
Title 複雑度メトリクスを用いたエラー予測の一手法 : ア
プリケーションフレームワークを用いた開発への適用

Author(s) 神谷, 年洋; 楠本, 真二; 井上, 克郎 他

Citation 情報処理学会論文誌. 2001, 42(6), p. 1601-1609

Version Type VoR

URL https://hdl.handle.net/11094/50161

rights

ここに掲載した著作物の利用に関する注意 本著作物
の著作権は情報処理学会に帰属します。本著作物は著
作権者である情報処理学会の許可のもとに掲載するも
のです。ご利用に当たっては「著作権法」ならびに
「情報処理学会倫理綱領」に従うことをお願いいたし
ます。

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Vol. 42 No. 6 情報処理学会論文誌 June 2001

複雑度メトリクスを用いたエラー予測の一手法
アプリケーションフレームワークを用いた開発への適用

神 谷 年 洋† 楠 本 真 二†

井 上 克 郎† 毛 利 幸 雄††

本論文では，アプリケーションフレームワークに基づくオブジェクト指向プログラムに含まれるク
ラスを対象として，複雑度メトリクスによるエラーの予測精度を向上させることを目的とした，クラ
スを分類する方法の提案および実験的評価を行う．実験では，Chidamberらのメトリクスを含むいく
つかの複雑度メトリクスを用いて，アプリケーションフレームワークMFC（Microsoft Foundation
Class）を用いて開発された C++プログラム中のクラスのエラー修正時間の予測を行い，本手法によ
り予測精度が改善することが示された．

An Error Estimation Method for C++ Program
with Object-oriented Applicatoin Framework

Toshihiro Kamiya,† Shinji Kusumoto,† Katsuro Inoue†

and Yukio Mohri††

For improvement precision of error estimation by complexity metrics, this paper propses a
method to classify classes in object-oriented programs developed with an application frame-
work and evaluates the method emprically. In the experiment, the method improves precision
for Chidamber and Kemerer’s metrics to estimate time to fix errors of each class in a programs
develped with a application framework MFC (Microsoft Foundation Class).

1. ま えが き

近年，ソフトウェアの応用分野の拡大とともに，ソ

フトウェアが大規模・複雑化してきている．それにと

もない，開発期間の短縮やコストの削減・品質の向上

が求められている．これらの要求を実現するために数

多くのソフトウェア開発支援に関する研究が行われて

きている．

開発支援のアプローチの 1 つはソフトウェア開発

における各作業の効率化である．開発作業の効率化を

目指してこれまでに多くのソフトウェア開発手法やソ

フトウェアツールが開発されてきた．最近では，オブ

ジェクト指向パラダイムに基づいた分析・設計法，プ

ログラミング言語などが数多く提案され，実際の開発

現場でも使われるようになってきている1)．

† 大阪大学大学院基礎工学研究科
Graduate School of Engineering Science, Osaka Univer-

sity

†† 日本ユニシス株式会社
Nihon Unisys, Ltd.

