
Title コードクローン履歴閲覧環境を用いたクローン評価の
試み

Author(s) 川口, 真司; 松下, 誠; 井上, 克郎 他

Citation 情報処理学会研究報告. ソフトウェア工学研究会報
告. 2006, 2006-SE-154(125), p. 49-56

Version Type VoR

URL https://hdl.handle.net/11094/50184

rights

ここに掲載した著作物の利用に関する注意 本著作物
の著作権は情報処理学会に帰属します。本著作物は著
作権者である情報処理学会の許可のもとに掲載するも
のです。ご利用に当たっては「著作権法」ならびに
「情報処理学会倫理綱領」に従うことをお願いいたし
ます。

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



(7) 2006-ＳＥ－１５４ 

2006／11／2７ 

社団法人,情報処理学会研究報告

IPSJSIGTbchnicalReport 

コードクローン履歴閲覧環境を用いたクローン評価の試み

川口真司↑松下誠＃井上克郎|：飯田元↑

↑奈良先端科学技術大学院大学情報科学研究科

*大阪大学大学院情報科学研究科

ソフトウェアの保守工程における大きな問題の一つとしてクローンが指摘されており，これまでに様々なク

ローン検出手法が提案されている．しかし，ソフトウェアが大規模になるほど検出されるクローンも膨大
なものとなるため，どのクローンが対処が必要なのかについての判断の支援が求められている．本研究で
は，そのような支援の一環としてクローンの作成，編集に関わった開発者に着目する．そのために版管理
システムが保持している過去の履歴情報を解析する．また解析手法をPostgrBSQLに対して適用し，得られ
た情報を対処が必要かどうかの判定に用いることができるか分析を行った．

EvaluationorCodeC1oneUsingC1oneHistoryBrowser 

ShilljiKawaguchi↑MakotoMatsushita*Katsulolnoue＊Hajimulida↑ 

↑GraduateSchooloflnfbrmationScienceandTbchnologybNaralnstituteofScienceandTbchnology 
＊GraduateSchooloflnfbrmationScienceandTbchnologybOsakaUniversity 

Codeclonesaresenousprobleminsoftwalemaintenanceprocess・Tbsolvelhisproblem,manycodeclonede‐
tectionmeUlodsaIBpmposedhowevelmoton1yshowingclones,butalsosupportingtodecidewhichclonesare 
deleted・TI1erefbre,ｗｅｐＩ巳senttheanalysistodetectdeve1operBwhoediteachclone、WeapplythemeUmdto
Postg[巳SQLandanalyzetherelationshipbetweenclonetriageanddeveloperswhowriteortoucMleclone．

