
Title コンポーネントランク法によるソフトウェアクラスタ
リング結果の理解性向上

Author(s) 中塚, 剛; 松下, 誠; 井上, 克郎

Citation 情報処理学会論文誌. 2007, 48(9), p. 3281-3285

Version Type VoR

URL https://hdl.handle.net/11094/50208

rights

ここに掲載した著作物の利用に関する注意 本著作物
の著作権は情報処理学会に帰属します。本著作物は著
作権者である情報処理学会の許可のもとに掲載するも
のです。ご利用に当たっては「著作権法」ならびに
「情報処理学会倫理綱領」に従うことをお願いいたし
ます。

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Vol. 48 No. 9 情報処理学会論文誌 Sep. 2007

テクニカルノート

コンポーネントランク法による
ソフトウェアクラスタリング結果の理解性向上

中 塚 剛† 松 下 誠† 井 上 克 郎†

巨大なシステムを複数のサブシステムに分解するソフトウェアクラスタリング手法は，大規模なソ
フトウェアを理解するために有用である．しかし，システム内には，特定のサブシステムに属するべ
きでないライブラリのような部品も存在する．そのような部品を事前に特定することにより，クラス
タリング結果が理解しやすくなると期待できる．本稿では，ソフトウェア部品の重要度を測定するコ
ンポーネントランク法を用いることにより，特定のサブシステムに属するべきではない部品を特定す
る手法の提案を行う．提案する手法を用いたクラスタリングツールを用いて実験を行い，得られた結
果に対する考察を行った．その結果，従来手法よりも優れたクラスタリング結果を得られることが分
かった．

Improvement in Understandability of the Software Clustering Results
by Component Rank Model

Gou Nakatsuka,† Makoto Matsushita† and Katsuro Inoue†

Decomposing a large software system into some subsystems helps us understand its struc-
ture and functions. In the system, however, there are special modules such as libraries that
should not belong to a certain subsystem, and pre-detecting such modules can make the clus-
tering results more understandable. This paper proposes a new method of detecting such
modules by Component Rank Model, that is used to measure mutual significance of software
modules. We performed experiments with a new clustering tool combined with our detecting
method and investigated the clustring results. As a result, our method turned out better than
an existent method.

