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アスペクト指向プログラミングのプログラムスライス計算への応用

石 尾 隆† 楠 本 真 二† 井 上 克 郎†

アスペクト指向プログラミングは，ロギングや同期処理のような複数のクラスを横断した処理を扱
うために「アスペクト」という新しいモジュール単位を導入したプログラミング手法である．従来の
オブジェクト指向プログラムでは複数のオブジェクトに分散していたコードを，単一のアスペクトに
簡潔にまとめることができ，保守性や理解容易性を向上させることが可能である．この応用として，
プログラム解析に用いるプログラムの実行時情報の収集がある．実行時情報の収集は，システム全体
のコードに影響を与えるため，単一のモジュールとしてプログラムに組み込む，ということは考えら
れていなかった．本論文では，Java におけるプログラムスライス計算を行うための動的情報収集モ
ジュールを AspectJを用いて記述し，その利便性と実現コストの軽減について考察する．

Application of Aspect-Oriented Programming
to Calculation of Program Slice

Takashi Ishio,† Shinji Kusumoto† and Katsuro Inoue†

Aspect-Oriented Programming (AOP) introduces new software module named aspect for
encapsulating crosscutting concerns, such as logging, synchronization, etc. Such concern
might be distributed among objects in Object-Oriented Programming, but it can be written
in single aspect. One useful application of AOP is to modularize collecting program’s dy-
namic information for program analysis. Since collection of dynamic infomation affects over
all target program, nobody built this functionality as one module into target program. In
this paper, we develop program sliging system using AspectJ, and describe benefits, usability,
cost effectiveness of the module of dynamic analysis.

1. ま えが き

近年，プログラムの新しいモジュール化手法として

アスペクト指向プログラミングが提案され，利用さ

れるようになってきている1)．アスペクト指向プログ

ラミングの特徴は，ロギングや同期処理のような複数

のクラスを横断した処理をモジュール化する新しいモ

ジュール単位「アスペクト」を導入していることにあ

る．従来のオブジェクト指向プログラミングでは，複

数のオブジェクトを横断した処理は，当然ながら単一

のオブジェクトにカプセル化することができない．ア

スペクト指向では，このような処理を単一のアスペ

クトというモジュールで記述し，コードが複数のオブ

ジェクトに分散することを避けることができる．

一方で，アスペクト指向の考え方の応用事例という

のはあまり多く報告されていない．アスペクト指向の

考え方が適当であるオブジェクトを横断した処理の 1

† 大阪大学大学院情報科学研究科
Graduate School of Information Science and Technol-

ogy, Osaka University

つとして，プログラムの動的情報の収集が考えられる．

プログラムの動的情報とは，簡単にいうと，ある入力

が与えられたときにプログラム中で実行された命令の

系列である．プログラムの動的情報の収集は，プログ

ラムスライスの計算2)やプログラム実行時の動的な複

雑さの計算9)において特に必要とされている．

プログラムスライシングは，Weiser 16)によって提

案されたものである．プログラムソース中のある地点

のある変数の値に影響を与える，つまりその変数に依

存関係を持つような文の集合を抽出する技術で，保守

やデバッグに有効な手法である．

近年のソフトウェア開発環境においては，Javaや

C++などのオブジェクト指向言語が頻繁に利用され

るようになってきている．オブジェクト指向言語では，

クラスや継承などオブジェクト指向独特の概念が導入

されており，数多くの実行時決定要素が含まれている．

このようなプログラムに対するスライス計算では，プ

ログラムを実行した際にその経過を観測し，実際に実

行されたプログラムの情報をスライスの結果に反映

させることが有効である．プログラムスライシング手
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法の 1つである Dependence Cache（DC）スライス

