
Title 類義語の特定に基づく類似コード片検索法

Author(s) 吉田, 則裕; 服部, 剛之; 早瀬, 康裕 他

Citation 情報処理学会論文誌. 2009, 50(5), p. 1506-1519

Version Type VoR

URL https://hdl.handle.net/11094/50122

rights

ここに掲載した著作物の利用に関する注意 本著作物
の著作権は情報処理学会に帰属します。本著作物は著
作権者である情報処理学会の許可のもとに掲載するも
のです。ご利用に当たっては「著作権法」ならびに
「情報処理学会倫理綱領」に従うことをお願いいたし
ます。

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

情報処理学会論文誌 Vol. 50 No. 5 1506–1519 (May 2009)

類義語の特定に基づく類似コード片検索法

吉 田 則 裕†1 服 部 剛 之†1

早 瀬 康 裕†1 井 上 克 郎†1

ソースコード中に類似した部分（類似コード片）が散在していると，ソースコード
の一部分を修正したときにその類似部分に対しても同様の修正をする必要が生じるこ
とがあるため，保守作業が困難になるという問題がある．一般に，ソフトウェア開発者
は類似コード片を調査する際には，grepなどのキーワード検索ツールを用いる．しか
し，類似コード片には様々な差異が存在するため，修正の必要がある類似コード片の
多くを列挙できるキーワードを与えることは困難である．本研究では，入力したコー
ド片の類似コード片を，コード片に含まれる識別子の類似性に基づいて検索する手法
を提案する．本手法は，まず，共起関係に基づいて語（識別子を分割・正規化した後
の文字列）をクラスタリングすることで類義語を求める．その後，入力コード片に含
まれるすべての語について，同一もしくは類義語である語を含むコード片を検出し，
類似コード片として提示する．適用実験として，提案手法を用いて類似した欠陥を含
むコード片の検索を行ったところ，類似した欠陥の多くを提示できることを確認した．
また，提案手法と既存ツール（grepおよびコードクローン検出ツール CCFinder）と
の比較実験を行い，それぞれの検索結果が持つ特徴を確認した．

Retrieving Similar Code Fragments
Based on Synonymous Word Identification

Norihiro Yoshida,†1 Takeshi Hattori,†1

Yasuhiro Hayase†1 and Katsuro Inoue†1

A similar code fragment is a code fragment that has similar part to it in
source code, and is generally considered as one of factors that make software
maintenance more difficult. If developers modify a code fragment, they have
to determine whether or not to modify similar code fragments in source code.
For finding similar code fragments, developers can use keyword-based search
(e.g. grep). However, it is difficult to determine appropriate search keywords
since there are various code fragments to implement similar functions. In this
paper, we propose a method to retrieve code fragments that are similar in their
identifier names to an input code fragment. In our method, at first, to make

clusters of synonymous words in source code, the clustering is performed based
on co-occurrence of words that derived from identifier names. Then, code frag-
ments that involve words in an identical cluster are presented as similar code
fragments. We show the usefulness of our method through case studies to re-
trieve similar code fragments involving similar defects. In addition, we present
a case study for comparing our proposed method with a code clone detection
tool CCFinder and a keyword-based search tool grep.

1. は じ め に

ソフトウェア保守を困難にする要因の 1 つとして類似コード片が指摘されてい

る1),2),8),9),11),13),14),18)．類似コード片とは，ソースコード中のコード片（ソースコード

の一部分）のうち，一致もしくは類似した要素（識別子や構文など）を含むコード片を持

つコード片を指す�1．類似コード片は，すでに開発されたコード片のコピーとペーストに

よる再利用や定型処理の実装などが理由で作成される2),10)．特に，Linux や JDK（Java

Development Kit）などの大規模ソースコードは大量の類似コード片を含むことが報告され

ている9),14)．

ソフトウェアの保守を行う際に，あるコード片を修正するとそのすべての類似コード片を

見つけ出し修正を行う必要が生じることがある．特に，ソースコード中に欠陥が見つかった

場合には，その欠陥を含むコード片の類似コード片を探し，検査する必要がある13),14),18)．

しかし，ソフトウェア中の類似コード片を人手で探すためには大きな労力が必要となる．特

に，大規模ソフトウェアが対象の場合，すべての類似コード片を人手で探すことはより困難

となる．

類似コード片の検索に用いることができる方法として，キーワード検索やコードクローン

検出法があげられるが，両者とも効果的な検索を行うことができるクエリ（検索質問）を与

えることは難しい．キーワード検索を用いる場合，修正を要するコード片から抽出したキー

ワードを grep 5) などのツールに与えることで，キーワードを含むコード片を列挙する．し

かし，対象ソフトウェアを十分に理解した開発者でなければ，適切なキーワードを抽出する

†1 大阪大学大学院情報科学研究科
Graduate School of Information Science and Technology, Osaka University

�1 類似コード片と近い概念としてコードクローンがある．コードクローンの定義は研究者により様々であるが，類
似コード片の中でも同値関係（例：トークン列が等しい関係など）を持つコード片が存在するもののみを指すこ
とが多い1),2),8),9),11)．本稿では，コードクローンより広い概念である類似コード片を扱う．

1506 c© 2009 Information Processing Society of Japan

1507 類義語の特定に基づく類似コード片検索法

ことが困難である（問題点 1）．その要因の 1つとして，grepなどのツールは文字列が完全

に一致するコード片のみを出力するため，わずかに異なる文字列を含むコード片であっても

検索結果に含めることはできないことがあげられる．一方，コードクローン検出法を用いる

場合，コードクローン検出ツールを用いて修正を要するコード片とトークン列が等価なコー

ド片を列挙する6)．しかし，トークン列に些細な差異（例外処理の有無など）があるコード

片を列挙することはできない（問題点 2）．

本研究では，容易にクエリを与えることができ，かつクエリと些細な差異がある部分で

あっても提示できる手法を提案する．提案する手法は，コード片をクエリとして与えると，

識別子の類似性に基づいて対象ソースコードから類似関数（クエリとして与えられたコー

ド片の類似コード片を 1つ以上含む関数）を検索する．具体的には，まず自然言語処理の

分野で提案されている Daganらの手法3) を用いて，語（識別子を分割・正規化した後の文

字列）の類義語を特定する（3.2 節参照）．次に，入力コード片（クエリとして与えられた

コード片）に含まれるすべての語と一致する，もしくは類義語である語を含む関数を検出

し，類似関数として提示する．

提案手法は，以下の 3つの特徴を持っている．

• 修正を要するコード片を入力コード片として与えるのみで検索を行うことができる．問
題点 1で述べたように，grepを用いる場合，適切なキーワードをコード片から抽出す

る必要がある．

• 入力コード片と類似した処理を表す関数の一部に異なる識別子が含まれていたとして
も，類義語を特定することで類似関数として提示できる可能性がある．問題点 1の要

因の 1つとしてあげたように，grepを用いると完全に一致する文字列を含む部分のみ

が出力される．

• コード片が含む識別子の類似性を判定するため，トークン列に些細な差異（例外処理
の有無など）がある関数であっても類似関数として提示できる可能性がある．問題点 2

で述べたように，コードクローン検出法はこのような関数を検出できない．

提案手法を用いて，開発者が類似関数を検索し，確認する手順を以下に示す．

(1) 対象ソースコード中から入力コード片を抽出する．

(2) 類義語の特定に用いる閾値を提案手法に入力する．提案手法は，入力された閾値より

距離が小さい語どうしを類義語とする（詳しくは，3.2 節参照）．

(3) 提案手法に入力コード片を与えることで，類似関数を検索する．

(4) 検索結果に含まれた関数が多すぎる，もしくは少なすぎる場合は (2)に戻り，閾値

を再入力する．関数が多すぎる場合には閾値を小さくし，少なすぎる場合には閾値を

大きくする．

(5) 検索結果に含まれた関数を 1つ 1つ確認する．

適用実験では，類似した欠陥を含む関数の検索に対する提案手法の有効性を確認した．具

体的には，類似した欠陥（バッファオーバフローエラーや型キャストの欠如）を複数含む

ソースコードを対象として，欠陥を含むコード片のうちの 1つを入力コード片として提案

手法に与えたときに，類似した他の欠陥が提示されるかどうか確認した．その結果，提案

手法は欠陥を含むコード片を 1つ入力コードとして与えるだけで，類似した欠陥のうちの

多くを提示できることが確認できた．また，grepやコードクローン検出ツール CCFinder 9)

