
Title 大規模ソースコードを対象としたコードクローンの検
出と可視化

Author(s) 肥後, 芳樹; リビエリ, シモネ; 松下, 誠 他

Citation 情報処理学会論文誌. 2007, 48(11), p. 3510-3519

Version Type VoR

URL https://hdl.handle.net/11094/50213

rights

ここに掲載した著作物の利用に関する注意 本著作物
の著作権は情報処理学会に帰属します。本著作物は著
作権者である情報処理学会の許可のもとに掲載するも
のです。ご利用に当たっては「著作権法」ならびに
「情報処理学会倫理綱領」に従うことをお願いいたし
ます。

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Vol. 48 No. 11 情報処理学会論文誌 Nov. 2007

大規模ソースコードを対象としたコードクローンの検出と可視化

肥 後 芳 樹† リビエリ シモネ†

松 下 誠† 井 上 克 郎†

コンピュータハードウェアが安価になり，分散処理方式はソフトウェア分析のための現実的な選択
肢の 1 つとして用いられるようになった．本論文では，超大規模ソースコードからコードクローンの
検出，および可視化を行うシステム D-CCFinderについて述べる．D-CCFinderは 80台のコンピュー
タを用いた分散型コードクローン検出システムであり，検出されたコードクローン情報は散布図など
を用いて可視化される．D-CCFinderは約 4億行のソースコードから 2日余りでコードクローン情報
を収集し，頻出するコードを容易に特定することができた．

A Code Clone Detection and Visualization for Large-scale Source Code

Yoshiki Higo,† Simone Livieri,† Makoto Matsushita†

and Katsuro Inoue†

The increasing performance-price ratio of computer hardware makes possible to explore a
distributed approach at code clone analysis. This paper presents D-CCFinder, a distributed
approach at large-scale code clone analysis. D-CCFinder has been implemented with 80 PC
workstations in our student laboratory, and a vast collection of open source software with
about 400 million lines in total has been analyzed with it in about 2 days. The result has
been visualized as a scatter plot, which showed the presence of frequently used code as easy
recognizable patterns.