は，プログラムの制御構造については静的に解析する

が，データ依存関係は実行時に解析する方法で，低コ

ストで十分正確なスライスを得られることが知られて

いる2)．

オブジェクト指向プログラミング言語である Java

を対象とした DC スライス計算では，動的データ依

存関係の解析の実現が重要な課題となっている．動的

データ依存解析は，解析対象のプログラムを実際に

実行している経過を観測し，システムに含まれるオ

ブジェクトを横断してデータの依存関係を追跡してい

く処理である．この処理は，オブジェクト指向では単

一のモジュールとして記述することができず，プリプ

ロセッサによるソースコードの変換11)，Java Virtual

Machine（JVM）の改造3) という形で実現されてい

た．しかし，前者は構文上の変換規則を記述すること

が困難であり，後者は特定の JVMの実装に依存した

実現になるという問題があった．

本論文ではこのような問題に対して，アスペクト指

向プログラミングを導入することで，動的データ依存

解析をアスペクトによって記述し，DCスライスを効

率良く算出する手法について提案する．具体的には，

AspectJ 13) を用いて動的データ収集のモジュールを

記述し，JVM改造によるアプローチとの比較実験を

行った．この結果，アスペクト指向プログラミングに

よるアプローチが，従来の手法と比較して，若干の正

確性を犠牲に，大幅なコストの改善が行えることを確

認した．

以降，2 章ではプログラムスライスについての概要

を，3 章ではアスペクト指向プログラミングについて

の概要と動的データ依存関係のアスペクトによる実現

方法を説明する．4 章で評価実験とその結果について

説明し，最後に，5 章にまとめと今後の課題を述べる．

2. プログラムスライス

プログラムの実行時情報解析が有効な技術の 1 つ

として，プログラムスライシング（Program Slicing）

技術がある．

プログラムスライシング技術とは，プログラム中の

ある文 sにおけるある変数 v（スライス基点 〈s, v〉と
呼ぶ）に対して v の値に影響を与えるすべての文を

プログラムから抽出する技術で，その結果取り出され

た文の集合をプログラムスライスまたは単にスライス

（Slice）と呼ぶ．v に影響を与える文を抽出すること

で，プログラム中に存在するフォールトの位置特定に

有効であるだけでなく，プログラム保守，プログラム

理解などにも利用される．

スライスの計算には様々な手法が存在するが，本研

究では，プログラム依存グラフによるスライス計算手

法を用いる7)．

2.1 プログラム依存グラフ

プログラム依存グラフ（Program Dependence

Graph，以降，PDG）は，プログラム中の依存関係

を表現する有向グラフである．PDGの節点はプログ

ラムに含まれる条件判定，代入文，入出力文，手続き

呼び出し文を表し，その有向辺は 2つの節点間の制御

依存関係およびデータ依存関係を表す（それぞれを制

御依存辺，データ依存辺と呼ぶ）．また，関数間にわ

たるデータ依存関係を表現するために特殊節点および

特殊辺も存在する8)．

制御依存関係，データ依存関係は，それぞれ次のよ

うに定義される．

制御依存関係： プログラム中の 2文 s，t に関して，

以下の条件を満たすとき，sから t の間に制御依

存関係（Control Dependence，CD関係）が存在

するという．

( 1 ) s は条件文である．

( 2 ) t が実行されるかどうかは，s の判定結果

に依存する．

データ依存関係： プログラム中の 2 文 s，t に関し

て，以下の条件を満たすとき，sから tの間に変数

v に関するデータ依存関係（Data Dependence，

DD関係）が存在するという．

( 1 ) s で v が定義される．

( 2 ) t で v が参照される．

( 3 ) sから tへ，途中で変数 v を再定義してい

る文が存在しないような経路が少なくとも

1つ存在する．

スライス基点 〈s, v〉 に対するプログラムスライス
は，依存関係解析によって PDGを構築した後，s に

対応した PDGの節点 Vs から，逆方向に制御依存辺

およびデータ依存辺を経て推移的に到達可能な節点集

合に対応する文の集合を計算することで得られる．

制御依存関係については，ソースコードから解析す

るだけでも十分な情報を得ることができる．しかし，

オブジェクト指向言語で記述されたプログラムには，

オブジェクトの多態性や例外処理のような実行時決定

要素が数多く含まれる．データ依存関係をソースコー

ドから解析する場合，実行される可能性のあるすべて

の経路を考慮する必要があり，解析結果の正確性が低

下する．デバッグやプログラム理解にプログラムスラ

イシング技術を用いる場合，特定の入力に対するプロ
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1: a[0] = 0;

2: a[1] = 1;

3: a[2] = 2;

4: a[3] = 2;

5: a[4] = 2;

6: read(c);

7: b = a[c] + 5;

図 1 配列を含むプログラム
Fig. 1 Example program using array.

