
Title インラインスクリプトを含んだXHTML文書に対する
データフロー解析を用いた構文検証手法

Author(s) 松下, 誠; 鷲尾, 和則; 井上, 克郎

Citation 情報処理学会論文誌. 2004, 45(8), p. 2034-2042

Version Type VoR

URL https://hdl.handle.net/11094/50159

rights

ここに掲載した著作物の利用に関する注意 本著作物
の著作権は情報処理学会に帰属します。本著作物は著
作権者である情報処理学会の許可のもとに掲載するも
のです。ご利用に当たっては「著作権法」ならびに
「情報処理学会倫理綱領」に従うことをお願いいたし
ます。

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Vol. 45 No. 8 情報処理学会論文誌 Aug. 2004

インラインスクリプトを含んだXHTML文書に対する
データフロー解析を用いた構文検証手法

松 下 誠† 鷲 尾 和 則†,☆ 井 上 克 郎†

HTML や XHTML 文書の多くは，JavaScript や PHP といったスクリプトを用いて動的に文書
の内容を生成することが多い．これらの文書に対して，従来の構文検証手法はスクリプトの内容は無
視されていたため実際には構文誤りを含む文書を含まない文書と誤って判断していた．そこで本研究
では，インラインスクリプトとして ECMAScriptを含む XHTML文書の構文を検証するために，出
力文のデータフロー解析を用いて出力文字列を正規表現を用いて表記し，それに対して検証するとい
う手法を提案する．また，本手法を用いた構文検証ツールの実装を行い，実際の文書をツールに適用
して手法の評価を行った．その結果，既存の検証ツールでは検出できなかった誤りを検出できること
を確認した．

Data-flow Based Syntax Validation Method for XHTML Documents
with Embedded Inline Scripts

Makoto Matsushita,† Kazunori Washio†,☆ and Katsuro Inoue†

Today many HTML and XHTML documents are often dynamically generated by scripts
such as JavaScript and PHP. The existing verification techniques cannot be applicable to these
scripts. In order to verify the syntax of an XHTML document containing an in-line script,
we propose a technique that we use the data flow analysis of the output sentences, create
pattern of the output strings, and verify the pattern. In addition, we have been implemented
the syntax verification tool using this technique, and we have evaluated our approach. As
a result, we could find errors which have not been detected by the existing syntax analysis
tools.