1. は じ め に

近年，ソフトウェア分析手法としてコードクローン

検出が注目を集めている13),18)．コードクローンとは，

ソースコード中のある一部分（コード片）のうち，他の

コード片と同一または類似しているものを指す．コー

ドクローンはコピーアンドペーストなどのさまざまな

理由によりソースコード中に作りこまれる．あるコー

ド片にバグが含まれていた場合，そのコード片のコー

ドクローンすべてについて修正の是非を考慮しなけれ

ばならない．このようなことから，コードクローンは

ソフトウェアの保守を困難にしている要因の 1つであ

ると指摘されている．そのため，コードクローン検出

を行うことは，効率的にソフトウェア保守を行うため

に有効であるといえる．また，コードクローン検出を

行うことにより，単純な重複部分の調査だけではなく，

ソフトウェアの進化を追うこともできる14),20)．

これまでに多くのコードクローン検出法とその適

† 大阪大学大学院情報科学研究科
Graduate School of Information and Science Technol-

ogy, Osaka University

用事例が報告されているが1),6),12),15),16)，それらは単

一または少数のソフトウェア内でのコードクローンの

状態を調査しており，大量のソフトウェア間における

コードクローン分析は行われていない．

しかし，近年，GNUプロジェクト9) や Jakartaプ

ロジェクト11)に代表されるように多くのオープンソー

スソフトウェアが開発されており，その一部は他のソ

フトウェアでも用いられているとの指摘もされている

ことから3)，大量のソフトウェア間における利用関係

を調査することにより，頻繁に再利用されているコー

ドの特定など，有益な情報を取得できるであろう．

オープンソースソフトウェアに限らず，企業の開発

部門など，組織規模でコードクローン分析を適用する

ことにより，組織自体のソフトウェア開発プロセスを

改善することができるとも思われる．たとえば，ある

組織が過去に開発したすべてのソフトウェアからコー

ドクローンを検出することにより，その組織で繰り返

し実装されているコードを特定することができる．そ

のようなコードを社内ライブラリとしてまとめること

により，今後のソフトウェア開発をより効率的に行え

るであろう．

3510



Vol. 48 No. 11 大規模ソースコードを対象としたコードクローンの検出と可視化 3511

しかし，既存の検出法はどれも単一または少数のソ

フトウェアからのコードクローン検出を目的として提

案されているものであり，そのまま大量のソフトウェ

ア群に対して適用することはスケーラビリティの面か

ら難しい．既存手法の中では，字句単位の検出手法を

実装しているツール CCFinder 12)が，他の手法に比べ

スケーラビリティが高いことが知られているが4)，1

度に検出を行うことができる規模の上限は約 500万行

である☆．そこで本論文では，大量のソフトウェア群

から短時間でコードクローンを検出するための方法と，

検出したコードクローンの可視化について述べる．

本論文では，コードクローン検出対象として，オー

プンソースオペレーティングシステム FreeBSD 8) 用

のソフトウェア集合 Ports システムに含まれている，

C言語で記述された約 4億行のソースコード（以降，

オープンソースターゲット）を用いた．この規模は，

CCFinder の検出可能である限界をはるかに超えてお

り，単一のコンピュータ上で 1度に検出を行うことは

不可能である．そこで，分散処理方式を用いて，検出

対象を小さく分割し，各コンピュータに入力として与

える．各コンピュータ上で CCFinderを実行し，割り

当てられたソースファイルに含まれるコードクローン

を検出する．このように対象を小さく分割することに

より，CCFinder を用いて短時間でコードクローンを

検出することができる．分割したすべてのタスクを単

一コンピュータ上で逐次実行した場合も同じ結果を得

ることはできるが，すべての検出処理を完了するには

45日を要すると予測され☆☆，現実的ではない．

提案手法を分散型アプリケーション Distributed-

CCFinder（以降，D-CCFinder）として実装した．D-

CCFinder を大阪大学基礎工学部情報科学科の学生演

習室のコンピュータ 80台上で実行し，オープンソー

スターゲット内に含まれるコードクローンを検出した

ところ，約 2日で検出を完了することができた．

本研究の成果は以下のとおりである．

• 単一あるいは少数のソフトウェアに対する分析手
法であったコードクローン検出を分散処理技術を

用いることによって応用し，大量のソフトウェア

群から短時間でコードクローンを検出する手法を

提案した．

☆ CPU: Xeon 2.8GHz，Memory: 4GB を用いた場合
☆☆ CCFinderの検出規模の上限である 500万行で 4億行を区切っ
た場合，80 個に分割される．これを 2.3 節のモデルにあてはめ
ると， 1

2 × 80 × (80 + 1) = 3,240 個のタスクが存在するこ
とになる．また，これまでの経験から 500 万行からのコードク
ローン検出には約 20 分を要すると想定し，総検出時間を計算
すると 20 分 ×3,240 = 64,800 分 = 45 日となる．

• 提案した検出手法をオープンソースターゲットに
適用することにより，ソフトウェア間にどのよう

なコードクローンが存在しているのかを特定する

ことができた．現時点では，可視化により際立っ

た部分に存在するコードクローンを特定したにと

どまっている．

以上の 2点から，本論文はソフトウェア分析を分散

処理環境を用いて行うことの有用性を示しているとい

える．

以降，2 章では D-CCFinderの分散処理モデルを定

義し，3章ではその実装について述べる．4章ではオー

プンソースターゲットへの適用について述べ，5 章で

はその結果に対する考察を行う．6 章では関連研究に

ついて触れ，最後に 7 章では，まとめと今後の課題に

ついて述べる．

2. 超大規模ソースコードを対象としたコード
クローン検出手法

2.1 検 出 対 象

本論文でのコードクローン検出対象は，オープンソー

スオペレーティングシステム FreeBSD用のソフトウェ

ア集合 Portsシステムに含まれているソースファイル

（オープンソースターゲット）であり，各ソースファ

イルは 1つのプロジェクトに属している．すべてのプ

ロジェクトは，zip，emacs，apache，windowmakerな

ど，一意に特定可能な名前を持っている．また，本論

文では検出対象を C 言語で記述されたソースコード

に限定しているが，JavaやCOBOLなどの CCFinder

自体が扱えるプログラミング言語であれば，同様に適

用可能である．

共通の特徴を持ったプロジェクトは同じカテゴリに

所属している．たとえば，emacs や vim，gedit など

は editorsカテゴリに所属している☆☆☆．

ユニットは，全ファイル集合をあるサイズ以下で分

割した要素であり，1つのユニットに含まれるソース

ファイルは単一プロジェクトからなる場合と複数プロ

ジェクトからなる場合がある．また，ユニットのサイ

ズは，使用するコンピュータの性能によって変えるべ

きである．

任意の 2つのユニットで指定されるファイル集合間

の対応をピースといい，これが各コンピュータ上で実

行される CCFinderへの入力となる．もし，ユニット

サイズよりも大きなソースファイルが存在した場合は，

☆☆☆ 各プロジェクトをカテゴリ分けしたのは Ports システムの管理
者であり，著者らが行ったわけではない．



3512 情報処理学会論文誌 Nov. 2007

図 1 プロジェクト，カテゴリ，ターゲット，ユニット，ピース間の関係
Fig. 1 Relation between project, category, target, unit and piece.

