
Title ソースコードの差分を用いた関数呼び出しパターン抽
出手法の提案

Author(s) 中山, 崇; 松下, 誠; 井上, 克郎

Citation 情報処理学会研究報告. ソフトウェア工学研究会報
告. 2006, 2006-SE-151(35), p. 49-56

Version Type VoR

URL https://hdl.handle.net/11094/50166

rights

ここに掲載した著作物の利用に関する注意 本著作物
の著作権は情報処理学会に帰属します。本著作物は著
作権者である情報処理学会の許可のもとに掲載するも
のです。ご利用に当たっては「著作権法」ならびに
「情報処理学会倫理綱領」に従うことをお願いいたし
ます。

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

ソースコードの差分を用いた
関数呼び出しパターン抽出手法の提案

中山崇 † 松下誠 † 井上克郎 †

† 大阪大学大学院情報科学研究科
〒 560-8531大阪府豊中市待兼山町 1-3

一般にソフトウェア部品の利用法の理解には部品に附属するドキュメント等が用いられるが，それらが無
い部品では利用法の学習が困難である．こうした部品の利用法理解を支援する手法にコーディングパター
ンの抽出が挙げられる．コーディングパターンとはソースコードに頻出する構造のよく似たコード記述で
あり，開発者はこれを閲覧する事で実現したい機能に必要な処理を学習できる．しかし，既存のパターン抽
出手法では関連の無い機能が 1つのパターンにまとめられてしまうため，正確な利用法の学習ができない
という問題点が存在した．本稿では，この問題点を解決するため，ソースコードの差分から個別の機能に
限定した関数呼び出しパターンを抽出する手法を提案する．

Extracting Function Call Patterns from Source Code Deltas

Takashi Nakayama† Makoto Matsushita† Katsuro Inoue†

† Graduate School of Information Science and Technology, Osaka University

1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan

Generally, we learn software components usage from documents attached to them. But it is difficult to learn usage

if the components have no documents. Extracting coding patterns is a method to support comprehending usage

of components with no documents. A coding pattern is a code description which appears frequently in source

codes, and developers can learn a series of a process by viewing it. Existing pattern extracting methods, however,

combine several features into one pattern, thus developers cannot comprehend correct usage. We propose a method

to extract function call patterns from source code deltas in order to improve the problem.

