
Title 類似コード片を利用したリファクタリングの試み

Author(s) 肥後, 芳樹; 神谷, 年洋; 楠本, 真二 他

Citation 情報処理学会研究報告. ソフトウェア工学研究会報
告. 2003, 2003-SE-143(73), p. 29-36

Version Type VoR

URL https://hdl.handle.net/11094/50148

rights

ここに掲載した著作物の利用に関する注意 本著作物
の著作権は情報処理学会に帰属します。本著作物は著
作権者である情報処理学会の許可のもとに掲載するも
のです。ご利用に当たっては「著作権法」ならびに
「情報処理学会倫理綱領」に従うことをお願いいたし
ます。

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

類似コード片を利用したリファクタリングの試み

肥後芳樹 † 神谷年洋 ‡ 楠本真二 † 井上克郎 †

† 大阪大学大学院情報科学研究科

〒 560-8531 大阪府豊中市待兼山町 1-3

‡ 科学技術振興事業団 若手個人研究推進事業

〒 332-0012 埼玉県川口市本町 4-1-8

近年，ソフトウェアの大規模化・複雑化に伴い，保守作業に要するコストは増大している．ソフトウェアの
保守を困難にしている要因の一つとしてコードクローンがあげられる．コードクローンとはソースコード中
に存在する同一，または類似したコード片のことである．例えば，あるコード片にバグが含まれていた場
合，そのコード片のコードクローン全てについて修正の是非を考慮する必要がある．コードクローンに対
する問題に対処するために，我々はコードクローン分析環境Geminiを開発してきた．これまでに Gemini

をさまざまなプロジェクトに適用する中で，いくつかの問題点が指摘された．その一つは，リファクタリン
グをクローン検出の目的とした時に，Geminiによってユーザに示されるクローンがリファクタリングに適
していないということであった．本論文ではこの問題を解決するための手法を提案し，その手法をGemini

の機能拡張として実装した．また，オープンソースのソフトウェアに対して適用実験を行ない，本手法の
有用性を確認した．

On Program Refactoring Using Code Clone Information

Yoshiki Higo† Toshihiro Kamiya‡ Shinji Kusumoto† Katsuro Inoue†

† Graduate School of Information Science and
Technology

Osaka University
1-3 Machikaneyama-cho, Toyonaka,

Osaka 560-8531, Japan

‡ PRESTO, Japan Science and Technology
Corporation

4-1-8 hon-machi, Kawaguchi,
Saitama 332-0012, Japan

Maintaining software systems is getting more complex and difficult task. Code clone is one of the

factors that make software maintenance more difficult. A code clone is a code portion in source files

that is identical or similar to another. If some faults are found in a code clone, it is necessary to

correct the faults in its all code clones. We have developed a maintenance support environment,

Gemini, which provides the user with the useful functions to analyze the code clones and modify

them. However, through case studies, several problems were reported. That is, the clones provided

by Gemini were not appropriate for refactoring. In this paper, we intend to extend the functionality

of Gemini to cope with the problems. Finally, we apply the extended Gemini to several software and

evaluate the applicability of the new functions.

- 1 -

研究会Temp
社団法人 情報処理学会　研究報告IPSJ SIG Technical Report

研究会Temp
2003－SE－143　　(5)