また，オブジェクト指向開発の普及にともない，設

計やドメインに関する知識が蓄積されてきたことによ

り，ドメインを限定することで大規模な再利用を可能

とするフレームワークやコンポーネントといったライ

ブラリが登場してきた．また，デザインパターンやビ

ジネスオブジェクトといった分析・設計を補助するた

めの手法も提案されてきている．これらのアプローチ

は，ソフトウェアの開発時に生産性を向上させるため

のアプローチである．

一方，ソフトウェアメトリクスを用いた生産性や品

質向上のアプローチも広く受け入れられている．ソフ

トウェアメトリクス10) は，ソフトウェアプロダクト

のさまざまな特性（複雑度，信頼性，効率など）を判

別する客観的な数学的尺度である．メトリクスを用い

てソフトウェアの状態を評価することで，問題の含ま

れる部分に対する変更を行ったり，その部分に対する

レビュー・テスト工数の割当を増やしたりするという

対処が施される．メトリクスを用いたアプローチを実

行する際には，メトリクス値を計測するためのツール

1601

1602 情報処理学会論文誌 June 2001

と計測結果を用いたエラー☆予測の手法の確立が必要

である．

複雑度メトリクスを用いて，クラスにエラーが含ま

れているかどうか，クラスに含まれているエラー数が

何個か，クラスに含まれるエラーの修正工数，を予測

する手法がある．その方法は一般に，(1) メトリクス

およびエラーに関するデータを収集し，(2)予測式を

作成し，(3)予測式を適用してエラーを予測する，の

3つの段階からなる．クラスの種類によって予測式を

別々に立てるほうがよいという指摘2)はあるが，クラ

スの種類分けを自動的に行う一般性のある方法は難し

く，実際にそのような方法を用いてエラー予測精度が

向上したという報告はない．

そこで，本論文では，アプリケーションフレームワー

クを用いた開発に限定することで，1つの分類方法を

示し，上述の方法で予測する実験を行って，有効性を

評価した．実験の結果，CKメトリクスを用いてエラー

が含まれるクラスを予測する精度が，本手法によって

改善されたことが確認できた．

2. 準 備

2.1 オブジェクト指向複雑度メトリクス

ソフトウェアメトリクスは，ソフトウェアのさまざ

まな特性（複雑度，信頼性，効率など）を判別する客

観的な数学的尺度であり，ソフトウェアを統計的な視

点から見ることを可能にする9)．

たとえば，分析フェーズでは，仕様書からソフトウェ

アの機能の大きさを測定し，それによって開発コスト

を見積もるための FP（ファンクションポイント）が

提案されている5)．設計や実装のフェーズでは，設計

書やソースコードからソフトウェアの複雑さを測定し，

それによってエラーの数を予測するための複雑度メト

リクスがよく用いられている12)．従来の（オブジェク

ト指向ではない）ソフトウェアに対しては，FPとし

て IFPUG法6)，複雑度メトリクスとして Halstedの

メトリクス，McCabeのサイクロマチック数15) など

がある．

オブジェクト指向ソフトウェアのクラスに対する複

雑度メトリクスとして，Chidamberらは 6種類の複

雑度メトリクス（CKメトリクス）を提案している5)．

CK メトリクスは，オブジェクト指向ソフトウェア向

けのメトリクスとして有名であり，複数の研究者によ

☆ IEEE 標準では，ソフトウェアの開発作業において人間がおか
す誤りをエラー，エラーがソフトウェア中に具体化したものを
フォールトと定義している．本論文中ではエラーとフォールト
を同じ意味に用いる．

る複数の実験に用いられていて4),14)，オブジェクト指

向ソフトウェアに対しては従来のコードメトリクスよ

り有効であるとの報告がなされている2)．

以下に CKメトリクスの定義を示す．これらのメト

リクスはいずれも測定値が大きいほど複雑であること

を意味している．

WMC（クラスの重み付きメソッド数；weighted

methods per class）：計測対象クラス Ci が，メ

ソッド M1, ..., Mn を持つとする．これらのメ

ソッドの複雑さをそれぞれ c1, ..., cn とする．こ

のとき，WMC = Σci である．適切な間隔尺度

f を選択して ci = f(Mi)によりメソッドを重み

付けする．文献 2)と 5)においては，すべてのメ

ソッドの複雑さが同じであるという仮定をおいて，

WMCをメソッドの数としている．本論文でも同

じ仮定を用いる．

DIT（継承木における深さ；depth of inheritance

tree）：DITは計測対象クラスの継承の深さであ

る．多重継承が許される場合は，DITは継承木に

おけるそのクラスを表す節点から根に至る最長パ

スの長さとなる．

NOC（子クラスの数；number of children）：NOC

は計測対象クラスから直接導出されているサブク

ラスの数である．

CBO（クラス間の結合；coupling between object

classes）：CBOは，計測対象クラスが結合して

いるクラスの数である．あるクラスが他のクラス

のメソッドやインスタンス変数を参照していると

き，結合しているという．

RFC（クラスの反応；response for a class）：計測

対象のクラスのメソッドと，それらのメソッドか

ら呼び出されるメソッドの数の和として定義され

る（すなわち，メッセージに反応して潜在的に実

行されるメッセージの数である）．

LCOM（メソッドの凝集の欠如；lack of cohesion in

methods）：計測対象クラス Ci が n 個のメソッ

ド M1, ..., Mnを持つとする．Ii (i = 1, ..., n)を，

それぞれメソッド Miによって用いられるインスタ

ンス変数の集合とする．P = {(Ii, Ij)|Ii∩Ij = ∅}
と定義し，Q = {(Ii, Ij)|Ii ∩ Ij �= ∅} と定義す
る．もし I1, ..., In がすべて ∅ のときは，P =

