
Title コードクローン間の依存関係に基づくリファクタリン
グ支援

Author(s) 吉田, 則裕; 肥後, 芳樹; 神谷, 年洋 他

Citation 情報処理学会論文誌. 2007, 48(3), p. 1431-1442

Version Type VoR

URL https://hdl.handle.net/11094/50191

rights

ここに掲載した著作物の利用に関する注意 本著作物
の著作権は情報処理学会に帰属します。本著作物は著
作権者である情報処理学会の許可のもとに掲載するも
のです。ご利用に当たっては「著作権法」ならびに
「情報処理学会倫理綱領」に従うことをお願いいたし
ます。

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Vol. 48 No. 3 情報処理学会論文誌 Mar. 2007

コードクローン間の依存関係に基づくリファクタリング支援

吉 田 則 裕† 肥 後 芳 樹† 神 谷 年 洋††

楠 本 真 二† 井 上 克 郎†

コードクローンとは，互いに一致または類似したコード片（ソースコードの断片）を持つコード片
を意味し，ソフトウェア保守を困難にしている要因の 1 つとされている．たとえば，あるコード片に
バグが含まれていた場合，そのコード片のコードクローンすべてに対して，修正の是非を検討する必
要がある．コードクローンを取り除く方法として，リファクタリングの適用が考えられる．リファク
タリングとは，ソフトウェアの外部的振舞いを変化させることなく，内部の構造を改善する作業のこ
とである．しかし，クローンセット（互いに一致または類似したコード片の集合）に含まれるコード
片と周辺のコード片間に依存関係が存在すると，リファクタリングが困難になる場合がある．本稿は，
クローンセット間の依存関係を利用したリファクタリング支援手法を提案する．まず，異なるクロー
ンセットに含まれるコード片間の依存関係に着目し，そのような依存関係を持つコード片の集合を
チェーンドクローンセットと定義する．そして，メトリクスを用いてチェーンドクローンセットの特
徴を判定し，適用可能なリファクタリングパターンを提示する．最後に，リファクタリング支援ツー
ルとして実装することで，いくつかのオープンソースソフトウェアに適用し，有効性の評価を行う．

On Refactoring Support Based on Code Clone Dependency Relations

Norihiro Yoshida,† Yoshiki Higo,† Toshihiro Kamiya,††

Shinji Kusumoto† and Katsuro Inoue†

Code clone is a set of code fragments identical or similar to each other. It is generally said
that code clone is one of the factors that make software maintenance more difficult. If we
modify one of them, it is necessary to determine whether or not we have to modify the others.
Refactoring is a disciplined technique for restructuring an existing body of code, altering its
internal structure without changing its external behavior. However, there are dependency
relations between code fragments belonging to the different clone sets (a clone set is an equiv-
alence class of code clones), and it is difficult to apply refactoring to such code clones. In this
paper, we propose a refactoring support method by using dependency relations. At first, we
focus on dependency relations between code fragments belonging to the different clone set,
and we define “chained clone set” as such code fragments. Then, we define the metrics for
providing an appropriate refactoring pattern to each “chained clone set”. Finally, we present
the “chained clone set” refactoring support tool that we have developed, together with some
case studies.

1. は じ め に

ソフトウェア保守を困難にする要因の 1 つとして，

コードクローンが指摘されている1)～5)．コードクロー

ンとは，ソースコード中に存在する互いに一致，また

は類似したコード片（ソースコードの断片）を意味す

る．たとえば，あるコード片にバグが含まれていた場

† 大阪大学大学院情報科学研究科
Graduate School of Information Science and Technol-

ogy, Osaka University

†† 産業技術総合研究所
National Institute of Advanced Industrial Science and

Technology

合，そのコード片のコードクローンすべてに対して，

修正の是非を検討する必要がある．このような作業に

要するコストが，特に大規模ソフトウェアの保守にお

いて問題となる．

ソフトウェア保守性を改善する技術の 1 つとして，

リファクタリング6) がある．リファクタリングとは，

ソフトウェアの外部的振舞いを変化させることなく，

内部の構造を改善する技術のことである．Fowlerは，

リファクタリングを検討すべき箇所に現れる特徴を

Bad Smell と呼び，その代表例としてコードクロー

ン（Duplicated Code）をあげている．また，コード

クローンを単一のモジュールに集約する手法として，

“Pull Up Method”や “Extract Method”，“Extract

1431



1432 情報処理学会論文誌 Mar. 2007

SuperClass”等のリファクタリングパターンを紹介し

ている6)．

これまでに，我々はコードクローン検出ツール

CCFinder 7)およびリファクタリング支援環境Aries 8)

