ NO" .

Then it is easy to see that the function R, is constant on each fibre of the bundle
w: O(M)— M. In fact we have

Proposition 2.1. R —=(—1)"’n!z*R,.

Proof. Let x = M and let uy, -+, u, be an orthonormal frame at x. We

. 0 . S
choose a coordinate around x such that =u, for i=1, -, n. If R, is the
t

component of R with respect to this coordinate, then from (2,2) we have

25 R= D"

. 1
E,SE“ (o) sgn (T)RIELY (w1 ey **
21,/2[)!<’I'l) a,T,{
4

i(T(p=1))
(DN 1 (T(p—1))1(T(h))

where i=(i(1), -++, i(p)) ranges over all p-tuples with 1=<i(1) <-- <i(p)<n. On
the other hand we have
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(2.6) Rp(x, )= - 2 sgn (o) sgn < Tnep . n )

2”‘ (1) '0(”—P)J(1)"'J(P)
T(n—p R 1)
o(n— /’+2)J(1)J(2) (1)1 (h=1)7(0)
where j=(j(1), -+, j(p)) ranges over cvery permutation of (n—p--1, -, n).
We have

(2.7) Rp(x, u) = 1 Stsgn (‘T(” —p+1) - o’(n))

2002 5 iy )
R(T(ﬂ—/1+l) RG(
a(n—=p+2)y(1)7(2) O'(ﬂ)J'(P 1s(#)

_ (1=2)! 5y g () - i(P)
e 3wl

where 7==(i(1), -+, #(p)) ranges over all p-tuples with 1=1(k)=<n, i(k)=i(/) for
k=1 and j=(j(1), ---, j(p)) ranges over all permutations of 7. Now by the choice
of the coordinate x4, -*+, x,, clearly

Ré(l’-—,l)
z(2)](1)1(2) (P i(r—1)5(0) »

R)u(x) = I?}k,(x, )
for all 7,7, k, /. Therefore by comparing (2.5) and (2.7) we obtain
R (x, u) = (—1)""nR,(x) .
Since it is easy to see that K, (v, «) docs not depend on the choice of the frame

u, this completes the proof. q.e.d.

Now let f: M — N be an isometry of Riemannian manifolds M, N. Then
from the definition of R,, it is clear that R,(M)=f*R,(N). Next we investigate
how the p-th scalar curvature behaves under the scale change g—k&%g. Let R,
be the p-th scalar curvaturc of the Riemannian manifold (34, k*g). Then we
have

Proposition 2.2. Ep = k7’R,.

Proof. 'This follows from an elementary calculation.

3. Cohomology of W(e(n))

In this section we compute the cohomology of the truncated Weil algebra
Wi(e(n)). For each even integer p=<n, let 7, be an element of W(e(n)) defined by

r, = det((n—p)o, (p/2)Q)

T T 7 41 a(n—1
= Bsgn(@)o"® - 0TI - 1Y
o

Then it is easy to see that 7, is closed so that it defines a cohomology class in
H*(W(e(n))). Next we define i,€W(e(n)) (i=2, 4, -, n—1) for n odd and
h;y h, € W(e(n)) (=2, 4, -+, n—2) for n cven by
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hx:}}za hxzﬁ’

where P;, X are the i-th Pontrjagin form and the Euler form respectively, T
denotes Chern-Simons’ transgression form [2] (at the Weil algebra level) and ~
is the projection modulo the ideal I. Let

E, = E(hy, hy, -, h,) n odd ,
= E(hZJ h4; R hn—ZJ hx) n even,

be the exterior algebra generated by 4, +--, and let 7,E, be the vector space over
R with basis {r,x;} where {x,} is a basis of E,. Then by the truncation,
every element 7,x; is closed. We have the following.

