
Title 既存ソフトウェアの変更履歴を利用したソースコード
修正支援手法の提案

Author(s) 田原, 靖太; 松下, 誠; 井上, 克郎

Citation 情報処理学会研究報告. ソフトウェア工学研究会報
告. 2002, 2001-SE-136(23), p. 57-64

Version Type VoR

URL https://hdl.handle.net/11094/50193

rights

ここに掲載した著作物の利用に関する注意 本著作物
の著作権は情報処理学会に帰属します。本著作物は著
作権者である情報処理学会の許可のもとに掲載するも
のです。ご利用に当たっては「著作権法」ならびに
「情報処理学会倫理綱領」に従うことをお願いいたし
ます。

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

既存ソフトウェアの変更履歴を利用した
ソースコード修正支援手法の提案

田原靖太 † 松下誠 † 井上克郎 †

† 大阪大学大学院基礎工学研究科
〒 560-8531大阪府豊中市待兼山町 1-3

近年，開発されたプロダクトを効率よく管理するために，版管理システムを利用することが多くなってき
ている．版管理システムに記録されている過去のプロダクトの開発履歴を閲覧することにより，過去の開
発に関してより深い理解を得ることができると考えられる．しかし，過去の開発履歴を閲覧するための支
援環境は十分とはいえない．そこで本論文では，版管理システムに蓄積されたソースコードの変更履歴を
データベース化して，そのデータベースをソースコード片を入力として検索した結果を用いたソースコー
ド修正支援手法を提案する．本手法によって，ソフトウェア保守において過去の開発履歴を容易に参照す
ることができ，修正作業が行いやすくなることが期待できる．

Supporting Method for Source Code Modification
with the Changes of Existing Software

Yasutaka Tahara†, Makoto Matsushita† and Katsuro Inoue†

† Graduate School of Engineering Science, Osaka University

1-3 Machikaneyama-cho, Toyonaka,

Osaka 560-8531, Japan

Recently, revision management system is often employed by software development environment, for efficient
management of product. We suppose that we’ll get deeper understanding of past developments by refering to
histories of them in revision management system. However the support environment is insufficient to do that. In
this paper, we propose a method of supporting souce code modification. In this method, we build a database of
revision histories of source codes, and show the results of searching the database by a source code fragment. With
this method, developers can refer to histories of past developments easily in software maintenance, and source
code modification gets easier.

- 1 -

研究会Temp
ソフトウェア工学　136－8

研究会Temp
（ 2 0 0 2 .　3.　 7 ）

研究会Temp
－57－

1 まえがき
近年，大規模化，複雑化してきたソフトウェア

システムへの要求に対応するために，ソフトウェ
アの高生産性，高信頼性が要求されるようになっ
ている．それらの要求を解決することを目的とし
て，ソフトウェアの再利用が注目を集めている．
また，近年のソフトウェア開発では，版管理シ

ステムを用いる傾向がある．版管理システムでは，
プロダクトの開発履歴を管理することができ，そ
の中に，将来の開発に生かすことのできる情報が
多く蓄積されている．ソフトウェア再利用の際に
これらの情報を閲覧することによって，以前の開
発についてより深い理解が得られる [4]．
現在，版管理システムに保存されているプロダ

クトの変更履歴の閲覧を支援するツールが開発，
利用されている [3][11]．しかし，現在のプロジェ
クトの保守活動にあたり，これらのツールを用い
て過去のプロジェクトから同じような処理を行う
ソースコードの一部分を見つけ出し，その部分の
履歴を参照するのは困難である．また，現状では，
開発者は過去のプロジェクトの履歴を参考にする
ことなく，同じような処理を行うコードを各開発
者が独立に何度も書くということが多い．そして
その部分に同じような欠陥を作りこんでしまうこ
とが多く発生すると考えられる．
そこで本研究では，ソースコードの変更履歴の

中から，開発者が必要としているものを検索でき
るようにし，その結果を提示することにより，ソー
スコードの修正を支援する手法を提案する．本手
法では，まず版管理システムに蓄積されているソー
スコードの変更履歴をデータベース化して保存し
ておく．次に，開発者の手元にあるソースコードか
らその一部分を入力として与え，そのコードと類
似した部分が過去にどのように修正されたのかを
データベースから検索できるようにする．本手法
を用いることで，現在作業中のソースコードを用
いて，過去の開発の履歴を参照し，作業中のソース
コードの修正を支援することができる．このこと
により，ソフトウェア生産性の向上が期待できる．

