
Title 産学連携に基づいたコードクローン可視化手法の改良
と実装

Author(s) 肥後, 芳樹; 吉田, 則裕; 楠本, 真二 他

Citation 情報処理学会論文誌. 2007, 48(2), p. 811-822

Version Type VoR

URL https://hdl.handle.net/11094/50209

rights

ここに掲載した著作物の利用に関する注意 本著作物
の著作権は情報処理学会に帰属します。本著作物は著
作権者である情報処理学会の許可のもとに掲載するも
のです。ご利用に当たっては「著作権法」ならびに
「情報処理学会倫理綱領」に従うことをお願いいたし
ます。

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Vol. 48 No. 2 情報処理学会論文誌 Feb. 2007

産学連携に基づいたコードクローン可視化手法の改良と実装

肥 後 芳 樹† 吉 田 則 裕†

楠 本 真 二† 井 上 克 郎†

近年，ソフトウェアの大規模化・複雑化にともない，保守作業に要するコストが増大している．ソ
フトウェアの保守を困難にしている要因の 1つとしてコードクローンがあげられる．コードクローン
とはソースコード中のある一部分（コード片）のうち，他のコード片と同一または類似しているもの
を指す．コードクローンはコピーアンドペーストなどのさまざまな理由によりソースコード中に作り
こまれる．たとえば，あるコード片にバグが含まれていた場合，そのコード片のコードクローンすべ
てについて修正の是非を考慮する必要がある．コードクローンを対象とした保守支援を行うために，
著者らは検出ツール CCFinder・可視化ツール Geminiを開発し，産業界に配布している．また，著者
らはツールの開発者（大学）と利用者（産業界）の意見交換の場としてコードクローンセミナーを開
催している．セミナーを開くことによって出席者から現場の生の声を聞くことができる．セミナーの
開催に加えてメーリングリストの運営も行っている．利用者はツールの利用法に関する質問や新機能
の要望を行い，開発者はツールのバージョンアップや次期セミナーの開催日程などを告知するために
用いている．その結果 Gemini に実装されているコードクローン可視化手法を大幅に改良することが
できた．さらにこの改良手法を用いて Gemini を再実装し，実際のソフトウェア保守作業で用いるこ
とのできる実用的なツールに発展させることに成功した．本稿では，著者らの産学連携の取り組みと，
コードクローン可視化手法の改良について述べる．また，新 Gemini を日本のベンダ 5 社が共同開発
したソフトウェアに対して適用した．適用の結果，対象ソフトウェア内に存在するさまざまなコード
クローン情報を簡単に得ることができた．

Improvement and Implementation of Code Clone Visualization
Method Based on Academic-industrial Collaboration

Yoshiki Higo,† Norihiro Yoshida,† Shinji Kusumoto†

and Katsuro Inoue†

Maintaining software systems becomes more difficult as the size and complexity of software
increase. One of the factors that makes software maintenance more difficult is the presence
of code clones. A code clone is a code fragment which has identical or similar code fragments
to it in source code. Code clones are introduced by various reasons such as reusing code by
‘copy-and-paste’. If we modify a code clone with many similar code fragments, it is necessary
to consider whether or not we have to modify each of them. For supporting software main-
tenance against code cloning, we have developed a code clone detection tool, CCFinder and a
code clone visualization tool, Gemini. These tool have been delivered to domestic or overseas
organizations/individuals. Also, we have held code clone seminars that provide opportunities
for discussions between developers and users of the tools. Through the seminars, we can get
what industrial people really require. In addition to seminars, we are managing a mailing
list. Users ask about how to use the tools and require new functionalities that they want, and
developers announce a version upgrade of the tools and the date for next seminar. As a result,
we were able to improve our visualization method and succeed to refine it as a practical one.
We re-implemented Gemini based on the improvements as a tool which can be used in practice.
In this paper, we describe how we are promoting academic-industrial collaboration and how
the visualization method was improved. Moreover, We applied new Gemini to a system which
was co-developed by 5 Japanese companies. Application results demonstrate the usefulness
and capability of new Gemini.