グラムの動作を，より正確に解析したいという要求が

ある．このような要求に対して，Dependence Cache

（DC）スライスが提案されている11)．

DCスライスは，実際にプログラムを実行してデー

タ依存関係解析を行い，実行時決定要素の情報を収集

する．一方で，制御依存関係については静的に解析を

行うため，実行系列を保存する必要はなく，解析コス

トを低く抑えることができる．

2.2 DCスライスにおける動的データ依存関係解析

プログラム中のある文 s においてある変数 v が参

照されるとき，v を定義した文 tが分かれば，s から

t の間に，v に関するデータ依存関係が存在すること

が把握できる．つまり，各変数 v について，その変数

がどこで定義されたかを保存しながらプログラムを実

行すれば，動的なデータ依存関係解析を実現すること

ができる．

そこで，DCスライスの計算では，プログラム中で

用いられるすべての変数 vに対しキャッシュ（Cache）

C(v) を用意する．C(v) に変数 v が最後に定義され

た文番号を格納しておき，文 tの実行時に変数 v に対

するアクセスがあった場合，次のような処理を行う．

文 t で v が定義された場合

C(v) の値を t の文番号に更新する．

文 t で v が参照された場合

C(v) に対応する命令と t に対応する命令の間に

発生する v に関するデータ依存関係を抽出する．

例として，図 1のような配列を含むプログラムに対

して動的データ依存関係解析を行う場合を考える．入

力として変数 c に 0を与えて実行させたときの各実

行時点における各変数 v のキャッシュ C(v) の推移を

表 1 に示す．

文 1から文 6では，それぞれ変数 a[0]，a[1]，a[2]，

a[3]，a[4]，cが定義されているため，文 6の実行が終了

した時点で C(a[0]) = 1，C(a[1]) = 2，C(a[2]) = 3，

C(a[3]) = 4，C(a[4]) = 5，C(c) = 6 となる．文

7で変数 a[0] が参照されるため，文 7の実行時に文

C(a[0])，つまり文 1と文 7の間に a[0]に関するデー

タ依存関係が発生することになる．

表 1 図 1 におけるキャッシュの推移
Table 1 Cache transition of Fig. 1.

実行文 C(a[0])C(a[1])C(a[2])C(a[3])C(a[4]) C(b) C(c)

1 1 - - - - - -

2 1 2 - - - - -

3 1 2 3 - - - -

4 1 2 3 4 - - -

5 1 2 3 4 5 - -

6 1 2 3 4 5 - 6

7 1 2 3 4 5 7 6

class Count {

  public static void main(String[] args) {
    if (args.length == 0) {
      System.out.println("java Main [sft|inc]");
      return;
    }

    Counter counter;
    boolean isIncrementCounter = false;
    if (args[0].equals("inc")) {
      counter = new IncrementCounter();
      isIncrementCounter = true;
    } else if (args[0].equals("sft")) {
      counter = new ShiftCounter();
    } else return;

    int x = 0;
    for (int i=0; i<1000; ++i) {
      counter.proceed();
      x = counter.value();
      if (x > 1000) break;
      System.out.println(x);
    }

    String result;
    if (isIncrementCounter) {
      result = "increment counter = ";
      result = result + Integer.toString(x);
    } else {
      result = "shift counter = ";
      result = result + Integer.toString(x);
    }
    System.out.println(result);
  }
}

abstract class Counter {
  private int count = 1;
  public Counter() {}
  public int value() { return count; }
  public void proceed() { count = newValue(count); }
  abstract protected int newValue(int old);
}

class IncrementCounter extends Counter {
  protected int newValue(int old) {
    return old + 1;
  }
}

class ShiftCounter extends Counter {
  protected int newValue(int old) {
    return old << 1;
  }
}

(a)

(b)

(c)

(d)

(e)

(f)

図 2 ソースプログラムと入力 “inc” に対する，基点 (d) に関す
る DC スライス
Fig. 2 Source program and DC slice example

(slice criteria (d), input = “inc”).

上述のようにして動的に抽出したデータ依存関係と，

静的に抽出される制御依存関係を用いて PDGを構築

する．そして，スライス基点に対応する節点からグラ

フを探索し，到達可能な節点集合を求め，それに対応

する文を得ることによって DCスライスが計算される．

DCスライスの例を，図 2 に示す．この Javaで記
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述されたソースコードに対し，引数 “inc” を与えて