∅とする．このとき，LCOM = |P | − |Q|，ただ
し，LCOM < 0 のときは，LCOM = 0 と定義

する．

Chidamberらは 2つのソフトウェア開発組織でオ

ブジェクト指向言語（C++と Smalltalk）を用いて開

Vol. 42 No. 6 複雑度メトリクスを用いたエラー予測の一手法 1603

発されたプログラムに含まれるクラスからこれらのメ

トリクスの値を算出し，クラスごとのメトリクス値の

平均値が大きいほど開発費用が大きくなることを実験

的に確かめている5)．Basiliらは，CK メトリクスを

用いて効果的にエラー発生が予測できることを示した．

CK メトリクスが複雑であると判定したクラスは，そ

うではないクラスよりもエラー発生確率が高いことを，

実験データによって示した2)．

我々も，アプリケーションフレームワークを用いた

開発を対象として，クラスの再利用が CBOと RFC

に影響を与えることを明らかにし，CBOと RFCを

修正したメトリクスを定義した8)．それらを次に示す．

CBON，CBOR：CBORと CBONは新規開発ク

ラスに対してのみ定義される．CBORは計測対象

クラスが結合している再利用された（すなわち，ラ

イブラリに含まれる）クラスの数である．CBON

は計測対象クラスが結合している新規開発クラス

の数である．定義より，任意の新規開発クラス c

に対して，CBON(c)+CBOR(c) = CBO(c)と

なる．

RFCN，RFCR：RFCNと RFCRは新規開発クラ

スに対してのみ定義される．RFCNは計測対象

のクラスのメソッド数と，それらのメソッドから

呼び出されるメソッドのうち新規開発クラスに

属するものの数の和である．RFCRは計測対象

のクラスのメソッドから呼び出されるメソッド

のうち再利用クラスに属するものの数の和であ

る．定義より，任意の新規開発クラス cに対して，

RFCN(c) +RFCR(c) = RFC(c) となる．

2.2 エラー発生予測手法

一般に，複雑度メトリクスを用いてクラスのエラー

発生を予測する手順は一般に次のようになる．

(1)基準となるデータの収集：CK メトリクスを計

測するためのソースコードあるいはクラスの設計

書，発見されたエラーとエラーごとに修正された

クラスの記録を収集する．

(2)予測式の作成：メトリクスの計測値から統計分

析によって，クラスにエラーが含まれるかどうか，

あるいは，含まれる数，エラー修正労力を予測す

る式を作る．たとえば，Basiliらの実験では，ク

ラスのメトリクス値を入力とし，エラーの有無（2

値）を出力としていたため，多変量ロジスティッ

ク回帰分析を用いている．

(3)エラー発生の予測：計測対象クラスから得られ

たメトリクス値をエラーの予測式に適用し，エ

ラーの有無や数，修正労力を予測する．

クラスの種類（たとえば，ユーザインタフェースを

受け持つクラスか，データベースにアクセスするクラ

スか）によって，メトリクス値の分布やエラー予測の

有効性に大きな違いがあることが指摘されている2)．

したがって，クラスの種類ごとに異なる予測式を用い

ることで予測精度が向上することが期待されるが，任

意の開発においてクラスの種類分けをソースコードか

ら自動的に行うことは困難である．

3. クラス分類を用いた予測手法

アプリケーションフレームワークを用いた開発にお

いては，フレームワークのクラス階層は（厳密ではな

いにしても）クラスの種類を反映すると考えられる．

また，フレームワークに含まれるクラスから導出に

よって新しいクラスを作成することが多く行われる．

そのような開発において，クラスの種類の代わりに，

そのクラスが導出されたフレームワークの親（また

は先祖）クラスを用いる．クラス分類によって予測式

のパラメータ（係数）を変更することにより，エラー

予測精度の向上が期待できる．クラス分類はフレーム

ワークのクラス階層に依存するため，フレームワーク

ごとに係数を用意する必要がある．クラス分類と CK

の複雑度メトリクスを用いてクラスのエラー発生を予

測する手順は次のようになる．

(1)分類クラスの選出：フレームワークのクラスか

ら，分類に適したクラス（以下「分類クラス」）を

選出する．フレームワークのアーキテクチャを考

慮して，代表的なクラスを選ぶ必要がある．

(2)基準となるデータの収集：CK メトリクスを計

測するためのソースコードあるいはクラスの設計

書，発見されたエラーとエラーごとに修正された

クラスの記録を収集する．

(3)予測式の作成：クラスの親（または先祖）クラ

スがどの分類クラスであるかによって，収集デー

タのクラスを分類する．それらの分類ごとに，メ

トリクスの計測値から統計分析によってエラーの

有無や数，修正労力を予測する式を作る．

(4)エラー発生の予測：クラスに対して，分類に従っ

て予測式を適用し，エラーの有無や数，修正労力

を予測する．

一般に，フレームワークのクラス間にも継承関係が

あるため，分類クラス間にも継承関係が生じる．子ク

ラスは親クラスを特化したクラスであると考えられる

ため，分類としては子（あるいは子孫）側のクラスを

用いるべきである．図 1 において，分類クラス Bは

Aの子孫であるため，新規開発クラス qと uの分類

1604 情報処理学会論文誌 June 2001

図 1 分類クラスの例
Fig. 1 An example of classification.

表 1 分類クラス例における分類
Table 1 Classification in the example.