そのファイル単体で 1つのユニットを構成する．その

ため，サイズの大きなピースが存在することになる．

大きすぎるサイズのために CCFinderの実行が失敗し

てしまった場合でも，ファイルを分割して小さなピー

スを作成することは行わない．図 1 はプロジェクト，

カテゴリ，ユニット，ピース間の関係を表している．

2.2 検出結果の表示

コードクローンには，コメントを除く部分がまった

く同一の exact クローンと，変数名や関数名などの

ユーザ定義名が異なる parameterizedクローンの 2種

類があるが2)，本研究ではこの両方を検出する．

検出対象の規模が非常に大きいため，大量のコード

クローンが検出されることが予測できる．そのため，

コードクローンの状態を容易に把握するためには，検

出結果の抽象化を行う必要がある．提案手法では，コー

ドクローン検出後に，ファイル，プロジェクト，カテゴ

リの各レベルで抽象化を行う．たとえば，各ファイル

間，各プロジェクト間，カテゴリ間の重複の度合いや，

単にコードクローンを共有しているかどうかといった

抽象化も行う．

2.3 分散処理モデル

既存の検出法はどれも単一もしくは少数のソフト

ウェアからのコードクローン検出を目的として提案さ

れており，そのまま大量のソフトウェア群に対して適

用することはスケーラビリティの面から難しい．この

ため，検出対象を小さなユニットに分割してその組合

せからピースを作成し，ピース単位で CCFinderを実

図 2 D-CCFinder の分散処理モデル
Fig. 2 Distributed processing model of D-CCFinder.

行することにより，コードクローンを検出する．

図 2 は D-CCFinder の分散処理モデルを表してい

る．検出対象の規模は nu とする．n は分割数であ

り，u はユニットのサイズを表している．このとき，

任意のピースは (i, j) で表すことができる（ただし，

1 ≤ i, j ≤ n）．ピース (i, j) に含まれるコードクロー

ンはピース (j, i) に含まれるコードクローンと等価で

あるため，後者については検出を行わない．これによ

り，CCFinder を用いてコードクローンを検出しなけ

ればならないピースの数は n(n + 1)/2 となる．なお，

ピース内でのコードクローン検出がプロジェクト内の



Vol. 48 No. 11 大規模ソースコードを対象としたコードクローンの検出と可視化 3513

図 3 D-CCFinder の処理の流れ
Fig. 3 Process overview for code clone analysis using D-CCFinder.

コードクローン検出を含む場合があるが☆，本論文で

はプロジェクト間のコードクローンを検出することが

目的であるため，プロジェクト内のコードクローンは

検出しない．

D-CCFinder は，既存の CCFinder を複数のコン

ピュータで実行することにより，コードクローン検

出を行う．各ピースの演算（コードクローン検出）は

他のピースの演算結果にまったく依存しないため，タ

スクの割当て処理は単純に行える．まだ 1度も調べて

いないピースをアイドル状態のコンピュータに割り当

て，検出結果を回収するだけでよい．

3. D-CCFinder

D-CCFinder はマスタ・スレーブ型のシステムであ

り，各スレーブマシン上でCCFinderが実行される．マ

スタは，スレーブの実行状態を監視し，タスクを割り

当てる．マスタ・スレーブ間の通信は，Java RMIを用

いて行われる．表 1 はマスタと各スレーブマシンの性

能を表している，またマスタ・スレーブ間は 100Mbps

のネットワークで結ばれている．検出対象ソースファ

イルと検出結果はすべてのマシンがアクセス可能な

ファイルシステム上に存在し，各マシンは NFS経由

でアクセスする．D-CCFinderは大学の演習室のコン

ピュータ 80 台を用いて実装されており，1 台がマス

タ，残りの 79台がスレーブである．

図 3に示すように，D-CCFinderには対象ソースファ

イルに前処理を行うユーテリティ，検出結果を集約す

るプログラム，および検出結果から散布図などを生成

するジェネレータが統合されている．

☆ ピース (i, i) や (i, i − 1) など，分散処理モデルにおいて主対
角線上またはそれに近い位置に存在するピースでは，その垂直
方向のユニットと水平方向のユニットに含まれるファイルが同
一プロジェクトのものである場合がある．

表 1 マスタ・スレーブノードの性能
Table 1 Spec. of the master and slave nodes.