† 大阪大学大学院情報科学研究科
Graduate School of Information and Science Technol-

ogy, Osaka University

1. は じ め に

近年，ソフトウェアの大規模化・複雑化にともない，

保守作業に要するコストは増大している．たとえば，

811



812 情報処理学会論文誌 Feb. 2007

Yip らはコスト全体の 66%が保守作業に費やされて

いると報告している16)．保守作業を困難にしている原

因の 1つとして，コードクローンがあげられる．コー

ドクローンとは，ソースコード中のある一部分（コー

ド片）のうち，他のコード片と同一または類似してい

るものを指す．Fowlerは，重複コード（コードクロー

ン）は最も優先してリファクタリングを行う対象であ

る，と述べている4)．コードクローンは，コピーアン

ドペーストなどの理由によりソースコード中に生成さ

れる．あるコード片に対して修正を行う場合，もしそ

のコード片のコードクローンが存在する場合は，それ

らについても同様の修正の是非を検討する必要がある．

このような作業は，システムが大きい場合は非常に煩

雑であり，また修正漏れによる新たなバグの混入の危

険もある．それゆえ，システム中に存在するコードク

ローンを効率的に検出することが必要である．

これまでにさまざまなコードクローン検出手法が提

案されている1)～3),10),13)．著者らもコードクローン検

出ツール CCFinderを開発してきている7)．CCFinder

は，コードクローンを高速に検出することを目的とし

て実装されており，数百万行規模のシステムであって

も実用的な時間で検出を行うことができる．

しかし CCFinderが出力するコードクローン情報は

テキスト形式であり，コードクローン分析作業でその

情報をそのまま用いるのは効率的でない．分析作業を

支援するために，コードクローン可視化ツール Gemini

を開発してきている15)．そして CCFinder・Geminiを

国内外の組織・個人に配布しており，現在では 100社

以上で使用されている．

また，コードクローンセミナーを開催し，ツールの

開発者（大学）と利用者（産業界）との意見交換の場を

設けている．メーリングリストも運用し，利用者から

新機能の要望やツールの利用法に関する質問などのた

めに用いている．このような取り組みを通じて，産業

界のコードクローン検出・可視化技術に対するニーズ

を把握し，ツールの改良や技術移転を続けてきている．

本稿では，産業界の意見を基に改良したコードク

ローン可視化技術とその適用事例について述べる．本

手法は，さまざまなな開発組織から得られた知見を

基に実現しており，汎用性が高い手法となっている．

さらにこの手法を，新 Geminiとして再実装した．新

Gemini の有用性を確認するために，情報処理推進機

構（IPA）ソフトウェア・エンジニアリング・センター

（SEC）の先進ソフトウェア開発プロジェクトにおい

てベンダ 5社が共同で開発したシステム12) に対して

適用した．適用の結果，さまざまなコードクローンの

状態を得ることができ，改良手法・新ツールの有用性

が確認された．

2. コードクローン

2.1 定 義

コードクローンとは，ソースコード中に存在する

コード片のうち，他のコード片と一致または類似して

いるものを指す．しかし，コードクローンの厳密で普

遍的な定義は存在しない．これまでにさまざまなコー

ドクローン検出手法が提案されているが，それらはど

れも異なった定義を持つ．以降，本稿では，コードク

ローン検出ツール CCFinderの定義を用いる．

CCFinder ではコードクローンであるか否かは

コード片の同値関係（反射律，推移律，対称律）で

決定される5),7)．ここで，コード片とはソースファ

イルの一部分を指し，ID，Linestart，Columnstart，

Lineend，Columnend の 5 つの属性を用いて表され

る．ID(f)はコード片 f を含むファイルの ID を表す．

CCFinder はすべてのコードクローン検出対象ファイ

ルに対してユニークな ID を割り当てる．Linestart (f)

（Lineend (f)）はコード片 f の開始行（終了行）を表

し，Columnstart(f)（Columnend(f)）はコード片 f

の開始列（終了列）を表す．この定義では，コード片

は部分的に重なり合う場合もありうる．

ある系列中（ソースコード中）に存在する 2つの部

分系列（コード片）α，β が同一または類似している

とき，C(α, β) と書き，α は β とクローン関係を持

つという．C は，反射律，推移律，対称律が成り立つ

同値関係である．また，コードクローンの同値類をク

ローンセットという．

任意の α，β に対して C(α, β) ならば，α の任意

の部分系列 α̇ に対し，C(α̇, β̇) となる β の部分系列

β̇ が存在する．また，α，β をそれぞれ真に含む任意

の系列 α̈，β̈（ただし α̈ �= β̈）に対して C(α, β) かつ

¬C(α̈, β̈) ならば，(α, β) をクローンペアという．

図 1 はクローンペアとクローンセットの例である．

図 1 クローンペアとクローンセット
Fig. 1 Clone pair and clone set.