を開発してきている．CCFinderは，ソースコードに

字句解析と正規化処理を行うことで得られたトーク

ン列の同値性に基づいてコードクローン検出を行う．

CCFinder の特徴は，表現上の差異があるコードク

ローンを検出できること，および百万行単位のソース

コードであっても実用時間で解析できることである．

Ariesは，CCFinderの出力情報を基に，リファクタ

リングに適した単位（e.g. クラス，メソッド単位）で

クローンセット（互いに一致または類似したコード片

の集合）を検出し，さらにメトリクスで特徴付けする

ことでリファクタリングパターンの提示を行う．

これまでに，Ariesを用いて様々なソースコードを

解析した結果，異なるクローンセットに含まれるコー

ド片間に依存関係が存在する場合が確認されている．

たとえば，クローンセット Sa に 2つのメソッド ma1，

ma2 が含まれ，同様にクローンセット Sb に 2 つの

コード片 mb1，mb2 が含まれるときに，メソッド ma1

がメソッド mb1 を呼び出し，メソッド ma2 がメソッ

ド mb2 を呼び出しているという場合である．

Ariesは，上述した呼出関係の解析は行っていない

ため，ユーザは自らクローンセット Sa と Sb 間の呼

び出し関係を把握する必要がある．もし，ユーザが Sa

に対して ma1 と mb1，ma2 と mb2 の呼び出し関係

を考慮せずに集約を試みると，呼び出し関係が保存さ

れない可能性がある．有効なリファクタリング支援を

行うためには，クローンセット Sa と Sb は，まとめ

てユーザに提示するべきであると考えられる．

本稿では，クローンセット間の依存関係を利用した

リファクタリング支援手法を提案する．まず，異なるク

ローンセットに含まれるコード片間の依存関係に着目

し，そのような依存関係を持つコード片の集合をチェー

ンドクローンセットと定義する．そして，チェーンド

クローンセットの特徴に応じて，適用可能なリファク

タリングパターンを提示するためのメトリクスを定義

する．最後に，提案手法をリファクタリング支援ツー

ルとして実装し，2つのオープンソースソフトウェア

に適用することで有効性の評価を行う．

2. コードクローン

2.1 コードクローンの定義

あるトークン列中に存在する 2 つの部分トークン

列 α，β が等価であるとき，α と β は互いにクロー

ンであるという．またペア（α，β）をクローンペア

と呼ぶ．α，β それぞれを真に包含するいかなるトー

クン列も等価でないとき，α，β を極大クローンと呼

ぶ．また，クローンの同値類をクローンセットと呼ぶ．

ソースコード中でのクローンを特にコードクローンと

いう9)．

2.2 コードクローン検出ツール：CCFinder

CCFinderはプログラムのソースコード中に存在す

る極大クローンを検出し，その位置をクローンペアの

リストとして出力する．検出されるコードクローンの

最小トークン数はユーザが前もって設定できる．

CCFinderのコードクローン検出手順は以下の 4つ

の STEPからなる．

STEP1（字句解析）：ソースファイルを字句解析す

ることによりトークン列に変換する．入力ファイ

ルが複数の場合には，個々のファイルから得られ

たトークン列を連結し，単一のトークン列を生成

する．

STEP2（変換処理）：実用上意味を持たないコー

ドクローンを取り除くこと，および，些細な表現

上の違いを吸収することを目的とした変換ルール

によりトークン列を変換する．たとえば，この変

換により変数名は同一のトークンに置換されるの

で，変数名が付け替えられたコード片もコードク

ローンであると判定することができる．

STEP3（検出処理）：トークン列の中から指定さ

れた長さ以上一致している部分をクローンペアと

してすべて検出する．

STEP4（出力整形処理）：検出されたクローンペ

アについて，ソースコード上での位置情報を出力

する．

2.3 リファクタリング支援環境：Aries

リファクタリング支援環境 Ariesは，CCFinderの

出力情報を基に，リファクタリングに適した単位（e.g.

クラス，メソッド単位）でクローンセットを検出し，

さらにメトリクスで特徴付けすることでリファクタリ

ングパターンの提示を行う．

リファクタリングに適した単位とは，ソースコード

上の構造的なまとまりのことである．クローンセット

に含まれるコード片が構造的なまとまりを持っている

なら，容易に集約することができる．現在，Ariesは

Java 言語を対象として実装されているため，用いる

構造的なまとまりは以下の 12種類である．
宣言 ： class { }, interface { }

メソッド ： メソッド本体，コンストラクタ，

スタティックイニシャライザ



Vol. 48 No. 3 コードクローン間の依存関係に基づくリファクタリング支援 1433

(a) DCH(S1) = 0 (b) DCH(S2) = 1

(c) DCH(S3) = ∞
図 1 DCH メトリクスの算出例

Fig. 1 Example of DCH metric calculation.

文 ： if, for, while, do, switch,

try, synchronized

クローンセットの特徴付けに用いるメトリクスの 1

つとして，分散度メトリクスDCH(S) 8) について説

明する．クローンセット S はコード片 f1, f2, · · · , fn

を含んでいるとする．クラス Ci はコード片 fi を含

んでいるクラスとする．もしクラス C1, C2, · · · , Cn

が共通の親クラスを持つ場合は，その共通の親クラス

の中で，クラス階層的に最も下位（最も深い階層）に

位置するクラスを Cp で表すとする．また D(Ck, Ch)