Theorem 3.1. H*(W(e(n))) = H *(W(Qo(n)))éao;é,:”rﬁﬁ‘n .
: bieven

Here H*(W(80(n))) has been determined by Kamber and Tondeur and is
isomorphic to H*(RW,), where RW, is the differential complex defined by
Lazarov and Pasternack [6]. Before proving the Theorcm we describe the
geometric meaning of the second term of Theorem 3.1. Thus let F be a codi-
mension z# Riemannian foliation on a smooth manifold M defined by sumbersions
fa: Us—>R} (see §1). We define a smooth function R, on M, for every even
integer p with 0= p<m, as follows. R, is the identity function of M and for
p=2, R,| Us=f*¥(R}), where R} is the p-th scalar curvature of R, defined in § 2.
This is well-defined because R, is invariant under isometries. Also we have an
n-form v on M such that v|U,=f¥(volume form of R}). With these under-
stood, 7, of the foliation F is represented by the n-form (—1)**n!R,v (cf. (2.4)
and Proposition 2.1.). Now assume that we have a cross section s: M — O(F)
and let TP,(F), TX(F) be the Chern-Simons’ transgression forms corresponding
to the Riemannian connection on O(F). Then A, (resp. A,) of the foliation is
represented by the form s*TP,(F) (resp. s*TX(F')). Now we prove our Theorem
3.1.

Proof of Theorem 3.1. Let us define the “weight” function w on the
elements of W(e(n)) by w(e)=1, w(w))=w(Q;)=0, and define J,= {x&
W(e(n)); w(x)=0}, J,={x&W(e(n)); w(x)>0}. Then it is easy to see that
both J, and J, are subcomplexes of W(e(n)). Moreover we have W(e(n))=
JoPJ+. Therefore

(3.1) H*(W(e(n)) = H*(J)PH*(J.).
Now let us define a decreasing filtration F? on J, by
Fr— {ve ],; ()2 p}
where / is the “length” on W(e(n)) induced from that on WW(e(n)). Let
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{E?, d,} be the spectral sequence associated with this filtration. Define M,=

sub-vector space of /. spanned by '® ... o!®"20QJ} ... QJEZED for all 4, j, k.

Then 80(n) acts on M, by the Lie derivation. Thus M, is an 80(n)-module.
Let C’(80(n); M,) be the set of 7-cochains on $o(n) with coefficient in M,. Then
it is easy to see that

(3.2) Ef'=C%8o(n); M,).
Moreover the following diagram is commutative up to sign.

Ef? = C%30(n); M,)
(3.3) |, d
B+ = Co*(3o(n); M)

where d is the differential of the complex C*(80(n); M,). Therefore we obtain
(3.4) Et'=H"(30(n); M,) .

Now since 80(n) is simple, by a theorem in [3], we have

(3.5) H(80(n), M,) = H*(80(n)) @ M)

where Mz"(") is the 8o(n)-invariant subspace of M,. Now by the form of the
action of 8o(n) on M, we can apply a theorem of Weyl [9] on the 30(n)-invariants

to obtain
(36) MM =0 1<p<n
= vector space with basis 7,: k even, 0<k<n  p=n.
Now since 7, is closed and has length #, it is easy to see that d,=d,=---=0.
Hence we have Ef'=-..=FEZ% and this implies
(3.7) H*(J+) = 23 7,H*(30(n)
o<
=21rE,.
»

On the other hand, clearly we have J,= W(80(n)) and a similar argument as
above shows that

3-8) H*(Jo) = H*(RW,)
where RW, is now considered as a subcomplex of W(80o(n)). (3.7) and (3.8)

prove our Theorem. q.e.d.

Let I(SO(n)) (I(O(n))) be the ring of invariant polynomials of SO(n)
(O(n)). Then we can consider that I(SO(n)) and I(O(n)) are subcomplexes
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of W(e(n)). Let I(SO(n))=I(SO(n))/I NI(SO(n)) and I(O(n))=I1(0O(n))/I N
I(O(n)). 'Then, by similar arguments we obtain

Theorem 3.2. H*(W(e(n))sow) = [(SOm))5 X 7,R.

bieven
0§ﬁ<"

I W(e(n))ow) = KOWm)).

