
Title コードクローンに含まれるメソッド呼び出しの変更度
合の調査

Author(s) 工藤, 良介; 伊達, 浩典; 石尾, 隆 他

Citation 情報処理学会研究報告. ソフトウェア工学研究会報
告. 2013, 2013-SE-179(15), p. 1-8

Version Type VoR

URL https://hdl.handle.net/11094/50218

rights © 2013 Information Processing Society of Japan

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



IPSJ SIG Technical Report

1,a) 1,b) 1,c) 1,d)

1 CCFinder

, CCFinder, Java,

An Empirical Study on Method Call Differences among Code Clones

Ryosuke Kudo1,a) Hironori Date1,b) Takashi Ishio1,c) Katsuro Inoue1,d)

Abstract: A code clone is a code fragment that has identical or similar portion in source code. While
various code clone detection tools and their applications have been reported, source code characteristics of
code clones in detail are not investigated. In this research, we have analyzed method calls involved in code
clones which are detected by CCFinder. As a result, code clones often involve the same “important method
calls” that likely implement a similar functionality in different source code locations.

Keywords: Code clones, CCFinder, Java, Method calls

1.

1

Graduate School of Information Science and Technology, Os-
aka University

a) r-kudou@ist.osaka-u.ac.jp
b) h-date@ist.osaka-u.ac.jp
c) ishio@ist.osaka-u.ac.jp
d) inoue@ist.osaka-u.ac.jp

CCFinder[1]

CCFinder

[2]

c© 2013 Information Processing Society of Japan 1

Vol.2013-SE-179 No.15
2013/3/11



IPSJ SIG Technical Report

[3]

Java

6

CCFinder

2 3

4

5

2.

2.1

[4]

[3]

[5]

CCFinder[1]

Bellon

2 [6] DECKARD[7]

2

CCFinder

• CCFinder

•
CCFinderX*1

*1 AIST CCFinderX, http://www.ccfinder.net/

ccfinderx-j.html

2.2

Sridhara [8]

Sridhara 3

•

• void

•
compile compileRegex

Sridhara

1 4

addElement(input)

6 append(result) returnPressed

result 5

evaluate(input) result

3.

CCFinder

2

RQ1

RQ2

c© 2013 Information Processing Society of Japan 2

Vol.2013-SE-179 No.15
2013/3/11



IPSJ SIG Technical Report

1 ending void-return data-facilitating [8]

Fig. 1 An example of ending, void-return and data-facilitating

method calls [8]

3.1

Java

6

CCFinder 7.2.4.0

CCFinder

30

CCFinder

RNR[9]

0.5

RNR

RNR

if

6

RNR

1

3.2

CCFinder

2 1 2

2

2

� �
x = getX();

z = 3;

n = getN(x, z);

return n;

� �
1

� �
y = getY();

z = 3;

n = getN(y, z);

return n;

� �
2

2

Fig. 2 An example of code clone

3.3

Sridhara

[8] Java

Java

Sridhara

PDG [10]

Java

2

ending void-return same-action 3

ending re-

turn

RETURN

RETURN Java

void-return

void

2 2

Table 2 Identifiers involved in the code clones of Fig.2

1 2

x y

getX getY

z z

3 3

n n

getN getN

x y

z z

n n

c© 2013 Information Processing Society of Japan 3

Vol.2013-SE-179 No.15
2013/3/11



IPSJ SIG Technical Report

1

Table 1 Analyzed software and their code clones

Software Version #File LOC #Method #Clone Set #Analyzed Clone Set

Derby*1 10.9.1.0 1,445 549,911 21,653 2,302 1,384

h2*2 1.3.168 500 135,114 7,184 1,315 569

jTunes*3 (2009.12.12) 519 134,243 7,296 1,324 675

Tomcat*4 7.0.27 1,242 348,856 16,916 3,518 1,962

XXL*5 1.0 633 178,230 7,914 832 509

zk*6 6.5.0 406 77,772 4,851 338 229

same-action CamelCase

• void-return same-action

get set

StringBuilder

StringBuffer append

•
• null null

•
log, trace, error,

debug, exception, close

ending void-return same-action

data-facilitating controlling

data-facilitating

ending void-

return same-action

void-return same-action

get set

controlling ending void-return same-action data-

facilitating

get/set

ending void-return same-

action data-facilitating controlling 5

3.4

•

(A)