－４９－ 



１はじめに

保守工程におけるさまざまな問題のなかでも非

常に大きな問題の一つとして，ソースコード中に

含まれる重複コード(以下，クローン)が挙げられ

る[41

これまでにクローンを検出するための様々な手

法が提案されており，そのいくつかは実際に利用

可能なシステムとして実用化されている．さらに，

発見されたクローンを効率的に閲覧，除去するた

めのシステムも提案されている．これらのシステ

ムを用いることによってソフトウェアに含まれて

いるコードクローンを調査，除去するための労力

が大幅に軽減される．

しかし，これらのクローン摘出ツールによる様々

な適用実験の結果，大規模なソフトウェアにはそ

れだけ大量のクローンが含まれていること，それ

ら大量のクローン全てが必ずしも削除するべきク

ローンでないことがわかってきた．ある種のイディ

オム的な一連のコードの流れや，デザインパター

ンを構成するコード片などはその一例と言える．

そのため，得られたクローン情報をソフトウェ

アの品質改善に結びつけるには，どのクローンが

優先的に対処すべきかを提示する必要がある．

本研究では，クローンが優先して対処されるべ

きかどうかを評価するために，そのクローンの履

歴と過去にクローンの作成や編集に関わった開発

者に着目する．例えば，熟練した開発者であれば

不用意にコピー＆ペーストをすることは少なく，重

複した部分も何らかの意図があって残していると

考えられる．また，そのような開発者が作成した

クローンならば残すべき価値が高いクローンの可

能性が高い．逆に未熟な開発者が作成したクロー

ンにはそのような必然性がなく，何らかの対応が

必要であるという予測が成り立つ．

このような情報を分析するためには，ソースコー

ドをいつ誰がどのように編集したかという詳細な

履歴情報が必要となる．従来であればこのような

情報を網羅的に蓄積することは非常に困難であっ

たが，近年の版管理システムの普及により自動的

にこれらの情報を収集することが可能となった．

そこで，本研究では版管理システムが保持する

情報から各クローンを編集したのが誰かを特定す

る，クローン関係者抽出手法を提案する．本手法

を用いることで，開発者の能力を加味したクロー

ンの評価や，例えばクローンを最も多く作成して

いるのは誰か，といった開発者の評価の指針にな

りうる情報の提供が可能になる．

そして，クローン履歴や提案する手法によって

抽出されたクローンを作成，編集した開発者やそ

の履歴がクローンの品質にどのような影響がある

かについての分析を行う．そのためにPostgrcSQL
に対して提案手法を適用し，その結果から開発者

や変更履歴とクローンの性質との関係について議

論する．

２前提とするシステム

2.1クローン分析システム

クローン分析手法には大きくわけてソースコー

ドの字句解析に基づく手法[1,4,6]と，特徴メトリ

クスに基づく手法[3,7]に分けられる．ソースコー

ドの字句解析に基づく手法では，ソースコード中

で同一の文字列を検索することでクローンの検出

を行う．特徴メトリクスに基づく手法では，例え

ばクラスや関数，ファイルのようなプログラム中

のある種の単位ごとに特徴メトリクスを定義・算

出し，それらのメトリクス値が類似したものをク

ローンとして抽出する手法である．一般には字句

解析に基づく手法のほうがコストが増えるが，よ

り細粒度なクローンを抽出できる．

本研究では，字句解析ベースの検出ツール

CCFinderPl]を利用してクローン履歴の分析を行

う．CCFinderは高いスケーラピリティを有してお

り，大規模なソフトウェアに対しても実用的な時

間でクローンの抽出を行える．また，実際にさま

ざまな大規模ソフトウェアへ適用され，その有用

性が確認されている[8]・

クローン分析を行う際,CCFinderは空白や改行，

コメント等を除去するとともに，入力テキスト中

の変数名や関数名等を同一記号に縮退させる．そ

の後に，しきい値以上の長さの共通字句列を探索

し，全ての対のリストを出力する．コピー＆ペー

ストによってクローンが作られた場合，変数名な