Vol. 48 No. 2 産学連携に基づいたコードクローン可視化手法の改良と実装 813

この例では，5 つのコードクローンが存在している．

コード片 f1 はコード片 f4 とクローン関係を持ち，ま

たコード片 f2，f3，f5 も互いにクローン関係を持つ．

この場合，(f1, f4)，(f2, f3)，(f2, f5)，(f3, f5)の 4

つのクローンペアと {f1, f4}，{f2, f3, f5}の 2つの

クローンセットが存在する．

2.2 CCFinder

CCFinder 7) はプログラムのソースコード中に存在

するコードクローンを検出し，その位置をクローンペ

アのリストとして出力する．検出されるコードクロー

ンの最小字句数はユーザが前もって設定できる．

CCFinder のコードクローン検出手順（ソースコー

ドを読み込んで，クローンペア情報を出力する）は以

下の 4つの STEPからなる．

STEP1（字句解析）：ソースファイルを字句解析す

ることにより字句列に変換する．ファイルが複数

の場合には，個々のファイルから得た字句列を連

結し，単一の字句列を生成する．

STEP2（変換処理）：実用上意味を持たないコード

クローンを取り除くこと，および，些細な表現上

の違いを吸収することを目的とした変換ルールに

より字句列を変換する．たとえば，連続した複数

の関数にまたがったコードクローンは分割され，

各関数内で閉じたコードクローンとして検出され

る．また，変数名は同一の特別な字句に置換され

るので，変数名が付け替えられたコード片もコー

ドクローンであると判定することができる．

STEP3（検出処理）：字句列の中から指定された

長さ以上一致している部分をクローンペアとして

すべて検出する．

STEP4（出力整形処理）：検出されたクローンペ

アのソースコード上での位置情報を出力する．

3. 産学連携の取り組み

本章では，著者らが行ってきた産学連携の取り組み

について紹介する．産学連携を行うことによって，産

業界のコードクローン分析に対するニーズを把握する

ことができ，コードクローン可視化手法を実用的な技

術として高めることができた．

3.1 コードクローンセミナー

著者らはツールの開発者（大学）と利用者（産業界）

の意見交換の場としてコードクローンセミナーを開催

している17)．第 1回セミナーは 2002年 11月に開催

し，これまでに東京で 3回，大阪で 3回の計 6回開催

している．セミナーの内容は毎回異なるが，ツールの

デモンストレーションと利用法講座や，コードクロー

ン情報の利用法，また実際にツールを使用している企

業の事例報告など，その内容は多岐にわたる．

3.2 メーリングリスト

コードクローンセミナーは現場の生の声が聞けると

いう利点があるが，頻繁に行うのは難しい．また，す

べてのユーザに出席していただくことも現実的ではな

い．このことから，メーリングリストを運用している．

利用者（産業界）はメーリングリストを用いてツール

の利用法に関する質問や新機能の要望などを行い，ま

た開発者（大学）は，ツールのバージョンアップや次

期セミナーの開催日程などを利用者に告知している．

3.3 産業界からの要望

著者らはすでにコードクローンの可視化手法を提案

し，その手法を実装した可視化ツール Geminiを開発

している15)．この手法・ツールは，学術的に見れば新

規性はあるものの，実際の開発現場の使用には向いて

いなかった．指摘された主な問題点を以下に示す．

• コードクローン情報の中に，調査の必要があるコー
ドクローンとそうでないものが混在している．

• ファイルに着目した分析を行うための機能が存在
しない．

• スケーラビリティが低い．
1つ目の問題の原因は，検出したコードクローンを

フィルタリングせずに可視化しているという点であっ

た．CCFinderは調査しなければならないコードクロー

ンのほかに，調査の必要がないコードクローンも検出

してしまう．ここで，“調査の必要がないコードクロー

ン”とは，ソフトウェア開発・保守を行う視点でコード

クローン情報を扱う場合に特に対象とする必要がない

ものである．ソースコード中には，プログラミング言

語やドメイン，フレームワークに依存した定型処理部

分が含まれており，これらは CCFinderによって頻繁

に検出されてしまう．このようなコードクローンの存

在は，調査を必要とするコードクローン情報を隠蔽し，

分析作業の非効率化を招いてしまう．実用的な可視化

手法にするには，調査の必要がないコードクローンの

フィルタリングを行う必要がある．フィルタリングを

行うことにより，調査の必要があるコードクローンの

分布状態の把握や，調査の必要があるコードクローン

のうち特定の特徴を持つものの抽出などが可能となる．

2つ目の問題は，ファイルに着目した分析を行うこ

とができない点であった．旧ツールは，コードクロー

ンに対してはその特徴を基に選択を行うための機構が

存在するが，検出対象ファイルについては選択機構が

存在しなかった．しかし，利用者はコードクローンを

多く含むファイルや重複度の高いファイルに興味を持



814 情報処理学会論文誌 Feb. 2007

つため，それらを効率的に選択する機構が必要である．

3つ目の問題は，スケーラビリティの低さであった．

旧ツールが円滑に動作するのは，対象ソフトウェアが

10 万行程度の規模までであり，商用ソフトウェアを

対象とした場合，このスケーラビリティでは不十分で

あった．実用的なツールであるためには，対象ソフト

ウェアが数百万行規模であっても円滑に動作する必要

がある．

4. コードクローン可視化手法の改良

4.1 提 案 手 法

ここでは，改良を行ったコードクローン可視化手法

について述べる．この改良手法は，3.3 節で述べた問

題点を補うためのものである．計 4つの手法を述べる

が，各手法によってどのようにコードクローン情報が

扱われるのかを表すために，以下の例をすべての手法

の説明で共通して用いる．

コードクローンの例

ディレクトリ D1，D2 が存在し，D1 の下にはファ

イル F1 と F2 が，D2 の下にはファイル F3 と F4 が

存在する．ファイル F1～F4 は次の字句で構成されて

いる．“*”の意味は 4.1.1 項で述べる．

F1: a b c a b

F2: c c∗ c∗ a b

F3: d e f a b

F4: c c∗ d e f

コード片を表すためにラベル C(Fi, j, k) を用いる．

C(Fi, j, k) はファイル Fi の j 番目の字句から k 番

目までの字句で構成されるコード片を表す．

ここでは，コードクローンとして検出されるために

最低 2字句が必要であるとすると，次の 3つのクロー

ンセットが検出される．

S1: {C(F1, 1, 2), C(F1, 4, 5), C(F2, 4, 5),

C(F3, 4, 5)}
S2: {C(F2, 1, 2), C(F2, 2, 3), C(F4, 1, 2)}
S3: {C(F3, 1, 3), C(F4, 3, 5)}
4.1.1 調査の必要がないコードクローンのフィル

タリング

CCFinder は調査しなければならないコードクロー

ンのほかに，調査の必要がないコードクローンも検出

してしまう．“調査の必要がないコードクローン”とは，

ソフトウェア開発・保守を行う視点でコードクローン

情報を扱う場合に特に対象とする必要がないものであ

る．調査の必要がないコードクローンは，そのソフト

ウェアが記述されているプログラミング言語に依存し

た，いわゆる言語依存のコードクローンと，そのソフ

トウェアのドメインや用いているライブラリ・フレー

ムワークに依存した，アプリケーション依存のコード

クローンに大別される．言語依存のコードクローンは，

そのプログラミング言語を使っていれば，どのような

アプリケーションでも検出されてしまうのに対し，ア

プリケーション依存のコードクローンは，対象ソフト

ウェアによってまったく異なる．このため，本稿では

調査の必要がないコードクローンのフィルタリングの

第 1 歩として，言語依存のコードクローンのフィル

タリング手法を提案する．たとえば，連続した変数宣

言やメソッド呼び出し，switch文の連続した caseエ

ントリなど，プログラミング言語の構造上どうしても

コードクローンになってしまうものが言語依存のコー

ドクローンである．

効率的なコードクローン分析を実現するために，こ

のようなコードクローンをフィルタリングするための

メトリクスRNR(S)を提案する．RNR(S)はクロー

ンセット S に含まれるコード片がどの程度繰返し要

素を含まないかを表す．

f をクローンセット S に含まれているコード片と

する．TOC(f) はコード片 f を構成している字句の

数，TOCrepeated (f) はコード片 f を構成している字

句のうち，繰返し要素の字句の数を表すとする．この

とき RNR(S) は次式で表される．

RNR(S) = 1 −

∑

f∈S

TOCrepeated (f)

∑

f∈S

TOC(f)

また繰返し要素の字句とは，直前の字句列の繰返し

である字句列中の字句を指す☆．例では，“*”付きで表

示されている字句が繰返し要素の字句である．例の 3

つのクローンセットに対して RNRの値を算出すると，

RNR(S1) = 1.0，RNR(S2) = 0.3，RNR(S3) = 1.0

となり，S2 を構成するコード片の大部分が繰返し要

素であることが分かる．このメトリクスを使うことに

よって，連続した変数やアクセサ宣言，メソッド呼び

出しなどのコードクローンをフィルタリングすること

が可能である．

一方，アプリケーション依存のコードクローンに対

するフィルタリングは現在のところ行えていない．こ

☆ 各字句が繰返しであるか否かは正規表現のメタ文字の 1 つで
ある “+” を用いると理解しやすい．F2 は “+” を用いるこ
とによって c + ab と表すことができる．この表現で省略さ
れている字句が繰返し要素である．たとえば，新たなファイル
F5 : x a b a b a b y を考えた場合，このファイルは “+” を
使って x(ab) + y と表されるため 4 番目から 7 番目までの字
句で構成される字句列 a b a b が繰返し要素となる．



Vol. 48 No. 2 産学連携に基づいたコードクローン可視化手法の改良と実装 815

図 2 クローン散布図
Fig. 2 Model of scatter plot.