はクラス Ck と Ch のクラス階層における距離を表す

とする．このとき，

DCH(S) = max {D(C1, Cp), · · · , D(Cn, Cp)}
と表される．直観的には，DCH(S) メトリクスはク

ローンセット S に含まれる各コード片間のクラス階

層内における最大の距離を示す．図 1 (a)～(c)は，そ

れぞれクローンセットに含まれる 2 つのコード片に

対して，DCH(S) メトリクスを算出した例である．

DCH(S) の値は，すべてのコード片が 1つのクラス

内に存在する場合は 0（図 1 (a)），あるクラスとその直

接の子クラス内に存在する場合は 1となる（図 1 (b)）．

例外的に，コードクローンが存在するクラスが共通の

親クラスを持たない場合は ∞ とする（図 1 (c)）．こ

のメトリクスは，クラスライブラリ等の修正不可能な

クラスを除外したクラスを対象として計算される．

DCH(S) メトリクスにより，クローンセット S の

コード片を集約したモジュールを置くことができるク

ラス（集約先）を特定することができる．たとえば，

DCH(S) メトリクスの値が 1の場合は，そのクロー

ンセットが存在するクラスの親クラスに集約できるこ

とが分かる．また，DCH(S)メトリクスの値が∞ の
場合は，分析対象内に集約先位置になるクラスが存在

しないため，クラスの作成，もしくは継承関係のない

クラスへの集約を検討するべきであることが分かる．

3. 提 案 手 法

3.1 本研究の動機

リファクタリングを行う際は，“保守性を悪化させ

るコード（Bad Smell）の特定” と “外部的振舞いを

変更させず保守性を向上させる修正作業”を行う必要

がある．

すでに述べたように，保守性を悪化させるコードと

してコードクローンが指摘されている．門田らは，コー

ドクローンを含むモジュールの方が保守コストが大き

くなる事例を紹介している10)．彼らが紹介した事例で

は，より行数の多いコードクローンを含むモジュール

ほど，保守コストが大きくなっていた．

検出したコードクローンを容易にリファクタリング

するためには，次の 2つの条件を満たしていることが

望ましい．

（条件 1） クローンセットに含まれるコード片が構造

的なまとまりを持っている．

（条件 2） クローンセットに含まれるコード片と周辺

のコード間に結合が少ない．

（条件 1）については，2.3 節で述べている．（条件 2）

の例として，メソッド呼び出しを含む場合（図 2 (a)）

や，フィールド変数を使用（参照，代入）している場

合（図 2 (b)）があげられる．図 2 (a)では，メソッド

a1 と b1 がコードクローンとなっており，点線矢印で

表すようにメソッド a1 が a2 を呼び出し，メソッド

b1 が b2 を呼び出している．図 2 (b)では，メソッド

a1 とメソッド a2 はフィールド変数 va を参照してお

り，メソッド b1 とメソッド b2 はフィールド変数 vb

を参照している．このような周辺のコードと結合度が

高いコードクローンを集約することは困難である．な

ぜなら，集約作業を行う際に，メソッド間の呼び出し

関係やメソッドとフィールド変数の関係に不整合が起

きないよう考慮する必要があるからである．

ここまでに述べたように，コード量が大きいコード

クローンにかかる保守コストや，周辺のコードと結合

が多いコードクローンに対するリファクタリングの難

しさが問題になりやすい．我々はコードクローン分析

を行う中で，そのようなコードクローンのパターンを

見つけた．それは，異なるクローンセット間に依存関

係が存在する場合である（図 3 (a)）．図 3 (a)は，クラ

ス A，B 間にまたがる 3つのクローンセットを表して

いる．これら 3つのクローンセットは，他のクローン

セットとの間にメソッド呼び出し関係やフィールド変



1434 情報処理学会論文誌 Mar. 2007

(a) メソッド呼び出し

(b) フィールド変数の使用

図 2 周辺のコードと結合している例
Fig. 2 Examples of codes are coupled each other.

数の参照関係が存在する．図 3 (a)のクラス A，B の

ように，類似したクラスには，“Extract SuperClass”

パターンの適用を検討すべきと指摘されている6)．ク

ラス A，B に “Extract SuperClass”パターンの適用

した結果が図 3 (b)である．

図 3 (a) から図 3 (b) へのリファクタリングを支援

する方法として，図 3 (a)中に含まれる 3つのクロー

ンセットを同時に提示することが考えられる．

その理由の 1つ目は，1つのクローンセットを対象

としたリファクタリングは，呼び出し関係が原因で困

難な場合があるからである．たとえば，図 3 (a)のク

ローンセットの 1つ（メソッド a1 とメソッド b1）に

対して集約を試みると，親クラスに新たに作成したメ

ソッド s1 から子クラスのメソッド a2 と b2 を呼び

出すことができなくなる（図 3 (c)）．この問題を解決

するためには，子クラスのメソッドに対応する抽象メ

ソッドを親クラスに追加する必要がある．3つのクロー

ンセットを同時にリファクタリングする際にはこのよ

うな工夫は必要ない．

2 つ目の理由は，図 3 (a)のようなクローンセット

の組合せを手作業で見つけ出すことは難しいからであ

る．なぜなら，大規模ソフトウェアは大量のクローン

セット含んでいることが多いため，それらのすべてに

対して呼び出し関係の有無を確認することは困難だか

らである．また，呼び出し関係の理解支援にはコール

グラフ（Call Graph）がよく用いられるが，頂点数

（メソッド数）が膨大になりやすい大規模ソフトウェ

アへの適用は現実的でない．

本稿では，図 3 (a)のようなクローンセットの組合

(a) リファクタリング前

(b) リファクタリング後（3 つ同時）

(c) リファクタリング後（1 つのみ）

図 3 異なるクローンセット間に依存関係が存在する例
Fig. 3 Example of clone sets that have dependency

relations.

せを “チェーンドクローンセット”と呼び，“チェーン

ドクローンセット”に対するリファクタリング支援手

法を提案する．

3.2 チェーンドクローン

チェーンドクローンを定義するための準備として，

メソッドチェーンを定義する．メソッドの集合が与え

られたとき，それらメソッド間の依存関係を表す有向

グラフが連結グラフになるなら，そのメソッドの集合

をメソッドチェーンと定義する．

ここで扱う依存関係は，以下の 2種類である．

(1) メソッドの呼び出し関係

(2) 同一フィールド変数の共有（参照または代入）

図 4 (a)は呼び出し関係を含むメソッドチェーンの

例である．この例では，メソッド a が b を，メソッド

b が c を呼び出している．また，図 4 (b)は，図 4 (a)

のメソッドチェーンの依存関係をラベル付き有向グラ

フで表したものである．有向辺に付属しているラベル



Vol. 48 No. 3 コードクローン間の依存関係に基づくリファクタリング支援 1435

(a) 呼び出し関係
(b) 呼び出し関係を
表すグラフ

図 4 呼び出し関係と呼び出し関係を表すグラフ
Fig. 4 Method chain whose dependency relations are

method invocations.

(a) フィールド変数の使用

(b) フィールド変数の共有関係を表すグラフ

図 5 フィールド変数の使用と共有関係を表すグラフ（括弧内の数
字は対応する関係を表す）

Fig. 5 Chained method whose dependency relations are

sharing variables.