どが変更されないことは稀であり，何らかの形で

変数名などがコピー先のコンテキストに合致する

よう書きかえられることが多い．CCFinderでは変

－５０－ 



，
１
１
⑤
Ｉ
Ｉ
Ｉ
１
 

〔『‐｜調」雛 二つ

ＣＩｏｍｅＢ'-3削除

図１:クローンの変更履歴

法を3.3節にて述べる．

3.1諸定譲

本解析手法では時間と共に変更されるソースコー

ドを△tごとに区切って考える(図2)．分析の対象

を版管理システムの管理下にあるソースコードファ

イルの集合とし，ある時刻tにおける集合をプロ

ダクト(PmductM;｝と呼ぶ．

いま，各ファイルを文字列と考え，その連続す

る部分列をコード片(CodesnippeOと呼ぶ．そし

て，且に含まれるコード片のうち，共通字句列と

なるコード片の対(ｎ,６)を瓜に関するクローンペ

ア(CIonepair)，αやｂをそれぞれＨに関するク

ローン(C1one)と呼ぶ．このときαとｂはクロー

ン関係(CIonemationship)にあるという．また，

クローン関係を同値関係と考え，その同値類をク

ローンセット(Cloneset)と呼ぶ．

3.2クローン履歴分析

我々はこれまでに過去のクローンから新しい時

点のクローンへの対応関係をクローン履歴関係と

定義し，その抽出を行う手法を提案している[11]、

このような履歴関係を用いることで，例えば図

lのように当初二つのクローンセットＡＢが３つ

のクローンセットＡ,Ｂ,Ｂ,に変化しているとき，

このような関係をたどることで，Ａ－３は過去の時

点ではＡ-1,Ａ－２からコピーされたことや，Ｂ'-1,

B'-2,Ｂ'－３は元々Ｂ-1,Ｂ２のコピーだったものが

編集された結果，別々のクローンセットとなって

いることなどがわかる．

この手法では，指定された解析開始時間t,,率加，
解析終了時間t…で定義される期間を与えられた

数名，関数名を同一記号とみなすことによって適

切にコピーを検出できる．また，長大な共通字句

列が存在したときに，その部分字句列が併せて出

力されるのを防ぐために，それぞれ互いに包含関

係でないもののみをクローンとして出力する．

2.2版管理システム

版管理システムとはＣＶＳ【2]やSubversion[，］

のようにプロダクトの保管・管理に用いられるシ

ステムである．過去のクローンの状態を知るため

には，何らかの方法で過去の時点でのクローンを

知る必要があるが，版管理システムが普及する以

前は過去のソースコードを取得する標準的な方法

は存在しなかった．版管理システムでは，管理下

のプロダクトを任意の時点の状態に復元して取得

する機能が提供されている．

版管理システムには様々な実装が存在するが，ほ

とんどの版管理システムはプロダクトそのものだ

けでなく，「いつ」「だれが」「どの部分」を編集し

たかを逐一保存している．これらの情報を抽出し，

CCFinderを用いて得られるクローン情報と突きあ

わせることで，それぞれのクローンを作成した開

発者を特定することができる．なお，本稿では版

管理システムとしてＣＶＳを用いるものとする．

３クローン関係者分析手法

本節では，クローンの作成や削除，途中の編集

などに関わった開発者を分析するクローン関係者

分析手法について述べる．まず，3.1節にてクロー

ンに関する単語の定義を行い，次に3.2節にて，過

去に筆者らが提案したクローン履歴分析手法につ

いて述べる．それらを踏まえてクローン関係者手

－５１－ 



Ｅ二F三雲臣＝ にDdompPcI

ｃｐ:CIoncpar 
■ 

雪雲二言＆□歴

図２:クローンとクローン履歴関係

解析間隔△tで区切る．そして，それぞれの時刻

ｔにおいてCCFinderを用いてクローンを抽出し，

ｔ－１に存在するクローンがtのクローンのどれに

対応するかを解析を行う(図2)．

3.2.1行番号対応関係

差分情報の解析にあたり，時刻ｔより△tだけ

過去の時点におけるプロダクトFl-1に含まれる

コード片に対して，風に含まれるコード片への写

像を定義している．本写像はクローン履歴分析だ

けでなく，後述のクローン関係者抽出手法でも利