(B)

•

*1 Apache Derby, http://db.apache.org/derby/
*2 h2, http://www.h2database.com/html/main.html
*3 jTunes, http://sourceforge.jp/projects/sfnet_

jtunes-online/
*4 Apache Tomcat, http://tomcat.apache.org/
*5 XXL, http://dbs.mathematik.uni-marburg.de/home/

research/projects/xxl/
*6 zk, http://www.zkoss.org/

c© 2013 Information Processing Society of Japan 4

Vol.2013-SE-179 No.15
2013/3/11



IPSJ SIG Technical Report

(C)

•

1

(D)

1

ending

(A) (B) (C)

(D) 4

4.

4.1

RQ1

3

87.0%

60.9%

3

Table 3 Clone sets whose “important method calls” are not

modified

Software

Derby 1,308 94.5% 833 60.2%

h2 570 79.3% 292 51.2%

jTunes 599 88.7% 501 74.2%

Tomcat 1,661 84.7% 1,183 60.3%

XXL 423 82.9% 324 63.5%

zk 196 85.6% 114 49.8%

4,639 87.0% 3,247 60.9%

5 (A) (B) (C) (D) Wilcoxon

Table 5 Wilcoxon’s rank sum test for (A) and (B), (C) and

(D)

(A) (B) (C) (D)

Software p p

Derby < 0.0001 0.0013

h2 < 0.0001 0.0538

jTunes 0.0057 0.0730

Tomcat < 0.0001 < 0.0001

XXL 0.0032 0.4451

zk < 0.0001 0.4197

(A)

(B) Wilcoxon

(A) (B)

4 5

1%

2

RQ1

5 30

30 22

Tomcat

AjpNioProcessor process AjpA-

prProcessor process

RNR

3 1 2

zk ConfigParser

2

void-return

30 18 12 7

c© 2013 Information Processing Society of Japan 5

Vol.2013-SE-179 No.15
2013/3/11



IPSJ SIG Technical Report

4 (A) (B)

Table 4 Frequency distribution table of (A) and (B)

Derby h2 jTunes Tomcat XXL zk

(A) (B) (A) (B) (A) (B) (A) (B) (A) (B) (A) (B)

[0.0 − 0.1] 1,308 886 454 368 601 567 1,662 1,430 423 390 196 136

(0.1 − 0.2] 6 40 11 71 11 21 24 90 12 16 1 14

(0.2 − 0.3] 4 23 4 24 20 16 19 76 15 13 2 4

(0.3 − 0.4] 10 59 22 42 6 28 49 99 19 19 6 18

(0.4 − 0.5] 23 47 27 19 7 9 70 85 18 24 10 9

(0.5 − 0.6] 0 6 3 3 0 0 9 22 2 1 3 1

(0.6 − 0.7] 4 13 13 10 3 2 20 15 5 5 2 2

(0.7 − 0.8] 2 3 3 1 1 2 7 12 0 2 0 2

(0.8 − 0.9] 0 0 0 1 0 0 0 8 0 0 0 0

(0.9 − 1.0] 27 307 32 30 26 30 102 125 15 39 9 43

� �
if (v != null)

config.setSessionMaxRequests(v.intValue());

v = parseInteger(el, "max-pushes-per-session", ANY_VALUE);

if (v != null)

config.setSessionMaxPushes(v.intValue());

String s=el.getElementValue("timer-keep-alive", true);

if (s != null)

config.setTimerKeepAlive("true".equals(s));