を用いて同様の実験を行い提案手法の実験結果と比較することで，それぞれの検索結果が持

つ特徴を確認した．

以降，2章では提案手法を説明するための準備として，類似コード片検索について述べ，

3章では提案手法である識別子の類似性に基づく類似コード片検索法について述べる．4章

では類似した欠陥を含むコード片の検索に提案手法を適用した結果について述べ，5章では

4章で述べた結果をふまえ考察を行う．6章では関連する手法を提案している研究について

議論し，最後に 7章でまとめと今後の課題について述べる．

2. 類似コード片検索

本稿では，類似コード片検索を “ソースコード中から，クエリ（検索質問）として与えら

れたコード片と一致もしくは類似した要素（識別子や構文など）を含むコード片を提示する

こと”と定義する．コード片は 5項組（ソースファイルを一意に識別できる番号，開始行，

開始桁，終了行，終了桁）で表現する．なお，“コード片 CF と一致もしくは類似した要素

を含むコード片”を単にコード片CF の類似コード片と呼ぶ．また，“コード片 CF の類似

コード片を 1つ以上含む関数”を単にコード片 CF の類似関数と呼ぶ．

図 1 は，修正を要するコード片 CF1 と，同様の修正を要する類似コード片 CF2，CF3

を表している．コード片 CF1 に含まれる情報を基にクエリを作成し，類似コード片検索を

実現したシステムに与えると，その類似コード片 CF2，CF3 を提示する．

図 2 の 2つのコード片は，日本語入力システム “かんな” 23)バージョン 3.6のソースコー

ドに含まれていた類似コード片である．これらコード片は，ともにバッファオーバフローエ

ラーを含んでいる．具体的には，各コード片の 3～5行目がバッファからの読み込み処理を

情報処理学会論文誌 Vol. 50 No. 5 1506–1519 (May 2009) c© 2009 Information Processing Society of Japan

1508 類義語の特定に基づく類似コード片検索法

図 1 類似コード片
Fig. 1 Similar code fragments.

(a) 欠陥を含むコード片

(b) 同様の欠陥を含むコード片

図 2 類似コード片間の差異
Fig. 2 Differences between similar code fragments.

表しており，これら処理中にバッファオーバフローエラーを引き起こす可能性がある�1．そ

のため，一方のコード片を基にクエリを作成し類似コード片検索を行ったなら，もう一方の

コード片が検索結果に含まれることが望ましい．

2.1 grepを用いた類似コード片検索

一般の開発者は，grep 5) を用いて類似コード片検索を行うと考えられる．開発者が grep

を用いて修正を要するコード片の類似コード片を検索する手順を以下に示す．

(1) 修正に関連すると思われるキーワード（行，式，識別子など）を抽出する．

(2) そのキーワードを引数として grepを実行する（図 4）．

�1 “かんな” バージョン 3.6p1 では，これらの欠陥は修正されていた．図 3 は，図 2 (a) の欠陥修正した後のコー
ド片である．3，4 行目がバッファオーバフローを検出する部分である．

図 3 図 2 (a) のコード片に対する修正
Fig. 3 Modification to the code fragment in Fig. 2 (a).

図 4 grep を用いた類似コード片検索
Fig. 4 Retrieving similar code using grep.

(3) grepの出力結果を基に，キーワードを含むコード片を特定する．

grepを用いた方法の問題点は，(1)で適切なキーワードを抽出し検索を行わなければ，効

果的な検索を行うことができないことである．たとえば，文全体，もしくは単一の識別子を

キーワードとして抽出し検索を行った場合，それぞれ以下の結果になると考えられる．

文全体をキーワードに指定した場合 文字列が完全に一致するコード片のみが出力され，識

別子や構文に些細な表現上の差異があったコード片を検索結果に含めることはできない．

単一の識別子をキーワードに指定した場合 大量のコード片が提示されることが多く，検索

結果の確認に大きな労力が必要となる可能性が高い．

図 2を用いて説明すると，文全体（たとえば，図 2 (a)に含まれるRequest.type7.yomilen =

(short)S2TOS(buf)）をキーワードに指定し検索を行ったとしても，図 2 (b)のいずれの部

分も提示されない．また，コード片間に差異があることを考慮し単一の識別子（たとえば

buf）を指定すると，欠陥を含まないコード片が大量に提示されやすい．

grepは，キーワード検索に加えて正規表現を用いたパターン検索を行うことができる．し

かし，grepの正規表現と対象ソフトウェアの両方を十分に理解した開発者でなければ，正

規表現を用いたパターンを適切に指定することは難しい．

情報処理学会論文誌 Vol. 50 No. 5 1506–1519 (May 2009) c© 2009 Information Processing Society of Japan

1509 類義語の特定に基づく類似コード片検索法

図 5 提案手法の概要
Fig. 5 The overview of the proposed method.

2.2 CCFinderを用いた類似コード片検索

CCFinder 9) などのコードクローン検出ツールを利用して，修正を要するコード片とトー

クン列が等価なコード片を列挙する方法6)も考えられる．しかし，この方法では，構文がわ

ずかに異なるなど些細な差異があるコード片を列挙することはできない．

たとえば，図 2 (a)の最終行の右辺は (short)S2TOS(buf)であるが，図 2 (b)の最終行の

右辺は (Ushort *)buf であり，字句解析によって得られるトークン列上に差異が存在する．

そのため，CCFinderを用いて，一方のコード片とトークン列が等価なコード片を検出した

としても，もう一方のコード片を検出することはできない．

3. 提 案 手 法

本稿では，入力コード片を与えると，識別子の類似性に基づいて対象ソースコードから類

似関数を検索する手法を提案する．この手法を用いる開発者は，入力コード片を与えるのみ

で類似関数を検索できるため，キーワードを指定する必要がない．

提案手法の概要を図 5 に示す．提案手法は，以下に示す手順からなる．

手順 1（語の抽出） 対象ソースコードの各関数が含む語（識別子を分割・正規化した後の

文字列）を抽出．

手順 2（類義語の特定） 対象ソースコードが含む語の共起関係に基づいて類義語を特定．

手順 3（入力コード片との照合） 入力コード片が含むすべての語と一致する，もしくは類

義語である語を含む関数を類似関数として提示．

以降，手順 1，2，3について，それぞれ詳述する．

3.1 手順 1（語の抽出）

対象ソースコード中の各関数が含む識別子を抽出し，分割・正規化�1を行う．本稿では，

分割・正規化後の文字列を語と呼ぶ．その後，各関数が含む語の出現回数を表す行列を作成

する．

図 6 は，語の出現回数を表す行列の例である．この行列は，関数 f0，f1，f2 における語

wa，wb，wc，wd，we の出現回数を表している．以降，この例を用いて説明する．

3.2 手順 2（類義語の特定）

ソースコード中に含まれる語を要素とする集合をクラスタリング（部分集合に分割）し，

その結果 1 つのクラスタ（部分集合）に含まれた語を類義語とする�2．本稿では，ソース

コードから類義語を特定するとは，上述のようにソースコード中に含まれる語を要素とする

�1 行った分割・正規化は，アンダースコアの位置での分割（たとえば，add host を add と host に分割）や接尾数
字の削除（たとえば，type7 の 7 を削除），キャメルケースに従った識別子を大文字から始まる語に分割（たと
えば，addHost を add と Host に分割）の全 3 種類である．これらの分割・正規化を行う理由は，分割後の語
や接尾数字の削除が行われた語を含む関数を類似関数として提示することで，検索性能を向上させるためである．

�2 語集合 S は独立した部分集合 S0, S1, . . . , Sn（S =

n⋃
i=0

Si かつ任意の Si，Sj（0 ≤ i ≤ n，0 ≤ j ≤ n，

i �= j）について Si ∩ Sj = φ）に分割される．

情報処理学会論文誌 Vol. 50 No. 5 1506–1519 (May 2009) c© 2009 Information Processing Society of Japan

1510 類義語の特定に基づく類似コード片検索法

⎛
⎜⎝

wa wb wc wd we

f0 0 2 1 0 1

f1 1 0 2 3 0

f2 0 0 2 0 2

⎞
⎟⎠

図 6 語の出現回数を表す行列の例
Fig. 6 Example of a matrix having the number of occurrences of identifier name.