2 版管理システムと関連研究
本節では，版管理システムについての簡単な説

明を行った後，版管理システムの履歴を閲覧でき
るツールと，版管理システムを用いたソフトウェ
ア開発支援について述べる．
2.1 版管理システム
版管理システムとは，ソフトウェア開発の際に，

その開発過程を履歴として管理するシステムであ
り，開発プロセスの作成や再利用の際に役立つ [4]．
版管理システムは，リポジトリに格納されたファ

イルをリビジョン単位で管理する．このため，内
部的にリビジョン情報を作成し，保持している．リ
ビジョン情報として扱われる情報は，リビジョン

番号，リビジョン間の差分情報，更新日時，更新
者，コメント等である．
版管理システムの実装は数多く存在し，また，

実際に利用されている．多くの場合，CVS や
RCS[10] 等のシステムが利用されている．また，
ClearCase[9]，Visual SourceSafe[8]や PVCS[7]等，
商用の版管理システムも利用されている．
2.2 履歴閲覧ツール
リポジトリ内に保存されているファイルの履歴

情報を Web ブラウザ経由で視覚的に閲覧できる
CVSWeb [3]や ViewCVS [11]といったツールが開
発されている．これらのツールは，簡単なナビゲー
ション機能を持ち，リポジトリ内にあるファイル
の各リビジョンの内容の表示，リビジョン間の差分
の色付表示ができる等の機能を持つ．しかし，新
たなプロジェクトの開発・保守作業において，リ
ポジトリの内にあるソースコードの中から，利用
者が目的としたソースコードを探し出すのは非常
に難しい．
2.3 版管理システムを用いた開発支援環境
我々の研究グループにおいて，自動的にすべての

ファイルの変更履歴を保存する版管理ファイルシ
ステムMoraineを開発している．また，Moraineを
利用した，容易にメトリクスデータを収集可能な
メトリクス環境MAME(Moraine As a MEtrics)を
構築している [12]．MAMEは，Moraineで収集し
たファイルの変更履歴を用い，さまざまなメトリ
クスデータを提供する．さらに，任意のファイル
の詳細な変更履歴をWebブラウザを用いて参照で
きるツールも提供する．しかし，ソースコードそ
のものを取り出す機能は備えていない．
また，版管理システムを利用したソースコード

の検索システムとして，CVSSearch [2] がある．
CVSSearchでは，コミットログをリポジトリ内の
コードに埋め込むことによって，目的のソースコー
ドを検索するものである．コミットログは，新しい
リビジョンをリポジトリに格納するときに付与す
るコメントのことである．CVSSearchでは，コミッ
トログはソースコード中に書かれているコメント
に比べ，機能追加やバグの修正等の内容が的確に
記述されているとしている．そこで，CVSリポジ
トリに格納されているソースコードの各行に，変
更が加えられたリビジョンのコミットログを”CVS
comment” として埋め込み，この”CVS comment”
を用いてソースコードの検索を行い，開発者の支
援を行っている．
しかしこの手法は，コミットログを検索の対象

にしているため，有効性はコミットログの質に大
きく依存する．ソースコードに比べ，コミットロ
グは的確に記述されていなくてもプログラムの動
作には影響がない．従って，開発者がコミットロ
グを的確に記述していない可能性がある．このよ
うな場合には，CVSSearchを用いて必要な情報を

- 2 -

研究会Temp
－58－

検索するのは困難になる．

3 ソースコード修正支援手法
本研究では，版管理システムに蓄積されている

ソースコードの変更に関する情報を，ソースコー
ド片を用いて検索して取り出すことを考える．そ
して，取り出された情報を開発者に提示すること
により，現在作業中のソースコードの修正を支援
する．
提案する手法は，すでにリポジトリに蓄積され

ているデータを利用するため，本手法を用いるた
めの特別なデータを蓄積する必要がない．また，検
索のためのキーとして，手元にあるソースコード
片をそのまま与えることができるため，検索キー
ワードを考える手間を省くことができる．
本手法におけるソースコード修正支援方法は以