“call”は，依存関係の種類がメソッドの呼び出し関係

であることを表している．たとえば，メソッド a が

b を呼び出しているとき，有向辺 (a, b) を引き，ラベ

ル “call”を付ける．なお，1つのメソッドが同一のメ

ソッドを 2回呼び出している場合は，それらメソッド

間に呼び出し関係を表す有向辺を 2本追加する．

図 5 (a)はフィールド変数を使用しているメソッド

チェーンの例である．図 5 (a)の有向辺に付属してい

るラベル “refer”はフィールド変数の参照を表してお

り，“assign”はフィールド変数への代入を表している．

図 5 (a)のメソッド a と b は，フィールド変数 x を

共有しており，メソッド a，c はフィールド変数 y を

共有している．また，図 5 (b)は，図 5 (a)のメソッド

チェーンに含まれるメソッド間の共有関係をラベル付

き有向グラフで表したものである．有向辺に付属して

いるラベル “Rx(refer)”はフィールド変数 x への参

照による共有関係，ラベル “Ay(assign)”は，フィー

ルド変数 y への代入による共有関係を表している．た

図 6 ケース 1

Fig. 6 Case 1.

とえば，メソッド a が変数 x を参照し，かつメソッ

ド b が変数 x を使用（参照または代入）していると

き，有向辺 (a, b) を引き，ラベル “Rx”を付ける．ま

た，メソッド c が変数 y に代入し，かつメソッド a

が変数 y を使用しているとき，有向辺 (c, a) を引き，

ラベル “Ay”を付ける．

次に，メソッドチェーンを用いてチェーンドクロー

ンを定義する．2つのメソッドチェーンが互いにチェー

ンドクローンとなるのは，各メソッドチェーンが持つ

依存関係のグラフが同形であり，対応する頂点（メソッ

ド）が同一クローンセットに含まれ，対応する辺（依

存関係）のラベルは等しいときである．また，互いに

チェーンドクローンであるメソッドチェーンの同値類

を，チェーンドクローンセットと呼ぶ．

3.3 チェーンドクローンセットに対するリファク

タリング

ここでは，チェーンドクローンセットに対して考え

られるリファクタリングについて説明するため，適用

可能なリファクタリングパターンが異なる 4つのケー

スを紹介する．

ケース 1は，チェーンドクローンセットが 1つのク

ラスに包含されている場合である．ケース 1では，そ

の 1つのクラス内にすべてのクローンセットを集約可

能である．図 6 は，ケース 1 のチェーンドクローン

セットに対するリファクタリングの例である．互いに

クローンであるメソッド a11 とメソッド a12 を集約

しメソッド a1 とし，同様に互いにクローンであるメ

ソッド a21 とメソッド a22 を集約しメソッド a2 とし

ている．

ケース 2は，チェーンドクローンセットが以下の 2

つの条件を満たす場合である．

• チェーンドクローンセットに含まれるメソッドは，
すべて兄弟クラスに属する．

• 各メソッドチェーンは，それぞれ 1つのクラスに

包含されている．

ケース 2は，“Pull Up Method”パターンを適用す

ることで，リファクタリングできる．つまり，兄弟ク

ラスにまたがって存在するクローンセットを，親クラ

スに集約することでリファクタリングできる．図 7 (a)



1436 情報処理学会論文誌 Mar. 2007

図 7 ケース 2 とケース 3

Fig. 7 Case 2 and Case 3.

は，ケース 2 に対するリファクタリングの例である．

この例では，兄弟クラスであるクラス A，B にまた

がって存在する 2つのクローンセットを，親クラス S

に作成したメソッドに集約している．具体的には，ク

ラス A のメソッド a1 とクラス B のメソッド b1 を

集約し，親クラス S のメソッド ab1 とし，同様にク

ラス A のメソッド a2 とクラス B のメソッド b2 を

集約し，親クラス S のメソッド ab2 としている．

ケース 3は，チェーンドクローンセットが以下の 2

つの条件を満たす場合である．

• チェーンドクローンセットに含まれるメソッドを
持つクラスは，いずれも共通の親クラスを持た

ない．

• 各メソッドチェーンは，それぞれ 1つのクラスに

包含されている．

ケース 3は，“Extract SuperClass”パターンを適用

することで，リファクタリングできる．つまり，チェー

ンドクローンセットに含まれるメソッドを持つクラス

に対して，共通の親クラスを作成し，クラス間をま

たがって存在するクローンセットを，新たに作成した

親クラスに集約することでリファクタリングできる．

図 7 (b)は，ケース 3に対するリファクタリングの例

である．この例では，まず共通の親クラスを持たない

2つのクラス A，B に，共通の親クラス S を作成し

ている．その後，ケース 2と同様に兄弟クラスとなっ

たクラス A，B にまたがって存在する 2つのクロー

ンセットを，親クラス S に作成したメソッドに集約

している．

ケース 4は，チェーンドクローンセットが以下の条

件を満たす場合である．

• 各メソッドチェーンは，複数のクラスにまたがっ

図 8 ケース 4

Fig. 8 Case 4.