研究会Temp
2003／7／17

研究会Temp
－29－

1 はじめに

ソフトウェアの大規模化・複雑化に伴い，高品

質なソフトウェアを効率的に開発する手法が重要

となっている．ソフトウェアプロセスの改善はそ

の手法の一つといえる．近年，保守工程はソフト

ウェア開発で最もコストを要する過程であると指

摘されている．また多くのソフトウェア会社が既

存のシステムの保守に非常に多くの人的，時間的

コストをかけているとも報告されている [22]．ソ
フトウェアシステムの保守とは，そのシステムが

顧客に渡された後に，バグの修正や性能の改善の

ために，システムを修正することを意味する [19]．

コードクローンはソフトウェア保守を困難にし

ている一つの要因といわれている [7]．コードク
ローンとはソースコード中に存在する同一，また

は類似したコード片のことである．コードクロー

ンが生成される原因はさまざまな理由が考えられ

るが，その最も大きな原因の一つとしてコピーア

ンドペーストによる修正，拡張作業があげられる．

コード片にバグが含まれていた場合，そのコード

片のコードクローンとなっている部分全てに対し

て修正の是非を考慮する必要がある．特に大規模

ソフトウェアにおいては，これは非常に手間のか

かる作業であるので，コードクローン検出の効率

化はソフトウェア保守工程の改善において有効で

ある．これまでにコードクローン自動的にを発見

するためのさまざまな手法が提案されている．

その手法の一つとして，我々はコードクローン

検出ツールCCFinder[12]と分析環境Gemini[20]
を開発してきている．Geminiの一コンポーネント
にCCFinderが用いられている．ユーザはGemini
を用いることによりコードクローンの解析，ソー

スコードの修正を容易に行なうことができる [21]．
Geminiは主に，クローン散布図とメトリクスグラ
フをユーザインターフェースとして提供する．ク

ローン散布図はソースコード中のコードクローン

の分布状態を俯瞰的に表示する．またメトリクス

グラフは各々のコードクローンについての定量的

な情報を提供し，その値を用いることによって保

守を阻害するコードクローンの選択をすることが

可能である．選択されたコードクローンのソース

コードは容易に閲覧することができる．ユーザは

これらの機能を用いることによってソフトウェア

の保守作業を改善することができると期待できる．

我々は Geminiを数十のソフトウェア会社に配
布し，さまざまなプロジェクトに用いることによっ

て評価した．その結果，ソフトウェア会社からの

フィードバックよりいくつかの問題点が発見され

た．最も多く指摘された問題は，Geminiをリファ
クタリング [7]に利用する際に発生する問題であっ
た．一般的に，コードクローンを除去することを

目的として，コードクローンになっている部分を

一つのメソッドやクラスにまとめるリファクタリ

ングが適用される．しかしGeminiによって検出さ
れたコードクローンは，必ずしも一つのモジュー

ルとしてまとめるのに適していない．

本論文では，この問題を解決するためにGemini
のコードクローン検出部に対して行なった拡張に

ついて論ずる．そして最後に，提案した機能の有

用性を確認するために行なった適用実験の結果に

ついて述べる．

2 コードクローン解析
2.1 コードクローンの定義 [10]

あるトークン列中に存在する 2つの部分トーク
ン列 α，β が等価であるとき，αと β は互いにク

ローンであるという．またペア（α，β）をクロー

ンペアと呼ぶ．α，βそれぞれを真に包含する如何

なるトークン列も等価でないとき，α，βを極大ク

ローンと呼ぶ．また，クローンの同値類をクロー

ンクラスと呼ぶ．ソースコード中でのクローンを

特にコードクローンという．

2.2 コードクローン分析環境Gemini

文献 [20]において我々はコードクローン分析環
境Geminiを開発した．図 1はシステムのアーキテ
クチャを示している．Geminiは内部の CCFinder
にソースコードを渡し，CCFinderの解析結果を
さまざまなユーザインターフェースを通してユー