CPU Pentium IV 3GHz

メモリ 1GBytes

オペレーティングシステム FreeBSD 5.3-STABLE

利用可能 HDD 領域 40～50GBytes

Indexer 検出対象ソースファイルを走査し，ファイ

ルサイズ，行数，プロジェクト名，カテゴリ名な

どの情報を収集する．また，ユニットの境界を決

定する．

マスタノード スレーブノード上の CCFinderの実行

状態を監視する．アイドル状態のスレーブノードを

発見した場合は，ユニット境界情報から，CCFinder

の入力ファイル（そのユニットに含まれているソー

スファイルのパスのリスト）を生成し，スレーブ

ノードにタスクを割り当てる．もし割当てが失敗

した場合は，そのタスクは他のスレーブに割り当

てられる．

スレーブノード マスタノードから与えられた入力

ファイルを用いてコードクローン検出処理を行

う．検出対象ファイルはスレーブノードのローカ

ルファイルシステムにコピーされ，その後コード

クローン検出が行われる．検出処理完了後もロー

カルファイルシステム上のコピーは削除されず，次

回以降の検出処理のキャッシュとして利用される．

Clone Coverage Analyzer D-CCFinder の出力

から，ファイル，プロジェクト，およびカテゴリ

レベルのコードクローンカバレッジを算出する．

Image Generator Clone Coverage Analyzer が

生成した定量データから，散布図やヒートマップ

を生成する．



3514 情報処理学会論文誌 Nov. 2007

4. 実 験

4.1 概 要

本論文での実験対象は，オープンソースオペレー

ティングシステム FreeBSD 8) 用のソフトウェアの集

合である Portsシステムに含まれているソースファイ

ル（オープンソースターゲット）である．表 2 に対象

ソースファイルの規模，表 3 にカテゴリを示す．

オープンソースターゲットは同じプロジェクトの複

数のバージョンを含んでいる場合がある．たとえば

Apache web server の場合は，1.3，2.0，2.1，2.2 の

4つのバージョンが含まれている．これは，古いバー

ジョンを必要としているユーザやシステムとの下位互

換性を保つためである．このように，複数のバージョ

ンが含まれる場合は，それらの間で非常に多くのコー

ドクローンが検出されることが予測される．

また，コードクローンの状態を定量的に表すために

メトリックス Coverage(M0, M1) を定義する．この

表 2 オープンソースターゲットのサイズ
Table 2 Characteristics of the open source target.

カテゴリ数 45

プロジェクト数 6,658

.c ファイル数 754,552

総行数 403,625,067

総容量 10.8GBytes

表 3 オープンソースターゲットのカテゴリ一覧
Table 3 Categories in the open source target.

Index Name Index Name

1 accessibility 24 math

2 arabic 25 mbone

3 archivers 26 misc

4 astro 27 multimedia

5 audio 28 net-im

6 benchmarks 29 net-mgmt

7 biology 30 net-p2p

8 cad 31 net

9 comms 32 news

10 converters 33 palm

11 databases 34 polish

12 deskutils 35 print

13 devel 36 science

14 dns 37 security

15 editors 38 shells

16 emulators 39 sysutils

17 finance 40 textproc

18 ftp 41 www

19 graphics 42 x11-clocks

20 irc 43 x11-fm

21 java 44 x11-fonts

22 lang 45 x11

23 mail

メトリックスは，2つのモジュール M0 と M1 がどの

程度類似しているかを表すものであり，次式を用いて

表現される．

Coverage(M0, M1)

=
LOC(CM1(M0)) + LOC(CM0(M1))

LOC(M0) + LOC(M1)

ただし：

M0，M1：ファイル，プロジェクト，またはカテゴリ，

CM1(M0)：M0 の中で，M1 とコードクローンである

部分，

LOC(x)：x の行数．

4.2 結 果

最小一致字句数☆を 50，ユニットサイズを

15 MBytes☆☆に設定し，D-CCFinderを実行した．実

行されたタスクの総数は，269,745 個である．図 4

は全体の散布図を表している．この散布図では，1

ピクセルあたり 200 × 200 ファイルを表している．

200 × 200 ファイル間で 1 つでもコードクローンが

存在する場合は，点を描画している．ファイルレベル

での Coverage(M0, M1)の平均は 4%であり，もしこ

のような縮退を行っていない場合は，これよりはるか

に点の少ない散布図になると思われる．

図 4 の特徴的な部分を枠で囲んでいる．これらの部

分に対して，より詳細に調査を行った．

A この部分のコードクローンは php4と php5のソー

スコードが流用されていることを表している．図

から読み取れるように，さまざまなカテゴリのプ

ロジェクトに流用されている．

B この部分には X11関係の 4つのカテゴリが存在し

ており，それらの間で多くのコードクローンが検

出された．その多くは X Window Systemの中心

的な処理を行っている部分からのコピーであった．

C imakeは makeに代表されるビルドツールの一種

であり，X Window System の一部となっている

☆ 最小一致字句数とは，CCFinder がコードクローンを検出する際
に用いる閾値である．CCFinder はこの値以上の字句を持つコー
ドクローンを検出する．著者らはこれまでの経験から，新規で
コードクローン検出を行う際の閾値として 30 を用いているが，
今回の実験対象は同じソフトウェアの複数のバージョンを含む
ことを考慮し 50 とした．

☆☆ ユニットサイズが大きいほどタスク数が減るため，大きいほう
が良いのであるが，演習室のマシンスペックを考慮した結果，こ
の値を用いた．実際に，ユニットサイズをこれよりも大きい値
にして D-CCFinder を実行したところ，同じソフトウェアの異
なるバージョン部分のピースなど，非常に多くのコードクロー
ンを含んでいる部分において，メモリ不足により CCFinder の
実行に失敗してしまい，正常にすべてのピースの検出処理を終
えることができなかった．



Vol. 48 No. 11 大規模ソースコードを対象としたコードクローンの検出と可視化 3515

図 4 オープンソースターゲット全体の散布図
Fig. 4 Scatter plot of inter-project code clone coverage for the open source target.