実行し，スライス基点として矩形 (d) に含まれる変

数 result に関する DCスライスを計算すると，矩形

(a)～(f)で囲まれた部分が DCスライスの結果となる．

3. アスペクト指向によるプログラム動的情報
の収集

DCスライスの計算には，プログラムの実行時情報

が必要である．実行時情報を収集する方法については

様々な実現方法があるが，実装に必要なコスト，ある

いは実行時のコストが高くつくものが多い．本研究で

は，アスペクト指向プログラミングを用いることで，

それらのコストの軽減を試みる．

3.1 アスペクト指向の特徴

アスペクト指向プログラミングは，オブジェクト指

向プログラミングでは解決できない横断要素の分離を

実現することを目標としている．

オブジェクト指向言語では，通常，オブジェクトと

いう単位によってソフトウェアを分解，モデル化する．

しかし，ロギングや同期処理といった，複数のオブジェ

クトを横断する処理は，単一のオブジェクトにカプセ

ル化することができない．したがって，このような処

理を行うコードは複数のオブジェクトに分散するが，

分散したコードの一貫性の維持は非常に難しく，プロ

グラムの保守性や再利用性を悪化させる．

アスペクト指向プログラミングは，そのような横断

要素を分離，記述するためのアスペクトという新たな

モジュール単位を導入する．分離されたアスペクトは，

オブジェクト指向で記述されたプログラムに Aspect

Weaverと呼ばれる処理系によって結合される．

アスペクトの結合は，任意の場所に行われるわけで

はなく，プログラムの特定の実行時点（Join Point）

で行われる．開発者は，Join Pointの中から必要な部

分を pointcutと呼ばれる集合として取り出し，横断

処理をそれに連動して動作する処理 adviceとして記

述する．Aspect Weaverは，分離して記述された処理

を，プログラム中の pointcutに埋め込み，実行可能

なプログラムを生成する．

Java に対する Aspect Weaver の 1 つである As-

pectJでは，表 2に示す pointcut指定子を用いて Join

Pointを選択する．これらに対して，before（直前），

after（直後），around（前後）の 3種類の形式で，ad-

viceを結合することができる．

AspectJは，ソースコードレベルで処理を行う．Java

コードとアスペクトコードを入力として受け取り，そ

れらを結合した Javaソースを中間的に生成する．こ

表 2 AspectJ で利用可能な pointcut 指定子
Table 2 Pointcut designators (AspectJ).

Join Point 意味
call メソッド，コンストラクタの呼び出し
execute メソッド，コンストラクタの実行
get フィールドの参照
set フィールドへの代入
handler 例外処理の実行

  

    
  

図 3 動的束縛の記録を行うアスペクト
Fig. 3 Aspect which records dynamic bindings.

のとき，そのアスペクトがソースコード内のどこに結

合されたかという位置情報が得られるため，AspectJ

はこの情報をコードに埋め込み，アスペクトから参照

できるようにする機能を提供している．アスペクトは，

たとえば，呼び出されたメソッドがどのクラスに属す

るかだけでなく，どのファイルの何行目に位置してい

るか，という情報まで扱うことができる．

3.2 アスペクトの具体例

AspectJのコード例を図 3 に示す．このコードは，

動的束縛が実行時にどのように解決されたかを記録

するものである．具体的には，プログラム実行中のメ

ソッド呼び出しを監視し，呼び出しに対して実際に実

行されたメソッドの情報を記録している．

AspectJを用いない場合，この処理を実現するため

には，対象となるクラスのすべてのメソッドの実装の
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先頭と末尾，およびメソッド呼び出しの直前と直後に

コードを記述しなければならない．しかし，AspectJ

では，複数のクラスやメソッドの名前をパターンマッ

チさせる記号 “*”を用いて指定することで，アスペ

クトのコードを非常に小さく，簡潔に記述することが

できる．クラス側でのメソッドの追加や削除に対して

コードの変更が不要になるだけでなく，アスペクトを

クラスとは独立して再利用することが可能となる．

3.3 プログラムの動的解析

プログラムの動的情報の解析は，プログラムスライ

ス計算やプログラムの動的複雑度の計測などに必要と

される技術である．

従来，オブジェクト指向言語 Javaを対象としたプ

ログラム実行時情報の解析には，次のような実現方法

が利用されていた．

(a) プリプロセッサによる解析命令の埋め込み11)

(b) Java Virtual Machine Profiler Interface

（JVMPI）の利用12)

(c) Java Debugger Interface 14) の利用☆

(d) Java Virtual Machine（JVM）の改造3)