下のとおりである．

(1)データベースの構築
版管理システムのリポジトリから，必要な情報
を自動的に抽出し，得られた情報をデータベー
スとして保存する．データベースには，直後の
リビジョンで変更を受けたソースコード断片が
格納されており，この部分が検索の対象となる．

(2)データベースの検索
上記のデータベースを，ソースコード片を利用
して検索できるようにする．利用者は，同様の
箇所の修正情報を参照したいソースコード片を
入力として与える．与えられたソースコード片
と，データベースの各レコードのソースコード
片との比較は，トークン単位で行い，与えられ
たソースコード片に対応するトークン列と類似
したトークン列を持ったレコードを検索結果と
して与える．

(3)検索結果の表示
検索結果として得られたソースコード片を持つ
リビジョンと，直後のリビジョンとの差分を利
用者に提示する．この時，入力と類似している
とみなされた部分が強調表示される．利用者は
提示された差分とそれに関するコメントを参照
することにより，現在のプログラムに対して行
うべき修正を理解する．

以降の節では，上記の (1)～(3)について，順を
追って説明する．

3.1 データベースの構築

本節では，版管理システムのリポジトリに格納
された情報をもとに作成されるデータベースにつ
いて述べる．
リポジトリ内のあるソースファイル F において，

隣接する 2つのリビジョンの番号を p, q（ただし，

q がより新しいリビジョン）とする．本手法では
以下のデータを，”F の pから q までの変更情報
D(F, p, q)”とし，データベースの 1レコードとし
て保存する．
(1)ファイル名 F
　当該ソースファイルが一意に特定できるよう
に，リポジトリ内のソースファイル名を，フル
パスで記述する．

(2)リビジョン番号の対 p,q
　 (1)のどのリビジョン間における変更の情報
であるかを特定するための情報である．

(3) qのコミット日時
　各リビジョンの前後関係を直観的に判断でき
るように，リビジョン qのコミット日時の情報
を付与する．

(4) qのログメッセージ
　ログメッセージは，直前のリビジョンからの
差分を自然語で記述したものである．直前のリ
ビジョンとの間でどのような変更を行ったのか
を理解する助けとなると考える．ログメッセー
ジを情報として利用者に提示することにより，
検索結果が目的としているものであるかどうか
を利用者が判断することができる．

(5)リビジョン pにおいて，次のリビジョン qまで
に変更された行（前後の数行を含む）c(F, p, q)
をトークン列 t(F, p, q)に変換したもの
　検索時に，入力されたソースコード片との比
較の対象となる部分である．この部分の詳細に
ついては後述する．

データベースの作成では，D(F, p, q)を，利用者が
指定したリポジトリ（またはリポジトリ内のディ
レクトリ）内にあるすべてのソースファイルから
収集する．

3.1.1 変更部分の抽出

ここでは，上の (5)について説明する．ソース
コード片を検索する際，利用者によって与えられ
た入力ソースコード片 I とデータベースのこの部
分 cとをトークン単位で比較する．その結果，Iと
類似したトークン列であると判定されたコードを
持つものを検索結果として出力する．検索の効率
化のため，cを字句解析（次節参照）し，トークン
列に変換したもの tを格納する．また，ある程度
まとまった単位で意味のある比較を行うことがで
きるように，変更があった行の前後の数行を含め
た形で格納する．

c(F, p, q)は，context形式の diff出力を用いて取
得する．context形式の diffでは，2つのテキスト
の間で相違する行を，その前後数行を含めて出力
する．context形式の diff出力の一部を図 1に示す．
このように，変更が行われた行を含む部分をまと
めて，変更前の状態と変更後の状態の両方が出力
される．一般には，

- 3 -

研究会Temp
－59－

*** 3236,3259 ****
if (String_table[cs__]) /* scrolling region */
{

- list[1] = 0;
! list[0] = LINES;

String_Out(String_table[cs__], list, 2);
Curr_y = Curr_x = -1;

! }

top_of_win = curscr->first_line;
--- 3384,3407 ----
if (String_table[cs__]) /* scrolling region */
{

! list[0] = LINES - 1;
String_Out(String_table[cs__], list, 2);
Curr_y = Curr_x = -1;

! }

top_of_win = curscr->first_line;
+ curr = top_of_win;

