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コードクローン解析に基づくリファクタリングの試み

肥 後 芳 樹† 植 田 泰 士† 神 谷 年 洋††

楠 本 真 二† 井 上 克 郎†

近年，ソフトウェアの大規模化・複雑化にともない，保守作業に要するコストは増大している．ソフ
トウェアの保守を困難にしている要因の 1つとしてコードクローンがあげられる．コードクローンと
はソースコード中に存在する同一，または類似したコード片のことである．たとえば，あるコード片
にバグが含まれていた場合，そのコード片のコードクローンすべてについて修正の是非を考慮する必
要がある．コードクローンに関する処理を支援するために，我々はコードクローン分析環境 Gemini
を開発してきた．Geminiをさまざまなプロジェクトに適用する中で，いくつかの問題点に直面した．
クローン検出の目的の 1つとしてリファクタリングがあげられるが，Geminiによってユーザに示さ
れるクローンはリファクタリングを適用できる単位となっていなかった．本論文ではこの問題を解決
し，Geminiを機能拡張した．また，オープンソースのソフトウェアに対して適用実験を行い，本手
法の有用性を確認する．

On Software Maintenance Process Improvement
Based on Code Clone Analysis

Yoshiki Higo,† Yasushi Ueda,† Toshihiro Kamiya,††

Shinji Kusumoto† and Katsuro Inoue†

Maintaining software systems is getting more complex and difficult task. Code clone is one
of the factors that make software maintenance more difficult. A code clone is a code portion
in source files that is identical or similar to another. If some faults are found in a code clone,
it is necessary to correct the faults in its all code clones. We have developed a maintenance
support environment, Gemini, which provides the user with the useful functions to analyze
the code clones and modify them. However, through case studies, several problems were re-
ported. That is, the clones extracted by Gemini were not necessarily appropriate to merge
into one module. In this paper, we intend to extend the functionality of Gemini to cope with
the problems. Finally, we apply the extended Gemini to several software and evaluate the
applicability of the new functions.

1. は じ め に

近年，ソフトウェアの大規模化・複雑化にともない，

ソフトウェアの保守作業がますます困難なものになっ

てきている．ソフトウェア保守では，フィールドバグ

の修正，環境変化に対する機能追加・変更，将来トラ

ブルにつながりそうな箇所に対する対応などの作業が

実施される20)．しかし，保守対象のソフトウェアがう

まく設計されていない，度重なる変更により構造が分

かりにくくなってしまう，変更履歴のドキュメントが

† 大阪大学大学院情報科学研究科
Graduate School of Information and Science Technol-

ogy, Osaka University

†† 科学技術振興機構さきがけ
PRESTO, Japan Science and Technology Agency

存在しない，などの問題により，ソフトウェア保守コ

ストは増大してきている．実際に，多くのソフトウェ

ア会社が既存システムの保守に非常に多くの人的，時

間的コストをかけていると報告されている24)．

コードクローンはソフトウェア保守を困難にしてい

る 1つの要因といわれている8)．コードクローンとは

ソースコード中に存在する同一，または類似したコー

ド片のことである．コードクローンが生成される原因

はさまざまな理由が考えられるが，その最も大きな原

因の 1つとしてコピーアンドペーストによる修正，拡

張作業があげられる．コード片にバグが含まれていた

場合，そのコード片のコードクローンとなっている部分

すべてに対して修正の是非を考慮する必要がある．こ

のような作業は，特に大規模ソフトウェアでは非常に

手間がかかる．したがって，コードクローン検出の効率
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化はソフトウェア保守工程の改善において有効である．