RemARK 3.3, One may hope that one can obtain more characteristic clas-
ses for smooth foliations than those defined by Bott and Haefliger [1] by consi-
dering the Cartan connection. However this is false because we have an iso-
morphism H *(W(gl(n; R)))=H *(W(a(n; R))) where a(n; R) is the Lie algebra
of the n-th affine group and W denotes Weil algebras modulo certain ideals
which are constructed by a similar argument as in the Riemannian case.

4. Continuous variation
In this section we prove that the new characteristic classes >}7,E, defined
»

in § 3 vary continuously and independently under deformatiors of Riemannian
foliations. Precisely we prove

Theorem 4.1. Let dimH*(SO(n))=d. Then there is a surjective homo-
morphism

H,.(BRT,; Z) — R (),

As bofore, let M be an oriented Riemannian manifold and let z:SO(M)—
M be the oriented orthonormal frame bundle of M. We consider the codimen-
sion n# Riemannian foliation F' on SO(M) induced from the given Riemannian
structure on M by the projection z. The oriented orthonormal frame bundle
of this foliation, SO(F), is the pull back of the principal bundle z: SO(M)— M
by the map z. Thus we have SO(F)={(x; u, v); x&M, u, ver"'(x)} and
there 1s a commutative diagram
f

SO(F) — SO(M)
(4.1) lﬁ T

SOM) > M

where f(x; u, v)=(x, v) and Z(x; u, v)=(x, ). Now we define a cross section
s: SO(M)— SO(F) of the bundle # by s(x, )= (x; u, u). Then clearly the
composition map fos: SO(M)— SO(F)— SO(M) is the identity. Henceforth
we denote F(M) for the foliation on SO(M) described above with the trivializa-
tion s of the normal bundle. Now assume that M satisfics the following con-
ditions.
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(1) Py(M), X(M)=0 where P,(M) and X(M) are the Pontrjagin and the
Euler forms of M, respectively.

(i) M is parallelizable so that there is given a bundle isomorphism
i: M x SO(n)~ SO(M).

(4.2)

Let 7(P,), 7(X)€H*(SO(n); R) be the transgression images of the Pontrjagin
class P, and the Euler class X, and let TP,(M), TX(M)<Q*(SO(M)) be the
Chern-Simons’ transgression forms of M corresponding to the Ricmannian con-
nection on SO(M). Then A; and A, of the foliation F(M) are represented by
s¥f*TP,(M) and s*f*TX(M). But since fos=id., we obtain

h(F(M))= TP,(M)

(*+3) b (F(M))=TX(M)

By the assumption (4.2)-(1), both TP,(M) and TX(M) are closed forms and
define cohomology classes in H*(SO(M)) which is isomorphic to H*(M)Q
H*(SO(n)) under the homomorphism 7*. (Hereafter we identify H*(SO(M))
with H*(M)®H *(SO(n)) by ¢*.) Since the forms TP (M), TX(M) restricted to
each fibre are closed and represent the cohomology classes 7(P,) and 7(X) (cf.
[2]), we have

[h(F(M))]=1x7(P;)  modulo I,

(4.4)
(b (F(M))]=1xT7(X) modulo 7,

where [ ] denotes the cohomology class and [ is the ideal H*(M)Q H*(SO(n))
of H¥(M)R® H*(SO(n))~H*(SO(M)). Now for each even integer p with
0= p <n, we have the p-th scalar curvature R, (M) of M. (R, is defined to be the
identity function of M.) Then clearly R,(F(M))=n=*R, (M) and the charac-
teristic class 7, of F(M) is represented by

(4.5) rAF(D) = (—1y=nl | R (M) (M1,

where v(M) is the volume form of M and [M] is the fundamental cohomology
class. From (4.4) and (4.5) we obtain