集合をクラスタリングすることをいう．また，2つの語が類義語として特定されるとは，ク

ラスタリングした結果それら語が同一のクラスタに含まれることをいう．

自然文書中に含まれる単語を対象にクラスタリングを行う基準24) を応用し，ソースコー

ド中に含まれる語を対象にするクラスタリングとして以下の 2つが考えられる．

(1)語の共起性 語 wx と語 wy が頻繁に共起（同一関数など近い位置で出現）しているか

どうかを基準とする．もし，頻繁に共起しているなら，同一クラスタに含める�1．

(2)共起している語の類似性 語 wx と共起している語の集合が，語 wy と共起している語

の集合と類似しているかどうかを基準とする．もし，それら集合の類似性が高いなら，

語 wx と語 wy を同一クラスタに含める�2．

提案手法では，基準 (2) “共起している語の類似性”の計測モデルの 1つである Dagan

らのモデル3) に基づくクラスタリングを行う．基準 (1)ではなく基準 (2)の特定法を採用

した理由は，自然文書を対象とした実験3) において，いい換えを行っている単語などの類

似した働きをする単語を特定しており，ソースコード中においても類似した概念名（例：入

力データサイズと出力データサイズ）の全体または一部を表す語が存在するため，これら

を類義語として特定できると考えたからである．また，ソースコードにおいて，ある語と

共起している語の集合と，その類義語（その語と類似した概念名を表す語）と共起する語

の集合は，同一の関数名や同名の変数名を表す語を多く含み，類似しているのではないか

と考えた．前述のとおり，2つの語の間で，共起する語の集合が類似していれば，基準 (2)

の特定法でそれらを類義語と特定することができる．

�1 自然文書に含まれる類義語を特定する場合，この基準でクラスタリングを行うとクラスタ全体として 1 つの概念
を表すことが多い．たとえば，“doctor”，“nurse”，“hospital” が 1 つのクラスタになる17)．

�2 自然文書に含まれる類義語を特定する場合，この基準でクラスタリングを行うと，類似した働きをする単語（た
とえば，いい換えを行っている単語）が同一のクラスタに含まれることが多い．たとえば，“guy” と “kid” は
共起している単語の類似性が高いと判定されている3)．

⎛
⎜⎜⎜⎜⎜⎜⎝

wa wb wc wd we

wa − 0 1 1 0

wb 0 − 1 0 1

wc 1 1 − 1 2

wd 1 0 1 − 0

we 0 1 2 0 −

⎞
⎟⎟⎟⎟⎟⎟⎠

(a) 図 6 を基に作成した共起行列

(wa wb wc wd we

wa − 0 1 1 0

wb 0 − 1 0 1

)

(b) 語 wa と wb の行（図 7 (a) から抽出）

図 7 類義語の特定に用いる行列
Fig. 7 Matrices for similar words identification.

なお，本稿では，2つの語が共起しているとは，それら語が同一関数内で出現しているこ

とをいう．また，2つの語が n回共起しているとは，それら語が n個の関数内で共起して

いることをいう．

Daganらのモデルに基づいてクラスタリングを行う手順は，以下の (A)から (C)である．

(A)語の共起行列を作成 3.1 節の手順 1 で作成した語の出現回数を表す行列（図 6）を

基に，語の共起回数を表す共起行列を作成する．共起行列は，語の数を N とすると，

N × N の対称行列で表される．共起行列の要素（wx，wy）は，語 wx と語 wy の共

起（両者が 1回以上出現）する関数の数を表す．なお，対角成分は用いないため，記号

“−”をおく．図 7 (a)は，図 6 を基に作成した 5× 5の共起行列である．この共起行列

では，語 wc と語 we は 2回共起していることを表している．

(B)語の距離を算出 2つの語の距離を，それらと共起している語の類似性に基づいて算出

する．図 7 (b) は，図 7 (a) から語 wa と wb の行を抽出した行列である．太字で表す

要素が，語 wa および語 wb の他の語（wc，wd，we）との共起回数を表している．語

wa と語 wc，wd，we の共起回数の分布 [1, 1, 0]と，語 wb と語 wc，wd，we の共起回

数の分布 [1, 0, 1]の距離を算出し，語 wa と語 wb の距離とする．2つの分布の距離は，

確率分布間の差異を表す尺度である Kullback-Leibler divergence 12) や Jensen-Shannon

divergence 16) を用いて算出することができる．提案手法では，対称性を持つ Jensen-

情報処理学会論文誌 Vol. 50 No. 5 1506–1519 (May 2009) c© 2009 Information Processing Society of Japan

1511 類義語の特定に基づく類似コード片検索法

Shannon divergenceを用いる．対称性のある Jensen-Shannon divergenceを用いる理由

は，単語間の距離に対称性を持たせることで，自然言語と同様に類義語であるという関

係に対称性を持たせるためである�1．また，提案手法を用いる開発者が，検索結果を理

解するためには語間の関係に対称性がある方が容易に理解できると考えられる．たとえ

ば，語間の関係に対称性があるなら，単語 Aが単語 Bの類義語であることを提示する

だけで，開発者は単語 Bが単語 Aの類義語であることが分かるが，対称性がない場合，

開発者は単語 Bが単語 Aの類義語であることを確認する必要がある．

(C)クラスタリング (B)で求めた距離に基づいて，語のクラスタリングを行う．クラス

タリングには様々な方法があるが，提案手法では，すべての語が独立したクラスタとい

う状態から始めて，最も類似度の高いクラスタから順次結合していく方式を採用する．

この方式では，クラスタ数が 1になるか，もしくは任意のクラスタ間の距離が閾値以上

になるまで結合を繰り返す．クラスタ間の類似度は群平均法（平均距離法）19),20) を用

いて求める．群平均法は，2つのクラスタに属する要素間の距離の平均を求め，それら

クラスタ間の類似度とする方法である．

3.3 手順 3（入力コード片との照合）

入力されたコード片と対象ソースコード中の各関数を照合することで，類似関数を提示す

る．本節では，提案手法が検出する語の対応関係および類似関数について述べる．

語の対応関係 2つの語 wx，wy が与えられたとき，語 wy が語 wx と一致する，もしくは

語 wy が語 wx の類義語であるなら，語 wx は語 wy と対応関係を持つとする．

類似関数 入力されたコード片CFiが含む n個の語からなる列 Li =
[
wi1, wi2, . . . , win−1,

win
]
と比較対象の関数Ftが含むm個の語からなる列Lt=

[
wt1, wt2, . . . , wtm−1, wtm

]
が与えられたとき，列 Li が含む n 個の語 wi1, wi2, . . . , win−1, win のすべてに対し，

それぞれと対応関係を持つ語が列 Lt中に存在するなら，関数 Ft をコード片 CFi の類

似関数とする．

図8は，入力コード片の語の列
[
host, alloc, add, host

]
と対象関数の語の列

[
. . . , node, . . . ,

alloc, add, . . . , node, . . .
]
の照合を表している．図中の矢印は，語の対応関係を表している．

語 hostと語 nodeが類義語として特定されている場合，入力コード片中のすべての語が対象

関数中のいずれかの語と対応関係を持つ．よって，対象関数は類似関数として検出される．

�1 自然言語において，上位語，下位語のような詳細な単語間の関係には対称性はないが，類義語であるかどうかと
いう関係は一般的に対称性が存在する．

図 8 入力コード片と対象関数の照合
Fig. 8 Matching an input code fragment and a target function.