ソフトウェアである．このソフトウェア自体はカ

テゴリ develに属しているが，X11関係のソフト

ウェアの多くがこのコピーを所持していた．

D カテゴリ develの大部分で一様なパターンが現れ

ていた．これはソフトウェア binutilsのコードの

流用によるものである．binutils はリンカやアセ

ンブラなどその他オブジェクトファイルやアーカ

イブを扱うためのソフトウェアツール群であり，

カテゴリ develに属するソフトウェアがこのツー

ルを流用しているのは納得できる結果である．

E カテゴリ audio内に存在するマルチメディアフレー

ムワーク gstreamerとその複数のプラグインが多

数の同一ファイルを所持していた．

上記のコードクローンを所有しているファイルに対

して Coverage(M0, M1) を計測したところ，ほとん

どが 100%であった．つまり，これらのファイルはある

一部ではなく，ファイル全体がコードクローンになっ

ていることを表している．すでに述べたように図 4 の

1ドットは 200× 200ファイルを表しているため，特

定の 2 つのプロジェクト間でのみコードクローンに

なっている部分を発見することは難しい．

図 5 はカテゴリレベルでの Coverage(M0, M1) の

ヒートマップを表している．この図から，主対角線上，

つまりカテゴリ内のカバレッジがカテゴリ間のカバ

レッジに比べ高いことが分かる．異なるカテゴリ間の

場合は，Coverage(M0, M1) の値が 25%を超えてい



3516 情報処理学会論文誌 Nov. 2007

図 5 オープンソースターゲット全体のカテゴリレベルでのヒート
マップ

Fig. 5 Color heatmap for the code clone coverage of the

open source target (category view).

る箇所は少ない．次に，図 5 の特徴的な部分にどのよ

うなコードクローンが存在していたのかを示す．

F カテゴリ databaseの値が 41%と非常に高かった．

これには 2つの理由がある．1つめの理由はこの

カテゴリに属するいくつかのソフトウェアは，複

数バージョンのソースコードが存在したこと，2

つめの理由は，ruby や php など異なるプログラ

ミング言語向けにデータベースドライバが提供さ

れている点であった．前者の理由により，ファイ

ルの一部分のコードクローンが多く存在し，後者

の理由により，ファイル全体のコードクローンが

多く存在した．

G カテゴリ develの値が 38%であった．このカテゴ

リにはプロジェクト binutilsや gccの複数のバー

ジョンが含まれており，Coverage(M0, M1) の値

を押し上げていた．

H カテゴリ ftpと convertersの間の値が 37%であっ

た．これらのカテゴリに含まれる複数のソフトウェ

アがプロジェクト php4 と php5 のソースコード

を流用しているため，Coverage(M0, M1)の値が

高くなっていた．

I カテゴリ lang と devel の間の値が 28%であった．

これはカテゴリ devel内に複数バージョンのプロ

ジェクト gccが存在しているためであり，このコー

ドはカテゴリ lang に含まれるプロジェクトでも

流用されていた．

J カテゴリ x11-fontsの値が 46%と最も高い数値で

あった．このカテゴリに属しているソフトウェア

表 4 実行時間
Table 4 Time elapsed.

Indexer 22 分
D-CCFinder 51 時間

散布図
Clone Coverage Analyzer 23 時間
Image Generator 4 時間

ヒートマップ
Clone Coverage Analyzer 70 時間
Image Generator 2 分

は少数であり，X Window System からのコード

の流用が多く（7カ所）行われていたため，この

ような高い数値になっていた．

5. 考 察

5.1 分散環境下での分析について

表 4 に示すように，80 台のコンピュータ上で D-

CCFinderを実行した結果，約 51時間でコードクロー

ン検出を完了することができた．理論上は，80台のコ

ンピュータを用いることにより 12時間で検出が完了

するはずであるが，実際にはネットワークトラフィッ

クやマスタ・スレーブ間の同期，CCFinderの出力の後

処理などのため 51時間を要した．この検出速度は単

一のコンピュータ上で行った場合の約 20倍である．現

在，各コンピュータは 100BASEのスイッチで接続さ

れているので，ギガビットスイッチなど，高速なネッ

トワーク環境を導入することにより，検出速度の向上

が見込まれる．

現在の実装では，Clone Coverage Analyzer と Im-

age Generatorは著者らの研究室内のワークステーショ

ン☆上で実行される．単一のワークステーションで実

行されるため，これらの処理を完了するためには長い

時間を必要としている．しかし，コードクローンの検

出処理と同様に，これらの計算をスレーブノードに分

割して割り当てることにより，処理速度の向上を図る

ことができる．

D-CCFinder をクラスタ計算機やグリッド計算機7)