(a)は，Javaの構文木上での変換ルールを作成し，

解析命令を埋め込む方法である．しかし，解析命令は，

マルチスレッド動作への対応や例外処理など，数多く

の要素に対処する必要があるため，プリプロセッサの

構文的な変換だけでは対応することが難しい．またプ

リプロセッサそのものの保守性や再利用性，他のプリ

プロセッサとの競合への対策なども必要であり，実現

コストが高くなる傾向にある．

(b)は，JVMに用意されているプログラムの性能計

測のためのインタフェースである．対象 JVMに監視

プログラムを付加して実行することができ，CPUの

時間消費やメモリの使用量を調べることができる．メ

ソッドの呼び出しやスレッド，メモリの管理など，主

要なプログラムの動作を監視する機能が提供されてい

るが，イベント生成のオーバヘッドが大きく，実行時

のコストが高くなるという問題がある．また，JVMPI

を用いた監視プログラムは非同期で生成されるイベン

トを処理するための同期処理を実装する必要がある．

さらに，内部でエラーが発生すると監視対象の JVM

も同時に異常終了してしまうことから，監視プログラ

ム自体のデバッグが難しいという問題もある．

(c)は，Javaを用いてデバッガを作成するための機

構とライブラリである．JDIを用いたプログラムは，デ

☆ 著者らの知る限り，JDI を用いたプログラム実行時情報解析の
手法は提案されていない．

バッグ対象のプログラムを実行している JVMの Java

Virtual Machine Debugger Interface（JVMDI）と

通信し，ブレークポイントの設置，フィールドやメ

ソッド呼び出しイベントの取得，各時点でのスタック

フレームの取得など，デバッグのための種々の機能が

利用できる．しかし，デバッガはソケットを介した通

信を行うほか，JVMの状態を取得するためにプログ

ラム本体の実行を頻繁にブロックすることから，オー

バヘッドは大きい．JVMDIを直接扱うこともできる

が，その場合でも JVMPIと同様の問題を持つことに

なる．

(d)は，JVMの公開されたソースコードに手を加

えて，プログラムの動作を監視する方法である．この

方法は，Javaの実行環境におけるすべての情報にア

クセスできるという利点がある．しかし，JVMの実

装に依存し，JVMのバージョンアップへの対応が必

要である．また，(b)，(c)，(d)共通して，バイトコー

ドレベルでの処理が必要であり，Just In Time（JIT）

コンパイラによる最適化を行うと，得られる結果が変

わってしまう可能性がある．そのため，最適化の抑止

が必要となり，結果としてパフォーマンス上のオーバ

ヘッドが生じる．

これらに対し，アスペクトによるプログラム解析の

実現は，抽象的な Join Pointという形式でプログラ

ムの結合を行うことができるため，(a)の持つ問題点

の影響を受けない．また，アスペクトは実行環境では

なくプログラムを変換するため，(b)，(c)，(d)が持

つ JVMへの依存性の影響を受けずに済むという利点

がある．また，アスペクトが結合されたプログラムは

標準の Javaプログラムとなるため，小さなプログラ

ムに対してアスペクトを結合し，Java 用のデバッガ

などを用いてアスペクトの持つ欠陥を除去することが

容易である．

3.4 AspectJによる動的解析の実現

AspectJの持つ，アスペクトが結合されているソー

スコードの位置情報へアクセスする機能を用いること

で，フィールドの参照や代入，メソッド呼び出しに対

して，プログラム内の依存関係の解決を行うことがで

きる．

AspectJを用いると，データ依存解析および動的束

縛解決のアルゴリズムは次のように記述することがで

きる．

• データ依存関係の解決
フィールドへの値の代入 代入されたオブジェク

トへの参照と，そのフィールドのシグネチャ，

代入文の位置を記録する．
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図 4 データ依存関係解析の実装（抜粋）
Fig. 4 A piece of the implementation of dynamic data

dependence analysis.