4. 適 用 実 験

提案手法の有効性を確認するため，提案手法を実装し適用実験を行った．適用実験の目的

は，保守対象のソースコード中に欠陥が見つかった際に，同種の欠陥を含む関数を探す作業

に対して有効な支援ができているか確認することである．このために，提案手法に欠陥コー

ド片（欠陥を含むコード片）を入力コード片として与え，同種の欠陥を含む関数を検索する

実験を行った．加えて，grep 5) やコードクローン検出ツール CCFinder 9) についても同様の

実験を行った．

適用対象には，オープンソースソフトウェア “かんな” 23) のバージョン 3.6と我々の研究

グループで開発している SPARS-J 25) を選んだ．適用対象のソフトウェアの構成を表 1 に

示す．なお，これらソフトウェアのソースコードは，C言語で開発されている．かんなは，

クライアント・サーバ型の日本語入力システムである．かんなのバージョン 3.6において，

サーバ機能を実装した server ディレクトリ以下に 19 個のバッファーオーバフローエラー

（図 2，図 10）が含まれていた．それら 19 個の欠陥は，18 関数に含まれていた．適用実

験では，サーバ機能に含まれるこれら欠陥を探す作業を支援できるか確認するため，server

ディレクトリ以下の *.c ファイルを対象とした．SPARS-J は，ソフトウェア部品検索シス

テムである．SPARS-Jのあるバージョンにおいて，計 75個の型キャスト忘れ�2がシステム

全体にわたって存在した．それら 75個の欠陥は，50関数に含まれていた．適用実験では，

SPARS-J全体に含まれるこれら欠陥を探す作業を支援できるか確認するため，すべての *.c

ファイルを対象とした．

4.1 提案手法の適用実験

本節で述べる実験の目的は，以下の 2つである．

�2 ソフトウェア部品を登録するデータベースのデータ表現に合わせるための型キャストが欠如していた．

情報処理学会論文誌 Vol. 50 No. 5 1506–1519 (May 2009) c© 2009 Information Processing Society of Japan

1512 類義語の特定に基づく類似コード片検索法

表 1 適用対象のソフトウェア
Table 1 Target software systems.

名前 総行数 関数の数
欠陥

欠陥数
関数の数

かんな 7,613 203 18 19

SPARS-J 35,744 859 50 75

目的 1 語のクラスタリング（3.2 節参照）で用いる閾値を変化させることで，類義語とし

て扱う語を増やしたときの検索結果の変化を確認する．

目的 2 入力コード片を変化させたときの検索結果の変化を確認する．

目的 1に用いる閾値 thr は，0以上 1以下の値をとる r が与えられたときに，以下に手

順で求めることができる．

(1) 対象ソフトウェアに含まれる任意の語の距離を求め，その最大値を dmax とする．

(2) 最大値と r の積を thr とする．

なお，実験では，6つの閾値 th0.0，th0.1, . . . , th0.5 を設定した．

目的 2のために，対象ソースコード中の各欠陥を含むクエリを作成し検索を行った．か

んなの場合 19個，SPARS-Jの場合 75個の入力コード片を作成し，各入力コード片を 1つ

ずつ与え検索を行った．かんなの検索に与えた各入力コード片は，バッファからの読み込み

処理（図 2 参照）を行っている連続する行から構成され，SPARS-Jの場合は，型キャスト

忘れを含む 1行もしくは連続する行から構成される．

検索結果を評価するために，検索システムの性能評価に用いられる適合率，再現率，F値

を計測した22)．本稿で用いる適合率 Precision，再現率 Recall，F値 F は，Dを欠陥関数

の集合，Rを検索された関数の集合とすると，以下のように表される．

Precision =
|D ∩ R|

|R| (1)

Recall =
|D ∩ R|
|D| (2)

F =
2 · Precision · Recall

Precision + Recall
(3)

適合率は検索結果の正確性（検索ノイズの少なさ）を表しており，再現率は検索結果の完

全性（検索漏れの少なさ）を表す．欠陥関数を探す作業を支援する手法には，検索漏れが少

なさを表す再現率が高いことに加え，適合率が高いことが求められる．その理由は，ソフト

ウェア保守の現場では，全関数を網羅的に検査にするための資源を獲得できるとは限らない

(a) かんなの場合の適合率 (b) かんなの場合の再現率

(c) SPARS-J の場合の適合率 (d) SPARS-J の場合の再現率

図 9 提案手法の実験結果
Fig. 9 Experimental result of the proposed method.

ため，再現率が高いだけでなく適合率が高いことも求められるからである．F値は，適合率

と再現率の調和平均である．F値は，検索性能を 1つのスカラ値として表現でき，また適合

率あるいは再現率の一方だけが高い極端な場合も正当に評価することができる21)．

図 9 は，閾値を th0.0 から th0.5 まで変化させたときの適合率・再現率の変化を表すグラ

フである．それぞれのグラフにおいて，閾値ごとに 1入力コード片あたりの平均値と，全ク

エリ中の最大値・最小値をプロットしている．図 9 から，閾値 thr を増加させると，適合

率は低下し，再現率は上昇する傾向にあることが分かる．

閾値が th0.0の場合は検出漏れが多かった．また，かんなの場合は閾値を th0.4や th0.5に設

定すると，対象ソースコードに含まれるすべてもしくはほとんどの関数を検出し，SPARS-J

の場合は th0.3 や th0.4，th0.5 に設定すると同様にすべてもしくはほとんどの関数を検出し

た．このような検索結果を提示しても欠陥関数の検査作業を支援することはできない．よっ

て，かんなや SPARS-Jが対象の場合に有効な支援をできる可能性がある閾値は th0.1 およ

び th0.2 であるといえる．

情報処理学会論文誌 Vol. 50 No. 5 1506–1519 (May 2009) c© 2009 Information Processing Society of Japan

1513 類義語の特定に基づく類似コード片検索法

表 2 各クラスタに属していた語（抜粋）
Table 2 Part of words in each cluster.

(a) thr = 0.1

語数 コード片 CFA，CFB，CFC のいずれかに含まれた語

クラスタ 1-A 7
buf, HEADER, S2TOS, SIZE, SIZEOFINT,

SIZEOFSHORT（6 語）

クラスタ 1-B 43
context, data, debug, dicname, ir, kouho, number,

type, Request（9 語）
クラスタ 1-C 5 i, len（2 語）
クラスタ 1-D 2 strlen（1 語）
クラスタ 1-E 12 datalen, ushortstrlen, yomi, yomilen（4 語）
クラスタ 1-F 1 ntohs（1 語）
クラスタ 1-G 4 hinshisize, kouhosize（2 語）

(b) thr = 0.2

語数 コード片 CFA，CFB，CFC のいずれかに含まれた語

クラスタ 2-A 77
buf, ntohs, HEADER, S2TOS, SIZE, SIZEOFINT,

SIZEOFSHORT（7 語）

クラスタ 2-B 126

context, data, datalen, debug, dicname, i, ir, kouho,

len, number, strlen, type, ushortstrlen, yomi, yomilen,

Dmsg, Request, Ushort（18 語）
クラスタ 2-C 4 hinshisize, kouhosize（2 語）

表 2 は，かんなを対象として，閾値を th0.1 もしくは th0.2 に設定したときのクラスタリ

ング結果を表している．クラスタ数が多く，また膨大な数の単語を含むクラスタが多く存

在したため，一部のクラスタに含まれた一部の単語のみを抜粋している．閾値を th0.1 から

th0.2に変化させると，クラスタ 1-Aと 1-Fが結合されクラスタ 2-Aになり，クラスタ 1-B，

1-C，1-D，1-Eが結合されクラスタ 2-Bになった．クラスタ 1-Gについてはいずれのクラ

スタとも結合しなかった（表 2 (b)のクラスタ 2-C）．

語のクラスタリング結果が検索結果にどのように影響したかを考察するため，入力コード

片を 3つ選び，閾値を th0.1，th0.2 に設定したときの検索結果を示す．なお，これらの閾値

を選んだ理由は，提案手法が有効に機能する入力コード片と有効に機能しない入力コード片

の両者が存在するため，提案手法の有効性が高い場合と低い場合を比較・議論しやすいから

である（他の閾値を選ぶと，提案手法が有効に機能する入力コード片が非常に少ない）．検

索結果に関して，以下に示す特徴がある 3つのコード片 CFA，CFB，CFC（図 10）を選

んだ．

コード片 CFA 閾値を th0.1 から th0.2 に変化させると，適合率が大きく低下し，かつ再

buf += HEADER_SIZE; Request.type7.context = S2TOS(buf);

buf += SIZEOFSHORT; Request.type7.number = S2TOS(buf);

buf += SIZEOFSHORT; Request.type7.yomilen = (short)S2TOS(buf);