1. は じ め に

近年，情報の可搬性や構文の単純さなどの観点

から，eXtensible Hyper Text Markup Language

（XHTML）1)を用いた文書が多く作成されている．一

般的に，XHTML文書は「静的コンテンツ」と「動的

コンテンツ」の 2種類の内容で構成されている．ここ

で静的コンテンツとは，XHTML で定められた構文

のみで記述された内容が変更されないものであり，動

的コンテンツとは，文書を閲覧する環境に依存して変

化する内容であり，XHTMLとは独立に定義された言

語によって記述されるプログラム（インラインスクリ

プト）によって記述されているものとする．

† 大阪大学大学院情報科学研究科コンピュータサイエンス専攻
Department of Computer Science, Graduate School of

Information Science and Technology, Osaka University
☆ 現在，三菱電機先端技術総合研究所

Presently with Advanced Technology R&D Center,

Mitsubishi Electric Corporation

XHTML 文書の内容は XHTML のタグ付け規則

（Document Type Definition: DTD）によって定義

されている．このため，DTDに違反したタグ付けが

行われた場合には，XHTMLブラウザによって正しく

表示ができないなど，文書を利用する場合に大きな支

障をきたす．このため，XHTML文書がDTDの定義

に反しないように記述されているかどうかを検証する

のは非常に重要である．

動的コンテンツの多くは，単純なテキスト情報だけ

ではなく，XHTMLで定められたタグをも含む内容で

ある．このため，もしインラインスクリプトを誤って

記述した場合，一見 XHTML構文誤りを含まない文

書であっても，動的コンテンツの出力する内容によっ

て文書全体が構文違反となる可能性がある．しかし，

既存の XHTML構文検証手法は，XHTML文書の内

容のうち静的コンテンツのみを対象とした検証であり，

動的コンテンツは単なるテキストデータと見なされる．

このため，本来構文誤りを含む XHTML文書を構文

誤りのない文書と誤認することがあるため，検証結果

2034

Vol. 45 No. 8 データフロー解析を用いた構文検証手法 2035

の信頼性が低くなっていた．

そこで本研究では，動的コンテンツとして EC-

MAScript で記述されたインラインスクリプトを含

んだ XHTML文書に対して，動的コンテンツの内容

を考慮した構文検証手法の提案を行う2)．本手法では

まず，対象となる XHTML文書を静的コンテンツと

動的コンテンツを分割する．次に，動的コンテンツと

して記述されているインラインスクリプトに含まれて

いる，文字列の出力を行う文（以降，出力文）中の変

数に対し，データフロー解析と構文解析を行う．両方

の解析結果を組み合わせ，動的コンテンツが出力する

内容を正規表現を用いて記述する．さらに，静的コン

テンツを解析することによって得られるタグ情報と，

動的コンテンツから得られたタグ情報を結合した結果

から，文書全体のツリーを生成し，このツリーに対し

て DTDに照らした構文検証を行う．また，本手法を

用いた XHTML 構文検証ツール ECMAX の実装を

行い，実際に利用されている XHTML文書の検証実

験を通じて，本手法の有効性評価を行う．

2. 構造化文書とインラインスクリプト

本章では，構造化文書を記述するマークアップ言語

およびインラインスクリプトについて説明する．また，

インラインスクリプトを含んだ構造化文書の構文検証

についても触れる．

2.1 XHTML

Hyper Text Markup Language（HTML）3)はウェ

ブページ作成のために，W3Cが標準化したマークアッ

プ言語であるが，タグの省略が可能など厳密にその構文

が定義されていないため構文の曖昧さが存在した．そこ

でW3Cが既存のHTMLと仕様が等価な言語をXML

を用いて定めた言語が XHTMLである．XHTML は

タグの省略が不可能であるなど，厳密な言語定義がな

されており，近年のウェブページ作成時における標準

言語となっている．

2.2 ECMAScript

ECMAScript 4)は，JavaScriptをもとにEuropean

Computer Manufacturer Association（ECMA）に

よって標準化されたインラインスクリプト用言語であ

る．ブラウザに固有のメソッドなどを排除したものと

なっている．

2.3 検証の難しさ

一般的に，構造を持つ文書は，定められた構文に

従って正しく記述されていることが重要である．その

理由として，誤って構造が記述された文書は，受け手

が文書の意味を誤解したり，内容が読み取れないなど

といった問題が発生することがあげられる．このこと

から，その構文を検証するシステムが数多く存在して

いる．しかし，既存の検証システムは，インラインス

クリプトの内容は単なる文字列データと見なし，その

内容まで検証しない．したがって，インラインスクリ

プトが誤った構文の文書を生成しても，これらの検証

システムは構文誤りを判断ができない．このため，イ

ンラインスクリプトの内容も検証するシステムが必要

となる．

我々が以前提案したように5)，入力として適当なデー

タを与えてインタプリタを介すれば，インラインスク

リプトが生成する文書も含めて検証することが可能で

ある．しかし，テストデータによって実行結果が変わ

るため，検証結果も変わる可能性がある．よってすべ

ての実行経路を通るテストデータによって検証を行う

必要があるが，そのようなテストデータを作成するこ

とは一般的に困難である．

3. 関 連 研 究

動的に生成される HTML文書や XML文書につい

て，その構文を検証する研究がいくつか行われている．

Brabrand らは <bigwig> 6) という HTML 文書

や XML 文書を生成するためのスクリプト記述言語

を対象として，スクリプトが動的に生成する HTML

（XHTML）文書の構文検証を行った．

Kempaらは DOM 7) を拡張し，DOM自身に構文

の正しさを保証する仕組みを持たせたV-DOMと，V-

DOM用の XML処理言語である P-XML 8) の提案を

行った．

Mejier らは XML処理用の関数型言語 XM λ9) を

開発した．また，Hosoyaらは XML処理のための型

付き関数型言語 XDuce 10) を開発し，型チェック機能

を導入しプログラムが生成する XML文書について構

文の正しさを保証するようにした．

いずれの研究も，XML文書や HTML文書を生成

するために新しい言語を作り，その言語に構文の正し

さを保証するような仕組みを構築している．しかし，

プログラム言語として独自の言語を対象としており，

さまざまな XHTML文書で利用可能である実用的な

手法とはいえない．

4. 提案する検証手法

提案する検証手法は，XHTML の構文を定義した

DTDと，XHTML文書を入力として，文書を DTD

に照らして静的な検証を行う．検証の結果，構文違反

が文書中に存在したかどうか，また違反 ga存在する

2036 情報処理学会論文誌 Aug. 2004

XHTML文書 静的タグ情報 インライン
スクリプト A*(B|C)

正規表現記述

動的タグ情報ツリーDTD

XHTML解析 抽出 出力内容の
分析

解析

生成
検証

結果

表示

フェーズ1

フ
ェ
ー
ズ

2

フェーズ3

図 1 検証手法の流れ
Fig. 1 Work flow of validation technique.