のようなコードクローンは，対象ソフトウェアが用い

ているフレームワークやライブラリに依存しているた

め，その性質はさまざまであり，言語依存のコードク

ローンのように，コードクローンの特徴を定量化して

フィルタリングを行うことは難しい．しかし，開発現

場からのフィードバックとして，アプリケーション依

存のコードクローンのフィルタリング機構を希望する

声は大きく，現在検討中である．

4.1.2 クローン散布図

調査の必要があるコードクローンの分布状態を把握

するために，クローン散布図に対して改良を行った．

図 2 は本稿で提案するクローン散布図を例を用いて表

現したモデルである．水平・垂直軸にはソースコード

中の字句が出現順に配置される．各ソースファイルは

そのパスのアルファベット順でソートされており，同

じディレクトリに位置するファイルは近い位置に出現

する．クローン散布図では，各クローンペアが線分と

して表現される（例ではコードクローンとして最低 2

字句が必要であるとした）．線分を構成している各字

句は，その水平成分と垂直成分が等しいことを意味し

ている．クローン散布図は左上隅から右下隅への対角

線に対してつねに線対称になる．クローン散布図を用

いることによって，ユーザはコードクローンの量や分

布状態を俯瞰的に把握することができる．

このクローン散布図はメトリクス RNR によるフィ

ルタリングの結果を表示している．© で示された字

句は，それを含むクローンセットがメトリクス RNR

を用いることによって，調査の必要がない，と判断さ

れたことを表している（ここでは，RNR の閾値とし

て 0.5 を用いた）．調査の必要がないコードクローン

を他のコードクローンと異なって表示することにより，

ユーザは，それらを除外して分析作業を行うことが可

能となる．これにより，より効率的にコードクローン

分析作業を行うことができる．

また，このクローン散布図は，ファイル間の境界線

とディレクトリ間のそれを区別して表示する．これに

より，ユーザは，ファイル内クローン・ファイル間ク

ローンだけでなく，ファイル内クローン・ディレクト

リ内ファイル間クローン・ディレクトリ間クローンを

区別することができ，どのディレクトリが多くコード

クローンを所有しているのか，どのディレクトリ間に

コードクローンが多く共有されているのか，を瞬時に

把握することが可能である．

4.1.3 クローンセットメトリクス

ユーザが，興味のある特徴を持ったコードクローン

情報に瞬時にアクセスできるように，メトリクスを用

いてコードクローンを定量的に特徴付ける．調査の必

要がないコードクローンをフィルタリングするために，

メトリクス RNR も用いる．用いるクローンセット

メトリクスを以下に示す．なお，LEN と POP は文

献 15)で提案したものと同じである．

LEN(S) 15) クローンセット S に含まれるコード

片の大きさ（字句数）の平均を表す．例の 3 つ

のクローンセットに対してこのメトリクスを計

算すると，LEN(S1) = 2，LEN(S2) = 2，

LEN(S3) = 3 となる．このメトリクスを用い

ることによって，クローンセット S3 のコード片

が他のクローンセットのコード片に比べて長いこ

とが分かる．

POP (S) 15) クローンセット S に含まれるコード片

の数を表す．この値が大きいほど，同型のコード

片の数が多いことを意味する．例の 3つのクロー

ンセットに対してこのメトリクスを計算すると，

POP (S1) = 4，POP (S2) = 3，POP (S3) = 2

となる．このメトリクスを用いることによって，

クローンセット S4 が他のクローンセットに比べ

て多くのコード片を所有していることが分かる．

NIF (S) クローンセット S に含まれるコード片を所

有しているファイルの数を表す．この値が高い場

合，システムの設計が悪い，プログラミング言語に

適切な抽象化機構が存在しない，横断的関心事で

あるなどの原因が考えられる．例の 3つのクロー

ンセットに対してこのメトリクスを計算すると，

NIF (S1) = 3，NIF (S2) = 2，NIF (S3) = 2



816 情報処理学会論文誌 Feb. 2007

(a) 選択前 (b) 選択後

図 3 メトリクスグラフを用いたクローンセットの選択
Fig. 3 Model of metric graph.

となる．このメトリクスを用いることによって，

クローンセット S1 が他のクローンセットに比べ

て多くのファイルを巻き込んでいることが分かる．

RNR(S) クローンセット S に含まれるコード片の繰

返し要素でない部分の割合を表す．調査する必要

のないコードクローンのフィルタリングを行うた

めに用いられる．このメトリクスの詳細は 4.1.1項

を参照されたい．

次に上記のメトリクスを用いてどのようにクローン

セットを選択するかを説明する．クローンセットの選

択機構をメトリクスグラフと呼ぶ．メトリクスグラフ

のモデルを図 3 に示す．メトリクスグラフは多次元並

行座標表現9)を用いている．各メトリクスにつき 1つ

の座標軸が用意される．また各クローンセットにき 1

つの折れ線がそのメトリクス値に基づいて描画される．

ユーザは任意のメトリクスの上限または下限を変更す

ることで任意のクローンセットを選択することが可能

である．例として図 3 (b) は，LEN 軸の下限値を変

更した状態を表している．この変更によって，図 3 (a)

では選択状態であったクローンセット S1 と S2 が非

選択状態となっている．

4.1.4 ファイルメトリクス

ファイルに着目した分析を実現するために，クロー

ンセットだけでなく，対象ファイルもコードクローン

情報を用いて特徴付けを行う．ファイルメトリクスは

メトリクス RNR を用いたフィルタリングの結果，調

査の必要がないと判断されたコードクローンを除外し

たコードクローン情報を用いて計算される．具体的に

は，メトリクス RNR の閾値を th とした場合，こ

のメトリクスの値が th 以上のクローンセットのみが

ファイルメトリクスの計算に用いられる．ここでは，

th を 0.5 とする．ファイルリストは以下に示す 3 つ

である．

NOCth(F ) ファイル F に存在するコード片の数を表

す．例の 4つのファイルに対してこのメトリクスを

計算すると，NOC0.5(F1) = 2，NOC0.5(F2) =

1，NOC0.5(F3) = 2，NOC0.5(F4) = 1 となる．

このメトリクスを用いることによって，ファイル

F1，F3 がファイル F2，F4 に比べて多くのコー

ドクローンを含んでいることが分かる．

ROCth(F ) ファイル F がどの程度重複化してい

るかを表す．F の字句数（コメントは除く）を

TOC(F )，F の字句のうち RNR の値が th 以

上のクローンセットに含まれているものの数を

TOCduplicated(F, th) とした場合，ROCth(F ) は

次式で計算される．

ROCth(F ) =
TOCduplicated(F, th)

TOC(F )

例の 4つのファイルに対してこのメトリクスを計算

すると，ROC0.5(F1) = 0.8，ROC0.5(F2) = 0.4，

ROC0.5(F3) = 1.0，ROC0.5(F4) = 0.6 となる．

このメトリクスを用いることによって，ファイル

F3 が完全に重複化していることが分かる．

NOFth(F ) ファイル F がコードクローンを共

有しているファイルの数を表す．例の 4 つの

ファイルに対してこのメトリクスを計算する

と，NOF0.5(F1) = 2，NOF0.5(F2) = 2，

NOF0.5(F3) = 3，NOF0.5(F4) = 1 となる．こ

のメトリクスを用いることによって，ファイル F3

が他のすべてのファイルとコードクローンを共有

してることが分かる．

4.2 コードクローン可視化ツール：Gemini

4.1節で提案した手法に基づき，コードクローン可視

化ツールGeminiを再実装した．新GeminiはCCFinder

が対応しているすべてのプログラミング言語☆に対

して適用可能である．新 Gemini は以下のビューを，

4.1.2 項～4.1.4 項の提案手法の実装として持つ．

• クローン散布図
• メトリクスグラフ
• ファイルリスト
これらのビューで選択したコードクローンやファイ

ルは，簡単にそのソースコードを閲覧できる．

4.1.2 項で述べたように，クローン散布図を用いる

ことによって，ユーザはコードクローンの分布状態を

俯瞰的に把握することができる．これは特に分析の初

期段階で有効であると考えられる．図 2 では，クロー

ン散布図は左上隅から右下隅への対角線に対して線対

称であるが，レンダリングコストを抑えるために，実

☆ C/C++，COBOL，FORTRAN，Emacs-Lisp，Java



Vol. 48 No. 2 産学連携に基づいたコードクローン可視化手法の改良と実装 817

図 4 ファイルリストのスナップショット
Fig. 4 A snapshot of file list.