用しているため，その概要についてここで述べる．

もしﾛよりも前の部分に変更箇所があれば，そ

の内容に応じて写像先６の開始行，終了行を調整

する．図３のCaselは＝－ド片＠の前で編集操作

が行われた場合の例である．このとき，αの前で

行われた編集操作の全てを勘案してαの写像先６

の開始行，終了行は、のそれのそれぞれ４行後ろ

とする．またαに含まれる部分に変更が加えられ

ていた場合には，その内容に応じてｂの終了行を

調整する．図３のCase2では⑰内に２行新しい行

が追加されているため，ｂの終了行はαのそれに

対して２行追加した値とする．

最後に，クローン片の端の部分で書きかえ操作

が発生した場合について述べる．図３のCase3で

はコード片αの開始行を跨がる形で書きかえされ

ている．このような場合,「コード片αの上に２行

挿入があった」という解釈と，「コード片αに２行

の挿入がされた」という解釈，およびその中間(１

行がコード片の上に，１行はコード片α中に挿入

された)が成りたつ．そこで，これら全てのケース

をコード片αの子とする．このように複数の子が

生成されるケースは以下の３つである．

・開始行,終了行が編集されている箇所を含む(図

３Case3） 

・開始行の一行前に挿入

・終了行に挿入

本研究においてはFl-1→風への写像のみを扱

うため，削除操作ではこのような複数候補を考え

る必要はない．

以上述ぺた３つの編集操作による影響をすべて

足しあわせて写像先を決定する．

3.3クローン関係者抽出手法

３．３．１概要

本手法では，ＣＶＳによって得られるログ情報と，

各リピジョンにて何行目が編集されたかという情

報を元にクローン関係者の同定を行う．

まず解析対象の各ファイルについてログ情報を

取得する．ログ情報からは「リピジョンの一覧」

と，各リピジョンごとの「リピジョン番号」「編集

日時」「編集を行った開発者」「コミットログ」が

得られる．

次に，コミットログによって得られたりビジョ

ンの集合に対して，各リピジョン間においてどの

ような編集操作が行われたかを逐次的に取得する．

この編集操作の中に，編集日時に存在するクロー

ンを編集しているものがあれば,「編集を行った開

発者」をそのクローンの編集者とする．差分から

編集されたクローンを特定する方法については次

－５２－ 



囚 回 回
■■■■■■￣ 

lT己pｌａｃｃｌt-１ ｔ t-１ Ｌ１ ｔ 

雪雲蘂ｉ三i薑塵房、jhi拳
一一

ｎＩＵ 

四m■ⅡⅡⅡロ

図３:コード片の写像

節で詳述する．

上記の手続きをくりかえして，クローンが編集

されたそれぞれの時点において，どの開発者がそ

れを行ったかを特定する．

３．３．２差分からのクローン特定

リピジョン間の編集情報は「編集が行われた領

域」と「編集内容」の繰り返しとなっている．こ

のうち，クローン特定に用いる「編集が行われた

領域」の情報は次の３つの情報から構成される．

(1)編集元の領域．編集元が何行目から何行目か．

(2)編集操作．追加，削除，編集の３種類．

(3)編集先の領域．編集先が何行目から何行目か．

これらの情報から，そのコミットにおいて開発

者がどの部分を編集したかがわかる．それらの領

域の中にクローンが存在した場合，そのクローン

はこの編集によって何らかの変更をされていると

考えられる．そこで，且－，に含まれるクローンの

うち，編集元の領域に存在するクローン，および

日に含まれるクローンのうち編集先の領域に存在

するクローンについて，その時点でのクローンの

編集者をコミットを行った開発者とする．

ただし,行番号はt-1,ォ間で行なわれた他の編集

内容による影響を受ける．例えば,時間ｔ－１とｔの

間に２つのコミットがあり，それぞれ＃',ｔ〃にコミッ

トされている場合を考える(ｔ－１＜'＜t〃＜t)．

このとき，Ｅ－，とＢ,ではファイルの状態が異な

る．そのため，ｔ〃における解析では瓜-,での行番

号をそのまま用いることはできない．そこで，３．２

節で述べた行番号対応関係分析手法をｫ'で行なわ

れた編集内容に対して適用し，行番号の対応付け

を行う．

OBtpTeM 