- 1 -

島貫
テキストボックス
社団法人　情報処理学会　研究報告
IPSJ SIG Technical Report

島貫
テキストボックス
2006－SE－151（7）
　 2006／3／23

島貫
テキストボックス
－49－

1 まえがき

近年のインターネットの普及により，WWWを

通じて大量のソフトウェア資産が容易に入手可能

となった．このようなソフトウェア資産を新たな

ソフトウェアの部品として開発を進めることをソ

フトウェア再利用と呼び，高品質なソフトウェア

を一定期間内に効率良く開発するための代表的な

ソフトウェア工学技術の一つとして知られている

[3, 6]．実際に再利用を行うには，まず再利用する

ソフトウェア部品の利用法を理解する必要がある．

一般に，ソフトウェア部品の利用法の理解はそれ

に附属するドキュメント等をもとに行うが，それ

らが附属していないソフトウェア部品では利用法

に関する情報が得られないため，部品の利用法を

学習するのは困難であった．

こうした問題を解決する手法としてコーディン

グパターンの抽出手法がある．コーディングパター

ンとはソースコードに頻繁に現れる構造のよく似

たコード記述である．開発者はこれを閲覧する事

でソフトウェア部品の再利用に必要な処理を学習

できる．しかし，既存のパターン抽出手法は，同

じ箇所で呼び出される関数には関連があるとする

仮定を持つことから，特に関連の無いコード記述

同士が 1つのパターンとして抽出されるという問

題点が存在するため，部品の再利用が困難になっ

ていた．

そこで本稿では，版管理システムに蓄積されて

いるソースコードの差分から，個別の機能に限定

したソフトウェア部品の利用法を理解するための

関数呼び出しパターン抽出手法を提案する．この

手法は，版管理システムへのソースコードの変更

内容の保存が一般に個別の機能毎に行なわれてい

るという仮定にもとづき，ソースコードの差分に

含まれる関数利用実績に共通して現れるコード記

述を関数呼び出しパターンとして抽出する．

以降，2節では背景となるソフトウェア部品の

再利用とコーディングパターンについて，3節で

版管理システムについて述べる．次に，4節では本

稿で提案する関数呼び出しパターン抽出手法につ

いて説明し，5節でその実装について述べる．そ

して 6節で評価を行ない，7節でまとめと今後の

課題について述べる．

2 ソフトウェア再利用

本節では，ソフトウェア部品の利用法と，その

理解を支援するコーディングパターンについて説

明する．

2.1 ソフトウェア部品の利用法

ソフトウェア部品を再利用するには，まず再利

用する部品の利用法を学習する必要がある．例え

ば，再利用する部品が関数である場合は，実現し

たい処理に必要な他の関数群やそれらの呼び出し

順，各関数の引数や返り値の扱い方などを学習し

なければ望んだ機能を実現できない．

一般に，部品の利用法の学習はそれに附属する

ドキュメントやサンプルプログラムをもとに行わ

れる．開発者はドキュメントを読む事でその部品

への理解を深め，サンプルプログラムを見ること

事で基本的なコーディングの仕方を学習する．

商用のソフトウェア部品等にはこのようなドキュ

メントが附属しているため，そこから利用法の学

習ができる．しかし，一般に入手できる多くのソ

フトウェアではこれらが附属していないことも多

い．そのような部品では利用法の学習が困難とな

り，再利用が難しくなる．

2.2 コーディングパターン

ドキュメント等が附属していない部品の利用法

の学習を支援するために，再利用対象の部品を利

用しているソースコードからその部品の利用例を

取り出す事で利用法の理解に役立てるという研究

が過去になされている [8, 11]．その中の一つに，再

利用対象の部品を利用しているソースコードから

コーディングパターンと呼ばれるものを抽出し，そ

れを開発者に提示する事で利用法の学習を支援す

るという研究が行なわれている [2]．コーディング

パターンとはソースコードに頻出する構造のよく

似たコード記述である．コーディングパターンを

閲覧する事で，開発者は実現したい処理に必要な

関数群とその呼び出し順を，そしてパターンを利

用しているソースコードを閲覧する事で関数への

引数の与え方や返り値の扱い方などを学習できる．

既存のコーディングパターン抽出手法では，同

じ箇所に現れる関数呼び出しは一連の機能を実現

するためのものであると見なす，という特徴をも

つ．構造化手法をはじめ，様々な開発技法におい

て，関連するコードを 1つの単位にまとめる事の

- 2 -

島貫
テキストボックス
－50－

重要性が強調されている [4, 7]．