(a) コード片 CFA

buf += SIZEOFINT; Request.type10.kouho = (short *)buf; /* short? */

for (i = 0; i < Request.type10.number; i++) {

Request.type10.kouho[i] = S2TOS(buf); buf += SIZEOFSHORT;

ir_debug(Dmsg(10, "req->kouho =%d\n", Request.type10.kouho[i]));

}

(b) コード片 CFB

buf += HEADER_SIZE; Request.type13.context = S2TOS(buf);

len = SIZEOFSHORT ;

buf += len;

Request.type13.dicname = (char *)buf;

len = strlen((char *)buf) + 1;

buf += len;

Request.type13.yomi = (Ushort *)buf;

len = ((int)Request.type13.datalen - len - SIZEOFSHORT * 4) / SIZEOFSHORT;

for(data = Request.type13.yomi, i = 0; i < len; i++, data++)

*data = ntohs(*data);

buf += (ushortstrlen((Ushort *)buf) + 1) * SIZEOFSHORT;

Request.type13.yomilen = S2TOS(buf);

buf += SIZEOFSHORT; Request.type13.kouhosize = S2TOS(buf);

buf += SIZEOFSHORT; Request.type13.hinshisize = S2TOS(buf);

(c) コード片 CFC

図 10 コード片 CFA，CFB，CFC

Fig. 10 Code fragments CFA, CFB , and CFC .

現率が上昇したコード片．

コード片 CFB 閾値を th0.1 から th0.2 に変化させると，適合率はほとんど変化しなかっ

たが，再現率が上昇したコード片．

コード片 CFC 閾値を th0.1 から th0.2 に変化させると，適合率は低下したが，再現率は

変化しなかったコード片．

表 3 (a)に，クラスタリングの閾値を th0.1 もしくは th0.2 に設定した提案手法に対して，

コード片 CFA，CFB，CFC を入力したときの適合率・再現率・F値を示す．最も F値が良

かった場合は，th0.1に設定したときのコード片 CFAであった．次に良かった場合は，th0.2

に設定したときのコード片 CFA と CFB であり，同じ値（0.31）であった（なお，これら

情報処理学会論文誌 Vol. 50 No. 5 1506–1519 (May 2009) c© 2009 Information Processing Society of Japan

1514 類義語の特定に基づく類似コード片検索法

表 3 各コード片の検索結果
Table 3 Retrieval results with each code fragment.

(a) 提案手法

提案手法（thr = 0.1） 提案手法（thr = 0.2）
適合率 再現率 F 値 適合率 再現率 F 値

コード片 CFA 0.50 0.72 0.59 0.18 1.00 0.31

コード片 CFB 0.20 0.33 0.25 0.18 1.00 0.31

コード片 CFC 1.00 0.06 0.11 0.33 0.06 0.10

(b) grep，CCFinder

grep（キーワード：buf） CCFinder

適合率 再現率 F 値 適合率 再現率 F 値
コード片 CFA 0.19 1.00 0.32 1.00 0.06 0.11

コード片 CFB 0.19 1.00 0.32 1.00 0.06 0.11

コード片 CFC 0.19 1.00 0.32 1.00 0.06 0.11

表 4 コード片に含まれる語に属するクラスタ
Table 4 Clusters to which each code fragment belongs.

(a) thr = 0.1

対応するクラスタ
コード片 CFA クラスタ 1-A，クラスタ 1-B，クラスタ 1-E

コード片 CFB クラスタ 1-A，クラスタ 1-B，クラスタ 1-C

コード片 CFC
クラスタ 1-A，クラスタ 1-B，クラスタ 1-C，クラスタ 1-D，

クラスタ 1-E，クラスタ 1-F，クラスタ 1-G

(b) thr = 0.2

対応するクラスタ
コード片 CFA クラスタ 2-A，クラスタ 2-B

コード片 CFB クラスタ 2-A，クラスタ 2-B

コード片 CFC クラスタ 2-A，クラスタ 2-B，クラスタ 2-C

は，まったく同じ検索結果であった）．以降，th0.1 に設定したときのコード片 CFB，th0.1

に設定したときのコード片 CFC，th0.2 に設定したときのコード片 CFC の順であった．

表 4 に，各コード片に含まれる語が属したクラスタを示す．まず，閾値が th0.1 の場合に

ついて述べる．コード片 CFA と CFB の検索結果は表 3 (a)で示したとおり大きく異なっ

ていたが，対応したクラスタは一部分のみが異なっていた．具体的には，コード片 CFA は

語 yomilenを含んでいるため，クラスタ 1-Eが対応し，コード片 CFB は語 iを含んでいる

ため，クラスタ 1-C が対応したという点のみ異なっていた．語 i を含むコード片 CFB の

ように，多くの関数に出現する語を含むコード片を用いて検索を行うとクラスタ 1-Cが対

応し，検索結果の F値が低かった．また，コード片 CFC は語 strlenや ntohs，hinshisize，

kouhosize を含んでいるため，語数の少ないクラスタ 1-D，1-F，1-G が対応していた．そ

のため，検索結果の再現率は低かった．

閾値を th0.2 に設定すると，コード片 CFA と CFB には同じクラスタ群（クラスタ 2-A

および 2-B）が対応したため，まったく同じ検索結果が得られた．閾値が th0.1 の場合に異

なるクラスタであったクラスタ 1-Cと 1-Eは，クラスタ 2-Bに包含されていた．コード片

CFC については，クラスタ 2-Aおよび 2-Bに加えて，クラスタ 2-Cも対応した．クラス

タ 2-Cは，閾値を th0.1 に設定したときに対応した語数の少ないクラスタ 1-Gと同一の語

から構成されていた．その結果，閾値を th0.1 に設定したときと同様に，検索結果の再現率

は低かった．

4.2 grepや CCFinderとの比較実験

提案手法と grep，CCFinderの有効性を比較するために実験を行った．grepを用いた実験

では，コード片 CFA，CFB，CFC から抽出したキーワードを grepに与えることで，キー

ワードを含む関数を検出し，類似関数の検索を行った．また，CCFinderを用いた実験では，

各コード片とコードクローンになっているコード片を含む関数を検出することで，類似関数

の検索を行った．

表 3 (b)は，コード片 CFA，CFB，CFC を入力して，grepや CCFinderを用いた実験を

行った結果である．grepの結果については，識別子 bufをキーワードとして指定した場合の

みを掲載している．識別子 bufを代表例として選んだ理由は，対象とする欠陥である bufが

指すバッファのオーバフローに最も関係が深いため，一般の開発者が grepのキーワードに

指定する可能性が最も高いと考えられるからである（他のキーワードを指定した場合につい

ては，表 5 に掲載）．識別子 bufをキーワードとして指定した場合の grepは，再現率は 1.00

であり非常に高かったが，適合率は 0.19であり低かった．CCFinderについては，各コード

片を含む関数しか検索結果に含まれなかった．F値を基準に各検索結果の比較を行うと，提

案手法の閾値を th0.1 に設定したときのコード片 CFA が最高値（0.59）であった．次いで，

grepと閾値を th0.2 に設定したときのコード片 CFA，CFB がほぼ同じ値（0.31～0.32）で

並び，その次は閾値を th0.1 に設定したときのコード片 CFB であった．その他の場合は，

各コード片を含む関数しか検索結果に含まれず，F値も低い値（0.10～0.11）であった．

表 5 は，buf およびそれ以外のキーワードをコード片 CFA，CFB，CFC から抽出し，

grepに与えたときの検索結果を表している．いずれのコード片から抽出したキーワードに

情報処理学会論文誌 Vol. 50 No. 5 1506–1519 (May 2009) c© 2009 Information Processing Society of Japan

1515 類義語の特定に基づく類似コード片検索法

表 5 grep による検索の結果
Table 5 Experimental result of grep.