糎析期借 ノ０１川

表１:実験対象の詳細

４実験

4.1実験の概要

ここでは著名なオープンソースソフトウェアの

一つであるPostgreSQLの一部ソースコードに対

して本手法を適用し，そこから得られる情報とク

ローンの対処優先度についての関係について考察

する．解析対象の詳細は表１に示す．

本実験では，クローン履歴分析およびクローン

関係者分析をPostgrcSQLに対して適用し，各開発

者がクローンの編集を行った回数などを計測する

ことで，それらの計測値とクローンの性質の間に

どのような関係があるかを調査した．

実験は(1)各開発者ごとにクローンの増減回数

に差が見られるか，(2)大規模な変更に含まれるク

ローンと小規模な変更に含まれるクローンの性質に

差があるか，という２つの視点から分析を行った．

開発者ごとのクローン変更回数は，あるコミッ

トであるクローンセットに対して何らかの変更を

施していた場合を１回とする．つまり１回のコミッ

トで３つのクローンセットを同時に変更していた

場合には３回の変更をした，とカウントされる．

また，クローンセットに対する変更を以下の３つ

に分類する．

クローンの追加クローンセットに新しいクローン

が追加されている．

クローンの削除クローンセット内のクローンが減

少している，もしくはクローンセット全体が削

除されている．

－５３－ 

ソフトウェア名 PostgreSQL 
解析対象モジュール pgsql/Ｂｒ/backend/Commands 

解析期間 2003/01/０１～2004/０１/0１ 

解析対象の行数 32092行(2004/０１/0１ 時点）



momJ1anpeteretgl 
クローンロ６１０３２

２３ クローン１１７

クローン

（ロロ）

表Ｚ:開発者ごとのクローン変更回数

図４:コミットによって変更されたクローンセット

数の度数分布図

ミットが２１回，２つのクローンセットを編集して

いるコミットが１３回あったことを示している．

このグラフから，ほとんどのコミットは単一の

クローンセットを編集しているが，いくつかのコ

ミットでは非常に多数のクローンセットを編集し

ていることがわかる．この中でも多数のクローン

セットを編集している上位５つのコミットログを

表４に示す．これらのログからもわかるとおりそ

の編集内容はエラーメッセージ出力方法の統一な

ど機械的に変更可能な箇所となっている．実際に

編集内容を確認した限りでは，変更の際には文字

列検索などを利用して機械的に変更箇所を把握し

たものと推測される．

逆に言えば，このようなクローンセットは必要に

応じて機会的に網羅することが容易であり，その

まま残しておいても保守の障害とはならない，す

なわちクローン削除の優先度が低いクローンセッ

トであると言える．

５考察

本実験では，PostgreSQLの一部モジュールを対

象として，各開発者ごとにクローンの追加や削除

に関して特徴的な挙動を抽出できるかどうかを試

みた．その結果，ある開発者についてクローン追加

の比率が高いことが判明した．実験対象のモジュー

ルについてクローンの編集を行っている開発者が

当初の予想より少ない３人のみだったため，この

事象のみを持って断定的な主張を展開することは

難しいが，開発者によってクローンに対する意識

が異なる可能性は高い．

次に，コミットに含まれるクローンセット変更

数に着目した結果，多数のクローンセットが単一

のコミットで編集されている場合には，それらの

表3:解析対象における開発者ごとのコミット回数

クローンの編集クローンの中身が編集されている．

クローンセット内のクローン数に変化はない

なお，追加，削除時に同時に編集が行われてい

た場合でも，それぞれクローンの追加，クローン

の削除が行われたものとする．

4.2実験結果

4.2.1開発者ごとのクローン追加，削除回数の

比較

コミット時のクローン操作内容を開発者ごとに

集計したものを表Ｚに示す．

最もクローンの変更回数が多いのはtglである

が，tglは作業量が多いために，それだけクローン

に関わる回数も多くなっている．また，実際には