1. は じ め に

仕様書等が十分でないソフトウェアシステム（以降，

システム）の構造や機能の理解を助ける手法の 1つと

して強凝集かつ低結合の原則に基づくソフトウェアク

ラスタリングが研究されている1),2)．これらの研究で

は，システムは多くのモジュール（たとえば Javaの

場合，クラスやインタフェース）から構成されると仮

定し，密に依存しあっているモジュールをクラスタと

することによってサブシステムを構築し，サブシステ

ム間の依存関係をできるだけ少なくするという手法が

用いられている．

このようなソフトウェアクラスタリングにおいて問

題となるのは，システム中に存在する遍在モジュール

† 大阪大学大学院情報科学研究科
Graduate School of Information Science and Technol-

ogy, Osaka University

（omnipresent module）である3)．遍在モジュールと

は多くのモジュールから直接的あるいは間接的に依存

されているモジュールである．遍在モジュールは特定

のサブシステムに属するべきでないため3)，適切に特

定してクラスタリング対象から除去する必要がある．

しかし従来手法では，依存関係を持つモジュールの数

が閾値以上のモジュールを遍在モジュールとするとい

う単純な手法で特定しており1),3)，遍在モジュールに

関して詳細な考察は行われていない．

一方，Javaソフトウェア部品検索システム SPARS-

J 4) では，コンポーネントランク法と呼ばれる手法が

用いられている．この手法は，あるシステム内のソフ

トウェア部品の相互利用関係を解析することによって，

各ソフトウェア部品の重要度を計算する．ここで上位

にランク付けされたクラスは，ソフトウェア中の多く

から利用される重要な部品であるが5)，これは遍在モ

ジュールの満たすべき性質と似ている．

3281



3282 情報処理学会論文誌 Sep. 2007

そこで本稿では，コンポーネントランク法を利用し

て遍在モジュールを特定する手法を，実験によって評

価，決定する．その結果，本手法が従来のソフトウェ

アクラスタリングアルゴリズムを改良することを示す．

以降，2 章で本研究に関連する 2つの手法について

説明し，3 章で，コンポーネントランク法を用いた遍

在モジュール特定手法を決定するための実験と結果に

ついて説明する．最後に，4 章でまとめと今後の課題

について述べる．

2. 関 連 研 究

2.1 ソフトウェアクラスタリングシステムBunch

Bunch 1)は，強凝集・低結合の原則に基づいたクラ

スタリングを実装したシステムで，NP困難であるク

ラスタリングを，局所探索法を用いることで現実的な

実行時間で解く．Bunchでは，4種類の遍在モジュー

ルを定めており，それぞれ以下のような特定条件を与

えている．

• supplier：入次数が平均次数の 3倍以上

• client：出次数が平均次数の 3倍以上

• central：supplierかつ client

• library：出次数が 0

本研究は，Bunch におけるこれら 4 種の遍在モ

ジュールを特定するための適切な条件を定めること

で，Bunchの出力する解を改良することを目指す．

2.2 コンポーネントランク法

Javaソフトウェア部品の再利用を助けるために，部

品検索システム SPARS-Jが開発されている4)．この

システムは，与えられた検索単語に対して関連する

Java ソフトウェア部品を提示する．その際，ソフト

ウェア部品を提示する順番を決定する手法として，コ

ンポーネントランク法が用いられる．

コンポーネントランク法では，各モジュールの直接

的あるいは間接的な利用関係に基づいて，総和が 1と

なるようにコンポーネントランク値（CRV）を振り分

ける．この際，たくさんの部品から使用されている部

品の CRVは高くなり，また，CRVの高い部品から使

用されている部品の CRVも高くなる．

本稿では，「CRVの高い部品は，多くの部品に直接

的あるいは間接的に使用されている部品であり，遍在

モジュールの候補ではないか」，という点に注目して，

CRVを用いた遍在モジュール特定手法を提案する．

3. 遍在モジュール特定手法

Bunchで定義されている 4種類の遍在モジュールを

CRV，次数によって特定するために，どのような条件

を用いれば解を改良できるか，検証実験を行う．ここ

では 40の特定条件を定義し，各条件がどのような結

果を導くかを比較するために 2種類の実験を行い，最

適な条件を決定する．

3.1 実験対象となる特定条件

本実験では，表 1 に示すように C1～C40の特定条

件を実験対象として定めた．ここで in，out，CRVの

列はそれぞれ入次数，出次数，CRVの条件を表し，数

字は平均値からの倍率を表している．数字が正の場合，

たとえば 3の場合は平均値の 3倍以上ならば該当とす

る．ただし，数字が 0の場合は，値が 0のときのみ該

当とする．

C1はBunchで用いられている条件であり，C2は遍

在モジュールを考慮していない．C3～C6は，CRVを

用いておらず，C7以降は，supplier，central，library

の条件に CRV を使用している．この際，CRV が平

均を超えるモジュールは全体の約 20%と少ないため，

CRVの条件としては平均以上のみを考慮して，次数

表 1 遍在モジュール特定条件（数字は平均からの倍率）
Table 1 Conditions for omnipresent modules.

No.
supplier client central library

in CVR out in out CVR in out CVR

C1 3 3 3 3 0

C2

C3 2 2 2 2 0

C4 2.5 2.5 2.5 2.5 0

C5 3.5 3.5 3.5 3.5 0

C6 3 3 3 3

C7 1 3 3 1 0

C8 1 3 3 1

C9 1 3 3 1 0 1

C10 1 3 3 1 1 0 1

C11 1 3 3 3 1 1 0 1

C12 1 1 3 1 3 1 0

C13 1 1 3 1 3 1

C14 1 1 3 1 3 1 0 1

C15 1 1 3 1 3 1 1 0 1

C16 1 1 3 3 1 1 0 1

C17 1 1 3 3 3 1 1 0 1

C18 1.5 1 3 1.5 3 1 0

C19 1.5 1 3 1.5 3 1

C20 1.5 1 3 1.5 3 1 0 1

C21 1.5 1 3 1.5 3 1 1 0 1

C22 1.5 1 3 3 1 1 0 1

C23 1.5 1 3 3 3 1 1 0 1

C24 2 1 3 2 3 1 0

C25 2 1 3 2 3 1

C26 2 1 3 2 3 1 0 1

C27 2 1 3 2 3 1 1 0 1

C28 2 1 3 3 1 1 0 1

C29 2 1 3 3 3 1 1 0 1

C30 2.5 1 3 2.5 3 1 0

C31 2.5 1 3 2.5 3 1

C32 2.5 1 3 2.5 3 1 0 1

C33 2.5 1 3 2.5 3 1 1 0 1

C34 2.5 1 3 3 1 1 0 1

C35 2.5 1 3 3 3 1 1 0 1

C36 3 1 3 3 3 1 0

C37 3 1 3 3 3 1

C38 3 1 3 3 3 1 0 1

C39 3 1 3 3 3 1 1 0 1

C40 3 1 3 3 1 1 0 1



Vol. 48 No. 9 コンポーネントランク法によるソフトウェアクラスタリング結果の理解性向上 3283

図 1 実験 1 の結果
Fig. 1 Result for experiment 1.