図 1: context diffの例

この出力を用いて，c(F, p, q)を取得する．図 1
の例では，上半分のコードが c(F, p, q)に対応する．
また，図 1のように context形式の diff出力では，

各ブロックに対して，元のファイルにおける始点
行番号および終点行番号が出力されるので，各ブ
ロックの開始行番号も情報として加える．これは，
入力と類似した部分の強調表示の際に利用する．
また，pと qの間で，コメントのみが変更されて

いる場合は差分を検出しないようにするため，ソー
スコードからコメント部分を除去した状態で差分
をとる（このとき，元のソースコードとコメント
を除去したソースコードとの間で行の対応がとれ
るように，コメント除去の際に改行文字は削除し
ない）．

3.1.2 字句解析

利用者によって入力されたソースコード片とデー
タベース内にあるソースコード片との比較をトー
クン単位で行うために，比較の前にあらかじめソー
スコード片を字句解析し，トークン列に変換して
おく必要がある．
字句解析では，ソースコード片をプログラミン

グ言語の文法に従って，整数で表されたトークン
列に変換する．このとき，ソースコード中の空白
とコメントは生成されるプログラムの機能に影響
しないので無視する．さらに，実用的に意味のあ
る比較を行うために，ユーザ定義の変数，関数，型
等は名前が異なっていても等価なトークンとみな
す（標準ライブラリ関数名，標準型名については
それぞれを別のトークンに変換する）．出力の際
には，整数で表されたトークンの番号に加え，そ
のトークンが出現する行番号（入力の先頭行を 1
とする）も付加する．
さらに，(5)には，検索効率を向上させるための

工夫として，当該ソースコード片に出現する「キー
トークン」を列挙したものをこの部分に付加する．

キートークンの具体的内容と，使用法の詳細につ
いては後述する．
3.2 データベースの検索
ここでは，入力として受け取ったソースコード

片を用いて，データベース内のソースコード片を
検索する手法について述べる．
すでに述べたように，ソースコードの比較はトー

クン単位で行う．比較をトークン単位とすること
で，空白，改行やコメントを無視して比較を行う
ことができる．また，識別子や定数等の特定の種
類のトークンを 1つのトークンに固定することで，
変数名や関数名の変更されたソースコード片も等
価なものとして比較することができる．
3.2.1 2つのソースコードの比較
ソースコードの比較部分では，上記の字句解析

によって変換されたトークンを 1つの文字とみな
し，文字列の一致問題を解くことにより，類似コー
ドの検索を行う．
本手法では，類似部分を抽出する系列比較アル

ゴリズムとして，”局所アラインメント [6]” を用
いている．局所アラインメントは，与えられた 2
つの系列の中のそれぞれの部分系列のうち等価で
最長のものを 1つ求める問題である．ここでいう
等価な部分系列は，完全に一致している必要はな
く，異なる要素が存在してもよい．このアルゴリ
ズムを用いることによって，2つのソースコード
片の間で，互いに類似している部分を含んでいる
かどうかを調べることができる．局所アラインメ
ントは，完全一致系列を見つける場合に比べて多
くの計算量を要する．しかし，ソースコードの検
索という用途の性質上，アラインメントを行う回
数をある程度絞ることができると考え，比較のア
ルゴリズムとして採用した．
アラインメント
文字列への文字の挿入，または文字列からの文

字の削除のあった位置に－（ギャップと呼ぶ）を入
れて，文字列の対応する位置を合わせる操作をア
ラインメント (alignment)と呼ぶ（アラインメント
を行った結果得られたギャップ付の文字列の対を
アラインメントと呼ぶこともある）．
一般に，2つの文字列から構成可能なアライン

メントの数は膨大なものとなる．そこで，各々の
アラインメントごとに，それがどの程度よい物な
のかをスコアで表す．本手法におけるアラインメ
ントのスコア Salign を，以下のように定める．

Salign = nmatch − nmismatch − ngap

ここで，nmatch,nmismatch,ngapはそれぞれアライ
ンメントにより得られる，文字の一致および不一
致（置換）の個数，挿入されたギャップの個数であ
る．本稿では，以後，スコアが最大となるアライ
ンメントの結果得られた文字列の対をアラインメ