コミッタではない開発協力者が書いたソースコー

ドをtglが責任者としてコミットしていることも，

tglの編集回数が多い一因となっている．解析対象

における各開発者のコミット回数を表３に示す．

表３のコミット回数を考慮すると，petereのク

ローン追加の比率は他の開発者のそれに比べると

高いことがわかる．実際にpetereによる機能追加

にはコピー＆ペーストが多く，petereが作成した

クローンについては注意を払う必要がある可能性

がある．

4.2.2コミットごとのクローンセツト数の分析

次に，一度のコミットにおいて編集されたクロー

ンセット数に着目し，その分布について調査を行っ

た．図４はクローンセット数によるヒストグラム

である．Ｘ軸はコミットによって変更したクロー

ンセット数，Ｙ軸はその頻度を表している．つま

り，１つのクローンセットのみを編集している．

－５４－ 

Ⅱｎｏ mji ａｎ petere tgl 
クローン追加 ６ 1０ 3２ 

クローン肖！ 除 ２ ３ 1７ 

クローン編集 3５ 2７ 135 

(合冒
● 

） 4３ 4０ 184 

tgl 1428(42.4％） 
Ⅱｎｏ ｍJ１ aｎ 1317(39.1％） 

petere 143(4.2％） 

scrappy 143(4.2％） 
ｗｄｉｍ 121(3.6％） 
その他 214(６３％） 



表４:編集クローンセット数上位５件のコミットログ

を削除すべきか否かをを判定する指標として活用

できるかを検討するための分析を行った．

今後の課題として，今回の分析で得られた知見

を検証するためのより広汎な分析が挙げられる．特

に開発者に関する分析では関わっている開発者は

3人のみであった．これは調査対象を－部モジュー

ルに限定しすぎたことが原因であり，より多くの

ソースコードに対して分析が必要である．

また，版管理システムの多くはブランチと呼ば

れる機能を持っている．これはプロダクトの状態

をいくつか並列に持てるようにする機能であるが，

提案手法ではブランチを考慮していないそのた

め，ブランチ上で行われた編集作業は全く考慮さ

れていない．大規模なオープンソースソフトウェ

アではブランチを利用している開発グループも多

く，提案手法でもブランチを考慮した分析を行え

るよう拡張を考慮していきたい

参考文献

［1］BakerbBS.:APIogramfbrIdentifyingDupli-

catedCode,Cbl"pH伽gSbje"“αＭＳｍＺｉＦ伽s，

ＶｏＬ２４,pp､４９５７(1992)． 

クローンは自動的に網羅可能であり，ソフトウェ

ア保守工程においてもコスト増大要因としての性

格は薄いと考えられる．

ただし，そのような変更がクローンセットの極

一部でのみ行われており，その他の部分は依然と

して，網羅することが難しい部分である可能性も

否定できない．今後は，そのような部分について

もより踏みこんだ分析を行っていきたい．

６関連研究

クローンの履歴を調査する研究としては，Ｋｉｍ

らの研究[5]が挙げられる．Ｋｉｍらは我々の手法

と同様にCCFmderを用いてクローンの履歴抽出を

試みており，クローンセットの生存期間に着目し

て生存期間の分布がどのようになっているか，生

存期間の違いによってクローンにどのような特徴

があるかを調査している．Ｋｉｍらの研究では，履

歴抽出の対象となっているのはクローンセットで

あり，個々のクローンについての詳細な履歴は対

象としていない．それに対して本研究では一つ一

つのクローンを単位とした履歴を抽出することで

より細粒度な解析をすることで，開発者などの情

報を取りこむことを可能にしている．

また，吉田ら［10]はJavaソースコードを対象

として，クローンが存在するクラスに着目したク

ローンメトリクスを定義し，それらの値からリファ

クタリングを支援する手法を提案している．この

ようなファイルの内容を解析した情報の活用もま

た重要であると考えられる．

７まとめ

本研究では，版管理システムが保持する履歴情

報とクローン履歴情報に基づいて，クローン編集

者情報を自動的に抽出する手法を提案した．また，