Class Classification

p A

q B

r その他
s その他
t C

u B

は Bとなる（表 1）．

また，C++などの多重継承を許すプログラミング

言語を使用した場合には，分類クラス間で継承関係が

なくても，あるクラスの分類クラスが複数になる可能

性がある．もしこのような状況が発生すると想定され

る場合には，(1)あらかじめ分類クラス間の優先順位

を指定する，あるいは (2)多重継承しているクラスは

別の分類とする，などの対策が必要である．

4. 評 価 実 験

4.1 概 要

提案した手法を，ある企業で行われた新人研修にお

けるプログラム開発プロジェクトで得られたデータ

に適用した．このプロジェクトでは，電子メールの配

送システムを開発する．システムは 5 つのサブシス

テム（SMTPサーバ，POPサーバ，DELIVERサー

バ，SMTPクライアント，POPクライアント）から

構成されている．開発チームは 4から 5人の開発者で

構成され，開発者は各サブシステムを開発する．プロ

ジェクト開始時に開発チームに各サブシステムの仕様

が渡され，6日間で，設計，実装，テストを行う．最終

的にインストラクタによる受け入れテストが実施され

る．プログラミング言語として Visual C++を用い，

表 2 分類 CDialog のメトリクスおよびエラー
Table 2 Metrics and errors for CDialog.

C
L
S
#

C
B
O
/

R

R
F
C
/

R

W
M
C

L
C
O
M

D
I
T

N
O
C

N
I
V

S
L
O
C

E
C

E
T

1 0/0 2/2 2 1 4 0 3 44 0 0
2 2/0 7/4 4 0 4 0 4 111 0 0
3 0/0 2/2 2 1 4 0 4 47 0 0
4 1/0 4/3 3 3 4 0 2 56 0 0
5 0/0 2/2 2 1 4 0 5 50 0 0
6 2/0 7/4 4 6 4 0 4 66 0 0
7 0/0 2/2 2 1 4 0 4 49 0 0
8 1/0 4/3 3 3 4 0 5 56 0 0
9 0/0 2/2 2 1 4 0 5 51 0 0

10 0/0 2/2 2 1 4 0 5 51 0 0
11 1/0 6/4 4 4 4 0 5 101 0 0
12 0/0 4/4 4 2 4 0 4 60 0 0
13 0/0 5/5 5 0 4 0 6 68 0 0
14 3/0 12/7 7 19 4 0 3 204 2 82.6
15 0/0 2/2 2 1 4 0 6 53 0 0

CLS#はクラスの通し番号．CBO/R の欄には CBO と CBOR の値が示されている．
CBON の値は CBON = CBO − CBOR によって求める．RFC，RFCR，
RFCN も同様．EC はクラスに発見されたエラーの数，ET はそれらの修正に要した時間．

表 3 分類 CDocument のメトリクスおよびエラー
Table 3 Metrics and errors for CDocument.

C
L
S
#

C
B
O
/

R

R
F
C
/

R

W
M
C

L
C
O
M

D
I
T

N
O
C

N
I
V

S
L
O
C

E
C

E
T

16 1/0 10/7 7 21 3 0 3 78 0 0
17 1/0 14/11 11 49 3 0 9 144 0 0
18 1/0 10/7 7 21 3 0 3 78 0 0
19 1/0 10/7 7 21 3 0 5 79 0 0
20 1/0 10/7 7 21 3 0 5 77 0 0
21 2/1 19/14 14 83 3 0 12 284 1 9.27
22 2/0 17/13 13 46 3 0 12 223 0 0
23 1/0 18/13 13 60 3 0 7 217 1 0.27
24 2/1 25/20 20 148 3 0 12 272 6 168
25 4/1 24/17 17 90 3 0 12 420 2 255
26 1/0 16/10 10 45 3 0 3 276 1 0.1
27 1/0 11/8 8 28 3 0 6 113 0 0
28 2/1 17/12 12 58 3 0 14 224 3 135
29 2/1 17/12 12 58 3 0 14 224 1 7.72
30 3/1 18/12 12 58 3 0 7 186 2 38.6
31 1/0 23/13 13 70 3 0 8 201 1 20.4
32 1/0 15/12 12 56 3 0 9 155 5 68.6
33 2/0 21/13 13 58 3 0 11 381 1 0.1
34 2/1 16/11 11 53 3 0 5 244 0 0

フレームワークには MFCを用いる．開発規模はチー

ムあたり 3000行程度（再利用分を含まない）である．

4.2 クラス分類

フレームワーク MFCのアーキテクチャを考慮し，

分類クラスとして以下の 5つを選定した．

(1) CDocument：派生クラスにはプログラムのデー

タを処理する部分が記述される．

(2) CView派生クラス：派生クラスにはユーザに対

してデータを表示する部分が主に記述される．

(3) CDialog：派生クラスには，ユーザからデータを

受け取る部分と，ユーザに対してエラーメッセー

ジを出す部分が主に記述される．

(4) CWinApp：派生クラスには，アプリケーショ

ンの設定に関する処理（「アプリケーションが前

回実行されたときのウィンドウの位置と大きさを

覚えておく」など）が記述される．

(5) CFrameWnd：複数のビューを持つプログラ

ムの場合，それらを管理するためのコードが

Vol. 42 No. 6 複雑度メトリクスを用いたエラー予測の一手法 1605

表 4 分類 CView のメトリクスおよびエラー
Table 4 Metrics and errors for CView.