場合にはその場所についての情報を出力として得る．

具体的には，XHTML文書中に含まれている，その

文字列出力が正規表現として表される ECMAScript

インラインスクリプトを対象に検証を行う．一般的に，

プログラムが出力する文字列を正規表現で表すことは

できないが，本手法の目的が XHTMLの文書と付随

するプログラムの出力をあわせて，正規表現として表

現されるDTDに照らした検証を行うことであるため，

正規表現で表現できる範囲のみを対象としても問題と

はならないと考えている．本手法は動的に変わりうる

出力文字列を正規表現を用いて表すため，可能性のあ

るすべての実行経路を検証できる．ただし，動的に変

数の値が決定され，それが出力に影響を与える場合，

静的な検証は行えない可能性がある．この場合，本手

法はその部分についてプログラムの出力が定まらない

ものとして扱う．

本手法の概略を図 1 に示す．この手法は大きく分け

て次の 3段階からなる．

フェーズ 1：静的コンテンツ解析 XHTML 文書の

静的コンテンツについて構文解析を行い，タグ情

報とインラインスクリプトを抽出する．

フェーズ 2：動的コンテンツ解析 ECMAScript で

記述されているインラインスクリプトの解析を行

う．これは構文解析および出力文に含まれる変数の

データフロー解析が含まれる．それらの結果をもと

に，繰返し（*）および選択（|）記号を用いた正規
表現として出力文字列を表現する．

フェーズ 3：構文検証 最後に，フェーズ 2で得られ

た正規表現を解析し，タグ情報を生成する．その後

フェーズ 1で得られたタグ情報とあわせて，文書を

要素の親子関係として表したツリーを生成し，DTD

の要素定義に基づいて構文の検証を行う．

以下，3つのフェーズについて順に説明する．

4.1 フェーズ 1：静的コンテンツ解析

本フェーズではXHTML文書の構文解析を行う．イ

ベント駆動型のXMLパーサを用いて構文解析を行い，

1:a=1;
2:b=2;
3:c=a+1;

1 a
2 b
3 c

位置 変数定義

参照

データフロー

図 2 データフロー解析
Fig. 2 Data flow analysis.

XHTMLタグの要素名や属性リスト，テキスト要素に

含まれる文字列の情報（以降，タグ情報と呼ぶ）と，

それらの XHTML文書上での位置情報を取得する．

4.2 フェーズ 2：動的コンテンツ解析

本フェーズでは，以下の手順でインラインスクリプ

トの解析を行う．まず，インラインスクリプトの構文

解析および意味解析を行う．次に，出力文に含まれる

変数に対してデータフロー解析を行う．最後にデータ

フロー解析から得た変数の値をもとに，出力される文

字列を，構文解析で得られた制御構造により正規表現

を用いて表す．

4.2.1 構文解析および意味解析

ECMAScript の言語仕様4) をもとにインラインス

クリプトの構文解析を行い抽象構文木を作成する．ま

た，同時にインラインスクリプトの意味解析を行う．

このとき，抽象構文木の各ノードに対して，インライ

ンスクリプト上での位置情報も記録する．

4.2.2 データフロー解析

データフロー解析では，インラインスクリプトに含

まれる変数の代入および参照関係の解析を行う．たと

えば図 2 の左側に示されるインラインスクリプトの

場合，まず，1行目を解析して，位置 1で変数 aが定

義されていることを変数表（図 2 右側）に記録する．

2 行目も同様に解析し，位置 2 で変数 b が定義され

ていることを記録する．次に 3行目の解析が行われる

と，代入文の左辺で参照される変数 aの定義を変数表

から探す．その結果，1行目であることが分かるため，

1行目から 3行目に対してデータフローが存在するこ

とが分かる．これを順にプログラムの先頭から繰り返

すことによって，依存グラフ11) を作成する．

4.2.3 正規表現を用いた出力文字列の表記

正規表現による表記とは，インラインスクリプトの

出力文字列を，正規表現のメタ文字を含む文字列で表

したものである．たとえば if文の条件分岐により，一

方の実行経路では “A” という文字列が出力され，他

方の実行経路では “B” という文字列が出力されると

する．この場合，選択記号の | を用いて，“A | B”と

表すことにより，両方の出力結果を 1つの正規表現で

表記する．同様に while文や for文の繰返し中に “C”

という文字列が出力される場合には，繰返し記号の *

Vol. 45 No. 8 データフロー解析を用いた構文検証手法 2037

表 1 DTD での繰返し定義
Table 1 Definition of repeatable element in DTD.