- 4 -

研究会Temp
－60－

ントと呼ぶことにし，そのときのスコアを単にス
コアと呼ぶ．
局所アラインメント
局所アラインメントは，2 つの文字列の任意の

部分文字列間でのアラインメントを求めるアルゴ
リズムである．例えば，

S = abcbccbbb
T = cdcbcdccba

上のような Sと T との局所アラインメント S′, T ′

を上で定義したスコアに基づいて求めると，以下
のようになる．

S’ = bcbccb
T’ = bcdccb
スコア = 5 - 1 - 0 = 4

このアルゴリズムの時間計算量は 2文字列の長さ
の積に比例する．

検索効率の向上
局所アラインメントを用いると，入力したトー

クン列の一部分と，データベース内にあるトーク
ン列の一部分が，類似部分として抽出されること
になる．しかし，すでに述べたように，時間計算
量が 2文字列の長さの積のオーダーと大きく，膨
大な回数の比較を行う場合，実用的な時間で検索
が行われない．そこで，トークンの比較を時間効
率よく行うため，以下のような制約を設ける．
•プログラミング言語における予約語および言語
仕様やライブラリ等で定義されている手続き・
関数等の名前を「キートークン」とする．

•利用者から入力されたソースコード片に最初
に現れるキートークンが含まれていないソース
コード片は，入力コード片と類似しているとみ
なさない（キートークンの存在が前提となって
いるため，入力にキートークンを含んでいない
ものはエラーとする）．

このような制約を加えることで，アラインメント
を求める回数を減らすことができ，検索効率の向
上が見込まれる．すなわち，利用者から入力され
たソースコード片に最初に現れるキートークンが，
検索対象となるデータベース内のソースコード片
に含まれているかどうかを調べ，含まれていない
ソースコード片については，アラインメントを求
める対象としない．
3.2.2 類似しているかどうかの判定

2つのトークン列のアラインメントのスコアが一
定値 α以上のものを類似しているとみなす．スコ
アの定義により，アラインメントのスコアが入力さ
れたトークン列の長さを超えることはない．デー
タベース内のトークン列が入力したトークン列と

全く同一のトークン列を持つ場合スコアが最大と
なり，入力トークン全体との完全一致部分を求め
る操作に対応する．本手法では，完全一致は求め
ないので，入力したトークン列の長さに応じて α
を決める必要がある．また，入力の全体と類似して
いるものだけでなく，入力の一部分と類似してい
るコードも検索したい．そこで入力トークン列の
長さを Lとして，L > 30のとき α = 19 , L ≤ 30
のとき α = 0.6 · L（整数部）と定義した．
3.3 検索結果の表示

データベースから，入力したソースコード片 I
と類似した部分を持つレコードを検索した後，そ
の結果を利用者に提示する．提示するのに必要な
情報は，以下の 3つである．

(1)ファイル名とリビジョン番号の組 (F , p, q)
(2) qのコミット日時とログメッセージ
(3) I と類似しているとみなされた，リビジョン p
における部分トークン列

検索によって上記のデータが得られたら，まず
結果をファイル毎にまとめてファイル名 F を一覧
で表示する．F を 1つ選択すると，検索結果の (1)
および (2)のうち，該当するファイルに対するもの
を一覧表示する．その中の各リビジョンの対 (p, q)
を選択することにより，p から q への差分を表示
するようにする．このとき，リビジョン pにおい
て，I と類似しているとみなされた部分を行単位
で強調表示する．

3.3.1 結果の一覧表示

一般に，1つのファイルに対して複数のリビジョ
ンに関する変更情報が検索結果として返される．そ
こで，検索結果をまずファイル毎に分けて表示す
るようにする．その中のファイルを 1つ選択する
ことで，そのファイルに対する変更情報が一覧表
示されるようにする．一覧表示では，ファイル名
とリビジョン番号の組 (F , p, q)，q のコミット日
時および q のコミットログを一覧で表示する．利
用者は，表示された一覧の中からコミットログを
参考にして，目的に合ったソースファイルを選択
する．

3.3.2 差分の表示

ファイル名とリビジョン番号の組 (F , p, q)を選
択することにより，F の pから qへの差分を表示
する．利用者が目的の部分を探しやすいようにす
るため，入力されたソースコード片と類似してい
る部分を行単位で強調表示する．(3)では，類似部
分のトークン列が，元のソースコード片の何行目
にあったかが記述されているので，この情報をも
とに行う．利用者が差分を参照することで，現在
のソースコードにどのような修正を行えばよいか
を知ることができる．