て存在する．つまり依存関係が複数のクラス間に

またがっている．

ケース 4 は，チェーンドクローンセット単位でリ

ファクタリングできない場合である．だが，チェーン

ドクローンセットを複数のクローンセットとして扱い，

それぞれの親クラスに集約することでリファクタリン

グできるため，クローンセット単位でのリファクタリ

ングを検討すべきである．図 8 は，ケース 4にクロー

ンセット単位でのリファクタリングを適用した例であ

る．この例では，兄弟クラスであるクラス A，B に

またがって存在する 2つのクローンセットを，それぞ

れの親クラスに作成したメソッドに集約している．具

体的には，クラス A のメソッド a とクラス B のメ

ソッド b を集約し，親クラス S1 のメソッド ab とし，

同様にクラス C のメソッド c とクラス D のメソッド

d を集約し，親クラス S2 のメソッド cd としている．

3.4 チェーンドクローンセットの分類

前節の 4つのケースのように，チェーンドクローン

セットを分類する．前節の 4つのケースには，それぞ

れ適合するための条件があった．それらは，次の 2つ

である．

C1 チェーンドクローンセットに含まれるメソッド

が所属するクラス間の関係についての条件

C2 メソッドチェーンに含まれるメソッドが所属す

るクラス間の関係についての条件

ここでのクラス間の関係とは，クラス階層上の関係

のことである．クラス間の関係は，次に 3つに分類で

きる．

R1 同一クラス

R2 共通の祖先クラスを持つクラス

R3 共通の祖先クラスを持たないクラス

条件の種類とクラス間の関係を組み合わせることに

より，チェーンドクローンセットを表 1 のように分類

できる．



Vol. 48 No. 3 コードクローン間の依存関係に基づくリファクタリング支援 1437

表 1 チェーンドクローンセットの分類
Table 1 Categorization of chained clone sets.

������C1

C2
R1 R2 R3

R1 分類 1

R2 分類 2 分類 4

R3 分類 3

各分類に属するチェーンドクローンセットに対して，

以下に示すリファクタリングを行うことできると考え

られる．

分類 1 前節のケース 1である．図 6 の例のように，

チェーンドクローンセットを包含しているクラス

に，すべてのクローンセットを集約することがで

きる．

分類 2 前節のケース 2である．図 7 (a)の例のよう

に，“Pull Up Method”パターンを適用できる．

分類 3 前節のケース 3である．図 7 (b)の例のように，

“Extract SuperClass”パターンを適用できる．

分類 4 前節のケース 4である．図 8 から分かるよう

に，チェーンドクローンセット単位でのリファク

タリングを行うことができないが，クローンセッ

ト単位でのリファクタリングを検討すべきである．

3.5 チェーンドクローンセットの分類を目的とし

たメトリクス

ここでは，チェーンドクローンセットの分類を行う

ためのメトリクスを 2つ提案する．1つは C1を評価

するメトリクス，もう 1つは C2を評価するメトリク

スである．これらメトリクスは，メソッド間のクラス

階層上における関係を表す．この関係は，2.3 節で述

べた DCH(S) メトリクス（クローンセット S に含

まれる各コード片間のクラス階層内における最大の距

離）を用いて表すことができる．

まず，DCH(S) メトリクスを用いて，C1 を表す

DCHS(T)メトリクスを定義する．チェーンドクロー

ンセット T を n 個のクローンセット S1, S2, · · · , Sn

に分割する（すなわち，S1 ∪ S2 ∪ · · · ∪ Sn = T，

Si ∩ Sj = ∅，1 ≤ i ≤ n，1 ≤ j ≤ n，i �= j）．

さらに，クローンセット Si には，複数のメソッドが

含まれるとする．このとき，DCHS(T ) メトリクス

の定義は以下のようになる．

DCHS(T ) = max{DCH(S1), · · · , DCH(Sn)}
同様に DCH(S) メトリクスを用いて，C2 を表

す DCHD(T) メトリクスを定義する．チェーンド

クローンセット T 中には，n 個のメソッドチェーン

M1, M2, · · · , Mn が含まれるとする．さらに，メソッ

図 9 提案するメトリクスの算出例
Fig. 9 Example of proposed metrics calculation.

ドチェーン Mi には，複数のメソッドが含まれるとす

る．このとき，DCHD(T ) メトリクスの定義は以下

のようになる．

DCHD(T ) = max{DCH(M1), · · · , DCH(Mn)}
図 9 は，提案する 2 つのメトリクスの算出例であ

る．ここでは，分類 2のチェーンドクローンセットを

例として用いる．このチェーンドクローンセットには，

クラス A，B，C にまたがって 2つのクローンセット

S1，S2 が存在する．各クローンセットについてそれ

ぞれ DCH(S1)，DCH(S2) を求めると，クラス A，

B，C は共通の直接の親クラス S を持っているため

両者とも 1 になる．DCHS(T ) の値は，これらの最

大値の 1である．また，このチェーンドクローンセッ

トには，3 つのメソッドチェーン M1，M2，M3 が

含まれている．各メソッドチェーンについてはそれぞ

れ DCH(M1)，DCH(M2)，DCH(M3)を求めると，

各メソッドチェーンはそれぞれ 1つのクラスに包含さ

れているためすべて 0 になる．よって，DCHD(T )