a? 0 回もしくは 1 回
a* 0 回以上
a+ 1 回以上

を用いて，“C* ”と表す．

依存グラフを解析することにより，文字列を出力す

る文（以降，出力文）に含まれる変数から，上記のよ

うな正規表現を含む出力文字列を得ることができる．

ここで出力文がとりうる引数として，基本型（数値，

文字列，null，undefined）およびオブジェクトの定数

と変数があるが，オブジェクト（配列を含む）を引数

にとった場合，ブラウザやインタプリタが行う処理の

結果は動作時にのみ決定される．このため，静的な解

析を行う本手法では単なる文字列として扱う．さて，

解析の結果，変数の値が静的に決まる場合にはその値

を，動的に決まる場合には不定値とする．なお，クラ

スライブラリを用いた処理が含まれる場合，クラスラ

イブラリ内での処理は解析対象としないため，同様に

不定値とする．この解析を行う際に用いられる，任意

の出力文に出現する変数に対してその値の候補を計算

するアルゴリズムについては付録 A.1 で述べる．

4.3 フェーズ 3：構文検証

フェーズ 3ではフェーズ 2で得られた出力文字列か

らタグ情報を解析し，フェーズ 1で得られたタグ情報

とあわせてXHTML文書の構文検証を行う．本フェー

ズでは，1）正規表現で表された文字列からタグの情

報を解析し，2）フェーズ 1 で得られたタグ情報とあ

わせて，文書全体のツリーを生成する．そして，3）こ

のツリーについて，DTDの要素定義と検証すること

で構文の検証を行うという 3 つの手順を経る．以下，

各手順について説明する．

4.3.1 出力文字列の解析

ここでは，フェーズ 2で得られた出力文字列につい

て，そこからタグ情報を得るための解析を行う．

• 基本文の処理
XML字句解析を行う．タグ情報をスタックに積む．

• 選択文の処理
それまでのスタックを分岐の数だけ複製し，すべ

ての分岐について基本文と同じ処理を行う．

• 繰返し文の処理
繰返しが 0回，1回，2回のいずれかであるとし

て，選択文と同様の処理を行う．

正規表現の包含関係判定問題を解決することで，検

証を行うところであるが，この検証には指数時間かか

ることが分かっている12)．しかし，DTDで用いられ

1. スタックからルート要素開始タグを POP;

2. P := ルート要素;

3. C := スタックからタグ情報を POP;

4. if (C が開始タグである) {
P の子要素に C を追加;

P := C;

}
else if (C が終了タグである) {

if (P と要素名が不一致) エラー;

P := P の親要素;

}
/* テキストおよび空要素 */

else {
P の子要素に C を追加;

}
5. if (スタックが空でない) goto 3;

図 3 ツリー生成アルゴリズム
Fig. 3 Algorithm of creating tree.

� �
1:<html>

2: <head><title>sample</title></head>

3: <body>

4: <script>

5: var a = "good morning";

6: var b = "good afternoon";

7: var date = new Date();

8: document.write("");

9: if (date.getHour() < 12)

10: document.write(""+a+"");

11: else document.write(b);

12: documaent.write("");

13: </script>

14: </body>

15:</html>

� �
図 4 サンプルコード
Fig. 4 Sample code.

� �
"",(("","good morning","")

| "good afternood"),""

� �
図 5 出力文字列

Fig. 5 Pattern of output string.

る繰返しの記述は表 1 のように限定されている．その

ため，たかだか 0，1，2回の繰返しを試してどれでも

問題なければ，3回以上の繰返しについては試さなく

てもよい．よって，ここで解析時に繰返し文を複数の

選択文と同様に扱っても正確性を損なうことはない．

4.3.2 ツリーの生成

XHTML 構文解析で得られたタグ情報と出力文字

列を解析して得られたタグ情報を組み合わせて，要素

の親子関係を表したツリーを生成する．ツリーを生成

するアルゴリズムを図 3 に示す．ただし，以下，図 4

のコードを例にして説明する．

前段階での解析結果より，本アルゴリズムへは図 6

にあるように，2つの場合についてそれぞれ本アルゴ

リズムが適用される．これは，図 5 には 1 つの選択

記号が含まれているためであり，本手順によってそれ

ぞれツリーが生成されることとなる．1つめの入力を

2038 情報処理学会論文誌 Aug. 2004

� �
"<html>","<head>","<title>","sample","</title>","</head>",

"<body>","","","good morning","","",

"</body>","</html>"

� �� �
"<html>","<head>","<title>","sample","</title>","</head>",

"<body>","","good afternoon","",

"</body>","</html>"

� �
図 6 出力文字列と静的 XHTML タグの結合結果

Fig. 6 Join results of static XHTML tags and script

output.

html

head

title

text

body

ul

li

text

html

head

title

text

body

ul

text

図 7 生成されたツリー
Fig. 7 Created tree.

1. element := ルート要素;

2. if (element が子要素を持っている) {
children := element の子要素;

definition := element の内容モデル;

if (children が definition にマッチしない)

DTD 違反;

element := children;

goto 2;

}

図 8 ツリー検証アルゴリズム
Fig. 8 Algorithm of validating tree.

本アルゴリズムに適用することにより，図 7 の左側ツ

リーが，また 2つめの入力によって図 7 の右側ツリー

が得られる．

4.3.3 ツリーの検証

生成された各ツリーに対して，DTDに照らした検

証を行う．検証アルゴリズムを図 8 に示す．すべて

のツリーに対して検証を行い，DTD違反がなければ，

その XHTML文書の構文は正しいという結果を示す．

もし DTD 違反が発見された場合は，その要素が

XHTML 文書中のどの位置に存在しているかを特定

する．もし動的コンテンツ内にその要素が含まれる場

合には，依存グラフ上でその要素からグラフを逆向き

にたどり，出力に関係するすべてのノードとその位置

を特定する．特定した結果を DTDに違反する内容と

して返す．

4.4 検 証 例

ここでは，午前中に実行すると DTD違反とはなら

ないが，午後に実行すると違反となるような，図 4 に

示すインラインスクリプトを例にして，提案する検証

� �
Line 11: DTD violation found.