ザに提供する機能を有する．

本章では，簡単に Geminiと CCFinderの特徴
を説明する．

2.2.1 CCFinder

CCFinderはプログラムのソースコード中に存
在するコードクローンを検出し，その位置をクロー

ンペアのリストとして出力する．検出されるコー

- 2 -

研究会Temp
－30－

Clone scatter plot view

Source code view

Metric graph views

Code clone database
Clone selection

information

Clone selection
information

Interfaces

User

Code clone analysis environment, Gemini

Source files

Code clone detector

Metrics manager

Source code manager

Clone pair manager

図 1: Gemini全体図

ドクローンの最小トークン数はユーザが前もって

設定することができる．

CCFinderのコードクローン検出手順（ソース
コードを読み込んで，クローンペア情報を出力す

る）は大きく 4つの過程から成り立っている．

ステップ 1（字句解析）: ソースファイルを字句
解析することによりトークン列に変換する．入

力ファイルが複数の場合には，個々のファイル

から得られたトークン列を連結し，単一のトー

クン列を生成する．

ステップ 2（変換処理）: 実用上意味を持たない
コードクローンを取り除くこと，及び，些細な

表現上の違いを吸収することを目的とした変換

ルールによりトークン列を変換する．例えば，こ

の変換により変数名は同一のトークンに置換さ

れるので，変数名が付け替えられたコード片も

コードクローンであると判定することができる．

ステップ 3（検出処理）: トークン列の中から
指定された長さ以上一致している部分をクロー

ンペアとして全て検出する．

ステップ 4（出力整形処理）: 検出されたクロー
ンペアについて，元のソースコード上での位置

情報を出力する．

CCFinderの詳細については文献 [12]を参照さ
れたい．

2.2.2 Gemini

Geminiは GUIベースのコードクローン分析環
境であり，内部的にコードクローン検出部として

CCFinderを用いている．Geminiはユーザに以下
のユーザインターフェースを提供し，対話的な解

析を可能としている．

• クローン散布図，
• メトリクスグラフ，

図 2: クローン散布図表示例

図 3: ソースコードビュー表示例

• ソースコードビュー．

クローン散布図はソースコードのどの部分にク

ローンペアが存在するのかを示す図である．一目

でソースコード中のコードクローンの分布状況が

わかるので，コードクローン解析の初期段階では

非常に有効な解析手段となりうる．図上でユーザ

はマウスを用いて任意のクローンペアを選択する

ことが可能であり，その例を図 2に示す．クロー
ン散布図の詳細については後ほど論ずる．

またメトリクスグラフを用いることにより，ユー

ザはコードクローンを定量的な特性に基づいて選

択することができる．それぞれのクローンクラス

について複数のメトリクス値が示されているので，

ユーザは長いコードクローンや，出現数の多いコー

ドクローンを選択できる．

ソースコードビューはクローン散布図やメトリ

クスグラフと組み合わせて用いられる．ユーザはク

ローン散布図やメトリクスグラフで選択されたク

ローンのソースコードをソースコードビューを用

いることにより閲覧することができる．図 3では，
図 2 において選択されたコードクローンのソース

- 3 -

研究会Temp
－31－

1
2
3
4
5
6
7
8
9
10
11
12

A

B

C

D

C

D

E

F

B

C

D

G

A B C E F B C D E B C D

A , B , C , . . . : c h a r a c t e r , t o k e n , l i n e , s t a t e m e n t o r f u n c t i o n , . . . e t c .

c o d e f r a g m e n t Y

code fragment X

: c o d e c l o n e

1 2 3 4 5 6 7 8 9 10 11 12

図 4: クローン散布図モデル
コードを表示している．

2.2.3 クローン散布図

図 4はクローン散布図の例を示している．クロー
ン散布図の縦軸と横軸にはソースコード中のトー

クンが出現順に配置される．ここではクローン散

布図を説明するために以下の文字列を用いる．

コード片 X: “ABCDCDEFBCDG”,
コード片 Y: “ABCEFBCDEBCD”