フィールドの値の参照 参照されたオブジェクト

と，そのフィールドのシグネチャに一致する

代入文の位置を取得し，参照した文の位置へ

のデータ依存関係を記録する．

• 動的束縛の解決
メソッド呼び出し スレッドごとに用意されたス

タックへ，メソッド呼び出し位置と呼び出し

たメソッドの内容を記録する．

メソッド実行 スレッドごとに用意されたスタッ

クを見て，呼び出し位置から，実際に呼び出

されたメソッドへの制御依存関係を記録する．

メソッド呼び出し終了 スレッドごとに用意され

たスタックから，呼び出し情報を取り除く．

例外の発生 メソッド呼び出し終了と同様の処理

を行う．

データ依存関係の解決を行うコードの抜粋を図 4に

示す．動的束縛の解決については，図 3に示した例を

マルチスレッドに対応させたものとなっているため，

ここでは省略する．

依存関係解析アスペクトは，AspectJ のワイルド

カード指定機能を用いて，解析対象となるクラスの

すべてのフィールド参照と代入に対して動作するよう

に定義している．この実装は，利用者がアスペクトの

コードを操作せずに利用するためのものである．しか

し，ユーザが監視対象から外したいクラスがある場合

は，AspectJの継承機能を用いて，監視対象から除外

したいクラスを再定義した新しいアスペクトを作成す

ることができる．

アスペクトが対象プログラムの本来の振舞いを破壊

することはない．アスペクトの結合によって，対象と

なるプログラムのデータフローと制御フローが変化す

る．しかし，データフローについては，対象プログラ

ムの値を観測および記録はするが値を書き換えること

はない．また，オブジェクトを弱参照で取り扱うため，

オブジェクトの生存期間にも影響を与えることはなく，

対象プログラムの振舞いを変更することはない．弱参

照とは，オブジェクトへの他のすべての参照がすべて

破棄されると自動的に破棄されるような参照の機構で

あり，Javaでは言語の標準機能として提供されてい

る．一方，制御フローに関しては，単純な実装では無

限ループが発生する可能性があるため，それを回避す

るための実装を行うことで，プログラムの本来の振舞

いへの影響を回避している．この問題については，実

装上の制限として 3.5.3 項で詳しく説明する．

3.5 AspectJにおける実装上の制限

3.5.1 Join Pointの制限

アスペクト指向プログラミングでは，利用可能な

Join Pointと，それに対して適用可能な演算によって

アスペクトの記述可能な範囲が制限される．AspectJで

は，ローカル変数の読み書きや制御構造は Join Point

として含まれない．これは，ローカル変数や制御構造

に対する横断処理が必要とされるケースが少ないこと，

またパフォーマンス上著しいオーバヘッドを引き起こ

すことに起因する．

動的データ依存解析では，本来ならばすべての変数

における値の授受を監視しなければならないため，As-

pectJでは厳密な実装は不可能である．しかし，ロー

カル変数に関するデータ依存関係は単一の手続き内で

完結しているため，オブジェクト指向における実行時

決定要素の影響を受けにくく，静的に解析しても十分

な精度を得られると予測される．この件に関しては，

後述する適用実験の考察で議論する．

3.5.2 ソースコードの制限

AspectJはソースコードに対してアスペクトの結合

を行うため，ライブラリに対してはアスペクトの結合
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を行うことはできない．ここでライブラリとは，Java

ソースコードが存在しないバイナリ形式の再利用可能

なコンポーネントを指す．

これに対して，本研究では，以下の理由からライブ

ラリは解析対象から除外する方針を採った．

ライブラリの信頼性は高い． ライブラリは再利用の

単位であり，その内部は十分に信用できるコード

であると考えられる．そのため，必要以上に詳細

な解析は必要ない．

ライブラリのコード量は非常に多い． ライブラリの

量は，利用するプログラムと比較して非常に多

く，動的に解析するコストが高くなる．

プログラムがライブラリ側からのコールバックを利

用する場合，プログラムのある地点からライブラリ内

部を経由してプログラムの別の地点へと，隠れた依存

関係を生じることがある．これは Javaバイトコード

での依存関係解析を行うことで知ることができる3)．

しかし，ファイル入出力やデータ構造のような基本的

なオブジェクトに対しては，後述する Java言語上の

制限から，バイトコードを用いても依存関係解析を行

うことはできない．この問題に対しては，ソースコー

ドが存在する範囲での動的解析と，解析できない範囲

への静的解析の組合せで対処する．

ライブラリに対するメソッド呼び出し文については，

呼び出し側の情報は動的に取得できるが，実際に呼ば

れたメソッドの中での動作は解析できない．そこで，

メソッドが呼び出されたオブジェクトとメソッドの引

数から，そのメソッドの戻り値へのデータ依存関係が

あると見なして対処する．また，呼び出した結果，そ

のクラスを経由して他の観測対象となるメソッドが 1

つ以上呼び出される可能性もある．これについては，

ライブラリへの呼び出し文から，実際に呼ばれたメ

ソッド群に対しての呼び出し関係を記録し，依存関係

を設定する．

3.5.3 Java言語上の制限

AspectJではアスペクトを Javaで平易に記述でき

るという利点があるが，アスペクトにも，データの収

集に利用するクラスに対して依存関係が生じてしまう．

そのため，モジュールが利用しているクラスに対して

アスペクトを結合して解析しようとすると，ループが

生じることがある．

ループの発生例を図 5に示す．この図では，メソッ

ド Foo.getXを呼び出すが，そのメソッド呼び出しに

対応してアスペクトが作動する．アスペクトは Fooに

対してハッシュコードを要求するが，Foo.hashCode

が getXメソッドを用いて計算されている場合，getX

図 5 ループ発生例
Fig. 5 Loop occurence by aspect.

呼び出しにより再びアスペクトが作動してループに

陥ってしまう．

このループの発生の問題は，バイトコードを加工す

るアプローチであっても同様で，JVM改造アプロー

チのような言語の枠を越えた手段を用いない限り本質

的に解決することはできない．

しかし，Java 標準ライブラリのクラスに対する解

析を行わない限り，ループの原因となるメソッドは限

られる．具体的には，アスペクトから標準ライブラリ

を通じて間接的に呼ばれるオブジェクトの文字列表現

への変換（Object.toString），ハッシュコードの計算

（Object.hashCode）の 2つである．アスペクトから

toString，hashCodeへの呼び出しを避けること，ま

た toString，hashCodeへのアスペクトの結合を避け

ることでこの問題を回避することができる．この対処

は toString，hashCodeについて収集する情報を制限

してしまうが，これらのメソッドの役割は，通常その

メソッドだけで完結しているので，このような原因に

よる情報の完全性の低下は，実用上の影響を与えない

と考えられる．

4. 評 価 実 験

4.1 概 要

AspectJで作成した動的依存解析モジュールを使っ

て，Javaを対象とした DC スライスを計算するシス

テムを構築した．図 6 にシステムの概略を示す．

ユーザは，AspectJコンパイラを用いて解析対象の

Javaのソースコードを動的依存解析アスペクトと結

合する．生成されたクラスファイルは Java標準のバ

イトコードなので，通常の JVMで実行することがで

きる．動的依存解析アスペクトは，プログラムが終了

する際に解析結果をファイルに書き出す．この解析結

果を，ソースコードとあわせて与えることで，プログ

ラム依存グラフを作成することができ，ユーザが任意

の DCスライスを計算することができる．

このシステムを用いて，計算される DC スライス
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図 6 システム概略
Fig. 6 System overview.