しかし，この仮定のもとでコーディングパター

ンを抽出すると，実際には関連のない関数間に関

連があると誤判定する場合も少なからず存在する．

例えば図 1のように，ソースコード内の幾つかの箇

所で，計算処理を行うコード記述とデータ出力を

行うコード記述が続けて書かれていたとする．前

述の仮定のもとでコーディングパターンを抽出す

ると，この 2つの処理は同じ箇所で呼び出されて

いるため，関連があるコード記述として 1つのコー

ディングパターンにまとめられる．その後，他の

開発者がこのソフトウェアの計算処理部分を再利

用する事になったとする．この開発者は計算処理

部の利用法を学習するために関連するコーディン

グパターンを閲覧するが，そこには計算処理に関

連の無いデータ出力処理が混在しているため，こ

れを閲覧した開発者は計算処理を正しくコーディ

ングできないことになる．

図 1: 関連の無い処理を含むパターン

本稿ではこの問題点を解決するために，版管理

システム内のソースコードの差分から個別の機能

に限定したコーディングパターンを抽出する手法

を提案する．

3 版管理システム

本節では，まず版管理システムとその役割につ

いて説明した後，ソースコードを更新する際に見

られる一般的な傾向について述べる．

3.1 版管理システム

版管理システムとは，プロダクトの開発履歴を

保存，提供する機構である．ソースコードやリソー

スといった各プロダクトの履歴データは，リポジ

トリと呼ばれるデータ格納庫に蓄積される．その

内部では，プロダクトのある時点における状態で

あるリビジョンを単位として管理する．1つのリ

ビジョンには，ソースコードやリソースなどの実

データと，作成日時やログメッセージなどの属性

データが格納されている．開発者はソースコード

に対して変更を加える度に，その変更内容をチェッ

クインという操作によって版管理システムに保存

する事で開発作業を進めていく．

3.2 ソースコード更新時の傾向

版管理システムを用いた開発では，一度のチェッ

クインで変更されるソースコードはある 1つの機能

についてのソースコードである事が一般的である．

Gallらは版管理システム内の開発履歴から，ソー

スコードからは分からない，Logical Couplingsと

呼ばれる依存関係を抽出し，ソフトウェアの理解や

保守に役立てる研究を行なった [5]．Zimmermann

らは開発履歴からソースコードの変更ルールの抽

出を行ない，変更点の予測や不完全な変更による

不具合を防ぐ為のシステムを開発している [12]．

これらの研究では，一度のチェックインで扱う

ソースコードが共通の機能を実装しているという

事を仮定している事が共通している．これらの研

究が良い結果を残している事を考えると，実際の

ソフトウェア開発において一度のチェックインで

扱うソースコードは個別の機能に関わるものであ

るという仮定は妥当であると考える事ができる．

4 ソースコードの差分を用いた関数呼び

出しパターン抽出手法

本節では，版管理システム内のソースコードの

差分から，個別の機能に限定したコーディングパ

ターンを抽出する手法について述べる．

本手法では C言語でかかれたソースコードを対

象としてパターンの抽出を行う．また，本手法で

は部品の利用法を関数の利用関係という面から捉

えているため，コーディングパターンという語句

ではなく，関数呼び出しパターンという語句を用

いる．

本手法は図 2のように，3つのステップに分けら

れる．まず，ソースコードの差分からソースコード

の特徴を取得する．次に，取得されたソースコー

ドの特徴から特徴シーケンスを生成する．最後に，

生成された全特徴シーケンスに対して sequential

pattern miningと呼ばれる手法を適用する事で関数

呼び出しパターンを抽出する．以下，これら 3つ

のステップについて説明する．

4.1 ソースコードの特徴の取得

始めに，版管理システム内のソースコードの差

分からソースコードの特徴を取得する．ソースコー

ドの特徴とは，関数の利用例を構成する要素であ

- 3 -

島貫
テキストボックス
－51－

図 2: 関数呼び出しパターン抽出の流れ

り，本手法では関数呼び出し，及び条件文，繰り

返し文の開始，終了位置をソースコードの特徴と

する．以下では，条件文の開始，終了位置と繰返

し文の開始，終了位置といったソースコードの特

徴を制御文要素と呼ぶ．

ソースコードの特徴の取得は，全ての隣接する

リビジョン間のソースコードの差分の内，新しい

リビジョンにおいて追加，編集された行のみから

行われる．ソースコードの差分のみから取得する