装では対角線より上方のコードクローンは描画しない．

なお，この実装では，RNR の値が閾値以上のコード

クローンを黒，閾値未満のコードクローンを青で表示

する．

メトリクスグラフは定量的な特徴に基づいてクロー

ンセットを選択するための機構である．クローン散布

図では，各クローンセットがどの程度目立つかは，そ

れに含まれるコード片間の位置関係に大きく依存して

おり，定量的な特徴に基づいて選択を行うことは難し

い．たとえば，コード片を 100 個所有するクローン

セット Sexample があるとする．もしすべてのコード片

が同一ファイル内に存在する場合は，クローン散布図

上でそれらは近い位置に描画され，把握しやすい．し

かし，もしコード片が多くのファイル内に分散して存

在する場合は，クローン散布図上では，各クローンペ

アは離れた位置に描画されてしまい，把握しにくくな

る．一方，メトリクスグラフでは，“100 個のコード

片を持つ”という特徴は，メトリクス POP (Sexample)

で表されるため，コード片の位置に関係なくユーザは

容易に Sexample を選択できる．

ファイルリストは，ソースファイルを選択するため

の機構である．図 4はファイルリストのスナップショッ

トである．ファイルリストは，すべてのソースファイ

ルを 4.1.4 項で紹介した 3つファイルメトリクスと 2

つのサイズメトリクス LOC(F )，TOC(F ) とともに

表示する．LOC(F ) と TOC(F ) はそれぞれファイル

F の行数と字句数を表す．

著者らはファイルの選択機構としてメトリクスグラ

フを用いなかった．ファイルを選択する場合は，メト

リクス値だけでなく，ファイル名やパス名も用いたほ

うが利便性が高い．4.1.3 項で述べているように，メ

トリクスグラフは数値に基づいた絞り込みには非常に

向いている．しかし，ファイル名などに基づいた選択

には向いていない．この理由から，ファイルを選択す

る機構としてメトリクスグラフでなく，ファイルリス

トを用いた．また，ファイルリストに表示されている

ファイルは，ファイル名のアルファベット順やメトリ

クス値の昇順・降順でソーティング可能である．

クローン散布図は，コードクローンの分布状態を俯

瞰的に表示するので便利ではあるが，スケーラビリ

ティが低く実用的ではないという指摘もある8),14)．し

かし，著者らが実装したクローン散布図は，JDK1.5

のソースコード全体（約 1,880,000行）から検出した

コードクローン（クローンセット数：約 12,000個，ク

ローンペア数：2,500,000個）に対して円滑に動作す

ることを確認している．

5. 適 用 実 験

新 Gemini を情報処理推進機構（IPA）ソフトウェ

ア・エンジニアリング・センター（SEC）の先進ソフ

トウェア開発プロジェクトにおいてベンダ 5社が開発

しているプローブ情報システム☆に対して適用した12)．

各社は個別に開発を行っており，プロジェクトマネー

ジャでもソースコード，開発工数，開発体制（外部委

託先，要員数など）に関しては知りえない状況であっ

た．プロジェクトマネージャが主催する進捗会議では，

各社のマネージャから各工程の進捗割合と，予定日数

のずれが報告されるのみであった．このようなブライ

ンドマネジメントを支援するために，つまりブラック

ボックスとなっているソースコードの特徴を把握する

ために，コードクローン分析を行った☆☆．

新 Geminiの適用は単体テスト終了後，結合テスト

終了後の 2回行った．全社合計の開発規模は数十万ス

テップであり，結合テスト後は単体テスト後に比べ約

2万ステップ増加していた．このシステムは C/C++

言語を用いて開発されている．コードクローン分析は

各社が開発したソースコードに対して個別に行った．

この実験では，30 字句以上のコードクローンを検出

した．なお，検出されたすべてのコードクローンは関

数内に閉じたものである．紙面の都合上，すべての分

析結果を示すのは困難であるので，一部分のみを示す．

☆ プローブ情報システムとは，センサなどの計測機器が収集した
情報をネットワークを通じてセンターに転送し，その情報を分
析・蓄積・加工などすることによってさまざまな有用な情報を提
供するシステムである．

☆☆ この分析は共同開発各社合意の下に確保されたソフトウェア工
学研究用の機密室内で行った．



818 情報処理学会論文誌 Feb. 2007

表 1 検出されたクローンの量
Table 1 Amount of code clones in sub-systems.

単体テスト後 結合テスト後
コード片数 重複度 コード片数 重複度

V 社 259 33.9% 259 33.4%

W 社 369 27.3% 379 26.2%

X 社 4,483 55.3% 4,768 50.8%

Y 社 6,747 42.6% 7,628 46.0%

Z 社 2,450 56.2% 2,505 56.3%

図 5 Y 社の重複度の変化
Fig. 5 Duplicated ratio of file in the sub-system

developed by Y company.

5.2 節～5.4 節の各分析は，結合テスト後のコードに

対する適用結果である．なお，この適用実験では，メ

トリクス RNR の閾値は 0.5とした☆．

5.1 履 歴 分 析

単体テスト後と結合テスト後のクローン検出量の変

化を調査した．表 1 は単体テスト後，結合テスト後

の検出された重複コード片の数とシステムの重複度を

表している．Y社の開発部分に，単体テスト後に比べ

て結合テスト後に多くのコードクローンが含まれてい

た．通常，単体テスト後には新規で実装される機能は

ないため，単体テスト後と結合テスト後のクローン検

出量にあまり差はない，と予測していた．Y社が開発

したファイルの重複度分布状態のグラフを図 5 に示

す．この図から分かるように，結合テスト後は重複度

が非常に高いファイル（81%～100%）の数が増えて

いた．Y 社の開発者にインタビューを行ったところ，

これらのファイルは，結合テストを行う前に，新しい

機能を実装するために社内で構築したライブラリコー

ドを流用した部分であった．ライブラリのファイル間

で多くのコードクローンを共有しているため，重複度

☆ 本来ならば，RNR の値が 0.5 以下であるクローンセットすべ
てを調査し，フィルタリングの精度を算出すべきである．しか
し，5 社すべてのソースコードを 10 時間程度で分析しなければ
ならないという時間的制約の都合上，そのような分析を行うこ
とができなかったことをご理解いただきたい．

図 6 クローン散布図のスナップショット
Fig. 6 A snapshot of scatter plot.