ここでは，“A”や “B”などは文字や，トークン，
行，文などのある一定の単位を表すとする．図 4
の格子内の黒色の矩形はその縦軸の要素と横軸の

要素が等しいことを意味している．このことから

クローンペアはクローン散布図においてある一定

以上の長さを持った線分として出現することとな

る．もし縦軸と横軸に配置される要素が同じファ

イルである場合は，主対角線上に黒色の矩形がプ

ロットされる．またこの時はこの対角線に対して

クローン散布図は線対称となる．

3 提案手法

3.1 これまでの問題点

我々は，Gemini（と CCFinder）をさまざまな
商用，及び非商用ソフトウェアに適用してきた．そ

してフィードバックとしていくつかの問題点が指

摘された．その一つはコードクローンを用いたリ

ファクタリングにおける問題であった．

検出したコードクローンをリファクタリング [7]
に用いる場合の問題点として，単に最大長のクロー

ンを検出してもその部分を一つの関数，メソッド

などにまとめることは難しい．我々はこれまでに

多くの実験を行なってきたが，その実験で検出さ

れた大部分のコードクローンは，特に意味的なま

とまりを持たないものであった．図 5に例を示す．
図 5では，Aと Bの二つのコード片が示されてい
る．Aと Bそれぞれの灰色の部分は，その部分が
Aと Bの間の最大長のコードクローンであること
を示している．コード片 Aではいくつかのデータ
がリスト構造の先頭から順に連続して格納されて

いる．一方コード片 Bでは，リスト構造の後方か
ら順に連続してデータが格納されている．これら

二つのコード片間には共にリスト構造を扱ってい

るという点において論理的に共通している．しか

しながらこれらのコード片の for文の前後には偶
然クローンとして含まれてしまった部分が存在し

ている．リファクタリングの視点からは，灰色の

部分全体よりも for文のみをコードクローンとし
て抽出する方が望ましい．

コードクローンをリファクタリングするための

研究はいくつか行なわれている．文献 [13]と文献
[14]では，プログラム依存グラフを用いてコード
クローンの凝集度を測定し，関数やメソッドの抽

出に用いる方法が述べられている．しかしそれら

の方法では，プログラム依存グラフの構築に非常

にコストがかかることから大規模なソフトウェア

への適用が難しく，スケーラビリティの面から見

て問題がある．一方 CCFinderでは，検出過程に
おいて字句解析のみにとどめているため，その検

出処理は非常に高速である．しかし，CCFinderに
よって検出されるコードクローンは単に最大一致

トークン数によるものであり，コードクローンの

凝集度は考慮されていない．つまり CCFinderを
用いたコードクローン検出をリファクタリングに

適用しようとした場合，ユーザは自ら CCFinder
の検出結果から意味的なまとまりのある部分を抽

出する必要がある．

この問題を解決するため，我々はまず最大長の

コードクローンを検出し，さらにそのクローンに

- 4 -

研究会Temp
－32－

�� ��� ���	��
��
���� � � ��
������ �
� ���������� ���! "�#%$�&�"�'%(�&�")�)�*
+
, -�. / 0 1�243�5�, #6 7 , �98:(,<;<. 7 ,�= * > -�/ / ��(� 7 . ?:3 ��� ;<. 7 , * * &
, -�. / #6 ;<. 7 ,�= * , -�. / 0 1�243�54, &
, -�. / 0 1 "�#@"A&
, -�. / 0 1�243�5�, #CBED ;<; &

F
� ��� ���CG@HEI�I��

�

�� ��� �J�6�K
��:���
� ���A . #%$�& . '�L�$�& .)�)4*
+
, -4. / 0 1�243�54, #% 7 , �98�(,�;<. 7 ,�= * > -�/ / ��(� 7 . ?:3 ��� ;<. 7 , * * &
, -4. / #6 ;<. 7 ,�= * , -�. / 0 14243�54, &
, -4. / 0 1�. # . &
, -4. / 0 1�243�54, #6BED ;<; &F

�M�6� �
�

NPORQ@SUTVO<W�X�Y OEZ\[

NPORQ@SUTVO<W�X�Y OEZ^]