Appearance: #PCDATA

Requirement: li+

Data-Flow: Line 6, Line 11

� �
図 9 検証結果例

Fig. 9 Exmaple of validation result.

手法を適用した結果を示す．まず，インラインスクリ

プトの出力文字列を正規表現で表したものは，図 5 と

なる．この出力文字列を解析し，静的なタグ情報とあ

わせてツリーを生成すると，図 7 に示す 2つのツリー

が生成される．各ツリーに対して検証アルゴリズムを

適用すると，左のツリーでは違反がなく，右のツリー

では ul 要素の子要素であるテキスト要素に DTD 違

反があることが分かる．よって，このインラインスク

リプトの出力結果はDTDに違反していると判定され，

違反が含まれる場所を結果として得られる（図 9）．こ

のように，本手法ではテストデータを用意することな

くすべての実行経路について検証を行えるため，DTD

違反を容易に発見することができる．

5. 実 装

5.1 ツール ECMAXの概要

先に述べた検証手法を用いて，ECMAScript で記

述されたインラインスクリプトを含む XHTML文書

に対する構文検証システム ECMAXの試作を行った．

開発環境は以下のとおりである．

• CPU：Pentium4 2GHz

• RAM：2GB

• OS：FreeBSD 4.7–RELEASE

• 言語：Java（約 9,000行）

5.2 ECMAXの構成

ECMAXの構成を図10に示す．本システムはGUI，

XML解析部，ECMAScript解析部，出力文字列作成・

解析部，検証部からなる．

ユーザはGUIを通してXHTMLおよびDTDを入

力し，GUIは検証結果を表示する．

XML 解析部では，入力として XHTML 文書を受

け取り，構文解析を行う．具体的には，SAX パーサ

を用いて XHTML文書の構文解析を行い，タグの名

前や属性，テキスト内容を得る．また，XHTML文書

中の script要素から ECMAScriptの記述を得る．さ

らに，DTDを構文解析して要素の定義を取得する．

ECMAScript 解析部では，入力として XML 解析

部で得られたインラインスクリプトを受け取り，構文

解析およびデータフロー解析を行って，抽象構文木お

Vol. 45 No. 8 データフロー解析を用いた構文検証手法 2039

GUI XML解析部
XHTML / DTD

ECMAScript解析部出力文字列作成・解析部

ツリー作成部

検証部

インラインスクリプト

AST / フローグラフ

ツリー

静的タグ情報

動的タグ情報

要素定義

ユーザー

図 10 検証システムの構成
Fig. 10 Structure of validation system.

よび依存グラフを作成する．

出力文字列作成部では，インラインスクリプトの抽

象構文木および依存グラフを受け取り，出力文字列を

生成する．出力文字列解析部では，得られた出力文字

列からタグ情報を作成する．

ツリー作成部では，XML 解析部で得られた

XHTMLタグ情報と，出力文字列解析部で得られたイ

ンラインスクリプトのタグ情報を受け取り，それぞれ

のタグ情報を統合して文書全体のツリーを作成する．

検証部ではツリーをルート要素からたどりながら，

その要素の子要素が定義と一致しているか検証する．

親子関係に誤りがあればそれは DTD違反としてユー

ザに警告を通知し，誤りがなければ正しい文書である

ことをユーザに通知する．

5.3 ECMAXの実行例

図 4 の文書に対して，ECMAXを用いて検証した

実行画面を図 11 に示す．DTD違反が発見されてお

り，DTD違反を起こす可能性のある実行経路が反転

表示されている．

6. 評 価 実 験

本章では，ECMAScript で記述されたスクリプト

を含むXHTML文書に対して ECMAXを用いて構文

の検証を行い，その検証結果から本手法の評価を行う．

6.1 実 験 対 象

実験対象として，Webサイト上に公開されている文

書のうち，出力文を用いて HTML文書を動的に生成

しているもの 232個を収集した．さらに変換ツールを

用いて HTML から XHTML へ変換した．具体的に

は，XHTML1-Strict DTD準拠の文書と XHTML1-

Transitional DTD 準拠の文書をこの変換によって

得た．

6.2 実 験 方 法

すべてのサンプルデータに対して，XHTML 構文

図 11 ECMAX の実行画面
Fig. 11 Screenshot of ECMAX.