は非常に高いが，これまでに数多くのソフトウェア内

で運用されており，信頼できるとの回答を得た．

5.2 クローン散布図を用いた分析

図 6 は，ある社が作成したコードのクローン散布図

である．A の部分にメトリクス RNR でフィルタリ

ングされたコードクローンが多数存在していた．これ

らのソースコードを閲覧したところ，デバック用の情

報出力コード（連続した printf文）やデータの妥当性

チェック（連続した if文）であり，うまくフィルタリ

ングを行えていることが確認できた．

Bの部分にも多くのコードクローンが存在した．こ

の部分のコードクローンは黒の格子をまたいで存在す

ることからディレクトリ間クローンであることが分か

る．この部分は車両の位置情報を扱う処理部分であり，

車両種別によりディレクトリが分かれていた．ディレ

クトリごとに扱う情報の種類は異なるものの，処理内

容は非常に類似していた．

5.3 メトリクスグラフを用いた分析

この分析では，あらかじめ RNR の値が 0.5以下の

クローンセットは除いている．

5.3.1 LENの大きいコードクローン

ある社のソースコードから検出された最長のコー

ドクローンは長さが 441字句（154行）であった．こ

のクローンセットは 2 つのコード片からなり，それ

ぞれAAAXXXBBB.cppとAAAYYYBBB.cppとい

うファイルに含まれていた．AAAYYYBBB.cpp中の

コードクローン内で呼び出されている関数の名前の一

部がXXXであり，また該当箇所のコメントにもXXX

が含まれていた．このことから，このコードクローン



Vol. 48 No. 2 産学連携に基づいたコードクローン可視化手法の改良と実装 819

は，AAAXXXBBB.cppから AAAYYYBBB.cppに

コピーアンドペーストされ，その後修正を忘れたので

はないかと思われる．

5.3.2 POPの大きいコードクローン

全社において POP の値が最も大きかったクローン

セットは，データの整合性をチェックし，もし間違っ

ていればエラーを出力する，という処理の部分であっ

た．データの種類は社間で違いがあるものの，処理内

容は全社で共通していた．

5.3.3 NIFの大きいコードクローン

ある社のソースコードから検出されたクローンセッ

トの NIF の最大値は 8であった（8個のファイル内

に存在する）．このコードクローンは，文字列の終端

にNULLがあるかをチェックし，もしなければ追加す

る処理を行っている関数であった．関数全体が重複し

ていたため，ユーティリティパッケージへの移動など

で，簡単に集約可能である．

5.4 ファイルリストを用いた分析

この分析では，RNR の閾値は 0.5とした．

5.4.1 NOCの大きいファイル

ある社が開発したソースコードに，358個のコード

クローンを所有しているファイルが存在した．コード

クローンは特定の処理をしている部分に集中している

わけではなく，さまざまな部分がファイル内クローン

もしくはディレクトリ内ファイル間クローンになって

いた．特に問題であると思われるコードクローンは特

定されなかったが，このファイル自体が非常に多くの

処理を行っており，その保守性が疑われた．

5.4.2 ROCの大きいファイル

ある社のソースコード中に重複度が 96%であるファ

イルが 2 つ検出された．一方はある処理をオンライ

ン時に行い，他方は同様の処理をオフライン時に行う

ファイルであった．開発者にこのコードクローンの存

在を報告したところ，設計時からオンライン時とオフ

ライン時のコードは別々に実装すると決めており，存

在が把握されているコードクローンであった．

5.4.3 NOFの大きいファイル

ある社が開発したソースコードに，他の 13個のファ

イルとコードクローンを共有しているファイルが存在

した．このファイルにはさまざまな入力処理が含まれ

ており，それぞれの処理が別ファイルとコードクロー

ンになっており，結果として NOF の値が大きくなっ

ていた．コードクローンになっている部分は，対象ソ

フトウェアで汎用的な処理であり，処理内容も単純で

あることから，特に問題はないと思われた．

5.5 旧 Geminiとの比較

ここでは，本実験を仮に旧 Geminiで行った場合，ど

のような不都合が生じるのかを述べる．

本実験の対象規模は 5社合計で数十万ステップであ

り，それぞれの社が担当したサブシステムの規模には

かなりの差があった．ある社が担当していたサブシス

テムの規模は，他の 4社のサブシステムの合計規模よ

りも大きかった．このため，もしこの社のサブシステ

ムを旧 Geminiで分析した場合，クローン散布図のス

ケーラビリティの問題により，分析が困難であったこ

とが考えられる．

特徴的なクローンセットを調査するためのメトリク

スは旧 Geminiでも用いており，同様の分析を行うこ

とは可能である．しかし，新 Geminiでは，メトリク

スグラフにフィルタリングメトリクス RNR を新たに

導入していることにより，より効率的にクローンセッ

トの調査を行うことができる．RNR の低いコードク

ローン，つまりプログラミング言語に依存したコード

クローンは，システムのいたるところに存在すること

から，メトリクス POP と NIF の値が高い傾向であ

ることが分かっている．本実験では，POP と NIF

が高いクローンセットを調査しており，旧 Geminiを

用いた場合はこの分析により時間が必要であったこと

が想定される．

また，特徴的なファイルを調査するために本実験で

用いたメトリクス NOC，ROC，NOF はいずれも

新 Geminiにおいて導入されたメトリクスであり，旧

Geminiにおいて同様の分析を行うことはできない．

6. 産業ソフトウェアの分析

ここでは，これまでに筆者らが産業界のソフトウェ

アを分析したことによって得た知見を述べる．筆者ら

は，本稿で述べたソフトウェア以外にも，産業ソフト

ウェアの分析作業を行ってきている．

コードクローン分析の利用法として外部委託先が作

成したソースコードのチェックがあげられる．外部委

託先へ支払う金額が規模ベースの場合，不必要にコー

ドクローンを作成し，規模を大きくしている場合が多

数見つかっている．まったく同一内容のファイルが複

数存在している場合もある．ソフトウェアの規模が大

きい場合このような工作を手動によるチェックで見抜

くのは難しいが，コードクローン分析を用いることに

より簡単に見つけることができる．

コードクローンを多く含む箇所を “設計が失敗した

部分”ととらえ，次回以降のプロジェクトで同じ過ち

を繰り返さないための利用法もある．特に注意しなけ



820 情報処理学会論文誌 Feb. 2007

ればならないのは，開発者が存在を知らなかったコー

ドクローンである．このようなコードクローンの存在

を確認し，なぜ発生したのかその原因を究明すること

によって，次回以降のプロジェクトにおいて，修正漏

れなどを減らすことが可能となる．ここでは簡単に 2

つの利用法は述べたが，コードクローン分析はソース

コードさえあれば行うことが可能であるのでその汎用

性は非常に高く，ほかにもさまざまな利用法が考えら

れる．

産業界のソフトウェアのソースコードを企業の外部

に持ち出すことは現実的ではないため，著者らが企業

まで赴いて分析作業を行わなければならない．コード

クローン分析はソースコードを対象としているので，