で実現することも可能であろう．クラスタ計算機で実

現する場合は，ネットワークの遅延などが減少し，全

体の効率の向上が期待される．グリッド計算機では，

大量の入出力データの効率的な分配・回収方法を実現

する必要があろう．

5.2 CCFinderについて

CCFinder は，広く使われている実用的なツールで

ある．本論文では，単純な分散処理モデルを用いるこ

☆ CPU: Xeon 2.8GHz，Memory: 4GB



Vol. 48 No. 11 大規模ソースコードを対象としたコードクローンの検出と可視化 3517

とによって，単一コンピュータ用のアプリケーション

である CCFinderを用いて，大規模ソフトウェアから

短時間でコードクローンを検出することに成功した．

しかし，単一コンピュータ用のアプリケーションを用

いることに起因する問題点も存在した．

D-CCFinder実行前は，コードクローン検出対象ソー

スファイルは，ある 1つのマシン☆上にのみ存在する

（このマシンを以降，データノードと呼ぶ）．各スレー

ブノード上で CCFinderが実行されるため，各ピース

からコードクローンを検出する前に，必要なファイ

ルをスレーブノードに転送する必要がある．スレーブ

ノードが 79台あり，これらすべてが必要なファイルを

データノードから取得するため，データノードのネッ

トワークトラフィックが非常に大きく，D-CCFinderの

ボトルネックになっている．特に，各スレーブノード

がローカルストレージにキャッシュを持っていない検

出処理の開始直後は，データノードのネットワークト

ラフィックは最大になる．

現在の実装では，タスクの割当ては単純にアイドル

状態のノードに対して行っている．しかし，どのスレー

ブノードがどのファイルをキャッシュとして持つかを

管理することにより，ソースファイルの総転送量が減

少し，より短時間で検出処理を完了できるであろう．

5.3 散布図について

散布図による可視化により，大量のソフトウェア間

に含まれるコードクローンを容易に特定することがで

きた．仮にそれらのソフトウェアの開発者がこのコー

ドクローンの存在をもっと早く把握していた場合は，

ライブラリなどのより再利用しやすい形でまとめられ

ていたかもしれない．

今回の対象には，同一プロジェクトの複数のバージョ

ンが存在していたため，それらの間で大量のコードク

ローンが検出されており，他のコードクローン情報を

隠している（目立たないようにしている）と思われる

部分があった．複数バージョンが存在しているプロジェ

クトについては，最新バージョンのみを使うなどの工

夫をすることによって，より興味深い結果が得られる

かもしれない．

また，散布図自体をより正確に生成する必要がある．

現在の生成方法では，速度とサイズを重視しているた

め，精度が悪い（1ピクセルが 200× 200ファイルを

表している）．このため，対象全体の状態を大まかに把

握することができるが，小さなプロジェクト間のコー

☆ このマシンは著者らの研究室内にあるネットワーク接続ストレー
ジ（Network Attached Storage）である．

ドクローンの状態を把握することはできなかった．

6. 関 連 研 究

超大規模ソースコードからのコードクローン検出の

発想は，メガソフトウェアエンジニアリング10)からの

ものである．メガソウトウェアエンジニアリングとは，

既存のソフトウェア分析技術を，広く組織全体やオー

プンソースのソフトウェア群に対して適用することで

ある．既存のソフトウェア技術は本来，個々のソフト

ウェアに対して適用するものであるが，組織規模で適

用することにより，組織自体のソフトウェア開発プロ

セスを改善することができる．たとえば，組織（企業

や企業内の開発部門）で過去に開発されたすべてのソ

フトウェアからコードクローンを検出することにより，

その組織で繰り返し実装されている頻出コードを特定

することができる．そのようなコードを社内ライブラ

リとしてまとめることにより，今後のソフトウェア開

発をより効率的に行うことができると思われる．コン

ピュータハードウェアの値下がりと，パフォーマンス

の向上により，メガソフトウェアエンジニアリングは

現実に可能になってきている．

さまざまなコードクローン検出手法が提案されてい

る．Baxter らは抽象構文木を用いた検出手法を提案

しており1)，Ducasseらは行単位での検出ツールを作

成している6)．またプログラム依存グラフを用いた検

出手法も提案されている15)．

著者らはこれまでにも CCFinderを用いてコードク

ローン検出を行ってきており，このツールに関する知

識を持っているため，本実験でも CCFinderを用いた．

CCFinder はこれまでに提案されている検出手法の中

でもスケーラビリティが高く，本実験の目的にあった

ツールである．また，fingerprint技術16)を用いたコー

ドクローン検出も高いスケーラビリティを実現できる

ため，超大規模からのコードクローン検出に向いてい

ると考えられる．

オープンソースソフトウェアに対してのコードク

ローン検出・分析はすでに行われている5),19)．しかし，

それらは 1つのプロジェクト内のコードクローン検出

にとどまっており，本研究のように大量のソフトウェ

ア群からコードクローン検出を行ってはいない．

7. ま と め

本論文では，超大規模から短時間でコードクローン

を検出する手法を提案した．提案手法を分散システム

D-CCFinderとして実装し，オープンソースオペレー

ティングシステム FreeBSD用のソフトウェア集合で



3518 情報処理学会論文誌 Nov. 2007

ある Portsシステムに含まれるソースファイルに対し

て適用した．約 4 億行の C言語で記述されたソース

コードから 51時間でコードクローン検出を完了する

ことができ，散布図やヒートマップを用いて大まかに