C
L
S
#

C
B
O
/

R

R
F
C
/

R

W
M
C

L
C
O
M

D
I
T

N
O
C

N
I
V

S
L
O
C

E
C

E
T

35 4/1 15/10 10 45 6 0 3 94 0 0
36 4/1 22/14 14 91 6 0 3 127 0 0
37 4/1 14/9 9 36 6 0 3 89 0 0
38 4/1 14/9 9 36 6 0 3 88 0 0
39 4/1 19/16 16 114 6 0 4 173 0 0
40 5/1 27/20 20 190 6 0 3 300 7 43.3
41 3/1 14/12 12 64 6 0 5 133 0 0
42 4/1 21/17 17 134 6 0 6 220 0 0
43 4/1 21/17 17 136 6 0 3 179 0 0
44 4/1 21/17 17 136 6 0 3 179 0 0
45 4/1 13/10 10 45 6 0 3 105 0 0
46 4/1 17/14 14 85 6 0 7 140 1 86.1
47 5/1 16/12 12 66 6 0 6 173 1 0.43
48 2/1 11/8 8 28 4 0 3 76 0 0
49 2/1 12/9 9 36 4 0 4 98 7 40.6
50 2/1 14/10 10 45 4 0 3 93 0 0
51 2/1 11/8 8 28 4 0 3 78 0 0

表 5 分類 CWinApp のメトリクスおよびエラー
Table 5 Metrics and errors for CWinApp.

C
L
S
#

C
B
O
/

R

R
F
C
/

R

W
M
C

L
C
O
M

D
I
T

N
O
C

N
I
V

S
L
O
C

E
C

E
T

52 4/3 7/3 3 3 4 0 2 68 0 0
53 4/3 7/3 3 3 4 0 2 68 0 0
54 4/3 8/3 3 3 4 0 2 74 0 0
55 4/3 7/3 3 3 4 0 2 66 0 0
56 4/3 8/3 3 3 4 0 2 74 0 0
57 4/3 8/3 3 3 4 0 2 74 0 0
58 4/3 8/3 3 3 4 0 2 74 0 0
59 4/3 8/3 3 3 4 0 2 72 0 0
60 4/3 8/3 3 3 4 0 2 74 0 0
61 4/3 7/3 3 3 4 0 2 68 0 0
62 4/3 8/3 3 3 4 0 2 74 0 0
63 4/3 8/3 3 3 4 0 2 74 0 0
64 4/3 8/3 3 3 4 0 2 78 0 0
65 4/3 8/3 3 3 4 0 2 72 0 0
66 4/3 8/3 3 3 4 0 2 74 0 0
67 4/3 8/3 3 3 4 0 2 74 0 0
68 4/3 7/3 3 3 4 0 2 68 0 0

表 6 分類 CFrameWnd のメトリクスおよびエラー
Table 6 Metrics and errors for CFrameWnd.

C
L
S
#

C
B
O
/

R

R
F
C
/

R

W
M
C

L
C
O
M

D
I
T

N
O
C

N
I
V

S
L
O
C

E
C

E
T

69 1/0 13/7 7 21 4 0 5 99 0 0
70 1/0 13/7 7 21 4 0 5 97 0 0
71 1/0 13/7 7 21 4 0 5 97 0 0
72 1/0 14/8 8 28 4 0 5 101 0 0
73 1/0 13/7 7 21 4 0 5 105 0 0
74 1/0 9/6 6 15 4 0 3 60 0 0
75 1/0 13/7 7 21 4 0 5 99 0 0
76 1/0 14/8 8 28 4 0 5 102 0 0
77 1/0 9/6 6 15 4 0 3 60 0 0
78 2/0 12/7 7 21 4 0 3 178 3 600
79 1/0 9/6 6 15 4 0 3 63 0 0
80 1/0 9/6 6 15 4 0 3 63 0 0
81 3/0 26/16 16 116 4 0 11 302 17 58.3
82 1/0 11/7 7 21 4 0 4 84 0 0
83 1/0 13/7 7 21 4 0 5 100 0 0
84 2/0 20/10 10 43 4 0 5 156 1 0.23
85 1/0 10/7 7 21 4 0 5 63 0 0

CFrameWnd 派生クラスに記述される（ユーザ

インタフェースが複雑になると，複数のビューを

切り替える方法はよく用いられる）．

これらのいずれからも派生しないクラスは，(6)そ

の他に分類される．

今回の実験では，選出された分類クラス間に継承関

係は存在せず，複数の分類クラスを継承するクラスが

表 7 分類 CSocket のメトリクスおよびエラー
Table 7 Metrics and errors for CSocket.