表 3 適用対象
Table 3 Target programs.

種別 クラス数 サイズ（LOC）
P1 簡易データベース 4 262

P2 ソーティング 5 228

P3 DC スライス計算 125 16207

のサイズと動的依存関係解析に必要な時間コスト，モ

ジュールサイズについて，JVM改造アプローチ3)と

の比較実験を行った．ここで使用した改造 JVMは，

DCスライスを計算するために，すべてのデータに関

するデータ依存関係の解析を行っている．バイトコー

ド上で依存関係解析を行うため，ソースコードを持た

ないライブラリに対しても解析を行っていることが特

徴である．

適用対象のプログラムを，表 3 に示す．P1は簡易

データベースプログラムで，オブジェクト指向言語に

ある特有な要素をほとんど利用していない．P2はソー

ティングプログラムで，配列，オブジェクトの多態性

などを用いている．P3は今回開発した DCスライス

計算プログラムで，ライブラリに対する多数のメソッ

ド呼び出し，クラスの多態性と動的束縛，例外処理，

対話的なユーザインタフェースなど，Javaの特徴的

な要素を数多く備えている．

これらのプログラムに対していくつかの入力を与え

て実行し，DCスライス計算を行った．

以降，適用結果を基に，4.2 節でスライスサイズに

ついて，4.3 節で時間コストについて，4.4 節で計測プ

ログラムのモジュールサイズについて，考察を述べる．

4.2 スライスサイズの比較

表 4 に，P1，P2，P3からそれぞれ選んだスライ

ス基点 S1，S2，S3における DC スライスのサイズ

（LOC）を示す．どのプログラムもファイルあるいは

表 4 スライスサイズ [LOC]

Table 4 Slice size.

スライス基点 改造 JVM Aspect Aspect/JVM

S1 (P1) 29 36 1.24

S2 (P2) 28 50 1.79

S3 (P3) 708 839 1.19

GUIに対するデータ出力を行うため，出力されるデー

タに対応する変数の 1つを基点として選択した．

プログラムスライスの計算では，一般的に，プログ

ラムスライスに含まれるべき文は少なくとも含まれる

ように計算する．スライスサイズの差は，正確性の差

を示すことになる．

アスペクトによるアプローチは，ローカル変数に関

しては静的解析で補うことなどが原因で，「依存する可

能性がある」文がスライスに加わることになる．プロ

グラム中に含まれる条件節のうち，条件が成立しない

ために実行されないような文がある場合，JVM改造

アプローチでは実行されていない文を除去するが，ア

スペクトによる実現では，ローカル変数の依存関係か

ら文をスライスに含める場合がある．

S1では，プログラムサイズが小さいため，実質的

な差は現れなかった．一方，S2では大きな差が発生

した．スライスの内容を確認したところ，長いメソッ

ドが多く，ローカル変数の依存関係が多いことが原因

となっていた．S3はプログラムが適切なサイズのモ

ジュールに分解されており，ローカル変数が多数使わ

れたメソッドは少なく，S1と同程度の増加となった．

一度も実行されなかった文が，静的な解析によって

スライス結果に含まれてしまった場合でも，そこに含

まれたメソッド呼び出しやフィールド参照については

実行時情報が存在しないため，他のメソッドなどへ依

存関係の追跡が波及していくことはない．結果として，

そのブロックの範囲にスライスの増加は限られる．こ

の差異が実際の開発作業に与える影響の評価について

は，今後の課題として検討していく．

また，制御フロー情報を用いて，実行されなかった

ことが判明している文の前後の文をスライスから取り

除くことで，精度を向上できる可能性があるが，これ

についても今後の課題とする．

4.3 解析コストの比較

通常の場合，改造 JVMの場合，アスペクトを結合

した場合とで，プログラムに同一の入力を与え，実行

した場合の動作にかかった時間を，JITコンパイラに

よる最適化なしで比較したものを表 5 に示す．また，

JITコンパイラを有効にした場合での，通常のプログ

ラムの実行時間とアスペクトを結合したプログラムの
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表 5 実行時間 [秒]

Table 5 Execution time [sec.].

適用対象 通常 改造 JVM アスペクト
P1 0.18 1.8 0.26

P2 0.19 2.8 0.39

P3 1.2 81.0 10.3

表 6 JIT を有効にした場合の実行時間 [秒]

Table 6 Execute time, JIT enabled [sec.].