これまでにコードクローンを自動的に発見するための

さまざまな手法が提案されている3)∼7),12)∼16),18),19)．

その手法の 1 つとして，我々はコードクローン検

出ツール CCFinder 13)と分析環境Gemini 21)を開発

してきている．ユーザは Geminiを用いることにより

コードクローンの解析，ソースコードの修正を容易に

行うことができる23)．Geminiは主に，クローン散布

図とメトリクスグラフをユーザインタフェースとして

提供する．クローン散布図はソースコード中のコード

クローンの分布状態を俯瞰的に表示する．またメトリ

クスグラフは各々のコードクローンについての定量的

な情報を提供し，その値を用いることによって保守を

阻害するコードクローンの選択をすることが可能であ

る．選択されたコードクローンのソースコードは容易

に閲覧できる．ユーザはこれらの機能を用いることに

よってソフトウェアの保守作業を改善することができ

ると期待できる．

我々は Geminiを数十のソフトウェア会社に配布し，

さまざまなプロジェクトに用いることによって評価し

た．その結果，ソフトウェア会社からのフィードバッ

クよりいくつかの問題点が発見された．最も多く指摘

された問題は，Geminiをリファクタリング8)に利用

する際に発生する問題であった．一般的に，コードク

ローンを除去することを目的として，コードクローン

になっている部分を 1つのメソッドやクラスにまとめ

るリファクタリングが適用される．しかし Geminiに

よって検出されたコードクローンは，必ずしも 1つの

モジュールとしてまとめるのに適していない．

本論文では，この問題を解決するために Geminiの

コードクローン検出部に対して行った拡張について論

ずる．そして最後に，提案した機能の有用性を確認す

るために行った適用実験の結果について述べる．

2. コードクローン解析

2.1 コードクローンの定義9)

あるトークン列中に存在する 2つの部分トークン列

α，β が等価であるとき，α と β は互いにクローン

であるという．またペア（α，β）をクローンペアと呼

ぶ．α，β それぞれを真に包含するいかなるトークン

列も等価でないとき，α，β を極大クローンと呼ぶ．ま

た，クローンの同値類をクローンクラスと呼ぶ．ソー

スコード中でのクローンを特にコードクローンという．

2.2 コードクローン分析環境Gemini

文献 21)において我々はコードクローン分析環境

Gemini を開発した．図 1 はシステムのアーキテク

図 1 Gemini 全体図
Fig. 1 Overview of Gemini.

チャを示している．Geminiは内部のCCFinderにソー

スコードを渡し，CCFinderの解析結果をさまざまな

ユーザインタフェースを通してユーザに提供する機能

を有する．

本章では，簡単に Geminiと CCFinderの特徴を説

明する．

2.2.1 CCFinder

CCFinderはプログラムのソースコード中に存在す

るコードクローンを検出し，その位置をクローンペア

のリストとして出力する．検出されるコードクローン

の最小トークン数はユーザが前もって設定することが

できる．

CCFinderのコードクローン検出手順（ソースコー

ドを読み込んで，クローンペア情報を出力する）は以

下の 4つの STEPからなる．

STEP1（字句解析）：ソースファイルを字句解析す

ることによりトークン列に変換する．入力ファイ

ルが複数の場合には，個々のファイルから得られ

たトークン列を連結し，単一のトークン列を生成

する．

STEP2（変換処理）：実用上意味を持たないコード

クローンを取り除くこと，および，些細な表現上

の違いを吸収することを目的とした変換ルールに

よりトークン列を変換する．たとえば，この変換

により変数名は同一のトークンに置換されるので，

変数名が付け替えられたコード片もコードクロー

ンであると判定することができる．

STEP3（検出処理）：トークン列の中から指定され

た長さ以上一致している部分をクローンペアとし

てすべて検出する．

STEP4（出力整形処理）：検出されたクローンペア

について，元のソースコード上での位置情報を出

力する．

CCFinderの詳細については文献 13)で述べられて

いる．

2.2.2 Gemini

Geminiは GUIベースのコードクローン分析環境で
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図 2 クローン散布図表示例
Fig. 2 Scatter plot.