C
L
S
#

C
B
O
/

R

R
F
C
/

R

W
M
C

L
C
O
M

D
I
T

N
O
C

N
I
V

S
L
O
C

E
C

E
T

86 0/0 2/2 2 1 3 0 1 51 0 0
87 0/0 1/1 1 0 3 0 1 41 0 0
88 0/0 1/1 1 0 3 0 1 40 0 0
89 0/0 2/2 2 0 3 0 1 46 1 0.3
90 0/0 22/22 22 157 3 0 10 361 1 1.25
91 0/0 2/2 2 0 3 0 5 63 1 0.68
92 0/0 3/3 3 1 3 0 5 71 0 0
93 0/0 0/0 0 0 3 0 0 31 0 0
94 0/0 2/2 2 1 3 0 4 43 0 0
95 0/0 1/1 1 0 3 0 4 42 0 0
96 0/0 1/1 1 0 3 0 4 43 0 0
97 0/0 1/1 1 0 3 0 1 41 0 0
98 0/0 1/1 1 0 3 0 1 39 0 0
99 0/0 1/1 1 0 3 0 4 45 0 0

100 0/0 1/1 1 0 3 0 4 45 0 0
101 0/0 1/1 1 0 3 0 4 47 0 0
102 0/0 5/5 5 4 3 0 4 82 0 0
103 0/0 0/0 0 0 3 0 4 35 0 0
104 0/0 5/5 5 4 3 0 4 73 0 0

表 8 分類その他のメトリクスおよびエラー
Table 8 Metrics and errors for Others.

C
L
S
#

C
B
O
/

R

R
F
C
/

R

W
M
C

L
C
O
M

D
I
T

N
O
C

N
I
V

S
L
O
C

E
C

E
T

105 0/0 3/3 3 3 1 0 3 57 0 0
106 0/0 3/3 3 3 1 0 2 59 0 0
107 0/0 3/3 3 3 1 0 2 59 0 0
108 0/0 3/3 3 3 1 0 5 61 0 0
109 0/0 3/3 3 3 1 0 3 39 0 0
110 0/0 3/3 3 3 1 0 3 57 0 0
111 1/0 7/6 6 0 1 0 4 416 3 0.62
112 0/0 3/3 3 3 1 0 3 57 0 0
113 0/0 3/3 3 3 1 0 3 57 0 0
114 0/0 3/3 3 3 0 0 2 50 1 8.3
115 1/0 6/5 5 0 0 0 4 94 8 42.5
116 1/0 7/6 6 0 0 0 5 109 0 0
117 2/0 9/8 8 16 0 0 1 107 1 77.9
118 0/0 3/3 3 3 0 0 1 63 1 41.4
119 0/0 0/0 0 0 0 0 5 7 0 0
120 0/0 0/0 0 0 0 0 5 7 0 0
121 0/0 0/0 0 0 0 0 3 5 0 0
122 0/0 0/0 0 0 0 0 3 5 0 0
123 0/0 4/4 4 6 2 0 5 53 0 0
124 0/0 4/4 4 6 2 0 5 57 0 0

定義されることもなかった．

4.3 実験データ

最終的には，17人分のデータが利用できた．開発さ

れた 17人分のプログラム，124のクラスから抽出し

たメトリクス値，およびエラー個数，修正時間を表 2

～8 に示す．メトリクス値のレーダチャートを図 2～

7に示す．各グラフの，細い線で描かれた 1つの多角

形が，1 つのクラスについてのメトリクス値を表す．

メトリクスの値は，すべてのクラスについての平均が

1.0となるように正規化されている．太い線で描かれ

た多角形は，その分類に属するクラスすべてのメトリ

クス値の平均である．CBO，RFC，WMC，LCOM，

DITは CKメトリクス（NOCはすべてのクラスにつ

いて 0であったためグラフには描かれていない），NIV

はクラスのインスタンス変数の数，SLOCはクラスの

ソースコードの行数である．分類の平均値（太い線）

のメトリクス値の傾向は大きく異なっている．また，

1606 情報処理学会論文誌 June 2001

図 2 分類 CDialog のメトリクス値
Fig. 2 Metric values for CDialog classes.