チェックおよび ECMAScript構文チェックを行った．

そのうえで，インラインスクリプトの内外を含めたタ

グの対応づけのチェックを行った．さらに，構文に誤り

がなかったサンプルデータに対して，対応する DTD

（Strict DTDもしくはTransitional DTD）を用いて，

DTDと文書との整合性について検証した．また，既

存の XHTML検証ツール htmllint（2001年 9 月 11

日版）を用いて，元の HTML文書を入力として検証

を行った．

6.3 実 験 結 果

実験結果を表 2 に示す．括弧内の数値は，不定値

を XHTMLのタグがいっさい含まれていないテキス

トと見なして処理を行った部分に何らかの違反が含ま

れていた文書，あるいは，違反なしという結果を得た

文書のうち，そのような不定値が含まれていた文書の

数，である．さらに htmllint では違反が検出されな

かった文書を ECMAXで検証した結果は表 3 のとお

りである．

なお，表 2 において，「XHTML構文違反」はスク

リプト以外の部分に閉じた構文違反があり図 10 で述

べた XML解析部が違反を検出したものである．「スク

リプト構文違反」はスクリプト自体に ECMAScript

構文エラーがあり，ECMAScript 解析部が違反を検

出したものである．「スクリプト内XHTML構文違反」

はスクリプトの出力文字列内で閉じた XHTML構文

違反があり，出力文字列生成・解析部が違反を検出し

たものである．「スクリプト内タグを含むタグ付け違

反」は，スクリプトの出力を含んだ文書全体が XML

文書として（DTDによらず）構文違反を含んでおり，

ツリー作成部が違反を検出したものである．「DTD違

2040 情報処理学会論文誌 Aug. 2004

表 2 ツールによって検出された XHTML 文書数
Table 2 Number of XHTML documents found by tools.

ツール ECMAX htmllint

DTD Strict Transitional Strict Transitional

XHTML 構文違反 10 10

スクリプト構文違反 48 —

スクリプト内 XHTML 構文違反 43 (14) —

スクリプト内タグを含むタグ付け違反 18 (14) —

DTD 違反 113 (35) 65 (12) 153 8

違反なし 0 48 (23) 69 214

合計 232 (63) 232

表 3 htmllint で無違反だった文書の ECMAX での検証結果
Table 3 Validation result of judged “no error” by

htmllint.

DTD Strict Transitional

スクリプト構文違反 13 46

スクリプト内 XHTML 構文違反 13 42

スクリプト内タグを含むタグ付け違反 9 16%

hline DTD 違反 34 63

違反なし 0 47

合計 69 214

反」は，上記のすべての違反がまったく含まれていな

いが，DTDに照らして検証を行った場合に違反があ

るもので，検証部によって違反を検出したもの，であ

る．検証作業はこれら 5つについて順番に行われ，ど

こか 1カ所で違反が発見された場合には，そこで解析

を終了している．

6.4 考 察

図 2 および図 3 から，ECMAXに htmllintが発見

できなかった多くの違反を発見できていることが分か

る．また，ECMAXによって Transional DTDによ

る検証の結果「違反なし」とされた 48の文書のうち，

47については htmllintも「違反なし」という検証結

果を出力しているが，残る 1つについては htmllintは

DTD違反であると誤って検出した．これは，htmllint

がインラインスクリプトの出力を考慮できなかったこ

とによるものである．本手法によるインラインスクリ

プトの出力結果を考慮した検証によって，より正確な

検証結果を得ることができると考えられる．

また，不定値を含む文書は全体の 3割程度（232中

63）であり，その他の文書はタグを静的に記述し，メッ

セージを動的に生成するという文書であった．したがっ

て，本手法の適用範囲は広範囲に及ぶものであり，本

手法の有効性は高いと考えられる．

しかしながら，本手法は静的な解析を行っているた

め，ECMAScript で記述されたインラインスクリプ

トの出力へ，動作時にのみ決定される文字列が含まれ

ており，かつその部分に XHTML構文要素と見なさ

れる文字列がある場合には，構文検証を正しく行えな

い．具体的には，動作時にのみ決定される文字列に含

まれている XHTML構文要素を含めて，全体として

正しい構文であるような XHTML文書を，本手法で

は誤りを含む文書として判断されてしまう．構文検証

の精度を向上させるためには，本手法で提案する静的

な解析に加え，実行時の情報を用いた解析が必要であ

ろう．

7. ま と め

本研究では，ECMAScriptで記述されたインライン

スクリプトを含む XHTML文書を対象として，DTD

に基づいた構文であるかを検証するための手法を提案

した．本手法は，スクリプトの出力文に対してデータ

フロー解析を行い，出力文字列を正規表現を含む文字

列で表したうえで，その文字列の検証を行うものであ

る．また，本手法に基づく検証システムを試作し，イ

ンターネット上に存在するインラインスクリプトを含

む XHTML文書に対して検証を行い，本手法の評価

を行った．その結果，動的コンテンツの内容を考慮し

た解析によって，文書の構文間違いなどをより多く発

見できることが分かった．

今後の課題としては，ECMAScript 言語が提供す

るライブラリへの対応，変数のエイリアス解析，XML

Schemaへの対応などがある．

参 考 文 献

1) W3 Consortium: XHTML 1.0: The Extensi-

ble HyperText Markup Language, A Reformu-

lation of HTML 4.0 in XML 1.0. Working Draft

(1999). http://www.w3.org/TR/1999.