の値は，これらの最大値の 0である．

3.6 実 装

提案手法を Ariesのコンポーネントの 1つとして実

装した．具体的には，Ariesに対して，以下の 3つの

機能を追加した．

（F1） チェーンドクローンセットの検出機能

（F2） 提案したメトリクスの算出機能

（F3）チェーンドクローンセットおよびメトリクス

値の表示機能

（F1）は，まず CCFinderおよび Ariesを用いて各

クローンセットが含むコード片を検出する．次に，そ

れらコード片を対象に，メソッド呼び出し関係と変数



1438 情報処理学会論文誌 Mar. 2007

の共有関係を表すグラフを構築する．その後，構築し

たグラフに含まれる部分グラフから同形グラフを検出

することにより，チェーンドクローンセットを検出す

る．（F2）は，Ariesの DCH(S) メトリクスを計算す

る機能を拡張した．（F3）を実現するために，チェー

ンドクローンセットを閲覧するビューを追加した．

4. ケーススタディ

4.1 概 要

提案手法の有効性を確かめるため，ケーススタディ

を行った．具体的には，以下の 2つを確認した．

• クローンセット単位の検出と比較して，検出でき
たチェーンドクローンセットの規模が大きいか．

• クローンセット単位でのリファクタリングと比較
して，容易にリファクタリングできているか．

なお，この章におけるチェーンドクローンセットは，

極大チェーンドクローンセット☆を指す．

適用対象は，次の 2つのオープンソースソフトウェ

アである．

• ANTLR 2.7.4 11)（4.7万行，285クラス）

• JBoss 3.2.6 12)（64万行，3,364クラス）

ANTLRは，3つのプログラミング言語（Java，C#，

C++）に対応したコンパイラ・コンパイラである．

JBossは，J2EEアプリケーションサーバである．

4.2 チェーンドクローンセットの検出

前述の 2つのソフトウェアに対し，提案手法に基づ

くチェーンドクローンセットの検出，および従来手法

に基づくクローンセットの検出を行った．提案手法では

メソッド単位のコードクローンのみを扱うため，従来

手法に基づく検出でもメソッド単位のクローンセット

のみを対象とした．また，CCFinderが検出するコー

ドクローンの最小トークン数は 30に設定した．

検出結果の比較を行うために，2つの評価基準とし

て，メソッド数と，メソッド行数を用いる．ここで，

メソッド数は，検出単位ごと（クローンセットごとや

チェーンドクローンセットごと）に含まれるメソッド

数を求め，総クローンセット数や各分類に属するすべ

てのチェーンドクローンセット数で除算した値とした．

メソッド行数は，検出単位ごとに最長メソッドの行数

を求め，総クローンセット数や各分類に属するすべて

のチェーンドクローンセット数で除算した値とした．

設定した評価基準に基づいて，クローンセットの検

出結果（表 2）と分類 1，2，3に属したチェーンドク

☆ 与えられたチェーンドクローンセットを真に包含するいかなる
チェーンドクローンセットも存在しないとき，そのチェーンドク
ローンセットを極大チェーンドクローンセットと呼ぶ．

表 2 クローンセットの検出結果
Table 2 Detection result of clone sets.

検出数 メソッド数 メソッド行数
ANTLR JBoss ANTLR JBoss ANTLR JBoss

152 377 2.3 2.4 10.8 6.63

ローンセットの検出結果（表 3 (a)）を比較する．

まず，ANTLR では分類 2 に属したチェーンドク

ローンセットのメソッド数やメソッド行数がきわめて

大きかった．分類 2 のメソッド数はクローンセット

の 8.3（19/2.3）倍，メソッド行数は 5.0（54.0/10.8）

倍であった．一方，分類 1，3に属したチェーンドク

ローンセットのメソッド数は両者ともクローンセッ

トの 1.7（4.0/2.3）倍，メソッド行数はそれぞれ 2.6

（27.7/10.8）倍，3.2（35.0/10.8）倍であった．分類 2

に属するチェーンドクローンセットの多くは，図 10

のような，Java，C#，C++に対応した出力を行う箇

所から検出された．これら言語に対応した出力処理は

類似しており，大量のコードクローンを含んでいた．

次に，JBossの結果を見てみると，分類 1，2，3に

属したチェーンドクローンセットのメソッド数はそれ

ぞれクローンセットの 1.8倍～2.8倍，メソッド行数が

それぞれ 2.4倍～3.2倍であった．これらの結果から，

チェーンドクローンセットの規模がクローンセットに

比べて大きいことが分かる．続いて，分類 1，2，3に属

したチェーンドクローンセットの検出結果（表 3 (a)）

と，分類 4に属したチェーンドクローンセットの検出

結果（表 3 (b)）を比較する．3.4 節で述べたように，

表 3 (a)で示した分類 1，2，3は，チェーンドクローン

セット単位でのリファクタリングはできるが，表 3 (b)

で示した分類 4はチェーンドクローンセット単位での

リファクタリングはできない．分類 1，2，3と比較し

て分類 4に属するチェーンドクローンセットは少ない

ことが分かる．特に，ANTLRからは検出されなかっ

た．一方，JBossでは分類 4のチェーンドクローンセッ

トが検出された．これらのメソッド数，メソッド行数

は，分類 1～3に比べて数倍の大きさになっている．

4.3 チェーンドクローンセットに対するリファク

タリングの例

ANTLRから検出されたすべてのチェーンドクロー

ンセットと JBossから検出された 8つのチェーンドク

ローンセットを対象として，提案手法に基づくリファ

クタリングを行った．ここでは，それらの中から 2つ

の例を紹介する．

まず，図 10，図 12 で示すチェーンドクローンセッ

トに対し，提案手法により提示されたリファクタリン

グパターンを適用できることを確認した．図 10 は分



Vol. 48 No. 3 コードクローン間の依存関係に基づくリファクタリング支援 1439

表 3 チェーンドクローンセットの検出結果
Table 3 Detection result of chained clone set.

(a) 分類 1，2，3

分類 検出数 メソッド数 メソッド行数
ANTLR JBoss ANTLR JBoss ANTLR JBoss

1 3 16 4.0 5.8 27.7 16.2

2 6 17 19 4.5 54.0 17.1

3 1 13 4.0 6.8 35.0 21.5

(b) 分類 4

検出数 メソッド数 メソッド行数
ANTLR JBoss ANTLR JBoss ANTLR JBoss

0 4 — 19 — 54.5

図 10 ANTLR から検出されたチェーンドクローンセットの例
Fig. 10 Example of a chained clone set in ANTLR.

図 11 図 10 のチェーンドクローンセットをリファクタリングし
た例

Fig. 11 Example of refactoring of a chained clone set of

Fig. 10.