あり，内部的にコードクローン検出部としてCCFinder

を用いている．Geminiは以下のユーザインタフェー

スを提供し，対話的な解析を可能としている．

• クローン散布図，
• メトリクスグラフ，
• ソースコードビュー．
クローン散布図はソースコードのどの部分にクロー

ンペアが存在するのかを示す図である．一目でソース

コード中のコードクローンの分布状況が分かるので，

コードクローン解析の初期段階では非常に有効な解

析手段となりうる．図上でユーザはマウスを用いて任

意のクローンペアを選択することが可能である．例を

図 2に示す．クローン散布図の詳細については後ほど

論ずる．

またメトリクスグラフを用いることにより，ユーザ

はコードクローンを定量的な特性に基づいて選択でき

る．それぞれのクローンクラスについて複数のメトリ

クス値が示されていて，ユーザは長いコードクローン

や，出現数の多いコードクローンを選択できる．

ソースコードビューはクローン散布図やメトリクス

グラフと組み合わせて用いられる．ユーザはクローン

散布図やメトリクスグラフで選択されたクローンの

ソースコードをソースコードビューを用いることによ

り閲覧できる．図 3 では，図 2 において選択された

コードクローンのソースコードを表示している．

2.2.3 クローン散布図

図 4はクローン散布図の例を示している．クローン

散布図の縦軸と横軸にはソースコード中のトークンが

出現順に配置される．ここではクローン散布図を説明

するために以下の文字列を用いる．

コード片 X：“ABCDCDEFBCDG”，

コード片 Y：“ABCEFBCDEBCD”

ここでは，“A”や “B”などは文字や，トークン，行，

文などのある一定の単位を表すとする．図 4 の格子内

図 3 ソースコードビュー表示例
Fig. 3 Source code view.

図 4 クローン散布図モデル
Fig. 4 Scatter plot of code clones.

の黒色の矩形はその縦軸の要素と横軸の要素が等しい

ことを意味している．このことからクローンペアはク

ローン散布図においてある一定以上の長さを持った線

分として出現することになる．もし縦軸と横軸に配置

される要素が同じソースファイルである場合は，主対

角線上に黒色の矩形がプロットされる．またこのとき

はこの対角線に対してクローン散布図は線対称となる．

3. 提 案 手 法

3.1 これまでの手法の問題点

我々は，Gemini（含むCCFinder）をさまざまな商

用，及び非商用ソフトウェアに適用してきた．そして

フィードバックとしていくつかの問題点が指摘された．

検出したコードクローンをリファクタリング8)に用

いる場合の問題点として，単に最大長のクローンを検
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図 5 コードクローンのリファクタリング例
Fig. 5 Example of merging two code fragments.