のは，3.2節で述べたように，ソースコードの差分

に注目する事で個別の機能に限定したソースコー

ドを取得できるからである．

次に，後の計算にかかるコストを抑えるために，

不要なソースコードの特徴を除去する．本手法で

は不要な要素を標準関数呼び出しと，同じ構造の

制御文要素のみの繰り返しとする．標準関数はド

キュメント等が充実していることから，本手法を

用いて利用法を理解する必要が無いため，除去の

対象とした．また，制御文要素のみが同じ形で繰

り返されるものも，関数呼び出しパターンに寄与

しているとは考えにくいため，除去の対象とした．

4.2 特徴シーケンスの生成

次に，取得したソースコードの特徴から特徴シー

ケンスを生成する．特徴シーケンスとは関数の利

用実績を抽象化したものであり，具体的には，1つ

の関数定義内におけるソースコードの特徴のリス

トである．ただし，本手法ではソースコードの差

分から関数呼び出しパターンを抽出するため，特

徴シーケンスを構成する各要素は編集後のソース

コードにおいて追加，編集された行にあるものの

みに限定される．

図 3は，追加，編集が起こった行に存在するソー

スコードの特徴から特徴シーケンスを生成する様

子を表している．この操作を全てのソースコード

図 3: 差分からの特徴シーケンス抽出の流れ

の全てのリビジョン，全ての関数定義に対して行

う事で，全ての特徴シーケンスの生成が出来る．こ

のとき，関数呼び出しを一つも含まないような特

徴シーケンスは関数呼び出しパターンの抽出に用

いる事ができないので除去する．

4.3 Sequential pattern miningを用いたパターン
抽出

最後に，生成した全ての特徴シーケンスを対象

にして sequential pattern miningと呼ばれる手法を

適用する事で，関数呼び出しパターンの抽出を行

う．Sequential pattern miningとは与えられた複数

のリストから，ユーザが指定した閾値以上の頻度

で共通して現れる部分リストを求める手法である

[1]．4.2節で述べたように，特徴シーケンスは関

数の利用実績を表すので，これらの間に共通する

シーケンスを抽出する事で，関数呼び出しパター

ンとしている．

Sequential pattern miningを行うアルゴリズムは

いくつか存在するが，本研究では一般的に用いられ

ることが多いPrefixSpan[9]を採用した．PrefixSpan

はサポート値計算と射影と呼ばれる操作が中心と

なるアルゴリズムである．サポート値計算とは，与

えられたシーケンス群を構成する各要素のサポー

ト値を求める操作である．サポート値とは対象の

要素を含むシーケンスの数である．射影とは，全

てのシーケンスから特定の要素からの接尾辞を取

- 4 -

島貫
テキストボックス
－52－

り出す操作である．

PrefixSpanアルゴリズムでは図 4のように，射

影したシーケンス群の各要素についてサポート値

を計算し，閾値以上の各要素について更に射影を

行うといった事を繰り返す事で sequential pattern

miningを行う．

図 4: PrefixSpanによるマイニング

しかし，単純に特徴シーケンスに対して sequen-

tial pattern miningを適用するだけでは，有用な関

数呼び出しパターンと共に，非常に多くの部品利

用法の理解に用いることのできないパターンが抽

出される．具体的には，制御文要素の対応がとれ

ていないパターン，制御文要素の数がパターン全

体の 3分の 2を越えるパターン，そして関数呼び

出し要素を 1個以下しか持たないパターンが挙げ

られる．

このような関数呼び出しパターンは利用法の理

解に用いることができないどころか，パターン抽

出にかかるコストが大きくなり，抽出されたパター

ンの検索を困難にする．そこで，本手法ではこれ

らの不要な関数呼び出しパターンを以下のように

して除去する．

マイニング時における除去:

PrefixSpanでは，閾値以上のサポート値を持つ

要素に対して射影を行なってパターンを出力す

るが，その結果制御文要素の対応がとれていな

いパターンが出力される場合はその射影を実行

しないようにする．この結果，不要なパターン

が出力されないだけでなく，PrefixSpanアルゴ

リズムの探索空間が大幅に削減され，計算時間

と消費メモリ量が軽減される．

また，1つのパターンに同じ制御文要素を 2つ

以上持たせない，制御文要素を連続させない，

同じ関数呼び出し要素を連続させないという制

限も射影操作に加える．

パターン抽出後における除去:

全てのパターン抽出が終った後に，各パターン

に対して条件判断を行ない，制御文要素の数が

そのパターン全体の要素数の 3分の 2を越えて

いる，もしくは関数呼び出し要素が 1個以下で

あるパターンを除去する．

5 実装

本節では，4節で述べたソースコードの差分か

らの関数呼び出しパターン抽出手法を実装したシ

ステムについて述べる．

本システムは大まかに 3つのサブシステムに分

ける事ができる．1つ目は，4.1節と 4.2節で説明

した処理を行なう特徴シーケンス生成部である．2

つ目は，4.3節で説明した処理を行なう関数呼び出

しパターン抽出部である．3つ目は，抽出した関

数呼び出しパターンと，それを実現しているソー

スコードを閲覧する為のパターンブラウザ部であ

る．システム全体の概要を図 5に示す．

図 5: システムの概要

以下では本システムの 3つのサブシステムにつ

いて説明する．

5.1 特徴シーケンス生成部

特徴シーケンス生成部では，版管理システムCVS

から全てのリビジョンにおけるソースコードの差分

を取得し，4.1節と 4.2節で述べた手法にしたがっ

て特徴シーケンスを生成する．ただし，対象のリ

ビジョンが CVSによるマージ操作によって自動的

に更新されたものと判断した場合は特徴シーケン

スの生成を行なわない．ここでマージ動作とは，ブ

ランチ上に蓄積された更新を他のブランチに適用

する操作である．この操作では一般に複数の機能

が同時に更新されるので，個別の機能に関する関

数呼び出しパターンの取得には向かない．そのた

め特徴シーケンスの生成を行わない．

- 5 -

島貫
テキストボックス
－53－

5.2 関数呼び出しパターン抽出部

関数呼び出しパターン抽出部では，特徴シーケ

ンス生成部によって生成された特徴シーケンスか

ら sequential pattern miningを用いて関数呼び出し

パターンを抽出する．

Sequential pattern miningの対象となる特徴シー

ケンスは，計算時間と消費メモリ量削減の為，全て

整数値の配列に変換した上で計算を行なっている．

抽出された関数呼び出しパターンは，同じ関数

呼び出し要素を持つもの同士でカテゴリ分けされ

る．これによって，同じ関数群が少し違う呼び出

し方をされている状況を把握しやすくした．また，

パターンを一行の文字列として簡単に表現するサ

マリや，各パターンがどのリビジョンのどの箇所

に存在したかという情報も抽出し，データベース

へと格納する．これらの情報は 5.3節で述べる関数

呼び出しパターンブラウザ部によって用いられる．

5.3 関数呼び出しパターンブラウザ部

関数呼び出しパターンブラウザ部は，抽出された

関数呼び出しパターンとそれを実現しているソー

スコードを提示する事で開発者による部品利用法

の理解を支援する．図 6に関数呼び出しパターン

ブラウザのスクリーンショットを示す．

画面上部のパターンリストと左下部のリビジョ

ンリストから項目を選択する事で，開発者は関数呼

び出しパターンとそれを利用しているソースコー

ドを同時に閲覧する事ができる．右下部のソース

コードのうち，行頭に’+’が付いているものは追加，

編集が起こった行であり，背景に色が付いた行は

パターンに該当する行である．また，パターン検

索画面からユーザが指定した関数呼び出しを含む

パターンを検索する事もできる．