類 2であるから，“Pull Up Method”パターンを適用

した．その結果，図 11のようになった．ANTLRパッ

ケージ中の examplesディレクトリ以下にあるすべて

のテストケース（計 86ファイル，文法ファイル）を用

いて回帰テストを行い，外部的振舞い（出力結果）が

変化していないことを確認した．また，図 12 は分類

3であるから，“Extract SuperClass”パターンを適用

した．その結果，図 13 のようになった．JBossパッ

ケージの testsuiteディレクトリ以下にある全テスト

図 12 JBoss から検出されたチェーンドクローンセットの例
Fig. 12 Example of a chained clone set in JBoss.

図 13 図 12 のチェーンドクローンセットをリファクタリングし
た例

Fig. 13 Example of refactoring of a chained clone set of

Fig. 12.

ケース（計 65ファイル，JUnitフレームワーク13) を

使用）を用いて回帰テストを行い，外部的振舞いが変

化していないことを確認した．

さらに，従来手法に基づいて，チェーンドクローン

セットを構成するクローンセットに対し集約を試みる

と，工夫が必要となる場合があることを確認した．具

体的には，図 10，図 12 からそれぞれクローンセット

を 1つ選び，従来手法により提示されたリファクタリ

ングパターンの適用をした．まず，図 10 のクローン

セット 1に対し集約を試みると，提示されたリファク

タリングパターンの適用に加えて，クローンセット 2

のメソッドに対応する抽象メソッドをCodeGenerator

クラスに追加する必要があった．なお，クローンセッ

ト 2に対して集約を試みた場合も同様であることが確



1440 情報処理学会論文誌 Mar. 2007

図 14 分類 4 のチェーンドクローンセットの例
Fig. 14 Example of Category 4.