_ `�a b cEd@eKf�chgic�f�cKj�j�kl�m n�o p
q r�s�t�u

m d@b v m a wKx m�yKo v mJz k { nKp p `:x�b v o | t `K_ b
yKo v m k k fm n�o p d@b yKo v m�z k m nKo p q r�s�t�u

m fm n�o p
q r chdhc�fm n�o p
q r�s�t�u

m d~}<� y�y f�
���������<�6�������!�9�E�

図 5: コードクローンのリファクタリング例

対して意味的なまとまりのある部分のみを抽出す

るという二段階のアプローチを提案する．この提

案手法では，例え対象が大規模なソフトウェアで

あっても実用的な時間でリファクタリングの容易

なコードクローンを検出することができる．

3.2 アプローチ

CCFinder によって検出されたコードクローン
から一つの関数やメソッドとしてまとめるのに適

した部分のみを取り出したコードクローンをシェ

イプドクローンと定義する．ソフトウェアからシェ

イプドクローンを取り出す過程は以下の三つから

なる．

STEP1: 対象のソフトウェアに対し CCFinder
を実行し，コードクローンを検出する．

STEP2: 対象のソフトウェアを解析し，関数や
for文，if文などの意味的なまとまりをもったブ
ロックの位置情報を抽出する．

STEP3: コードクローンの情報と，ブロックの
位置情報を突き合わせ，意味的なまとまりのあ

る部分のみを抽出する．

ここで，「意味的にまとまりのある」とは，直観

的には一つの関数などにまとめるのが容易にで

きるような部分を指している．

3.3 実装

ソースコードからシェイプドクローンを取り出す

機能をGeminiに実装した（図 6参照）．この部分
のプログラムは約 4000行であり C++によって実
装されている．現在のところ，対象言語は Java，C，

図 6: Code Clone Shaper 概要

C++の三種類である．ここでは，実装したシェイ
プドクローン検出プログラム（Code Clone Shaper
以後 CCShaperと略す）について説明する．実装
したプログラムは図 6にも示されているように大
きく分けて四つのモジュールから構成されている．

• 制御部
• プログラム解析部
• 抽出部
• 出力部

制御部

制御部は CCFinderの出力したコードクローン
情報を解析し，字句解析部や，ブロック抽出部，ブ

ロック管理部を呼び出す役割を担っている．

プログラム解析部

プログラム解析部では対象のソースコードを字

句解析，構文解析して，プログラム中のブロック

の位置情報を取得する．ここではブロックを中括

弧 (‘{’,‘}’)で囲まれた範囲と定義する．現段階で
は字句解析によって抽出された情報しか用いてお

らず，構文解析は今後の解析で用いる予定である．

抽出部

プログラム解析部で抽出したブロックの位置情

報と，CCFinderの出力結果であるコードクロー
ン情報を突き合わせ，コードクローンである部分

から意味的にまとまりのある部分のみを抽出する．

- 5 -

研究会Temp
－33－

表 1: ソースコードサイズ
ファイル数 行数 トークン数

Ant 508 141254 221203

図 7: Antのクローン散布図（CCShaper無）
出力部

ブロック抽出部で取り出した意味的にまとまり

のあるコードクローンを適切な順番で並び変え，

Geminiに与えるデータとして一貫性のあるものに
変換する．

4 適用実験
4.1 実験概要

前章で提案したシェイプドクローンの検出方法

の有用性を確認するためにオープンソースの Java
ソフトウェアであるAnt[1]に対して適用実験を行
なった．Antは Java用のビルドツールである．ビ
ルド手順は XMLで記述される．

提案手法の評価をするために，CCShaperを用
いたGeminiと用いていないGeminiを用いてそれ
ぞれ対象のソースファイルを解析した．そしてその

後結果を比較した．この適用実験では，CCFinder
が検出するコードクローンの最小一致トークン数

は 50に設定した．

4.2 Ant

次にAntに対しての実験結果を示す．Antは 508
個のファイルから成り立っており，総行数は 14万
1千行であった．

��

図 8: Antのクローン散布図（CCShaper有）

Code Clone Shaperを適用する前、適用後のク
ローン散布図をそれぞれ図 7、図 8に示す. また、
適用前後のコードクローン数の比較を表 2に示す.
CCShaperを用いない場合には、Ant内には一様
にコードクローンが散布しており，どのコードク

ローンを取り除くべきか、取り除くことができる

かを判断するのに、非常に手間がかかってしまう

と考えられる. 一方で、CCShaperを用いた場合
には、リファクタリングが難しいコードクローン

を取り除くことにより、クローンペアの 99％以上
（1万個以上）、クローンクラスの約 94％（803個）
を省くことができている.