出してもその部分を 1つの関数，メソッドなどにまと

めることは困難であることがあげられる．我々はこれ

までに多くの実験を行ってきたが，その実験で検出さ

れた大部分のコードクローンは，プログラミング言語

の意味にてらして構造的なまとまりを持たないもので

あった．図 5 に例を示す．図 5 では，Aと Bの 2つ

のコード片が示されている．Aと Bそれぞれの灰色

の部分は，その部分が Aと Bの間の最大長のコード

クローンであることを示している．コード片 Aでは

いくつかのデータがリスト構造の先頭から順に連続し

て格納されている．一方コード片 Bでは，リスト構

造の後方から順に連続してデータが格納されている．

これら 2つのコード片間にはともにリスト構造を扱っ

ているという点において論理的に共通している．しか

しながらこれらのコード片の for文の前後には偶然ク

ローンとして含まれてしまった部分が存在している．

リファクタリングの視点からは，灰色の部分全体より

も for文のみをコードクローンとして抽出する方が望

ましい．

コードクローンをリファクタリングするための研究

はいくつか行われている．文献 14)と文献 15)では，

プログラム依存グラフを用いてコードクローンの凝集

度を測定し，関数やメソッドの抽出に用いる方法が述

べられている．しかしそれらの方法では，プログラム依

存グラフの構築に非常にコストがかかることから大規

模なソフトウェアへの適用が難しく，スケーラビリティ

の面から見て問題がある．一方 CCFinderでは，検出

過程において字句解析のみにとどめているため，その

検出処理は非常に高速である．しかし，CCFinderに

よって検出されるコードクローンは単に最大一致トー

クン数によるものであり，コードクローンの凝集度は

考慮されていない．つまり CCFinderを用いたコード

クローン検出をリファクタリングに適用しようとした

場合，ユーザは自ら CCFinderの検出結果から構造的

なまとまりのある部分を抽出する必要がある．

この問題を解決するため，我々はまず最大長のコー

ドクローンを検出し，次に，そのコードクローンに含

まれる構造的なまとまりのある部分のみを抽出し，最

後にユーザに指定された最小トークン以上のクローン

を取り出すという 3段階のアプローチを提案する．

3.2 アプローチ

CCFinderによって検出されたコードクローンから

1つの関数やメソッドとしてまとめるのに適した部分

のみを取り出したコードクローンをシェイプドクロー

ンと呼ぶ．ソフトウェアからシェイプドクローンを取

り出す過程は以下の 3つからなる．

( 1 ) 対象のソフトウェアに対し CCFinderを実行し，

コードクローンを検出する．

( 2 ) 次に，対象のソフトウェアを解析し，構造的な

まとまりをもったブロックの位置情報を抽出す

る．たとえば，Javaプログラムを対象とした

場合は，構造的なまとまりを持ったブロックと

は具体的には以下で示すものである．

宣言：class { }，interface { }
メソッド：メソッド，コンストラクタ

文：if 文，for 文，while 文，do 文，switch

文，try文，synchronized文，static文

ブロック：‘{’と ‘}’で囲まれた範囲
( 3 ) 最後に，コードクローンの情報と，ブロックの位

置情報を突き合わせ，ユーザに指定された最小

トークン数以上のクローンをシェイプドクロー

ンとして取り出す．

CCFinderのコードクローン検出過程では，ソース

コードに含まれるトークン数を n，検出された最も長

いクローンのトークン数を t とした場合，O(nt) 時

間で解析結果を得ることが可能である，詳しくは文

献 13)を参照していただきたい．CCFinderの検出し

たコードクローンからシェイプドクローンを抽出する

解析では，O(n) の処理時間で対象ソースコードを構

文解析しソースコード中の構造的なまとまりのある部

分を抽出できる．また O(cs log c)（c は 1つのファ

イルあたりに含まれるコードクローンの数，s は対象

ソースコードの数，c，s いずれも n に対して非常に

小さい値となる）の処理時間で CCFinderの検出した

コードクローン情報と，ソースコード中の構造的なま

とまりのある部分から，シェイプドクローンを抽出で

きる．

他のアプローチ，たとえばプログラム依存グラフを
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図 6 Code Clone Shaper 概要
Fig. 6 System of Code Clone Shaper.