プロジェクトのマネージャよりも実際にコーディング

を行った開発者の意見をいただきたい場合が多い．し

かし，コーディングを外部委託していたり，長期開発

のソフトウェアにおいてコードクローンが検出された

部分の開発者が現在は違うプロジェクトに移動になっ

ていたりなど，開発者から意見をいただける場合は少

ない．また企業まで赴いて分析をするということから，

分析作業に費やすことのできる時間は限られてくる．

本稿で述べた実験も実際に分析作業に割り当てること

ができたのは 10時間程度であった．

7. 関 連 研 究

Kapser らはコードクローンに対する理解支援を目

的としたツール CLICS を開発している8)．CLICS は

ソースファイルの構造やシステムのアーキテクチャを

コードクローン情報を付与して表示する．CLICSはク

エリ処理を実装しており，ユーザは興味のある特徴を

クエリとして与えることにより，簡単にその条件を満

たすコードクローン情報を得ることができる．Kapser

らはクローン散布図はスケーラビリティが高くなく実

用的ではないと述べており，CLICSはクローン散布図

を実装していない．

筆者らは，コードクローンの状態を把握するため

にはクローン散布図は必要不可欠であると考えてい

る．新 Geminiのクローン散布図は過去に提案された

クローン散布図に比べ十分にスケーラビリティが高い．

たとえば，JDK1.5（1,881,140行）を対象とした適用

実験では，コード片の長さが 30字句以上のクローン

ペアが 2,497,433 個，クローンセットが 12,522 個検

出されたが，クローン散布図は円滑に動作した☆．ま

☆ CPU：Pentium4 3.0GHz，メモリ：2 GB，OS：Windows

XP

た，著者らのクローン散布図は，調査の必要がない

コードクローンのフィルタリング結果を表示する．こ

れは他のクローン散布図に比べ改良されている点で

ある1),3),14)．Kapserらも調査の必要がないコードク

ローンのフィルタリングは重要であると述べており，

彼らのツールもフィルタリング機構を持つ8)．また，

著者らのクローン散布図は，ディレクトリ境界とファ

イル境界を異なって表示する．これにより，ファイル

内・ファイル間のコードクローンの分布情報だけでな

く，ディレクトリ間・ディレクトリ内ファイル間・ファ

イル内のより詳しいコードクローンの分布状態を知る

ことができる．これらの 2つの機能を持ったクローン

散布図を使うことにより，ユーザは調査する必要のあ

るコードクローンの，ディレクトリ階層中での分布状

態を知ることができる．

Rieger らはコードクローン情報の視覚的な表示方

法を提案・実装している14)．彼らの提案は Polymetric

View 11) の原理に基づいており，ユーザにさまざまな

粒度で抽象化されたコードクローン情報を提供する．

彼らもまた，コードクローン検出対象が非常に大きい

システムである場合は，非常に多くのコードクローン

が検出されてしまうため，フィルタリング機構が必要

不可欠であると述べている．

Johnsonは HTMLを用いたコードクローン情報の

巡回手法を提案している6)．HTMLのハイパーリンク

を用いることによって，コードクローンを共有してい

るソースファイル間を自由に巡回することを可能にし

ている．しかし，Johnsonの手法には，コードクロー

ンの状態を俯瞰的に把握する機構・コードクローンを

定量的に特徴付けする機構がなく，どのコードクロー

ンから分析すべきかユーザは判断することができない．

8. お わ り に

8.1 ま と め

本稿では，コードクローン可視化手法の改良につい

て述べた．これは著者らの産学連携の結果得られた知

見に基づいており，実用性に長けている．また，この

改良手法を用いてコードクローン可視化ツール Gemini

を再実装した．新 Geminiは以下の機能を持つ．

• 調査の必要がないコードクローンのフィルタリン
グを行う機能

• 対象ソフトウェア全体のコードクローンの分布状
態を俯瞰的に提示する機能

• 特定の特徴を持ったコードクローン・ファイルの
情報を簡単に得ることができる機能

新Geminiを用いて企業が開発したソフトウェアに対



Vol. 48 No. 2 産学連携に基づいたコードクローン可視化手法の改良と実装 821

して適用実験を行った．実験の結果，さまざまなコー

ドクローンの状態・発生理由を把握することができた．

8.2 今後の課題

現在の Geminiではプログラミング言語依存のコー

ドクローンのフィルタリングしか行うことができない

ため，アプリケーション依存のコードクローンへの対

策を行わなければならない．アプリケーション依存の

コードクローンは，その特徴はさまざまであり，言語

依存のコードクローンのようにメトリクスを用いて

フィルタリングを行うことは難しい．このため，ユー

ザが検出してほしくないコードクローンのパターンを

入力し，そのパターンにマッチするコードクローンを

フィルタリングするなどの方法を用いることが考えら

れる．

ツールのスケーラビリティをさらに高くすることも

課題の 1 つである．Gemini を再実装することによっ

て，分析可能なソースコードの規模は 10万行単位か

ら 100万行単位まで上昇した．100万行規模まで分析

可能になったことで，1つのソフトウェアが対象の場

合は円滑に分析作業を行うことができるようになった．

しかし，その部署で過去に開発したソフトウェアから

まとめてコードクローン分析を行い，ソフトウェアに

またがって存在するコードクローンを社内ライブラリ

化したい，との声も寄せられている．現在のスケーラ

ビリティではこのような分析を行うことは難しく，さ

らなるスケーラビリティ面での改良が望まれている．

現在，著者らは関数内で閉じたコードクローンのみ

を対象としている．このため，検出されるコードク

ローンはあまり大きくない．しかし，ソフトウェア内

部にはより大きい単位での重複関係が存在している可

能性がある．たとえば，CCFinder が検出したコード

クローン情報をアーキテクチャ情報にマッピングをさ

せることによって，より大きい単位での重複部分を抽

出することが考えられる．

コードクローンの検出精度そのものも高めていく必

要もある．現在 CCFinderが検出できるコードクロー

ンは，まったく同一もしくは識別子名が異なるコード

クローンのみであり，コピーアンドペースト後に文が

挿入・削除されたコード片はコードクローンとして検

出できていない．このようなコードクローンを検出

できれば，クローン分析はより実用的になると考えら

れる．

また，コードクローン情報と他の情報の相関を調べ

ることにより，なにか有益なことが分かるかもしれな

い．たとえば，コードクローン情報とバグ情報を付き

合わせることにより，コードクローンとバグ発生頻度

どの程度関連しているか，つまりコードクローンがど

の程度保守作業に影響を与えているかが特定できるの

ではないかと思われる．

謝辞 旧 Geminiの実装を行った宇宙航空研究開発

機構の植田泰士氏に感謝する15)．本稿の適用実験を

行うにあたり協力をいただいた，独立行政法人情報

処理推進機構の松浦清氏，神谷芳樹氏，樋口登氏，奈

良先端科学技術大学院大学の松村知子氏に感謝する．

本研究は一部，文部科学省リーディングプロジェクト

「e-Society基盤ソフトウェアの総合開発」の委託に基