実際に検出されたコードクローンのソースコー

ドを調べるために，最もクローンペアが密集して

いるラベル Bで示す部分をソースコードビューで
閲覧する．9はこの部分のコードクローンのソー
スコードを示している．このメソッド単位のコー

ドクローンは 7つのクラスに，各々一つずつ存在
した．またこれら 7つのクラスは全て同一のクラ
スを親クラスとして定義していた．これらのこと

からこのコードクローンは親クラスに引き上げる

表 2: Antから検出されたコードクローン数の比較

CCShaper有 CCShaper無
クローンペア数 12033 103
クローンクラス数 856 53

- 6 -

研究会Temp
－34－

������� � �
	����
������ ����� ��� ��������������� � �"!�!
#$��
�� � ���%��!&
�'�(
�)��*!,+��-��� �$.,�������$�����0/�/1����� � '�(
��!&
�2 ��� ��#�� ���-�3����! �4�5� �3'62 ����� 74#�� �5���98":�� ;<+"��=$>$?
.A@�B<C,?ED�B<@�+4F�@48�'6G
H ��� ���I�)"�*!,+������ ��.,���������J���"2 ��K��J#�� ��L �"����� ���-#������ M N-MO'9'�(
��!&
�2 ��� ��#�� ���-�3����! �4�5� �3'62 ����� 74#�� �5���98":�� ;<+"��=$>$?
.A@�B<C,?ED�B<@�+�NP@,B,'6G
H ��� ���I�)"�*!,+������ ��.,���������J���"2 ��K��J#�� ��L �"����� ���-#������ MQD<M9'3'�(
��!&
�2 ��� ��#�� ���-�3����! �4�5� �3'62 ����� 74#�� �5���98":�� ;<+"��=$>$?
.A@�B<C,?ED�B<@�+-D,?&'6G
H ��� ���E(
��!&
�2 ��� ��#�� ���-�3����! �4�5� �3'62 ����� 74#�� �5���98":�� ;<+"��=$>$?
.A@�B<C,?ED�B<@�+4F�@48�'6G
H�R R ����
S��)���� ���
H

図 9: ラベル Bのコードクローンのソースコード
ことによって取り除くことができる．

5 まとめ
本論文では，既存のコードクローン分析環境

Gemini を拡張してリファクタリングの候補とな
りうるコードクローンのみを抽出する機能（Code
Clone Shaper）を提案した．そして提案手法をツー
ルとして実装し，オープンソースのソフトウェアで

あるAntに適用した．Code Clone Shaperを適用
することでコードクローンをフィルタリングする

ことに成功し，抽出されたコードクローンはいず

れもリファクタリングの容易なものであった．これ

らのことから本論文で提案したコードクローン抽

出手法は非常に有用であると考えることができる．

また，今後はこのツールを実際のソフトウェア

保守の場面で利用し，そのプロセス改善に役立て

たいと考えている．

参考文献
[1] Ant, http://jakarta.apache.org/ant/,

2002.

[2] B. S. Baker, A Program for Identifying
Duplicated Code, Computing Science and
Statistics, 24:49-57, 1992.

[3] B. S. Baker, On Finding Duplication and
Near-Duplication in Large Software Sys-
tems, IN Proc. IEEE Working Conf. on Re-
verse Engineering, pages 86-95, July 1995.