認できた．また，図 12のクローンセット 2を新たに作

成した親クラスに集約を試みると，提示されたリファ

クタリングパターンの適用に加えて，クローンセット

2のメソッドに対応する抽象メソッドを親クラスに追

加する必要があった．

4.4 考 察

ここでは，今回のケーススタディに基づいて，提案

手法の妥当性・制限等について考察を行う．

(1)対象ソフトウェア ケーススタディでは，Java言

語で開発された 2つのオープンソースソフトウェ

アを対象として有効性の確認を行った．オブジェ

クト指向型言語であれば，Java 言語以外で開発

されたソフトウェアであっても適用可能であると

考えられる．なぜなら，Java言語以外のオブジェ

クト指向型言語で開発されたソフトウェアであっ

ても，リファクタリングや依存関係解析を適用可

能だからである．今後，Java 言語以外で開発さ

れたソフトウェアや商用ソフトウェア等，様々な

種類のソフトウェアを対象に有効性の評価を行う

必要がある．

(2)被支援者の知識，経験 今回のケーススタディに

おけるリファクタリング作業は，すべて著者が行っ

た．そのため，手法の詳細を知らない人やリファ

クタリング経験が少ない人に対しても，有効な支

援が行えるかどうか評価する必要がある．たとえ

ば，一般の開発者に本稿のツールを使用してもら

い，リファクタリングにかかった時間を計測する

ことで効率を評価するということが考えられる．

(3)対象とするコード片や依存関係の種類 提案手法

は，メソッドより小さい単位のコード片からなる

クローンセットは対象としていない．また，メソッ

ドの呼び出し関係および変数の共用による依存関

係のみを扱っているため，その他のデータ依存関

係や制御依存関係を対象としていない．今後，対

象とするコード片や依存関係を増やすことで検出

可能なチェーンドクローンセットの規模を大きく

し，有効性の評価を行う必要がある．

(4)分類 4のチェーンドクローンセットへの支援

JBossから分類 2のチェーンドクローンセットを

内包する分類 4 のチェーンドクローンセットが

検出された（図 14）．提案手法は，これに対しク

ローンセット単位でのリファクタリングを提示す

るが，内包された分類 2 のチェーンドクローン

セットに “Pull Up Method” リファクタリング

パターンを適用可能である．このような場合は，

内包されたチェーンドクローンセットに対してリ

ファクタリングパターンの提示を行うべきである

と考えられる．



Vol. 48 No. 3 コードクローン間の依存関係に基づくリファクタリング支援 1441

5. 関 連 研 究

CCFinder や Balazinska ら2) の手法を用いること

により，クローンセットの検出を行うことはできる．本

稿の手法では，チェーンドクローンセット単位でのリ

ファクタリングを提示することにより，大規模なリファ

クタリングを実現することができた．また，CCFinder

が検出するクローンセットには容易にリファクタリン

グできないものが含まれており，Balazinskaらの手法

も同様と考えられる．本稿では，それら容易にリファ

クタリングできないクローンセットを組み合わせるこ

とで容易にリファクタリングできる場合があることを

示し，それらクローンセットに対するリファクタリン

グ手法を提案した．

Komondoorら4) の手法は，プログラムスライシン

グ技術を用いて，ソースコードからプログラム依存グ

ラフを構築し，そのグラフ上で同形である箇所をコー

ドクローンとして検出している．よって，本稿で用い

ている CCFinderが検出できないコードクローン（一

部の文の出現順序が異なっている reodered clone等）

を検出することができる．しかし，プログラム依存グ

ラフの構築にかかる計算コストは非常に大きいため，

大規模ソフトウェアへの適用は現実的でない．本稿の

手法は，CCFinderが検出したコードクローンに対し

て，メソッド呼び出し関係と変数の利用関係のみを解

析しているため，ケーススタディで示した規模のソフ

トウェアに適用可能である．実際に，ANTLRを対象

としたチェーンドクローンセットの検出を約 1分 4秒

で行うことができた☆．

6. ま と め

本稿では，クローンセットに含まれるメソッド間の

依存関係に着目し，チェーンドクローンセットを定義し

た．そして，チェーンドクローンセットに対しリファ

クタリングパターンを提示するためのメトリクスを

提案した．最後に，提案手法をリファクタリング支援

ツールとして実装し，2つのオープンソースソフトウェ

アに適用することで，有効性の評価を行った．有効性

の評価として，チェーンドクローンセットの規模がク

ローンセットと比べて大きいこと，およびチェーンド

クローンセットのリファクタリングがクローンセット

単位のリファクタリングと比べて容易であることを確

認した．

☆ 実行環境：CPU Xeon 2.80GHz，メモリ 2.5GB，OS

FreeBSD 6.1-RELEASE

今後の課題としては，様々なソフトウェアを対象と

した有効性の評価，チェーンドクローンセットの中に

異なる分類のチェーンドクローンセットが包含されて

いる場合への対処，対象とする依存関係やコード片の

拡大があげられる．

謝辞 本研究は一部，文部科学省リーディングプロ

ジェクト「e-Society 基盤ソフトウェアの総合開発」，

日本学術振興会の科研費（課題番号：17200001）の支

援を受けている．

参 考 文 献

1) Baker, B.S.: A Program for Identifying Du-

plicated Code, Proc. Computing Science and

Statistics, Vol.6, pp.49–57 (1992).

2) Balazinska, M., Merlo, E., Dagenais, M.,

Lague, B. and Kontogiannis, K.: Advanced

clone-analysis to support object-oriented sys-

tem refactoring, Proc. Working Conference on

Reverse Engineering (WCRE2000 ), pp.98–107

(2000).

3) Baxter, I., Yahin, A., Moura, L., Anna, M.

and Bier, L.: Clone Detection Using Abstract

Syntax Trees, Proc. International Conference

on Software Maintenance (ICSM98 ), pp.368–

377 (1998).

4) Komondoor, R. and Horwitz, S.: Using Slic-

ing to Identify Duplication in Source Code,

Proc. International Static Analysis Symposium

(SAS2001 ), pp.40–56 (2001).

5) Krinke, J.: Identifying Similar Code with Pro-

gram Dependence Graphs, Proc.Working Con-

ference on Reverse Engineering (WCRE2001 ),

pp.301–309 (2001).

6) Fowler, M.: Refactoring: improving the design

of existing code, Addison Wesley (1999).

7) Kamiya, T., Kusumoto, S. and Inoue, K.:

CCFinder: A multi-linguistic token-based code

clone detection system for large scale source

code, IEEE Trans. Softw. Eng., Vol.28, No.7,

pp.654–670 (2002).

8) Higo, Y., Kamiya, T., Kusumoto, S. and In-

oue, K.: ARIES: Refactoring Support Environ-

ment Based on Code Clone Analysis, Proc. In-

ternational Conference on Software Engineer-

ing and Applications (SEA2004 ), pp.222–229

(2004).

9) 井上克郎，神谷年洋，楠本真二：コードクローン
検出法，コンピュータソフトウェア，Vol.18, No.5,

pp.47–54 (2001).

10) 門田暁人，佐藤慎一，神谷年洋，松本健一：コー
ドクローンに基づくレガシーソフトウェアの品
質の分析，情報処理学会論文誌，Vol.44, No.8,



1442 情報処理学会論文誌 Mar. 2007

pp.2178–2188 (2003).

11) ANTLR: http://www.antlr.org

12) JBoss: http://www.jboss.org

13) JUnit: http://www.junit.org

(平成 18年 2 月 3日受付)

(平成 18年 12月 7日採録)

吉田 則裕（学生会員）

平成 16 年九州工業大学情報工学

部知能情報工学科卒業．平成 18 年

大阪大学大学院博士前期課程修了．

現在，同大学院博士後期課程 1 年．

コードクローン分析の研究に従事．

人工知能学会会員．

肥後 芳樹（正会員）

平成 14 年大阪大学基礎工学部情

報科学科中退．平成 18年同大学大学

院博士後期課程修了．現在，日本学

術振興会特別研究員．コードクロー

ン分析・リファクタリング支援の研

究に従事．

神谷 年洋

平成 8年大阪大学基礎工学部情報

工学科中退．平成 13 年同大学大学

院博士課程修了．同年科学技術振興

事業団研究者．平成 17 年産業技術

総合研究所研究員．博士（工学）．オ

ブジェクト指向関連技術，ソフトウェア保守（メトリ

クス，コードクローン），認知科学に関する研究に従

事．電子情報通信学会，電気学会，IEEE各会員．

楠本 真二（正会員）

昭和 63 年大阪大学基礎工学部情

報工学科卒業．平成 3年同大学大学

院博士課程中退．同年同大学基礎工

学部情報工学科助手．平成 8年同講

師．平成 11年同助教授．平成 14年

大阪大学大学院情報科学研究科コンピュータサイエン

ス専攻助教授．平成 17年同教授．博士（工学）．ソフ

トウェアの生産性や品質の定量的評価，プロジェクト

管理に関する研究に従事．電子情報通信学会，IEEE，

JFPUG，PM各会員．

井上 克郎（正会員）

昭和 54 年大阪大学基礎工学部情

報工学科卒業．昭和 59 年同大学大

学院博士課程修了．同年同大学基礎

工学部情報工学科助手．昭和 59～61

年ハワイ大学マノア校情報工学科助

教授．平成元年大阪大学基礎工学部情報工学科講師．

平成 3 年同学科助教授．平成 7 年同学科教授．工学

博士．平成 14年大阪大学大学院情報科学研究科コン

ピュータサイエンス専攻教授．ソフトウェア工学の研

究に従事．電子情報通信学会，日本ソフトウェア科学

会，IEEE，ACM各会員．