- 5 -

研究会Temp
－61－

利用者

字句解析ツール

比較ツール

CVS

リポジトリ

データベース

検索

結果

ソースコード
検索ツール
ソースコード
検索ツール

ソース

コード片

トークン

列

トークン

列

トークン

列

データベース
作成ツール

図 2: システム構成図

4 ソースコード修正支援システム
我々は，これまで述べた手法に基づくソースコー

ド修正支援システムの試作を行っている．本シス
テムは，C言語で書かれたソースコードを対象と
し，版管理システムとして CVSを用いていること
を前提としている．
本システムは，以下のツールから構成される．

•データベース作成ツール
•字句解析ツール
•トークン比較ツール
•ソースコード検索ツール

各ツール間の関係，データの流れを図 2に示す．

4.1 データベース作成ツール

CVS リポジトリから必要なデータを取り出し，
データベースとして保存するツールを，Perl言語を
用いて作成する．本データベース作成ツールでは，
指定されたディレクトリ（サブディレクトリも含
む）にある C言語のソースファイルの履歴ファイ
ル（"*.c,v"ファイルおよび"*.h,v"ファイル）
に関してデータベース作成の処理を行っている．ま
た，Perlにおいてデータベースを扱うルーチンと
して，GDBM を用いている．GDBM は，Perl の
ハッシュ（連想配列）とファイルを結びつけるもの
であり，キーと値の長さに制限がない．このデー
タベース作成ツールを用いて，CVSリポジトリ内
にあるソースコードから，データベースを作成し
ておく．また，内部で次に述べる字句解析ツール
を用いている．

4.2 字句解析ツール

ソースコードをトークン列に変換するための字
句解析ツールは，C言語で記述されたソースコー

ドを入力とし，上で述べた仕様に基づいて，その
中に現れるトークンのリストを出力する．ソース
コードの比較の際に，どの部分がマッチしている
かを知ることができるように，トークンのリスト
には，入力されたソースコード中における行番号
を付加して出力する．また，キートークンとして，
C言語のキーワード，標準ライブラリ関数名を用
いる．
4.3 トークン比較ツール

入力された 2つのトークン列 S, T の間でアライ
ンメントを行い，最大のスコアと，マッチしてい
る部分の（トークン列 S, T の元のソースコード片
における）行番号の範囲を出力する．
4.4 ソースコード検索ツール
利用者からソースコード片の入力を受け付け，入

力されたソースコード片と類似する部分を含むコー
ドをデータベース内から検索し，結果を一覧表示
する．本ツールでの処理の概要を以下に示す．

(1)利用者から入力されたソースコード片 Iを字句
解析ツールを用いてトークン列 TI に変換する．

(2) TI において，最初に現れるキートークンKI を
抽出する．キートークンがなければエラーとし
て終了する．

(3) TI のトークン数に応じて，アラインメントス
コアの閾値 αを計算する．

(4)データベースの各レコードについて，
•レコードからトークン列部分を取り出す．こ
のときの各トークン列を tとする．

•各 tについて，
• KI が tに存在しなければ，何もせず次の

tについて処理．
• KI が tに存在する場合，TI と tを入力と
してトークン比較ツールを実行する．こ
のときのアラインメントのスコアを Scと
する．

• Sc ≥ αならば，マッチした行番号の範囲
の情報を出力部に送り，次のレコードにつ
いて処理．

本ツールは，Webインターフェースで利用できる
よう，CGIを用いている．本ツールを用いて，ソー
スコード片を検索した結果の一例を図 3～図 5に
示す．
図 3は，検索結果をファイル毎にまとめたもの

の表示の画面，図 4は，各ファイル別の変更情報
表示の画面である．また，図 4においてファイル
名とリビジョンの組の部分を選択すると，そのファ
イルの当該リビジョン間の差分を図 5のように表
示する．

5 適用例
本節では，実際にどのような入力に対してどの

ような類似ソースコード片が検索されるかの例を

- 6 -

研究会Temp
－62－

図 3: 検索ファイル名一覧

図 4: 検索結果のファイル別一覧

示す．C言語で書かれた以下のようなソースコー
ド片の入力に対して，

入力コード：
* fp = fopen("file1.c", "r");
* if (fp == NULL) {
* perror("error.");
* return(-1);