クローン関係者やクローン履歴を用いてクローン

[2］CVS:、http://www・cvshome・ｏｒg/、

[3］Johnson，』．Ｈ：Identifyingredundancyin

sourcecodeusmgiingerprints，Ｐｍｃα"舵

ノbrMwU"“dSzM“o"ＣｂＪＭｗｍｉＭｅ花JFeam

（Q4SCOⅣ'”）,Tbronto,Ontario,Canada,pp 

l71-183(1993)． 

Ｆ１］Kamiya，Ｔ，Kusumoto，Ｓ・andlnoue，Ｋ：

CCFinder：AMulti-LinguisticTbken-based 

CodeC1oneDetectionSystemfOrLargeScale 

SourceCode,ＩＥＥＥＺｍ"瓜Ｓｑ/Twq"Ｅ咽j"eeト

ノ"８，Ｖb1.28,Ｎ０．７，ｐｐ６５４約７０(2002)．

－５５－ 

編集クローンセット数 コミットログ

6２ Anotherroundoferrormessageediting,coveringbackend/Conunands/、
2７ Firstbitsofworkonerrormessageediting． 
2６ Ａｄ Iust，permissiondenied，messagestobemoIeusefUlandconsistent． 
2５ pgindentnln． 
2３ Messageediting:removegratuitousvaIiationsmmessagewording 

● 

、 s⑫M2nl‐ 

izetenns,addsomeclarilications,iixsomeuntranslatableattemptsatdynamc 

messagebuilding． 



[5］Ｋｉｍ,Ｍ､,Sazawai,Ｖ,Notkin,DandMurphy， 

０．Ｃ：AnEmpiricalSmdyofCodeC1oneGe‐ 

nealogies,ＰｍＭ伽剛mpeα"Sq/iwα”Ｅ)18j‐

〃“""gCbがｑＭＩ劫Ｐｂ側"血"o”q/Sb/iwzz陀

励gmeer蝿(EHEOFFE20価ﾉ,Lisbon,Portu‐

gal,pp17-21(2005)． 

[6］Ｌｉ,Ｚ,Ｌｕ,Ｓ､,MyagmalbSandZhou,Ｙｂ:ＣＰ‐ 

Miner:ATbolfOrFindingCopy-pasteandRe‐ 

latedBugsmOperatingSystemCode.，Ｐ"Ｃ 

ｓ剛SyF7WFj“ｏ〃Ｑｐｅｍ伽９８MM℃mDesjg〃

α〃ﾉ"qpノビme"、"o〃（OSDﾉⅣ）,ｐｐ､289-302

（2004)． 

［7］Merlo,Ｅ,Antonio1,Ｇ.’Penta,Ｍ・DandRollo，

ＶＲ:LinearComplexityObject-OrientedSim‐ 

narityfOrC1oneDetectionandSoftwareEvo‐ 

１utionAnalyses，Ｐｍｃ２０１ｿＭＥＥＥｍｆＣｂが

。"Ｓｑﾉｻwα肥Mzzj"花"α"Ce(ＩｍＭＷ）,Chicago，

I11inois,USA,ｐｐ４１２４１６(2004)． 

［8］門田暁人,佐藤慎一,神谷年洋,松本健一:コー

ドクローンに基づくレガシーソフトウェア

の品質の分析,情報処理学会論文誌,ＶＯＬ４４，

Ｎ０．８，卯.21782188(2003年８月)．

［，］Subversion：．ｈｔｔｐ:／／subversﾕｏｎ・

ｔｉｇｒｉｓ・ｏｒｇ/・

[10］YOshida,Ｎ､,Higo,Ｙ,Kamiya,Ｔ,Kusumoto， 

Sandlnoue,Ｋ､:OnRefactoringSupportBased 

onCodeCloneDependencyRelation，Ｐｍｃ 

ＩＭｊＥＥＥｍｚｂＳｂ/11Ｗα”ＭｅｍｃＭｂ'〃o血沈

（MEnRICS200ｺﾞﾉ,Ｃｏｍｏ,Italy§ｐ､１６(2005)． 

[11］川口真司,松下誠,井上克郎:版管理システム

を用いたコードクローン履歴分析手法の提案，

電子情報通信学会論文誌Ｄ,VbLJ89-D,Ｎｏ．10,

ｐｐ２２７９２２８７(2006)． 

－５６－ 