6 評価

本節では，提案手法が実際に部品の利用法理解

に有用なパターンを抽出できるかどうか，そして，

既存手法の問題点が改善されているかどうかにつ

いて評価する．

評価に際して，関数呼び出しパターンを抽出する

対象のソフトウェアプロジェクトには The Golem

X11 Window Manager[10] を選択した．Golem の

CVSリポジトリ中のソースコードの差分から本手

法を用いて関数呼び出しパターンを抽出したとこ

ろ，計算時間は約 1分半，抽出された関数呼び出

しパターン数は 74個，パターンのカテゴリ数は 45

個となった．

6.1 関数呼び出しパターンの評価

ここでは，抽出された関数呼び出しパターンを

実際に確認する事で，それらの部品の利用法理解

における有用性を評価する．

図 7 は，提案するシステムによって抽出され

たクライアントのリサイズを行う際の関数呼び

出しパターンである．パターンを詳しく見ると，

client_sizeframe関数を用いてクライアント

のリサイズを行なった後，client変数の状態か

ら条件分岐を行ない，条件に合致しているならば

action_send_config関数を用いてリサイズ結

果を Xサーバに送信していることが分かる．この

パターンから，本手法を用いることで制御構造も

含めた関数呼び出しパターンを取得できることが

分かる．

また，この例と同じように抽出された全てのパ

ターンを閲覧していったところ，抽出された 45個

のパターンカテゴリのうち，33個のパターンカテ

ゴリが利用法の理解に有用な関数呼び出しパター

ンを含んでいた．これらのことから，本稿での提

案手法は部品の利用法理解に有用な関数呼び出し

パターンを抽出できることが分かる．

6.2 既存手法との比較

ここでは，既存の関数呼び出しパターン抽出手

法に存在した問題点が本手法によって改善されて

いるかどうかについて評価する．既存手法の問題

点とは，一つの関数呼び出しパターンの中に複数

の機能に関する処理が含まれるおそれがあるとい

う事である．

評価を行う為に，2種類の方法で関数呼び出しパ

ターンの抽出を行なった．一方は本研究で提案し

たソースコードの差分からの関数呼び出しパター

ン抽出手法である．もう一方は対象をソースコー

ドの差分でなく，最新版のソースコード全体とし

て提案手法を適用したものである．この手法は「同

じ箇所で呼び出される事の多い関数群を 1つのパ

ターンにまとめる」という既存手法の特徴を持ち

つつ，出力されるパターンの形式が提案手法のも

のと同じになるようにしている．この 2種類の方

法で抽出した関数呼び出しパターンを比較する事

で，既存手法との比較を行ない，問題点が改善さ

れているかどうか評価する．

- 6 -

島貫
テキストボックス
－54－

図 6: 関数呼び出しパターンブラウザとその検索画面

図 7: 関数呼び出しパターンとそれを利用しているソースコードの例

表 1: 最新版と差分から抽出したパターンの違い

既存手法によるパターン 提案手法によるパターン
PDEBUG
if(){

XCreatePixmap XCreatePixmap
DefaultDepth DefaultDepth
image_scale
image_put image_put
DefaultGC DefaultGC
image_destroy image_destroy

