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An Empirical Study on Method Call Differences among Code Clones

Ryosuke Kudo1,a) Hironori Date1,b) Takashi Ishio1,c) Katsuro Inoue1,d)

Abstract: A code clone is a code fragment that has identical or similar portion in source code. While
various code clone detection tools and their applications have been reported, source code characteristics of
code clones in detail are not investigated. In this research, we have analyzed method calls involved in code
clones which are detected by CCFinder. As a result, code clones often involve the same “important method
calls” that likely implement a similar functionality in different source code locations.
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Fig. 2 An example of code clone
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Table 2 Identifiers involved in the code clones of Fig.2
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Table 1 Analyzed software and their code clones

Software Version #File LOC #Method #Clone Set #Analyzed Clone Set

Derby*1 10.9.1.0 1,445 549,911 21,653 2,302 1,384

h2*2 1.3.168 500 135,114 7,184 1,315 569

jTunes*3 (2009.12.12) 519 134,243 7,296 1,324 675

Tomcat*4 7.0.27 1,242 348,856 16,916 3,518 1,962

XXL*5 1.0 633 178,230 7,914 832 509

zk*6 6.5.0 406 77,772 4,851 338 229

same-action CamelCase

• void-return same-action

get set

StringBuilder

StringBuffer append

•
• null null

•
log, trace, error,

debug, exception, close

ending void-return same-action

data-facilitating controlling

data-facilitating

ending void-

return same-action

void-return same-action

get set

controlling ending void-return same-action data-

facilitating

get/set

ending void-return same-

action data-facilitating controlling 5

3.4

•

(A)

(B)

•

*1 Apache Derby, http://db.apache.org/derby/
*2 h2, http://www.h2database.com/html/main.html
*3 jTunes, http://sourceforge.jp/projects/sfnet_

jtunes-online/
*4 Apache Tomcat, http://tomcat.apache.org/
*5 XXL, http://dbs.mathematik.uni-marburg.de/home/

research/projects/xxl/
*6 zk, http://www.zkoss.org/
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Table 3 Clone sets whose “important method calls” are not

modified

Software

Derby 1,308 94.5% 833 60.2%

h2 570 79.3% 292 51.2%

jTunes 599 88.7% 501 74.2%

Tomcat 1,661 84.7% 1,183 60.3%

XXL 423 82.9% 324 63.5%

zk 196 85.6% 114 49.8%

4,639 87.0% 3,247 60.9%

5 (A) (B) (C) (D) Wilcoxon

Table 5 Wilcoxon’s rank sum test for (A) and (B), (C) and

(D)

(A) (B) (C) (D)

Software p p

Derby < 0.0001 0.0013

h2 < 0.0001 0.0538

jTunes 0.0057 0.0730

Tomcat < 0.0001 < 0.0001

XXL 0.0032 0.4451

zk < 0.0001 0.4197

(A)
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4 (A) (B)

Table 4 Frequency distribution table of (A) and (B)

Derby h2 jTunes Tomcat XXL zk

(A) (B) (A) (B) (A) (B) (A) (B) (A) (B) (A) (B)

[0.0 − 0.1] 1,308 886 454 368 601 567 1,662 1,430 423 390 196 136

(0.1 − 0.2] 6 40 11 71 11 21 24 90 12 16 1 14

(0.2 − 0.3] 4 23 4 24 20 16 19 76 15 13 2 4

(0.3 − 0.4] 10 59 22 42 6 28 49 99 19 19 6 18

(0.4 − 0.5] 23 47 27 19 7 9 70 85 18 24 10 9

(0.5 − 0.6] 0 6 3 3 0 0 9 22 2 1 3 1

(0.6 − 0.7] 4 13 13 10 3 2 20 15 5 5 2 2

(0.7 − 0.8] 2 3 3 1 1 2 7 12 0 2 0 2

(0.8 − 0.9] 0 0 0 1 0 0 0 8 0 0 0 0

(0.9 − 1.0] 27 307 32 30 26 30 102 125 15 39 9 43

� �
if (v != null)

config.setSessionMaxRequests(v.intValue());

v = parseInteger(el, "max-pushes-per-session", ANY_VALUE);

if (v != null)

config.setSessionMaxPushes(v.intValue());

String s=el.getElementValue("timer-keep-alive", true);

if (s != null)

config.setTimerKeepAlive("true".equals(s));

� �
1� �

if (v != null)

config.setProcessingPromptDelay(v.intValue());

v = parseInteger(conf, "tooltip-delay", POSITIVE_ONLY);

if (v != null)

config.setTooltipDelay(v.intValue());

String s=conf.getElementValue("keep-across-visits", true);

if (s != null)

config.setKeepDesktopAcrossVisits(!"false".equals(s));

� �
2

3

Fig. 3 A code clone including repeated control statements
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Table 6 Category of method

Software

Derby 4,930 5,126 1,312 16,064

h2 4,142 6,663 1,995 7,568

jTunes 2,162 4,131 647 3,781

Tomcat 4,202 7,435 1,645 9,158

XXL 1,938 2,963 691 4,303

zk 1,411 1,845 538 2,875
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Table 7 Words in method names which appear in “important” calls and “not impor-

tant” calls

Derby h2 jTunes Tomcat XXL zk Derby h2 jTunes Tomcat XXL zk

1 get get add get get get get get get get get get

2 update add decode add write add set set set set set set

3 is is get is read is close close create is close is

4 read read create remove update parse is is is close is to

5 init write paint create open remove new add name create to add

6 add check remove write remove on setup create contains find has new

7 write remove is jj has render has debug close log print resolve

8 check parse draw parse is new to read add to read append

9 set init install run add set make log to read index do

10 bind create init do next has find to read add size parse

CCFinder

(A) :23680001
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