条件を組み合わせることで条件を厳しくしている．各

遍在モジュールに対して条件を定め，その直積の一部

を条件とした．

3.2 実験 1：結果の理解しやすさによる評価

Bunchでは，各クラスタの凝集度と結合度のトレー

ドオフを CF（Cluster Factor）という関数で表して

いる．CF は，各クラスタに関連する辺のうち，クラ

スタ内部にある辺の割合を表し，0～1の値をとる．つ

まり，CF 値が高いほどクラスタ間に辺が少なくなり，

結果が理解しやすいものとなる．すなわち，平均 CF

値（全クラスタの CF 値の平均値）が高い方が全体

の結果が理解しやすいといえる．

一般的に，遍在モジュールを多く特定するほど，平

均 CF 値が高くなりやすい．この場合，クラスタリ

ングされたモジュールは理解しやすいといえるが，遍

在モジュールの数が増えるため，個別に理解する必要

があるモジュール数が増加することになる．この結果，

全体として理解にかかるコストが増加してしまう場合

がある．よって，平均 CF 値よりも，クラスタリング

対象モジュール数（遍在モジュールではないモジュー

ルの数）を重視し，2つの値がともに高い条件が優れ

ているとする．

本実験では，15 種類の Java で書かれたオープン

ソースシステムに対して 40の特定条件を適用した．

結果と考察

15システムに適用した結果の平均値を図 1 に示す．

横軸は 40の条件を表し，縦軸は，クラスタリング対

象モジュール数の全モジュール数に対する割合，平均

CF 値と両者の調和平均値を示している（一部，記号

が重なっている）．

左端の C1 の結果が Bunch オリジナル条件での結

果であり，C2と比べると，平均 CF 値が約 2倍に増

加した一方，遍在モジュール数が多過ぎることが分か

る．なお，この結果が比較の基準となるため，横軸に

対して平行に破線で示している．

C1，C3～C5の結果を見ると，クラスタリング対象

モジュール数と平均 CF 値がトレードオフの関係と

なっていることが分かる．また，C6の結果は，出次

数が 0という条件によって libraryがいかに多く選ば

れていることを示している．

C7以降の結果は，C1に比べて，2つの評価値がと

もに増加している条件が多数存在している．supplier

に対する条件が厳しくなるにつれ，クラスタリング対

象モジュール数は増加し，逆に平均 CF 値が減少し

ている．つまり，トレードオフとなっているが，調和

平均値が改善していることが分かる．クラスタリング

対象モジュール数，平均 CF値がともに C1の結果よ

り高い結果の中で，前述のように，クラスタリング対

象モジュール数を重視すると，C27～C29の条件が優

れているといえる．

3.3 実験 2：ベンチマークによる評価

クラスタリング結果構造を評価するためによく用

いられる手法として，適切と考えられる解をベンチ

マークとして作成して結果と比較するという手法が

ある6),7)．本実験では，実験 1で用いたシステムの 1

つであるGNUJpdf（25モジュール）に対してベンチ

マークを作成し，結果と比較を行った．

ここでは，ベンチマークと解を比較するために，

EdgeSim と MeCl という 2 種類のメトリクス7) を

用いた．EdgeSim は，辺の類似度を測定するメトリ

クスで，MeClは，片方のグラフを分割した後マージ

することで，もう片方のグラフと一致させるために必

要なコストを測定するメトリクスである．ともにパー

セント尺度で，値が高いほど 2つのグラフが類似して



3284 情報処理学会論文誌 Sep. 2007

図 2 実験 2 の結果
Fig. 2 Result for experiment 2.