用いる手法と比較した場合，プログラム依存グラフ構

築の時間コストが O(m2)（m はソースコード中の文

や式の数，mは nと比例関係にある）である11)こと

を考慮すると，この提案手法では，対象が大規模なソ

フトウェアであっても実用的な時間でリファクタリン

グの容易なコードクローンを検出できると期待できる．

3.3 実 装

ソースコードからシェイプドクローンを取り出す機

能を Geminiに実装した（図 6参照）．ユーザは Gem-

iniの GUIの一部であるオプション設定ウィンドウか

らシェイプドクローン抽出の有無を設定し，抽出する

シェイプドクローンの最小トークン数も指定すること

が可能である．このオプション機能を設定することで

ユーザは構造的なまとまりを持つコードクローンを

Geminiを用いて分析できる．Geminiの詳しい使用

方法は，文献 21)を参照していただきたい．

この機能は約 1万 2千行の Javaプログラムで実装

されている．現在のところ，対象言語は Javaのみで

ある．ここでは，実装したシェイプドクローン検出プ

ログラム（Code Clone Shaper以後 CCShaperと略

す）について説明する．実装したプログラムは図 6に

示されるように大きく分けて 4つのモジュール，制御

部，プログラム解析部，抽出部，出力部から構成され

ている．

制 御 部

制御部は CCFinderの出力したコードクローン情報

を解析し，プログラム解析部や，抽出部，管理部を呼

び出す役割を担っている．

プログラム解析部

プログラム解析部では対象のソースコードを字句解

析，構文解析して，プログラム中の構造的なまとまり

を持つブロックの位置情報を取得する．本手法におけ

るブロックの位置情報はソースコードのファイルパス，

ファイル内でのブロックの開始行，開始列，終了行，

終了列の 5つの情報からなる．ソースコードのファイ

ルパスは，ユーザから指定されたファイルに対して解

析を行っているのですでに取得済みである．残りの 4

つの値はソースコードを構文解析する過程で取得され

る．なお，このモジュールは JavaCC 10) を用いて構

築されている．

抽 出 部

プログラム解析部で抽出したブロックの位置情報と，

CCFinderの出力結果であるコードクローン情報を突

き合わせ，コードクローンである部分からプログラミ

ング言語の意味にてらして構造的にまとまりのある部

分のみを抽出する．ブロックの位置情報と同様にコー

ドクローン情報もソースコードのファイルパス，開始

行，開始列，終了行，終了列の 5つの情報からなる．

つまり，CCFinderの検出したコードクローン内に含

まれる一番外側の構造的なまとまりを持ったブロック

がシェイプドクローンとして抽出される．

出 力 部

抽出部で取り出したシェイプドクローンを適切な順

番で並べ変え，Geminiに与えるデータとして一貫性

のあるものに変換する．

3.4 リファクタリング方法

本節では，提案機能を使用したリファクタリング

方法を説明する．リファクタリングの手順は以下の

STEP1～STEP3からなる．

STEP1（クローン検出）：Geminiを用いて対象ソー

スコードからシェイプドクローンを検出する．

STEP2（クローン選択）：Geminiのクローン散布

図，メトリクスグラフを用いてリファクタリング

対象コードクローンを特定する．

STEP3（クローン除去）：STEP2で選択したコー

ドクローンを除去する．

STEP1については，Geminiの GUIの一部である

オプション設定ウィンドウからシェイプドクローン抽

出機能の設定ができることは 3.3 節で述べた．

STEP2では，検出したシェイプドクローンをクロー

ン散布図とメトリクスグラフを用いて分析し，リファ

クタリング対象となるコードクローンを決定する．

クローン散布図を用いた場合には，クローンが密集

しているファイルのコードクローンを取り除くことが

有効である．これまでに行われたケーススタディ17)で

は，各ファイルにおいてそのファイルのクローンとなっ

ている行の割合，ファイル中の最大長クローンとその
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ファイルの改版数を定量的に比較し，一定以上の割合