コードクローンの状態を把握することができた．

著者らは，このような大規模ソースコードからの

コードクローン検出が，近年問題になってきている著

作権違反に応用できると考えている17)．たとえば，ソ

フトウェアライセンスの 1つである GPLでライセン

スされた著作物は，その派生著作物に対しても GPL

でライセンスされなければならない．コードクローン

検出および可視化を行うことにより，GPL でライセ

ンスされたソフトウェアと他のライセンスを持つソフ

トウェアが高い類似度であることが判明した場合は，

著作権違反の疑いを指摘することができる．このよう

に，あるソフトウェアと過去に開発されたソフトウェ

アや外部で開発されたソフトウェア間のコードクロー

ンを調査することによって，そのソフトウェアに著作

権違反のコードが存在しているかどうかを調査するこ

とができる．

本論文は，ソフトウェア分析を分散環境で行うこと

の有用性を示している．D-CCFinderは超大規模ソー

スコードからコードクローン検出を行うための，単純

で実用的なシステムであり，既存のネットワーク環境

を用いて実装されている．

現在のD-CCFinderはプロトタイプシステムであり，

5 章で述べたように多くの課題を残している．また，

今後は，CCFinderではなく，fingerprint技術を用い

てコードクローン検出を行うことも検討しており，よ

りパフォーマンスの向上が見込まれる．

謝辞 大学の演習室を利用するにあたり協力してい

ただいた大阪大学大学院基礎工学研究科の田島滋人

氏，ならびに情報科学研究科の小泉文弘氏に感謝する．

本研究は一部，文部科学省リーディングプロジェクト

「e-Society基盤ソフトウェアの総合開発」の委託に基

づいて行われた．また，日本学術振興会科学研究費補

助金基盤研究（A）（課題番号：17200001）および萌

芽研究（No.18650006）の助成を得た．

参 考 文 献

1) Baxter, I.D., Yahin, A., Moura, L., Anna, M.

and Bier, L.: Clone Detection Using Abstract

Syntax Trees, Proc. International Conference

on Software Maintenance ’98, Bethesda, Mary-

land, pp. 368–377 (1998).

2) Bellon, S. and Koschke, R.: A Comparison of

Automatic Techniques for the Detection of Du-

plicated Code, Technical report, Institute for

Software Technology, University of Stuttgart

(2003).

3) Brown, A.W. and Booch, G.: Reusing Open-

Source Software and Practices: The Impact of

Open-Source on Commercial Vendors, Proc.7th

International Conference on Software Reuse,

Lecture Notes in Computer Science, Vol.2319,

Austin, Texas, pp.123–136, Springer (2002).

4) Burd, E. and Bailey, J.: Evaluating Clone

Detection Tools for Use during Preventative

Maintenance, Proc. 2nd IEEE International

Workshop on Source Code Analysis and Ma-

nipulation, pp.36–43 (2002).

5) Casazza, G., Antoniol, G., Villano, U., Merlo,

E. and Penta, M.D.: Identifying clones in the

Linux kernel, Proc. 1st IEEE International

Workshop on Source Code Analysis and Manip-

ulation, Florence, Italy, pp.92–100, IEEE Com-

puter Society Press (2001).

6) Ducasse, S., Rieger, M. and Demeyer, S.: A

Language Independent Approach for Detect-

ing Duplicated Code, Proc. International Con-

ference on Software Maintenance ’99, Oxford,

England, pp.109–118 (1999).

7) Foster, I.: What is the Grid? A Three Point

Checklist (2002). http://www-fp.mcs.anl.gov

/˜foster/Articles/WhatIsTheGrid.pdf

8) FreeBSD Project. http://www.freebsd.org/

9) GNU Project. http://www.gnu.org/

10) Inoue, K., Garg, P., Iida, H., Matsumoto,

K. and Torii, K.: Mega Software Engineering,

Proc. 6th International PROFES (Product Fo-

cused Software Process Improvement) Confer-

ence, Oulu, Finland, pp.399–413 (2005).