図 3 分類 CDocument のメトリクス値
Fig. 3 Metric values for CDocument classes.

図 4 分類 CView のメトリクス値
Fig. 4 Metric values for CView classes.

分類の平均値と，分類に属する個々のクラス（細い線）

のメトリクスは互いに似た傾向を示しており，クラス

分類が適切であったことの傍証となっている．

図 5 分類 CWinApp のメトリクス値
Fig. 5 Metric values for CWinApp classes.

図 6 分類 CFrameWnd のメトリクス値
Fig. 6 Metric values for CFrameWnd classes.

図 7 分類その他のメトリクス値
Fig. 7 Metric values for the other classes.

4.4 分 析

本実験では，メトリクスの計測値からエラー修正時

間を予測する式を用いて手法を評価した．メトリクス

の計測値を独立変数，エラー修正時間を従属変数とす

Vol. 42 No. 6 複雑度メトリクスを用いたエラー予測の一手法 1607

表 9 全データによる予測式
Table 9 Estimation equations by all values.

Metric All CDialog CDocument CView
CWin
App

CFrame
Wnd Others

(Const.) -11.4 -22.1 -98.4 -22.9 0 -614 1.46
CBO
CBOR
CBON 47.9 70.6 63.3
RFC
RFCR
RFCN -6.76 -67.8 -50.1
WMC 119
LCOM 3.52 1.36 -21.5
DIT
NOC
NIV 8.61
SLOC 0.246 0.338 5.76

図 8 クラス分類を用いないエラー修正時間予測（全データ）
Fig. 8 Error fix time estimation by all data without

classification.

図 9 クラス分類を用いた修正時間予測（全データ）
Fig. 9 Error fix time estimation by all data with

classification.

る回帰式を，重回帰分析によって求めた．変数減少法を

用い，サンプル数や寄与率に照らして統計的に有意とな

らない独立変数は取り除いてある．たとえば，CBON，

CBOR，CBOの間には CBON + CBOR = CBO

という関係が成り立つため，3変数がともに 1つの回

帰式に含まれることはない．

図 10 クラス分類を用いないエラー修正時間予測（外れ値を除く）
Fig. 10 Error fix time estimation execpt outliers without

classification.

図 11 クラス分類を用いた修正時間予測（外れ値を除く）
Fig. 11 Error fix time estimation execpt outliers with

classification.

クラス分類ごとの回帰式の係数を表 9 に示す．比

較のために，分類をせずに求めた回帰式の係数も示し

た（All の欄）．エラー修正時間の予測値と実測値を

プロットしたものを図 8 および図 9 に示す．クラス

分類を行ったほうが予測精度が向上していることが分

1608 情報処理学会論文誌 June 2001

表 10 外れ値を除いたデータによる予測式
Table 10 Estimation equations except outliers.

Metric All CDocument CView Others

(Const.) 2.89 -98.5 -23.0 1.46

CBO

CBOR 63.3

CBON 47.9 63.3

RFC

RFCR

RFCN -50.1

WMC

LCOM

DIT -8.64 1.37

NOC

NIV 4.91 8.64

SLOC

かる．

次に，突出したエラー（修正時間 600分）が含まれて

いるクラス分類（CFrame），少数しかエラーが発見さ

れていないようなクラス分類（CDialog，CWinApp）

を外れ値だと見なして，データから取り除いたうえで

分析を行った．回帰式の係数を表 10に，エラー修正時

間の予測値と実測値をプロットしたものを図 10 およ

び図 11 に示す．この場合もやはりクラス分類を行っ

たほうが予測精度が向上している．

5. ま と め

本研究では，C++言語およびアプリケーションフ

レームワークを用いた開発において複雑度メトリクス

を用いてエラー修正時間の予測を行う際に，クラス分

類を行って予測精度を向上させる手法を提案し，実験

によってその有効性を評価した．

今後の課題としては，

(1) クラス分類の精密化．Java 言語を用いて開発

を行った場合には，クラスの継承以外にもインタ

フェースや匿名クラスといった，単なる継承とは

見なせない機能がある．それらをクラス分類に用

いることができるかもしれない．

(2)分類クラス選出の自動化．本研究ではフレーム

ワークに関する知識によって利用者が分類に用い

られるクラスを選出する．クラス階層の構造やク

ラス間の関係，統計的手段を用いてクラス分類を

自動化できれば，手法の利用がより簡単になると

考えられる．

(3)より多くのプロジェクトに対してメトリクスの

収集を行い，手法の有効性を評価する．

謝辞 評価実験にご協力いただいた，日本ユニシス

株式会社の高橋優亮氏に感謝いたします．複雑度ツー

ルの開発にご協力いただいた奈良先端科学技術大学院

大学の高林修司氏（現 松下通信工業株式会社）に感

謝いたします．

参 考 文 献

1) 青木 淳：オブジェクト指向システム分析設計入
門，株式会社ソフト・リサーチ・センター (1993).