でクローンが含まれている場合や，非常に長いコード

クローンが含まれていた場合，そのファイルの改版数

が多くなることが示されている．つまり，クローン散

布図を用いてクローンが密集しているファイルのコー

ドクローンをリファクタリング対象として選択し除去

した場合，長期的なそのファイルの改版数はリファク

タリングしない場合に比べ少なくなることが予測され，

保守コストの削減が期待できる．

一方，メトリクスグラフを用いた場合には各クロー

ンクラスの特性に基づいてリファクタリング対象コー

ドクローンを選択することが可能である．メトリクス

グラフではクローンクラスを以下の 4つのメトリクス

を用いて特徴づけている．

RAD(C)：クローンクラス C のディレクトリ階層

における分散度を示すメトリクスである．クロー

ンクラス C 中のすべてのコード片がある 1つの

ファイル内に存在する場合は 0，1つのディレク

トリ内に存在する場合は 1と，広い範囲で分散し

ているほどこのメトリクス値は大きくなる．

LEN(C)：クローンクラスCに含まれるコード片の

最大長を表す．

POP(C)：クローンクラスCに含まれるコード片の

数を表す．

DFL(C)：クローンクラスCに含まれるコード片に

共通するロジックを実装するサブルーチンを作り，

各コード片をそのサブルーチンの呼び出しに置き

換えた場合の減少が予測されるトークン数である．

たとえば，将来的にバグが見つかった場合の修正コ

ストをなるべくおさえたい場合は，POP値の大きいク

ローンクラスを除去することが有効である．また DFL

値の大きいクローンクラスを除去することは，ソース

コードの行数を多く減少させることを意味するので，

ソフトウェアの規模を小さくするという意味で有効で

ある．

STEP3では，ユーザはまず STEP2で選択したコー

ドクローンのソースコードを Geminiのソースコード

ビューを用いて閲覧し，どのように除去するのかを決

定しなければならない．たとえば，選択したクローン

クラスのコード片のすべてもしくは大半が 1 つのク

ラス内に存在する場合は，そのクローンクラスのコー

ド片に共通するロジックを新しいメソッドとして実装

し，各コード片をそのメソッドの呼出文に置き換える

ことが有効である．また，Fowlerが提唱しているリ

ファクタリングパターン8)の中にもクローンの除去に

適用可能なパターンが存在する．たとえば，複数のク

表 1 ソースコードサイズ
Table 1 Source code size.

ファイル数 行数 トークン数
ANTLR 239 43,548 140,802

Ant 508 141,254 221,203

ラスにメソッド単位のコードクローンが存在した場合

を考える．もしそれらのクラスが共通の親クラスを継

承しているならば，クローンとなっている各メソッド

に対して “Pull Up Method”パターンを適用すること

で，クローンを除去できる．除去方法を決定した後は，

ユーザはテキストエディタなどを用いて，実際にソー

スコードに変更を加え，コードクローンを除去する．

4. 適 用 実 験

4.1 実 験 概 要

前章で提案したシェイプドクローンの検出方法の有

用性を確認するためにオープンソースの Javaで記述

されたソフトウェアである ANTLR 2)と Ant 1)に対

して適用実験を行った．

ANTLR（ANother Tool for Language Recogni-

tion）は構文解析器を生成するためのツールである．

生成された構文解析器は Javaもしくは C++で出力

される．Antは Java用のビルドツールであり，ビル

ド手順は XMLで記述される（表 1）．

提案手法の評価をするために，CCShaperを用いた

Geminiと用いていない Geminiを用いてそれぞれ対

象のソースファイルを解析し，その結果を比較した．こ

の適用実験では，CCFinderが検出するコードクロー

ンの最小一致トークン数は 50，CCShaperが抽出す

るコードクローンの最小トークン数は 30に設定した．

またこの適用実験では，クローン散布図を用いてリ

ファクタリングを行うコードクローンを決定した．文

献 17)では，コードクローンを一定以上含むファイ

ルが他のファイルに比べ改版数が多くなることを示し

ている．クローン散布図でクローンが密集している部

分はコードクローンを多く含むファイルであるため，

このようなファイル中に存在するコードクローンをリ

ファクタリングすることにより，そのファイルの保守

性を高めることができる．

4.2 ANTLR

ANTLRは 239個のソースファイルから構成されて

おり，総行数は 4万 4千行である．

CCShaperの適用前，適用後のクローン散布図をそ

れぞれ図 7，図 8に示す．また，適用前後のコードク

ローン数の比較を表 2に示す．CCShaperを用いない

場合には，ANTLR内に発見されるコードクローンは
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図 7 ANTLR のクローン散布図（CCShaper なし）
Fig. 7 Result without Code Clone Shaper in ANTLR.

図 8 ANTLR のクローン散布図（CCShaper あり）
Fig. 8 Result with Code Clone Shaper in ANTLR.

表 2 ANTLR から検出されたコードクローン数の比較
Table 2 Numbers of clones in ANTLR.

CCShaper なし CCShaper あり
クローンペア数 338,574 972

クローンクラス数 1,072 142

非常に多くなってしまい，どのコードクローンを取り

除くべきか，取り除くことができるかを判断するのに，

非常に手間がかかってしまうと考えられる．一方で，

CCShaperを用いた場合には，リファクタリングが難

しいコードクローンを取り除くことにより，クローン

図 10 Ant のクローン散布図（CCShaper なし）
Fig. 10 Result without Code Clone Shaper in Ant.