(a) コード片 CFA，CFB，CFC のすべてに含まれる部分をキーワー
ドとして与えた場合

キーワード 検出行数 適合率 再現率 F 値
buf 557 0.19 1.00 0.31

HEADER SIZE 46 0.67 1.00 0.80

Request 323 0.17 1.00 0.30

context 211 0.17 0.94 0.29

S2TOS 40 0.94 0.94 0.94

SIZEOFSHORT 87 0.53 0.89 0.67

buf += HEADER SIZE 18 1.00 1.00 1.00

buf += SIZEOFSHORT 30 1.00 0.89 0.94

(b) コード片 CFA にのみ含まれる部分をキーワードして
与えた場合

キーワード 検出行数 適合率 再現率 F 値
type7 11 0.33 0.06 0.10

(c) コード片 CFB にのみ含まれる部分をキーワードして
与えた場合

キーワード 検出行数 適合率 再現率 F 値
type10 17 0.25 0.06 0.10

kouho 48 0.25 0.06 0.09

ir debug 260 0.18 1.00 0.31

Dmsg 266 0.18 1.00 0.30

(d) コード片 CFC にのみ含まれる部分をキーワードして
与えた場合

キーワード 検出行数 適合率 再現率 F 値
type13 21 0.50 0.06 0.10

len 398 0.10 0.56 0.17

dicname 148 0.09 0.22 0.13

strlen 70 0.07 0.17 0.10

yomi 129 0.19 0.28 0.23

おいても，キーワードにより結果が大きくばらついた．

5. 考 察

5.1 語のクラスタリングに用いる閾値について

閾値の増加にともない再現率が増加していた．このことから，類義語の範囲を広げること

で，より多くのコード片を類似関数として検索結果に含めることができたと考えられる．

語のクラスタリングに用いる閾値が th0.0 の場合は検出漏れが多かった．また，かんなの

場合は閾値を th0.4 や th0.5 に設定すると，対象ソースコードに含まれるすべてもしくはほ

とんどの関数を検出し，SPARS-Jの場合は th0.3 や th0.4，th0.5 に設定すると同様にすべて

もしくはほとんどの関数を検出した．このような検索結果を提示しても欠陥関数の検査作業

を支援することはできない．よって，かんなや SPARS-Jが対象の場合に有効な支援をでき

る可能性がある閾値は th0.1 および th0.2 であるといえる．

以上のことから，かんなや SPARS-Jを対象とした場合，再現率を重視するならば閾値を

th0.2 に設定し，逆に適合率を重視するならば閾値を th0.1 に設定すると良いと考えられる．

4.1 節で述べたように，ソフトウェア保守の現場ではすべての関数を網羅的に検査するため

の資源を獲得できるとは限らないため，適合率を重視し，閾値を th0.1 に設定する状況は十

分に考えられる．

対象ソフトウェアによって有効な閾値が変化する可能性があるため，他のソフトウェアを

対象とした実験を通して，多くのソフトウェアに有効な閾値の決定方法を考案する必要があ

る．現状では，対象ソースコードに依存しない一般に有効な閾値の決定法を実現できていな

い．よって，有効な閾値を求めるために，何度か検索を繰り返さなければならない場合が多

いと考えられる．

多くの閾値において，最大値・平均値・最小値の大きな差があった．提案手法の有効性を

高めるためには，これら値の差を縮める必要があると考えられる．

5.2 語のクラスタリングについて

クラスタ 1-Aには，bufに加算する定数名（例：HEADER SIZE）や，bufの特定ビット

列を取得するためのマクロ名が含まれていた．bufと他の語が同一関数中で共起することが

多かったため，これらの語の共起回数の分布が類似し，同一クラスタに含まれていたと考え

られる．

クラスタ 1-B，1-Eには，構造体の要素を指定する語が含まれていた．構造体の各要素を

指定するためには，これらの語を同時に使用する必要があるため，共起回数の分布が類似

し，クラスタ 1-Bもしくはクラスタ 1-Eに含まれたと考えられる．なお，閾値を th0.2 に

情報処理学会論文誌 Vol. 50 No. 5 1506–1519 (May 2009) c© 2009 Information Processing Society of Japan