表 1は画像の描画に関する関数呼び出しパター

ンの，既存手法と提案手法による違いを表してい

る．既存手法のパターンを見てみると，明らかに

画像の描画に関係の無い PDEBUGというデバッグ

出力マクロが含まれている事や，画像の描画に必

須ではない image_scale関数の呼び出しが含ま

れている事が分かる．しかし，提案手法のパター

ンではそうした要素は含まれていない．よって，提

案手法によるパターンは既存手法によるパターン

から余分な要素を除去したものであるといえる．

他にも，抽出された利用法理解に有用なパター

ンを含むパターンカテゴリのうち，およそ半分が

既存手法によるパターンを更に細かい単位に分割

するパターンを含んでいた．以上の事から，複数

の関連の無い機能が 1つのパターンにされるとい

う既存手法の問題点を提案手法が改善している事

が分かる．

しかし，既存手法では利用パターンが抽出でき

るが，提案手法では抽出できないような部品が多

く存在することもわかった．これは，初期状態から

変更が加わっていない部品など，ソースコードの

差分に利用実績が現れない部品も存在しているか

らである．また，提案手法からは最新版に存在し

ない部品に関するパターンも抽出されていた．こ

のようなパターンは最新版の部品を用いる場合に

は活用する事ができない．

これらのことから，提案手法と既存手法を組み

合わせた関数呼び出しパターン抽出手法の確立が

今後の課題として挙げられる．これによって，それ

ぞれのパターンが持つ問題点が相互に補われ，よ

り質の高い関数呼び出しパターンを得ることがで

きると考えられる．

7 まとめ

本稿では，ソフトウェア部品の利用法理解を支援

するため，版管理システム内のソースコードの差

- 7 -

島貫
テキストボックス
－55－

分から個別の機能に限定した関数呼び出しパター

ンを抽出する手法を提案した．本手法では，一度

の更新で扱うソースコードは 1つの機能のもので

あるという版管理システムを用いたソフトウェア

開発の特性に注目して関数呼び出しパターンの抽

出を行なった．また，提案手法を実装し，実際の

オープンソースソフトウェアに対して適用したと

ころ，部品の利用法理解に有用な関数呼び出しパ

ターンを抽出することができた．さらに，既存手

法との比較を行い，提案手法が実際に個別の機能

に限定した関数呼び出しパターンを抽出し，既存

手法の問題点を改善している事が確認した．

今後の課題としては，関数呼び出しパターンブ

ラウザのさらなる改良や，既存手法と提案手法を

組み合わせた関数呼び出しパターン抽出手法の確

立などが挙げられる．

参考文献

[1] Agrawal, R. and Srikant, R.: Mining Sequen-

tial Patterns, ICDE ’95: Proceedings of the 11th

International Conference on Data Engineering,

pp. 3–14 (1995).

[2] 渥美紀寿，山本晋一郎，結縁祥治，阿草清滋：

FCDGに基づいたコーディングパターン，日

本ソフトウェア科学会 コンピュータソフト

ウェア， Vol. 21, No. 4, pp. 27–36 (2004).

[3] Basili, V., Caldiera, G., McGarry, F., Pajerski,

R., Page, G. and Waligora, S.: The Software

Engineering Laboratory - an Operational Soft-

ware Experience Factory, Proceedings of the

Fourteenth International Conference on Soft-

ware Enigineering, pp. 370–381 (1992).

[4] Dijkstra, E. W.: Notes on Structured Program-

ming. http://www.cs.utexas.edu/

users/EWD/ewd02xx/EWD249.PDF.

[5] Gall, H., Jazayeri, M. and Krajewski, J.: CVS

Release History Data for Detecting Logical

Couplings, IWPSE: ’03: Proceedings of the 6th

International Workshop on Principles of Soft-

ware Evolution, pp. 13–23 (2003).

[6] Jacobson, I., Griss, M. and Jonsson, P.: Soft-

ware reuse: architecture, process and organiza-

tion for buisiness success, ACM Press/Addison-

Wesley Publishing Co., New York, NY, USA

(1997).

[7] 松本吉弘：ソフトウェアの考え方・作り方，電

気書院 (1981).

[8] Michail, A.: Data Mining Library Reuse Pat-

terns Using Generalized Association Rules,

ICSE ’00: Proceedings of the 22nd Interna-

tional Conference on Software Engineering, pp.

167–176 (2000).

[9] Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H.,

Chen, Q., Dayal, U. and Hsu, M.: PrefixSpan:

Mining Sequential Patterns by Prefix-Projected

Growth, ICDE ’01: Proceedings of the 17th

International Conference on Data Engineering,

pp. 215–224 (2001).

[10] The Golem X11 Window Manager: . http:

//golem.sourceforge.net/.

[11] Williams, C. C. and Hollingsworth, J. K.: Re-

covering System Specific Rules from Software

Repositories, MSR ’05: Proceedings of the

2005 International Workshop on Mining Soft-

ware Repositories, pp. 7–11 (2005).

[12] Zimmermann, T., Weisgerber, P., Diehl, S. and

Zeller, A.: Mining Version Histories to Guide

Software Changes, ICSE ’04: Proceedings of

the 26th International Conference on Software

Engineering, pp. 563–572 (2004).

- 8 - �

島貫
テキストボックス
－56－