適用対象 通常 アスペクト
P1 0.24 0.34

P2 0.24 0.41

P3 1.1 9.9

実行時間との比較を表 6 に示す．

一般に，アスペクトによる実装のほうが改造 JVM

側に比べて高いパフォーマンスを発揮した．P1と P2

ではライブラリをほとんど用いていないため，ローカ

ル変数の動的解析のコストが高いことがその差の影響

であると考えられる．また，P3では，Javaのソース

コードを構文解析するために用いているライブラリの

内部処理に対しても解析を行っていることが，さらな

るコスト増加の要因となっている．大規模なプログラ

ムになるほど，ライブラリは多く用いられるため，コ

スト増加の傾向はさらに強くなると考えられる．

アスペクトを用いた際の利点である JITコンパイ

ラによる最適化の影響は，小規模なプログラムでは最

適化に要するコストのほうが高くつくため，P1や P2

では実行時間の増大を招いた．しかし，P3のように

ある程度の規模を持つプログラムでは，最適化の恩恵

を受けることができる．この影響はプログラムや実行

環境に依存するため一概にはいえないが，パフォーマ

ンス上重大な差異を与える可能性が，実験的に示され

ている10)．

4.4 スライスツール実装の比較

アスペクトとして記述したデータ依存解析モジュー

ルは，400行程度であった．また，DCスライス計算

ツールは Javaを用いて約 16,000行で記述することが

できた．

アスペクトによるアプローチでは，プリプロセッサ

に比較して高い抽象度で可読性の高い記述が可能であ

るほか，モジュールのサイズが小さいために，後から

解析するために必要な情報を記録するだけにとどめる，

あるいは実行時にすべての解析を行って不要なデータ

を捨てていく，といったように実行環境にあわせて実

装を柔軟に切り替えることが容易である．

JVM改造によるアプローチでは，Javaのコンパイ

ラと JVM，あわせて 50万行以上のプログラムに対し

て約 16,000 行のコードを追加している4)．この追加

コードは，まず，ローカル変数も含むすべてのデータ

依存関係を取得するという点でアスペクトによるアプ

ローチよりも実装量が多い．それに加えて，Javaバ

イトコードからソースコードへのマッピング情報を計

算するためのコードが含まれている．バイトコードか

らソースコードへのマッピングは，スライス結果を表

示する際に使用される．

このようなソースコードのサイズの違いだけでなく，

JVM改造アプローチでは JVMのバージョンアップ

や利用可能な実行環境にあわせて調整していく必要が

生じるため，実現に要するコストは多大なものとなる．

これに対して，アスペクトによるアプローチでは言語

仕様に変更が加わらない限り，自由な環境で利用して

いくことができるため，実現コストを大幅に低減する

ことができる．

5. ま と め

アスペクト指向プログラミングを用いて，プログラ

ムスライスに必要な動的データ依存解析処理を実現

した．

アスペクト指向プログラミングは，オブジェクトを

横断した要素をアスペクトという新しいモジュール単

位として独立記述することを可能とする．アスペクト

をオブジェクト指向プログラムに結合するには，Join

Pointと呼ばれる結合基準を用いる．これは通常のプ

リプロセッサで用いられる抽象構文木による表現と比

較して，より抽象度が高い形式での記述を可能とする．

また，マルチスレッドや例外処理といった，高度な言

語機能に対する処理を記述することも容易となる．

アスペクトの結合基準を一般的に記述することで，

動的データ依存解析アスペクトは，様々なオブジェク

ト指向プログラムに対して，モジュールを修正するこ

となく結合を行うことができる．これによって，従来

の JVM改造アプローチなどに比べ，動的依存解析処

理の保守性，再利用性が向上した．

今回，システムの実現にはAspectJを用いたが，As-

pectJではローカル変数に対する動的解析を記述でき

ないという制約があった．JVM改造アプローチとの

比較実験によって，この制約によってスライスサイズ

が増大するが，実行時間のオーバヘッドを著しく削減

し，高い保守性を実現できることを示した．

また，アスペクトによる実現では，Javaの実行環境

や言語仕様に対する依存性は抑えられており，他のプ

ログラミング言語に対しても，適切な Aspect Weaver

を利用してアスペクトを記述することで動的依存解析
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を実現することができる．

今後の課題としては，アスペクトによる解析でのス

ライスサイズの増大が実際の開発作業に与える影響

の評価，静的解析では依存関係があるが実際には実行

されていない（実行時情報が存在しない）メソッド呼

び出し文などを手がかりにした誤差修正，今回の実験

では適用していない数十万行程度の大規模プログラム

に対してこれらの手法を適用した場合のスケーラビリ

ティについて調査することがあげられる．
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