1516 類義語の特定に基づく類似コード片検索法

設定すると，クラスタ 1-Bとクラスタ 1-Eは結合され，1つのクラスタになった．

クラスタ 1-Cは，C言語を用いた開発においてよく用いられる語を含んでいた．これら

の語は，比較的多くの関数に共通して用いられたため，共起回数の分布が類似し，同一クラ

スタに含まれた．しかし，特定のプログラミング言語を用いた開発において，よく用いられ

る語（たとえば，iと len）が，類似した役割を担っている場合は少ないと考えられる．よっ

て，このような語をフィルタリングする方法を検討する必要があると考えられる．

クラスタの中には，含まれる語の数が少ないものがあった（クラスタ 1-C，1-D，1-F，

1-G，2-C）．よって，すべてのクラスタを含むコード片だけでなく，1つ以上のクラスタを

含むコード片を提示できる方法に改善する必要があると考えられる．しかし，この方法を採

用すると，提示する関数の数が膨大になりやすい．そのため，優先して修正の検討をすべき

コード片から提示する方法を新たに考案する必要がある．たとえば，提示する関数を対応関

係の数に基づいて順位付けし，上位の関数から順に提示する方法が考えられる．

5.3 grepとの比較について

F値を基準に比較すると，閾値を th0.1 に設定した提案手法にコード片 CFA を与えた場

合が最も高い値であり，bufをキーワードとして grepに与えた場合よりも高い値であった．

次いで，閾値を th0.1 に設定した提案手法にコード片 CFA もしくは CFB を与えた場合の

検索結果が高い F値であり，bufをキーワードとして grepに与えた場合とほぼ同じ値であっ

た．その他の場合は，grepの方が高い値であった．

提案手法が提示した検索結果の F値が，bufをキーワードとして grepに与えたときより

も低い値になった場合があった要因として，以下が考えられる．

(1)多くの関数に出現する語からなるクラスタ コード片 CFB は語 i を，コード片 CFC

は語 i，lenを含んでおり，これらコード片を入力として検索した場合は，いずれの閾値

の場合もコード片 CFA より F値が低かった．また，閾値を th0.1 に設定したとき，語

i，lenは両者ともクラスタ 1-Cに属した．5.2 節で述べたように，クラスタ 1-Cに含ま

れるような，C言語を用いた開発においてよく用いられる語が類似した役割を担ってい

ることは少ないと考えられる．

(2)語数の少ないクラスタ 再現率が低かったコード片 CFC に属する語は，他のコード片

に属する語に比べて，語数の少ないクラスタ（クラスタ 1-C，1-D，1-F，1-G，2-C）

に含まれていることが多かった．入力コード片が語数が少ないクラスタをいくつか含む

と，提案手法が提示する関数の数が大きく減り，再現率が下がると考えられる．

これらの要因の影響を受けなかったと考えられる閾値を th0.1 に設定したコード片 CFA，

および閾値を th0.2 に設定したコード片 CFA，CFB については，提案手法の結果は grep

より高い，もしくはほぼ同じ F値であった．これら要因の影響を受けない場合，提案手法

は grepよりも高い，もしくは同等の有効性を持つ可能性があると考えられる．これら要因

の影響を低減させるためには，5.2 節で述べたように，多くの関数に出現する語をフィルタ

リングする手法や，すべてのクラスタを含むコード片だけでなく 1つ以上のクラスタを含

むコード片を提示できる手法に改善する必要があると考えられる．

コード片 CFB については，閾値を th0.1 に設定した場合は grepと比べて再現率・F値が

低かったが，閾値を th0.2 に変化させると，再現率・F値が上昇し，grepと同等の検索性能

であった．これは，閾値を th0.1 に設定したときに存在した少数の語からなるクラスタ 1-C

（5語）が，閾値を th0.2 に変化させると他の複数のクラスタと結合し，多数の語からなるク

ラスタ 2-B（126語）が構成され，多くの関数を提示するようになったためと考えられる．

一方，コード片 CFA については，閾値を th0.1 に設定した場合に，すでに grepと比べて適

合率・F値が高かった．そのため，閾値を th0.2 に変化させると，クラスタ 1-Eがクラスタ

1-Cなど他のクラスタと結合して語数の多いクラスタ 2-Bを構成し，適合率が下がったと

考えられる．これらのことから，以下のことがいえる．

• 閾値を上昇させると，コード片間の検索結果の差異が小さくなる．
• 語数の少ないクラスタが原因で再現率が低い場合に閾値を上昇させると，そのクラスタ
と他のクラスタが結合し，適合率がは下がるが再現率が大幅に上昇する可能性がある．

• すでに検索結果が良い場合に閾値を上昇させると，入力コード片に対応するクラスタが
他のクラスタと結合し，再現率は上昇するものの適合率が大幅に下がる可能性がある．

grep の実験については，主に buf をキーワードとして与えた場合を取り上げたが，表 5

に示すとおり，キーワードにより結果が大きくばらついている．キーワードを適切に指定で

きる開発者であれば grepの有効性は高いといえるが，逆にキーワードを適切に指定できな

い開発者あれば，提案手法の方が有効性が高い場合があると考えられる．

5.2 節で述べたように，提案手法は対象ソースコードに依存しない一般に有効な閾値の

決定法を実現できていないため，有効な閾値を決めるための作業量が必要となる．grepは，

コード片からキーワードを抽出する必要がある代わりに，閾値を設定する必要がないため，

全体的な作業量では grep の方が少ない場合もありうると考えられる．これらのことから，

提案手法と grepなどの各ツールについて全体の作業量の比較実験を行う必要があると考え

られる．

行単位で検出を行う grepの方がより詳細に欠陥を含むコード片の位置を提示できると考

情報処理学会論文誌 Vol. 50 No. 5 1506–1519 (May 2009) c© 2009 Information Processing Society of Japan

1517 類義語の特定に基づく類似コード片検索法

えられるが，grepを用いて検出した各行を確認することで検査を行うことが難しい場合も

ある．具体的には，複数行からなるコード片や小規模の関数全体が 1つの欠陥を表している

場合に grepを用いると，これらコード片中や関数中に含まれる数行を提示することが多く，

提示された各行を確認しただけでは欠陥の有無を確認することは難しい．

5.4 CCFinderとの比較について

本稿の適用実験では，トークン列から連続して一致する部分列を検出する CCFinderを用

いて，入力コード片のトークン列と連続して一致するトークン列を含む関数を検出した．し

かし，（入力コード片を含む関数を除く）すべての欠陥関数は連続して一致するトークン列

を持たなかったため，検出されなかった．よって，コード片 CFA，CFB，CFC を入力コー

ド片として与える場合は，トークン列でなく識別子の類似性に基づいて類似関数を提示する

提案手法の方が有効であるといえる．

本来 CCFinderは，コードクローン検出ツールとして開発されているため，類似コード片

検索を行う多くの場合において有効性は低いと考えられる．しかし，対象とする類似コー

ド片によっては，CCFinderのように等価なトークン列を検索した方が有効な場合もあると

考えられるため，提案手法と CCFinderを使い分ける必要があると考えられる．提案手法と

CCFinderの比較実験をさらに行うことで，それぞれが有効な類似コード片の性質を明らか

にする必要がある．

6. 関 連 研 究

これまでに様々なコードクローン検出法が提案されており，その中には CCFinderなどの

トークン列の等価性に基づく検出法だけでなく，抽象構文木やプログラム依存グラフの等

価性に基づく検出法も提案されている2),8),11)．抽象構文木の等価性に基づく検出法の中に

は，抽象構文木が完全一致しなくても，主要な構文要素が一致していれば，コードクローン

として検出する手法も提案されている8)．また，プログラム依存グラフの等価性に基づく手

法11) は，構文が等価でなくてもプログラム依存グラフが等価であれば，コードクローンと

して検出する．提案手法は，識別子の類似性に基づいて類似コード片を検索するため，構文

上やプログラム依存グラフが異なるコード片であっても検索結果に含めることができる．対

象とする類似コード片によっては，上述のコードクローン検出法を用いて類似コードを検索

した方が有効な場合もあると考えられる．よって，提案手法とこれらコードクローン検出法

の比較実験を行うことで，各手法が有効な類似コード片の特徴を明らかにする必要がある．

Splint 4) などの lint系のツールや FindBugs 7) のように，ソースコード中から検査すべき

部分を検出するツールが数多く開発されている．これらツールの多くには，初期化されて

いない変数への参照や 1度も参照されない変数を検出するアルゴリズムが実装されている．

しかし，ドメインやアプリケーションに特化した欠陥を検出する機能を追加するためには，

ツールを拡張する必要がある．提案手法は入力コード片を必要とする代わりに，対象ソース

コードやそのドメインに特化した欠陥であっても，欠陥を含むコード片を抽出し入力コード

片として与えるだけで類似コード片を検索することができるため，ドメインやアプリケー

ションに特化した欠陥を検出できる可能性がある．

Liらが提案する PR-Minerは，Frequent Itemset Miningアルゴリズムを用いて，変数名

や関数名の出現パターンを特定し，パターンに違反する変数名や関数名の出現を欠陥候補と

して提示する15)．PR-Minerによって，欠陥を含むコード片を検出し，類義語の特定を行う

提案手法を用いてそのコード片の類似コード片を検索すると，新たな欠陥を検出できる可能

性がある．また，Liらは，コピーアンドペーストにより作り込まれたコード片に対して一

貫した識別子の修正が行われているか判定し，一貫した修正が行われていないコード片を欠

陥候補として検出する手法を提案している14)．この手法についても，PR-Minerと同様に，

欠陥を含むコード片を検出し提案手法に入力すると新たな欠陥を検出できる可能性がある．

適用実験において，提案手法を用いて欠陥があるコード片の類似関数を検索することで，

欠陥関数を検出した．しかし，提案手法が行うことはあくまで類似コード片検索であるた

め，欠陥を含む検出が目的の場合は上述の欠陥検出ツールの出力結果と照合し，絞り込みや

順位付け（たとえば，複数のツールが欠陥を検出したコード片を上位に順位付け）を行う必

要があると考えられる．

7. ま と め

本稿では，入力として与えたコード片に類似したコード片を検索する手法を提案した．提

案手法は，完全に一致する識別子を含むコード片を検出するだけでなく，類義語を含むコー

ド片を類似コード片として検出することができる．提案手法を実装し，複数の類似した欠陥

を持つソースコードに対して適用したところ，有効な検索を行うためには類義語の特定に

用いる閾値を適切に決める必要があることが分かった．さらに，提案手法と grep，コード

クローン検出ツール CCFinderにそれぞれ同じ入力コード片を与え類似コード片検索を行う

ことで，結果の比較を行った．提案手法と grepを比較すると，提案手法が有効に働く入力

コード片と grepが有効に働く入力コード片がそれぞれ存在した．一方，CCFinderは（入力

コード片を含む関数を除く）欠陥関数を検出することはできなかったため，提案手法の方が

情報処理学会論文誌 Vol. 50 No. 5 1506–1519 (May 2009) c© 2009 Information Processing Society of Japan