づいて行われた．また，日本学術振興会科学研究費補

助金基盤研究（A）（課題番号：17200001），特別研究

員奨励費（課題番号：16-8351）の助成を得た．

参 考 文 献

1) Baker, B.S.: On Finding Duplication and

Near-Duplication in Large Software Systems,

Proc. 2nd Working Conference on Reverse En-

gineering, pp.86–95 (1995).

2) Baxter, I., Yahin, A., Moura, L., Anna, M. and

Bier, L.: Clone Detection Using Abstract Syn-

tax Trees, Proc. International Conference on

Software Maintenance 98, pp.368–377 (1998).

3) Ducasse, S., Rieger, M. and Demeyer, S.: A

Language Independent Approach for Detecting

Duplicated Code, Proc. International Confer-

ence on Software Maintenance 99, pp.109–118

(1999).

4) Fowlor, M.: Refactoring: improving the design

of existing code, Addison Wesley (1999).

5) 井上克郎：エンピリカルソフトウェア工学の研
究と実践—コードクローンを例に，EASE プロ
ジェクトニュースレター，Vol.4, pp.1–4 (2005).

6) Johnson, J.H.: Navigating the Textual Redun-

dancy Web in Legacy Source, Proc. 1996 Con-

ference of Centre for Advanced Studies on Col-

laborative Research, pp.7–16 (1996).

7) Kamiya, T., Kusumoto, S. and Inoue, K.:

CCFinder: A multi-linguistic token-based code

clone detection system for large scale source

code, IEEE Trans. Softw. Eng., Vol.28, No.7,

pp.654–670 (2002).

8) Kapser, C. and Godfrey, M.: Improved Tool

Support for the Investication of Duplication in

Software, Proc. 21st International Conference

on Software Maintenance, pp.305–314 (2005).

9) 加藤博己：データベースのビジュアルな検索と
分析（OLAP），情報処理学会誌，Vol.41, No.4,

pp.363–368 (2000).

10) Komondoor, R. and Horwitz, S.: Using slic-

ing to identify duplication in source code, Proc.



822 情報処理学会論文誌 Feb. 2007

8th International Symposium on Static Analy-

sis, pp.40–56 (2001).

11) Lanza, M. and Ducasse, S.: Polymetric Views:

A Lightweight Visual Approach to Reverse En-

gineering, IEEE Trans. Softw. Eng., Vol.29,

No.9, pp.782–795 (2003).

12) 松浦 清，神谷芳樹，樋口 登：先進ソフトウェ
ア開発プロジェクト PartII，SEC journal, Vol.5,

pp.44–49 (2006).

13) Mayrand, J., Leblanc, C. and Merlo, E.: Ex-

periment on the automatic detection of func-

tion clones in a software system using met-

rics, Proc. International Conference on Soft-

ware Maintenance 96, pp.244–253 (1996).

14) Rieger, M., Ducasse, S. and Lanza, M.: In-

sights into System-Wide Code Duplication,

Proc. 11th Working Conference on Reverse En-

gineering, pp.100–109 (2004).

15) 植田泰士，神谷年洋，楠本真二，井上克郎：開発
保守支援を目指したコードクローン分析環境，電子
情報通信学会論文誌，Vol.86-D-I, No.12, pp.863–

871 (2003).

16) Yip, S.W.L. and Lam, T.: A Software Mainte-

nance Survey, Proc. 1st Asia-Pacific Software

Engineering Conference, pp.70–79 (1994).

17) ソフトウェア工学工房（コードクローンセミ
ナー）．http://sel.ist.osaka-u.ac.jp/kobo/

(平成 18年 5 月 13日受付)

(平成 18年 11月 2 日採録)

肥後 芳樹（正会員）

平成 14 年大阪大学基礎工学部情

報工学科中退．平成 18年同大学大学

院博士後期課程修了．現在，日本学

術振興会特別研究員．コードクロー

ン分析・リファクタリング支援の研

究に従事．

吉田 則裕（学生会員）

平成 16 年九州工業大学情報工学

部知能情報工学科卒業．平成 18 年

大阪大学大学院博士前期課程修了．

現在，同大学院博士後期課程 1 年．

コードクローン分析・リファクタリ

ング支援に関する研究に従事．人工知能学会会員．

楠本 真二（正会員）

昭和 63 年大阪大学基礎工学部情

報工学科卒業．平成 3年同大学大学

院博士課程中退．同年同大学基礎工

学部情報工学科助手．平成 8年同学

科講師．平成 11年同学科助教授．平

成 14年大阪大学情報学部コンピュータサイエンス学

科助教授．平成 17年同学科教授．博士（工学）．ソフ

トウェアの生産性や品質の定量的評価，プロジェクト

管理に関する研究に従事．IEEE，JFPUG各会員．

井上 克郎（正会員）

昭和 54 年大阪大学基礎工学部情

報工学科卒業．昭和 59 年同大学大

学院博士課程修了．同年同大学基礎

工学部情報工学科助手．昭和 59～61

年ハワイ大マノア校情報工学科助教

授．平成元年大阪大学基礎工学部情報工学科講師．平

成 3 年同学科助教授．平成 7 年同学科教授．工学博

士．平成 14年大阪大学情報学部コンピュータサイエ

ンス学科教授．ソフトウェア工学の研究に従事．日本

ソフトウェア科学会，IEEE，ACM各会員．