}

例えば次のような類似ソースコード片が検出され
る．

類似コードの例：
crash();
}

* fout = fopen(outfile, "w");
* if (fout == NULL) {
* f_print(stderr, "%s: unable

to open ", cmdname);
* perror(outfile);

crash();
}
record_open(outfile);

行頭に*を付けた部分が，類似している部分であ
る．上のコードをそれぞれトークン列に変換する

図 5: 差分の表示

と，次のようになる（実際にはトークンは整数値
として出力される）．

入力コード（トークン変換後）：
* i = fopen(i, i);
* if (i == i) {
* perror(i);
* return(i);

}

類似コードの例（トークン変換後）：
i();
}

* i = fopen(i, i);
* if (i == i) {
* i(i, i, i);
* perror(i);

i();
}
i(i);

このように，標準ライブラリ関数名である fopen,
perror，予約語である if, returnと，演算子等の記
号は区別されたトークンに変換され，その他の識
別子，定数（文字列定数含む）は，すべて等価な
トークン（上記の例では iと表記した）に変換さ
れる．このような変換を行った上で，2つのトーク
ン列のアラインメントを行うと，上記の*の部分が
類似したトークン列として検出される．入力コー
ドにおけるトークン数は 27であるから，類似して
いるとみなされるスコアの閾値は 16である．この
例における 2トークン列の局所アラインメントの
スコアは 18であるから，2つのトークン列は類似
しているとみなされ，検索結果の 1つとして出力
される．
利用者は，このようにして検索された部分が次

のリビジョンでどのように変更されたのかを参照
する．これにより，入力として与えたソースコー
ド片に対してどのような修正を行えば良いのかを
知ることができる．

- 7 -

研究会Temp
－63－

6 まとめ
本論文では，過去のソフトウェア開発履歴から，

必要なソースコード修正の情報を取り出すことに
より，現在作業中のソースコード修正を支援する
手法を提案した．本手法は，版管理システムのリ
ポジトリからソースコードの変更履歴を取り出し
てデータベース化する．そのデータベースをソー
スコード片を入力として検索し，その結果を利用
者に提示する．
今後の課題としては，より妥当な検索結果を得

るために，スコアの計算方法を改良することや，実
際の開発作業に適用することによる本手法の有効
性の評価を行うことがあげられる．

参考文献
[1] B.Berliner. “CVS II:Parallelizing Software De-

velopment”, In USENIX, Washinton D.C.,
1990.

[2] A.Chen, E.Chou, J.Wong, A.Y.Yao,
Q.Zhang, S.Zhang, and A.Michail,
“CVSSearch:Searching through source code
using CVS comments”, To appear in Interna-
tional Conference on Software Maintenance,
2001.

[3] CVSWeb
http://stud.fh-heilbronn.de/˜zeller/cgi/cvsweb.cgi/

[4] P. H. Feiler, “Configuration Management Mod-
els in Commercial Environments”, CMU/SEI-
91-TR-7 ESD-9-TR-7, March, 1991.

[5] K. Fogel , “Open Source Development with
CVS”, The Coriolis Group, 2000.

[6] D.Gusfield, “Algorithms on Strings, Trees, and
Sequences”, Cambridge University Press, 1997.

[7] Merant, Inc., PVCS Home Page,
http://www.merant.com/pvcs/

[8] Microsoft Corporation, Microsoft Visual
SourceSafe,
http://msdn.microsoft.com/ssafe/

[9] Rational Software Corporation, Software
configuration management and effective
team development with Rational ClearCase,
http://www.rational.com/products/clearcase/

[10] W.F.Tichy, “RCS - A System for Version Con-
trol”, SOFTWARE - PRACTICE AND EXPE-
RIENCE, VOL.15(7), pp.637–654, 1985.

[11] ViewCVS,
http://viewcvs.sourceforge.net/

[12] 山本哲男,松下誠,井上克郎, “バージョン管理
ファイルシステムを用いた保守支援ツールの
提案”,電子情報通信学会技術研究報告 Vol.99,
No.164, SS98-23, pp. 65–72, 1999.7.9.

- 8 - �

研究会Temp
－64－