1518 類義語の特定に基づく類似コード片検索法

有効な検索を行えたといえる．

今後，検索性能を向上させるために，入力コード片と対象コード片の照合方法を改善（5.2節

参照）したいと考えている．さらに，現状の提案手法は構文情報を用いていないため，構文

情報を用いた検索を実現したいと考えている．具体的には，特定した類義語を含む部分の構

文が一致しているコード片のみを提示する手法に改善したいと考えている．有用性の調査と

して，他のソフトウェアに含まれる欠陥の検出を行い，提案手法の性能を評価する必要があ

る．CCFinderをはじめとするコードクローン検出ツールや grepとの比較実験も行いたいと

考えている．比較実験では，適合率や再現率，F値などの検索性能の比較だけでなく，使用

者の作業量も比較する必要がある．また，同時に機能拡張する必要のある関数の検出といっ

た他の用途への適用も考えている．

謝辞 本研究を進めるにあたり貴重なコメントをいただいた株式会社富士通研究所松尾

昭彦氏，小林健一氏，前田芳晴氏，株式会社富士通東北システムズ須藤茂雄氏，大阪大学大

学院情報科学研究科松下誠氏に深く感謝する．本研究は一部，文部科学省「次世代 IT基盤

構築のための研究開発」の委託に基づいて行われた．また，日本学術振興会科学研究費補助

金基盤研究（A）（課題番号：17200001），特別研究員奨励費（課題番号：20・1964）の助成

を得た．

参 考 文 献

1) Baker, B.S.: Finding Clones with Dup: Analysis of an Experiment, IEEE Trans.

Softw. Eng., Vol.33, No.9, pp.608–621 (2007).

2) Baxter, I.D., Yahin, A., Moura, L., Anna, M.S. and Bier, L.: Clone Detection

Using Abstract Syntax Trees, Proc. ICSM’98, pp.368–377 (1998).

3) Dagan, I., Lee, L. and Pereira, F.C.N.: Similarity-Based Models of Word Cooccur-

rence Probabilities, Machine Learning, Vol.34, No.1-3, pp.43–69 (1999).

4) Evans, D. and Larochelle, D.: Improving security using extensible lightweight static

analysis, IEEE Software, Vol.19, No.1, pp.42–51 (2002).

5) GNU grep. http://www.gnu.org/software/grep/

6) Higo, Y., Ueda, Y., Kusumoto, S. and Inoue, K.: Simultaneous Modification Sup-

port based on Code Clone Analysis, Proc. APSEC 2007, pp.262–269 (2007).

7) Hovemeyer, D. and Pugh, W.: Finding bugs is easy, ACM SIGPLAN Notice,

Vol.39, No.12, pp.92–106 (2004).

8) Jiang, L., Misherghi, G., Su, Z. and Glondu, S.: DECKARD: Scalable and Accu-

rate Tree-Based Detection of Code Clones, Proc. ICSE 2007, pp.96–105 (2007).

9) Kamiya, T., Kusumoto, S. and Inoue, K.: CCFinder: A Multilinguistic Token-

Based Code Clone Detection System for Large Scale Source Code, IEEE Trans.

Softw. Eng., Vol.28, No.7, pp.654–670 (2002).

10) Kim, M., Bergman, L., Lau, T. and Notkin, D.: An Ethnographic Study of Copy

and Paste Programming Practices in OOPL, Proc. ISESE 2004, pp.83–92 (2004).

11) Komondoor, R. and Horwitz, S.: Using Slicing to Identify Duplication in Source

Code, Proc. SAS 2001, pp.40–56 (2001).

12) Kullback, S.: Information Theory and Statistics, John Wiley and Sons (1959).

13) Laguë, B., Proulx, D., Mayrand, J., Merlo, E.M. and Hudepohl, J.: Assessing the

Benefits of Incorporating Function Clone Detection in a Development Process, Proc.

ICSM’97, pp.314–321 (1997).

14) Li, Z., Lu, S., Myagmar, S. and Zhou, Y.: CP-Miner: Finding Copy-Paste and Re-

lated Bugs in Large-Scale Software Code, IEEE Trans. Softw. Eng., Vol.32, No.3,

pp.176–192 (2006).

15) Li, Z. and Zhou, Y.: PR-Miner: Automatically Extracting Implicit Programming

Rules and Detecting Violations in Large Software Code, Proc. ESEC/FSE 2005,

pp.306–315 (2005).

16) Lin, J.: Divergence Measures based on the Shannon Entropy, IEEE Trans. Inf.

Theory, Vol.37, No.1, pp.145–151 (1991).

17) Tanaka-Ishii, K. and Iwasaki, H.: Clustering Co-occurrence Graph based on Tran-

sitivity, Proc. WVLC’97, pp.91–100 (1997).

18) Zeller, A.: Why Programs Fail, Morgan Kaufmann Pub. (2005).

19) 上田尚一：クラスター分析，朝倉書店 (2003).

20) 齋藤堯幸，宿久 洋：関連性データの解析法—多次元尺度構成法とクラスター分析法，
共立出版 (2006).

21) 廣田啓一，佐々木裕：用語解説「F値」，日本ファジィ学会誌，Vol.12, No.3, p.36 (2000).

22) 北 研二，津田和彦，獅々堀正幹：情報検索アルゴリズム，共立出版 (2002).

23) 日本語入力システム “かんな”．http://canna.sourceforge.jp

24) 松尾 豊，石塚 満：語の共起の統計情報に基づく文書からのキーワード抽出アルゴ
リズム，人工知能学会論文誌，Vol.17, No.3, pp.217–223 (2002).

25) 横森励士，梅森文彰，西 秀雄，山本哲男，松下 誠，楠本真二，井上克郎：Javaソ
フトウェア部品検索システム SPARS-J，電子情報通信学会論文誌 D-I，Vol.J87-D-I,

No.12, pp.1060–1068 (2004).

(平成 20年 6月 24日受付)

(平成 21年 2月 4 日採録)

情報処理学会論文誌 Vol. 50 No. 5 1506–1519 (May 2009) c© 2009 Information Processing Society of Japan

1519 類義語の特定に基づく類似コード片検索法

吉田 則裕（正会員）

平成 16年九州工業大学情報工学部知能情報工学科卒業．平成 21年大

阪大学大学院博士後期課程修了．現在，日本学術振興会特別研究員．博士

（情報科学）．コードクローン分析およびリファクタリング支援の研究に従

事．電子情報通信学会，人工知能学会，IEEE各会員．

服部 剛之

平成 18年大阪大学基礎工学部情報科学科卒業．平成 20年同大学大学

院博士前期課程修了．現在，日立電子サービス株式会社に勤務．在学中，

コードクローン分析の研究に従事．

早瀬 康裕（正会員）

平成 14年大阪大学基礎工学部情報科学科卒業．平成 19年同大学大学

院博士後期課程修了．現在，同大学特任助教．博士（情報科学）．オープ

ンソースソフトウェア開発，ソフトウェア保守の研究に従事．IEEE-CS

会員．

井上 克郎（フェロー）

昭和 54年大阪大学基礎工学部情報工学科卒業．昭和 59年同大学大学

院博士課程修了．同年同大学基礎工学部情報工学科助手．昭和 59～61年

ハワイ大学マノア校情報工学科助教授．平成 1年大阪大学基礎工学部情報

工学科講師．平成 3年同学科助教授．平成 7年同学科教授．平成 14年大

阪大学大学院情報科学研究科コンピュータサイエンス専攻教授．平成 20

年国立情報学研究所客員教授．同年情報処理学会フェロー．同年電子情報通信学会フェロー．

工学博士．ソフトウェア工学の研究に従事．日本ソフトウェア科学会，電子情報通信学会，

IEEE，ACM各会員．

情報処理学会論文誌 Vol. 50 No. 5 1506–1519 (May 2009) c© 2009 Information Processing Society of Japan