2) 鷲尾和則，松下 誠，井上克郎：JavaScriptを
含んだ HTML文書に対するデータフロー解析を
用いた構文検証手法の提案，電子情報通信学会研
究技術報告，Vol.SS2002-22, pp.13–18 (2002).

3) W3 Consortium: HTML 4.01 Specification

(1999). http://www.w3.org/TR/1999/REC-

Vol. 45 No. 8 データフロー解析を用いた構文検証手法 2041

html401-19991224

4) ECMA: ECMAScript Language Specifica-

tion (1999). http://www.ecma.ch/stand/ecma-

262.htm

5) 鷲尾和則，松下 誠，井上克郎：JavaScriptを
含むHTML文書の妥当性検証手法の提案，電子情
報通信学会総合大会講演論文集，Vol.D-3-5, p.31

(2002).

6) Brabrand, C., Møller, A. and Schwartzbach,

M.: Static validation of dynamically generated

HTML, Proc. Workshop on Program Analysis

for Software Tools and Engineering (PASTE

2001), Snowbird, Utah, USA (2001).

7) W3 Consortium: Document Object Model

(DOM) Level 1 Specification, Version 1.0. Rec-

ommendation (1998). http://www.w3.org/TR/

1998

8) Kempa, M. and Linnemann, V.: V-DOM and

P-XML — Towards Valid XML Applications

(2002).

9) Meijer, E. and Shields, M.: XMλ: A Func-

tional Language for Constructing and Manipu-

lating XML Documents (1999). (Draft).

10) Hosoya, H. and Pierce, B.C.: XDuce: A Typed

XML Processing Language, Int’l Workshop on

the Web and Databases (WebDB’2000), Dallas,

Texas (2000).

11) Horwitz, S. and Reps, T.: The Use of Program

Dependence Graphs in Software Engineering,

14th International Conference on Software En-

gineering, Melbourne, Australia (1992).

12) Seidl, H.: Deciding Equivalence of Finite

Tree Automata, SIAM Journal on Computing,

Vol.19, No.3, pp.424–437 (1990).

付 録

A.1 変数値候補の計算アルゴリズム

A.1.1 概 要

依存グラフから変数値の候補を計算するアルゴリ

ズム（図 12）について説明する．本アルゴリズムは，

ECMAScript プログラムに含まれる変数のうち，プ

ログラム実行の際動的に決定される変数（オブジェク

ト）以外を対象として，任意の文中におけるある変数

のとりうる値の候補を計算するものである．

依存グラフから変数値の候補を計算するアルゴリズ

ム（図 12）について説明する．本アルゴリズムは，い

くつかの制約を加えた ECMAScriptプログラムを対

象として，任意の文中におけるある変数のとりうる値

の候補を計算するものである．

本アルゴリズムでは最初に，たとえば図 13 のよう

な ECMAScriptのソースコードから，図 14 のよう

1. スクリプトを構文解析，意味解析;

program := スクリプトの抽象構文木;

2. node := program のルートノード;

3. if (node = 繰返し制御構造文) 繰返し記号 “*” を追加;

else if (node = 選択制御構造文) 選択記号 “|” を追加;

else if (node = 出力文) {
引数に対してデータフロー解析，値を求める;

if (変数の値が動的に決まる) 値 := 不定値;

else 値 := 定数値;

値を追加;

}
4. if (node が子ノードを持っている) {

node := node の子ノード;

goto 3;

}

図 12 変数値候補の計算アルゴリズム
Fig. 12 Algorithm of creating pattern.

� �
var a=10;

for (var i=0; i<10; i+=1) {

a += i;

}

document.writeln(a);

� �
図 13 ソースコードの例

Fig. 13 Example of source code.

var a=10;

var i=0

i<10

a+=i; i++

document.writeln(a);

1

2

3

4 5

6

図 14 図 13 の依存グラフ
Fig. 14 Flow graph of example code.