2) Basili, V.R., Briand, L.C. and Melo, W.L.: A

Validation of Object-Oriented Design Metrics

as Quality Indicators, IEEE Trans.Softw.Eng.,

Vol.20, No.22, pp.751–761 (1996).

3) Booch, G.: Object-Oriented Analysis and De-

sign with Applications, 2nd Edition, The Ben-

jamin/Cummings Publishing Co., Inc. (1994).

4) Briand, L.C., et al.: Predicting Fault-Prone

Classes with Design Measures in Object-

Oriented Systems, Proc.9th International Sym-

posium on Software Reliability Engineering,

pp.334–343 (1998).

5) Chidamber, S.R. and Kemerer, C.F.: A Met-

rics Suite for Object Oriented Design, IEEE

Trans. Softw. Eng., Vol.20, No.6, pp.476–493

(1994).

6) IFPUG: Function Point Counting Practices

Manual, Release 4.0, International Function

Point Users Group (1994).

7) 飯塚悦功（編）：ソフトウェアの品質保証 ISO-

9000-3対訳と解説，日本規格協会 (1992).

8) Kamiya, T., Kusumoto, S., Inoue, K. and

Mohri, Y.: Empirical evaluation of reuse sen-

sitiveness of complexity metrics, Information

and Software Technology, 41, pp.297–305 (Apr.

1999).

9) Lorenz, M. and Kidd, J.: Object-Oriented

Software Metrics—A Practical Guide, PTR

Prentice Hall, Inc.(1994).宇治邦明（監訳），オー
ジス総研（訳）：オブジェクト指向ソフトウェア
メトリス—現実的な運用のためのガイド， 株式
会社トッパン (1995).

10) Oman, P. and Pfleeger, S.L.: Applying Soft-

ware Metrics, IEEE Computer Society Press

(1997).

11) Paulk, M.C., et al.: The Capability Maturity

Model: Guidelines for Improving the Software

Process, Addison Wesley Publishing Co., Inc.

(1995).

12) Pighin, M. and Zamolo, R.: A Predictive Met-

ric Based On Discriminant Statistical Analysis,

Proc. 19th ICSE, Boston, Massachusetts, USA,

pp.262–270 (1997).

13) Rumbaugh, J., Blaha, M., Premerlani, W.,

Eddy, F. and Lorensen, W.: Object Oriented

Modeling and Design, Prentice Hall (1991).

Vol. 42 No. 6 複雑度メトリクスを用いたエラー予測の一手法 1609

14) Cartwright, M. and Shepperd, M.J.: An Em-

pirical Investigation of an Object-Oriented

Software System, IEEE Trans. Softw. Eng.

(1999, Accepted for publication). taken from

http: // dec.bmth.ac.uk/ ESERG/ mshep-

perd/ OOMetrics.html

15) 山田 茂，高橋宗雄：ソフトウェアマネジメン
トモデル入門—ソフトウェアの品質の可視化と評
価法，共立出版 (1993).

16) UML Summary, ver. 1.1 (1997). taken from

http://www.rational.com/

(平成 12年 4月 21日受付)

(平成 13年 3月 9 日採録)

神谷 年洋（正会員）

平成 13年大阪大学基礎工学研究科

博士後期課程修了．科学技術振興事

業団若手個人研究推進事業（さきが

け研究 21）［ポスドク活用型］「協調

と制御」領域中小路グループグルー

プメンバ．工学博士．オブジェクト指向ソフトウェア

メトリクスおよび認知科学に関する研究に従事．

楠本 真二（正会員）

昭和 63 年大阪大学基礎工学部情

報工学科卒業．平成 3年同大学院博

士課程中退．同年同大学基礎工学部

情報工学科助手．平成 8年同大学講

師．工学博士．ソフトウェアの生産

性や品質の定量的評価，プロジェクト管理に関する研

究に従事．IEEE会員．

井上 克郎（正会員）

昭和 54 年大阪大学基礎工学部情

報工学科卒業．昭和 59 年同大学院

博士課程修了．同年同大学基礎工学

部情報工学科助手．昭和 59年～61

年ハワイ大学マノア校情報工学科助

教授．平成元年大阪大学基礎工学部情報工学科講師．

平成 3年同学科助教授．平成 7年同学科教授．工学博

士．ソフトウェア工学の研究に従事．

毛利 幸雄

昭和 49年青山学院大学理工学部物

理学科卒業．同年日本ユニシス（株）

入社．社内外に対する情報処理技術

分野の教育に従事．現在総合教育部

IT教育推進室に所属．ソフトウェア

技術者協会会員．