図 11 Ant のクローン散布図（CCShaper あり）
Fig. 11 Result with Code Clone Shaper in Ant.

表 3 Ant から検出されたコードクローン数の比較
Table 3 Numbers of clones in Ant.

CCShaper あり CCShaper なし
クローンペア数 12,033 103

クローンクラス数 856 53

ペアの 99%以上（33万個以上），クローンクラスの約

85%（830個）を省くことができている．

また，どのようなコードクローンが検出されている

のかを調べるために，図 8において最もクローンペア

が密集しているラベル Aで示されている部分のソース
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図 9 ラベル A のコードクローンのソースコードとリファクタリング例
Fig. 9 Merged clone sample in ANTLR.

コードを調べ，図 9に示す特徴的なクローンを発見し

た．このクローンクラスは 28個のコード片から成り

立っており，それぞれのコード片の長さは 82トーク

ンであった．またこのクローンクラスのコードクロー

ンはすべてメソッド単位のクローンであり，コード片

の差異は図 9 の灰色で示されている部分 2 カ所の定

数名の違いのみであった．このクローンクラスのすべ

てのコード片はすべて同一のクラス内に存在している

メソッドであり，引数を 2つ追加することによって容

易に 1つのメソッドにまとめることができる．

4.3 Ant

次に Antに対しての実験結果を示す．Antは 508

個のファイルから成り立っており，総行数は 14 万 1

千行であった．

CCShaperを適用する前，適用後のクローン散布図

をそれぞれ図 10，図 11 に示す．また，適用前後の

コードクローン数の比較を表 3に示す．CCShaperを

用いない場合には，Ant 内には一様にコードクロー

ンが散布しており，どのコードクローンを取り除くべ

きか，取り除くことができるかを判断するのに，非常

に手間がかかってしまうと考えられる．一方で，CC-

Shaperを用いた場合には，リファクタリングが難し

いコードクローンを取り除くことにより，クローン

ペアの 99%以上（1万個以上），クローンクラスの約

94%（803個）を省くことができている．

実際に検出されたコードクローンのソースコードを

調べるために，最もクローンペアが密集しているラ

ベル Bで示す部分をソースコードビューで閲覧する．



Vol. 45 No. 5 コードクローン解析に基づくリファクタリングの試み 1365

図 12 ラベル B のコードクローンのソースコード
Fig. 12 Entirely same clone in Ant.

図 12はこの部分のコードクローンのソースコードを

示している．このメソッド単位のコードクローンは 7

つのクラスに，各々1つずつ存在した．またこれら 7

つのクラスはすべて同一のクラスを親クラスとして定

義していた．これらのことからこのコードクローンは

親クラスに引き上げることによって取り除くことがで

きる．

5. ま と め

本論文では，既存のコードクローン分析環境Gemini

を拡張してリファクタリングの候補となりうるコード

クローンのみを抽出する機能（Code Clone Shaper）

を提案した．提案手法をツールとして実装し，オープ

ンソースのソフトウェアである ANTLR，Ant に適

用した．Code Clone Shaperを適用することでコー

ドクローンをフィルタリングすることに成功し，抽出

されたコードクローンはいずれもリファクタリングの

容易なものであった．これらのことから本論文で提案

したコードクローン抽出手法は非常に有用であると考

えることができる．しかし，この提案手法ではコード

クローンをリファクタリングしやすい単位として抽出

したものであり，抽出した各クローンがどのようにリ

ファクタリングできるのかまでは考慮していない．今

後は抽出したクローンをどのようにリファクタリング

できるのかによって分類する手法の研究を行うととも

に，このツールを実際のソフトウェア保守の場面で利

用し，そのプロセス改善に役立てたいと考えている．

謝辞 CCFinder，Gemini の評価について多くの

フィードバックをいただいた．CCFinder メーリング

リストの参加者に感謝します．
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