Proposition 4.2. Let F(M) be as above and saume that M satisfies the
condition (4.2). Moreover assume S R, (M)v(M)=0 for an even integer p. Then
M
the cohomology classes ’phil”'hx,’ rph,-l---h, . of F(M) are represented by

roh by (F(M)) = (—1)"n! $MRP(M)7)(M)°[M] X7(Py)7(P,),

1oy b b POD) = (= 1y || R(M)o(M) - [M] X 7(Py)-+7(P, ().
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Now we consider the special case when M is the Riemannian product
S*x S*~! of unit spheres. For a unit sphere S, clearly we have R,(S?)=1 for
every p (cf. [8]), and from the definition of R,, it is easy to see that

()
R,(S'x 8 =1 E
(7)
=_"
n—p
Since S'x S*"! satisfies the condition (4.2), from Proposition 4.2 we obtain

Proposition 4.3. The characteristic classes of F(S'XS""') are given by

7ohi by (F(S'X S571) = (—I)P/zn!njpvlv,,_l[S‘xS"“‘] X

(Py)-7(B;),
rohi ey (ST %) = (—1)2nl 2 vy0, , [S% S X

n—p

™(P;,)-+ (P, )7(X) s

where v, is the volume of the unit sphere S'.

Next we consider the Riemannian manifold (S*x.S”"?), which is obtained
from S'x S*"! by the scale change g— k%g. Since the Chern-Simons’ TP form
is invariant under the scale change, from Proposition 2.2 and Proposition 4.3
we have

Proposition 4.4. The characteristic classes of F((S'xS*™Y),) are given by

Tohiy by (F(STX 8*7Y)) = (—1)*n! ;_Zl:;k"‘f’vlv,,_l [S'x 8" x
(By) e 7(Py) 5

7ohie by B (F((S*X 877Y),) = (—1)2n! ;%kn-ﬂvlv,,_l [S% §*1]x
(i) 7(P; )7(X) -

Now we are in a position to prove Theorem 4.1. In view of Proposition
4.4, it is enough to prove that the homomorphism

yr: H(BRT,; Z) — R/

defined by the characteristic classes {r,}o<,<, yeven 1S @ surjection. Now the
foliation F((S'xS"7"),) on (S*x S§*7'), defines a homology class o, H,(BRT,; Z)
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and by Proposition 4.4 its characteristic numbers are given by
(o) = c,k"?
for a non-zero ¢, (0= p<n, p even). We consider the homology class a(k)=

Q)+ Qo) T+ Apiita+1)20 Where k=<k(1), TR k([%{l)) is an RI*D/2Lyalyed

variable. The characteristic numbers of a(k) are given by

(k) = D,k ?,

where the sum ranges over 7=1, -+, [n_—;—_l_] Now let f: RU¢*D/21 RI(n+1/2]

be the map defined by

F(rD, -, k([n;rl]» — (roa(B)), -+ Tateevyl ()
= (2 CokY, -y 2 Col(u-p 1 RY 2L 1/2D)

Then f is smooth and it is easy to see that the determinant of the Jacobian
matrix of f is not constantly zero. Therefore we conclude that Im f contains
an inner point. Hence Im+r contains also an inner point. Since Im+) is a
subgroup of RI**D/2 it follows that +» is surjective. This completes the
proof. q.e.d.

RemARK 4.5 Lazarov and Pasternack [7] proved that certain characteristic
classes for Riemannian foliations defined by them vary continuously by using
the residue formula for zero-points of a Killing vector field.

If we use the sphere S” instead of S*x §"!, then we can prove the following
Theorems, which are refinements of Theorem 4.1.

Theorem 4.6. The characteristic classes {7,} < ,<, yeven define a surjective
homomorphism

7,(BRT;) — RL0+0 5. 0

Theorem 4.7. If n is even, then the characteristic classes {r,hy} o< p<n peven
define a surjective homomorphism

om-1(BRT,) = RUD2 - (),

OsakA Crty UNIVERSITY
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UNIVERSITY OF TOKYO
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