いることを意味する．ただし，これらは遍在モジュー

ルを考慮しないため，正しい評価が行えない場合があ

る．そのため，目視評価によってその点を補う必要が

ある．

結果と考察

実験 2の結果を図 2 に示す．横軸は，40の条件を

表している．横軸の値の一部に付けられた下線は，遍

在モジュールの選び方によって Bunchの解に一部の

モジュールが存在しないというバグのため，解を一部

書き換えて測定したことを表している．縦軸は，Ed-

geSim，MeClを表している．両メトリクスの相関係

数は 0.88と非常に高い．

この結果から，EdgeSim，MeClともに値が改善さ

れている条件が多数存在することが分かる．実験 1で

結果の良かったC27～C29は，実験 2でも非常に良い

結果を示している．ただし，C29は，前述のBunchの

バグのため，正しい解を出力していない．なお，GNU-

Jpdf はモジュール数が少ないため，同じクラスタリ

ング結果を出力する条件があり，図 2 で同じ値を示し

ているものが見られる．

3.4 実験のまとめ

GNUJpdfでは C27，C28が優れた結果を示してい

るが，centralの条件が supplierかつ clientでない場

合に不適切な結果を出力しうることがあった．そこで，

C28は不適切となる．よって，定義した 40の条件の

中では，以下に示す C27が，最も Bunchのアルゴリ

ズムを改善することが分かった．

• supplier：入次数が平均次数の 2 倍以上，かつ

CRV平均以上

• client：出次数が平均次数の 3倍以上

• central：supplierかつ client

• library：入次数が平均以上，かつ出次数が 0，か

つ CRV平均以上

4. む す び

本稿では，コンポーネントランク法によって測定さ

れるコンポーネントランク値を用いて遍在モジュール

を特定し，高凝集・低結合の原則に基づくソフトウェ

アクラスタリングを改良できることを確認した．

今後の課題としては，より大規模なシステムでのベ

ンチマーク実験による評価があげられる．

参 考 文 献

1) Mitchell, B.S. and Mancoridis, S.: On the Au-

tomatic Modularization of Software Systems

Using the Bunch Tool, IEEE Trans.Softw.Eng.,

Vol.32, No.3, pp.193–208 (2006).

2) Schwanke, R.W.: An Intelligent Tool For Re-

engineering Software Modularity, Proc. Int’l

Conf. on Softw. Eng., pp.83–92 (1991).

3) Müller, H.A., Orgun, M.A., Tilley, S.R. and

Uhl, J.S.: A Reverse Engineering Approach

To Subsystem Structure Identification, Journal

of Softw. Maintenance: Research and Practice,

Vol.5, No.4, pp.181–204 (1993).

4) Inoue, K., Yokomori, R., Yamamoto, T.,

Matsushita, M. and Kusumoto, S.: Ranking

Significance of Software Components Based on

Use Relations, IEEE Trans.Softw.Eng., Vol.31,

No.3, pp.213–225 (2005).

5) 市井 誠，横森励士，松下 誠，井上克郎：コ
ンポーネントランクを用いたソフトウェアのクラ
ス設計に関する分析手法の提案，電子情報通信
学会技術研究報告，SS2005-37, Vol.105, No.229,

pp.25–30 (2005).

6) Wen, Z. and Tzerpos, V.: An effectiveness

measure for software clustering algorithms,

Proc. Int’l Workshop on Program Comprehen-

sion (IWPC ’04 ), pp.194–203 (2004).

7) Mitchell, B.S. and Mancoridis, S.: Compar-

ing the Decompositions Produced by Software

Clustering Algorithms using Similarity Mea-

surements, Proc. Int’l Conf. on Softw. Main-

tenance, pp.744–753 (2001).

(平成 19年 4月 4日受付)

(平成 19年 6月 5日採録)



Vol. 48 No. 9 コンポーネントランク法によるソフトウェアクラスタリング結果の理解性向上 3285

中塚 剛

平成 19 年大阪大学大学院情報科

学研究科コンピュータサイエンス専

攻博士前期課程修了．在学中，ソフ

トウェアクラスタリングの研究に従

事．修士（情報科学）．

松下 誠（正会員）

平成 5年大阪大学基礎工学部情報

工学科卒業．平成 10 年同大学大学

院博士後期課程修了．同年同大学基

礎工学部情報工学科助手．平成 14

年大阪大学大学院情報科学研究科コ

ンピュータサイエンス専攻助手．平成 17年同専攻助

教授，平成 19年同専攻准教授．博士（工学）．

井上 克郎（正会員）

昭和 54 年大阪大学基礎工学部情

報工学科卒業．昭和 59 年同大学大

学院博士課程修了．同年同大学基礎

工学部情報工学科助手．昭和 59～61

年ハワイ大学マノア校情報工学科助

教授．平成元年大阪大学基礎工学部情報工学科講師．

平成 3 年同学科助教授．平成 7 年同学科教授．平成

14 年大阪大学大学院情報研究科コンピュータサイエ

ンス専攻教授．工学博士．