[4] B. S. Baker, Parameterized Duplication in
Strings: Algorithms and an Application to
Software Maintenance, SIAM Journal on
Computing, 26(5):1343-1362, 1997.

[5] I. D. Baxter, A. Yahin, L. Moura, M.
Sant’Anna, and L. Bier, Clone Detection Us-

ing Abstract Syntax Trees, Proc. IEEE Int’l
Conf. on Software Maintenance (ICSM) ’98,
pages 368-377, Bethesda, Maryland, Nov.
1998.

[6] S. Ducasse, M. Rieger, and S. Demeyer, A
Language Independent Approach for Detect-
ing Duplicated Code, Proc. of IEEE Int’l
Conf. on Software Maintenance(ICSM) ’99,
pages 109-118, Oxford, England, Aug. 1999.

[7] M. Fowler, Refactoring: improving the de-
sign of existing code, Addison Wesley, 1999.

[8] D. Gusfield, Algorithms on Strings, Trees,
And Sequences, Cambridge University Press,
1997.

[9] J. Helfman, Dotplot Patterns: a Literal Look
at Pattern Languages, TAPOS, 2(1):31-
1,1995.

[10] 井上克郎,神谷年洋,楠本真二, “コードクロー
ン検出法”, コンピュータソフトウェア, vol.18,
no.5, pp.47-54, 2001.

[11] J. H. Johnson, Identifying Redundancy in
Source Code using Fingerprints, Proc. of
CASCON ’93, pages 171-183, Toronto, On-
tario, 1993.

[12] T. Kamiya, S. Kusumoto, and K. Inoue,
CCFinder: A multi-linguistic token-based
code clone detection system for large scale
source code IEEE Transactions on Software
Engineering, (to appear).

[13] R. Komondoor and S. Horwitz, Using slic-
ing to identify duplication in source code, In
Proc. of the 8th International Symposium
on Static Analysis, Paris, France, July 16-
18, 2001.

[14] Jens Krinke, Identifying Similar Code with
Program Dependence Graphs , In Proc. of
the 8th Working Conference on Reverse En-
gineering, 2001.

- 7 -

研究会Temp
－35－

[15] J. Mayland, C. Leblanc, and E. M. Merlo
Experiment on the Automatic Detection of
Function Clones in a Software System Using
Metrics, Proc. of IEEE Int’l Conf. on Soft-
ware Maintenance (ICSM) ’96, pages 244-
253, Monterey, California, Nov. 1996.

[16] L. Prechelt, G. Malpohl, M. Philippsen,
Finding plagiarisms among a set of programs
with JPlag, submitted to Journal of Univer-
sal Computer Science, Nov. 2001, taken from
http://wwwipd.ira.uka.de/~prechelt/Biblio/

[17] M. Rieger, S. Ducasse, Visual Detection of
Duplicated Code, 1998.

[18] Duploc, http://www.iam.unibe.ch/~rieger/duploc/,
1999.

[19] Pigoski T. M, Maintenance, Encyclopedia
of Software Engineering, 1, John Wiley &
Sons, 1994.

[20] Y. Ueda, T. Kamiya, S. Kusumoto, K. In-
oue, Gemini: Maintenance Support Envi-
ronment Based on Code Clone Analysis, 8th
International Symposium on Software Met-
rics, June 4-7, 2002.

[21] Y. Ueda, T. Kamiya, S. Kusumoto, K. In-
oue, On Detection of Gapped Code Clones
using Gap Locations, Submitted to 9th
Asia-Pacific Software Engineering Confer-
ence, 2002.

[22] S. W. L. Yip and T. Lam, A software main-
tenance survey, Proc. of APSEC ’94, pages
70-79, 1994.

[23] E. J. Wegman and Q. Luo, High Dimen-
sional Clustering Using Parallel Coordinates
and the Grand Tour, Proc. 28th Symp. In-
terface of Computing Science and Statistics,
1996.

- 8 -

研究会Temp
－36－