11) Jakarta Project. http://jakarta.apache.org/

12) Kamiya, T., Kusumoto, S. and Inoue, K.:

CCFinder: A multi-linguistic token-based code

clone detection system for large scale source

code, IEEE Trans. Softw. Eng., Vol.28, No.7,

pp.654–670 (2002).

13) Kapser, C. and Godfrey, M.: Improved Tool

Support for the Investigation of Duplication in

Software, Proc. 21st International Conference

on Software Maintenance, Budapest, Hungary,

pp.25–30 (2005).

14) Kim, M., Sazawal, V., Notkin, D. and

Murphy, G.C.: An empirical study of code clone

genealogies, Proc. 10th European software engi-

neering conference, Lisbon, Portugal, pp.187–

196 (2005).

15) Krinke, J.: Identifying Similar Code with Pro-

gram Dependence Graphs, Proc. 8th Working

Conference on Reverse Engineering, Suttgart,



Vol. 48 No. 11 大規模ソースコードを対象としたコードクローンの検出と可視化 3519

Germany, pp.301–309 (2001).

16) Li, Z., Lu, S., Myagmar, S. and Zhou, Y.: CP-

Miner: Finding Copy-Paste and Related Bugs

in Large-Scale Software Code, IEEE Trans.

Softw. Eng., Vol.32, No.3, pp.176–192 (2006).

17) Livieri, S., Higo, Y., Matsushita, M. and

Inoue, K.: Very-Large Scale Code Clone Analy-

sis and Visualization of Open Source Programs

Using Distributed CCFinder: D-CCFinder,

Proc. 29th International Conference on Soft-

ware Engineering, Minneapolis, Minnesota,

pp.106–115 (2007).

18) Rajapakse, D.C. and Jarzabek, S.: An In-

vestigation of Cloning in Web Applications,

Proc. 5th International Conference on Web

Engineering, Lecture Notes in Computer Sci-

ence, Sydney, Australia, pp.252–262, Springer

(2005).

19) Uchida, S., Monden, A., Ohsugi, N., Kamiya,

T., Matsumoto, K. and Kudo, H.: Software

Analysis by Code Clones in Open Source Soft-

ware, The Journal of Computer Information

Systems, Vol.XLV, No.3, pp.1–11 (2005).

20) Yamamoto, T., Matsushita, M., Kamiya, T.

and Inoue, K.: Measuring Similarity of Large

Software Systems Based on Source Code Cor-

respondence, Proc. 6th International PROFES

(Product Focused Software Process Improve-

ment) Conference, Oulu, Finland, pp.530–544

(2005).

(平成 18年 12月 20日受付)

(平成 19年 8 月 9 日採録)

肥後 芳樹（正会員）

平成 14 年大阪大学基礎工学部情

報科学科中退．平成 18年同大学大学

院博士後期課程修了．同年日本学術

振興会特別研究員（PD）．平成 19年

大阪大学大学院情報科学研究科コン

ピュータサイエンス専攻助教．博士（情報科学）．ソー

スコード分析，特にコードクローン分析やリファクタ

リング支援に関する研究に従事．電子情報通信学会，

IEEE各会員．

リビエリ　シモネ

平成 15 年伊パドヴァ大学工学部

コンピュータ工学科卒業．現在，大

阪大学大学院情報科学研究科博士後

期課程に在学．アスペクト指向プロ

グラミングやコードクローン分析の

研究に従事．IEEE会員．

松下 誠（正会員）

平成 5年大阪大学基礎工学部情報

工学科卒業．平成 10 年同大学大学

院博士後期課程修了．同年同大学基

礎工学部情報工学科助手．平成 14

年大阪大学大学院情報科学研究科コ

ンピュータサイエンス専攻助手．平成 17年同専攻助

教授．平成 19年同専攻准教授．博士（工学）．ソフト

ウェア開発環境，リポジトリマイニングの研究に従事．

日本ソフトウェア科学会，ACM各会員．

井上 克郎（正会員）

昭和 54 年大阪大学基礎工学部情

報工学科卒業．昭和 59 年同大学大

学院博士課程修了．同年同大学基礎

工学部情報工学科助手．昭和 59～61

年ハワイ大学マノア校情報工学科助

教授．平成元年大阪大学基礎工学部情報工学科講師．

平成 3 年同学科助教授．平成 7 年同学科教授．平成

14 年大阪大学大学院情報科学研究科コンピュータサ

イエンス専攻教授．工学博士．ソフトウェア工学の研

究に従事．日本ソフトウェア科学会，電子情報通信学

会，IEEE，ACM各会員．