な依存グラフを構築する（図 12の 1）．依存グラフの

頂点は文または式であり，有向辺は始点の次に終点が

実行されうることを示す．値を調べたい文に対応する

頂点を対象頂点，値を調べたい変数を対象変数と呼ぶ．

対象頂点を始点とし（図 12 の 2），対象変数への代

入が見付かるまで，有向辺を逆向きに辿る（図 12 の

4）．見付かった代入文の右辺に変数がある場合は，そ

の変数の値を再帰的に調べ，右辺のとりうる値を決定

する（図 12 の 3）．この手順だけでは，依存グラフに

閉路がある場合に，無限に再帰してしまう場合がある．

これを避けるために，調査中の頂点と変数の組を記憶

しておき，二重の探索を避ける．

以下，対象頂点 n を実行した直後の対象変数 xの

値の候補を xn と表す．値の候補は，具体的な値（1，

“str”，true など）と，型の決まった不定値（不定値

（数値），不定値（文字列）など）の集合で示される．

探索中の対象頂点と対象変数の組を記憶しておく大域

変数を Q とする．xn を求めるためのアルゴリズム

は，以下のとおりである．

(1) Qに，対象頂点と対象変数の組 (n, x)が含まれ

ているか調べる．含まれている場合は，xn を

展開せず，そのまま返す．含まれていない場合

2042 情報処理学会論文誌 Aug. 2004

は，(n, x)を Q に追加する．

(2) n の種類によって，以下の処理を行う．

対象変数への代入文でない場合 n に入って

くる辺の始点の集合を Nin として，

r=∩m∈Ninxm とする．

対象変数への代入文で，右辺が定数の場合

r = {右辺の値 } とする
対象変数への代入文で，右辺に変数がある場合

右辺に含まれる変数それぞれの値候補を計

算する．右辺の式に，得られた値候補を代

入し，r に加える．r の要素に xn を含む式

があった場合は，その式に xn を含まない

式を代入し，r に加えることを，r の要素

が増えなくなるまで繰り返す．ただし，xn

の要素として xn 自身が含まれていた場合

には，xn の値のうち，具体的な値として

求まっている物を代入したうえで，その演

算結果の型のみを用いて，「不定値（得られ

た型）」とする．

(3) Q から (n, x)を削除し，r を返す．

このようにして求められた，出力文に含まれる引数

の値について，抽象構文木の情報から，それぞれの出

力文が if文や while文などの制御構造下にある場合，

正規表現で用いられる選択記号 (|) や繰返し記号 (*)

を付加する．選択記号 (|) を付加する制御構造は，if

文，switch文である．また，繰返し記号 (*)を付加す

る制御構造は，while文，for文である．また，連続す

るそれぞれの出力文字列の間には連結記号 (,)を挿入

する．

A.1.2 具体的な計算例

ここでは，図 13 の最後の行で参照されている変数

aについて，その候補 a6 を具体的に求める手順につ

いて説明する．

まず Q = {(6,a)} としたうえで，a6 を計算する，

依存グラフを逆向きにたどることにより，{a1, a4} で
あることが分かる．ここで，a1 = {10} であり，a4 =

{a3 + i3} であることから，次に Q に (4, a)を追加

したうえで a3 を求める．a3 = {a1, a4} であるが，こ
こで (4, a)が Q に含まれていることと，すでに a1 の

値が求まっていることから，a3 = {10, a4} として a3

の計算を終える．

次に i3 を求める．これは i2，i5 となるが，ここで i2

は {0} であり，i5 = {i4 + 1} であることから，Q へ

(5, i) を加えて i4 の値を求めることとする．i4 の

値は {i2, i5} であるが，(5, i) は Q に含まれてい

たためここで計算を終了し，既知の結果とあわせて，

i5 = {1, i5 + 1} となる．このとき，左辺の i5 は消去

できて，i5 = {1, 不定値 (数字)} となる．この結果，
i3 の値はこれまでの結果をあわせて {0, 1, 不定値 (数

字)} であることが分かる．
a3 と i3 の値が求められたので，a4 の計算を行うこ

とができる．a3 には 2つ，i3 には 3つの要素がある

ため，6つの足し算を行い，その結果を a4 とするこ

ととなる．ただしこのとき，不定値（数字）へ定数の

演算を行っても，やはり不定値（数字）であること，

複数の同じ要素は 1つにまとめることができることか

ら，{10, 11, 不定値 (数字), a4, a4 +1} を得る．a4 の

計算結果中に a4 が再度出現したため，上記の i5 のと

きと同様に a4 を消去すると，{10, 11, 不定値 (数字)}
が得られる．

以上の結果から，a6 = {a1, a4} = {10, 11, 不定値

(数字)} を得ることができ，これが求める候補となる．
(平成 15年 10月 27日受付)

(平成 16年 6 月 8 日採録)

松下 誠（正会員）

平成 5年大阪大学基礎工学部情報

科学科卒業．平成 10 年同大学大学

院博士後期課程退学．同年同大学基

礎工学研究科助手．平成 14年同大学

情報科学研究科助手．博士（工学）．

ソフトウェア開発環境，ソフトウェア開発プロセス，

オープンソース開発の研究に従事．

鷲尾 和則

平成 13 年大阪大学基礎工学部情

報科学科退学．平成 15 年同大学大

学院情報科学研究科卒業．同年三菱

電機先端技術総合研究所．在学時，

XHTML文書検証の研究に従事．

井上 克郎（正会員）

昭和 54 年大阪大学基礎工学部情

報科学科卒業．昭和 59年同大学大学

院博士課程修了．同年同大学基礎工

学部情報科学科助手．昭和 59 年～

61 年ハワイ大学マノア校情報工学

科助教授．平成元年大阪大学基礎工学部情報科学科講

師．平成 3年同学科助教授．平成 7年同学科教授．工

学博士．ソフトウェア工学の研究に従事．