� �
1� �

if (v != null)

config.setProcessingPromptDelay(v.intValue());

v = parseInteger(conf, "tooltip-delay", POSITIVE_ONLY);

if (v != null)

config.setTooltipDelay(v.intValue());

String s=conf.getElementValue("keep-across-visits", true);

if (s != null)

config.setKeepDesktopAcrossVisits(!"false".equals(s));

� �
2

3

Fig. 3 A code clone including repeated control statements

4.2

RQ2

(C)

(D)

Wilcoxon 5

6 4

1% (C) (D)

4.3

Sridhara

Sridhara

[8]

4.3.1

4

6

6

6

Table 6 Category of method

Software

Derby 4,930 5,126 1,312 16,064

h2 4,142 6,663 1,995 7,568

jTunes 2,162 4,131 647 3,781

Tomcat 4,202 7,435 1,645 9,158

XXL 1,938 2,963 691 4,303

zk 1,411 1,845 538 2,875

c© 2013 Information Processing Society of Japan 6

Vol.2013-SE-179 No.15
2013/3/11



IPSJ SIG Technical Report

4.3.2

CamelCase

10

7

7 get is

Tomcat 10

zk 9 do

write remove

close to

write remove

void-return

to toString

close 3

ending

4.4

• Java

•

Java 2

• CCFinder

• RNR

RNR

• 6

• 4.1

• [8]

[8]

5.

CCFinder

87%

c© 2013 Information Processing Society of Japan 7

Vol.2013-SE-179 No.15
2013/3/11



IPSJ SIG Technical Report

7

Table 7 Words in method names which appear in “important” calls and “not impor-

tant” calls

Derby h2 jTunes Tomcat XXL zk Derby h2 jTunes Tomcat XXL zk

1 get get add get get get get get get get get get

2 update add decode add write add set set set set set set

3 is is get is read is close close create is close is

4 read read create remove update parse is is is close is to

5 init write paint create open remove new add name create to add

6 add check remove write remove on setup create contains find has new

7 write remove is jj has render has debug close log print resolve

8 check parse draw parse is new to read add to read append

9 set init install run add set make log to read index do

10 bind create init do next has find to read add size parse

CCFinder

(A) :23680001

[1] Kamiya, T., Kusumoto, S. and Inoue, K.: CCFinder: A
Multi-Linguistic Token-based Code Clone Detection Sys-
tem for Large Scale Source Code, IEEE Transactions
on Software Engineering, Vol. 28, No. 7, pp. 654–670
(2002).

[2] Tarr, P., Ossher, H., Harrison, W. and Sutton, Jr., S. M.:
N degrees of separation: multi-dimensional separation of
concerns, Proceedings of the 21st ACM/IEEE Interna-
tional Conference on Software Engineering, pp. 107–119
(1999).

[3] Kim, M., Bergman, L., Lau, T. and Notkin, D.: An
Ethnographic Study of Copy and Paste Programming
Practices in OOPL, Proceedings of the 3rd International
Symposium on Empirical Software Engineering, pp. 83–
92 (2004).

[4] Juergens, E., Deissenboeck, F. and Hummel, B.: Code
Similarities Beyond Copy and Paste, Proceedings of the
14th IEEE European Conference on Software Mainte-
nance and Reengineering, pp. 78–87 (2010).

[5] Roy, C. K. and Cordy, J. R.: Scenario-Based Compar-
ison of Clone Detection Techniques, Proceedings of the
16th IEEE International Conference on Program Com-
prehension, pp. 153–162 (2008).

[6] Bellon, S., Koschke, R., Antoniol, G., Krinke, J. and

Merlo, E.: Comparison and Evaluation of Clone Detec-
tion Tools, IEEE Transactions on Software Engineer-
ing, Vol. 33, No. 9, pp. 577–591 (2007).

[7] Jiang, L., Misherghi, G., Su, Z. and Glondu, S.:
DECKARD: Scalable and Accurate Tree-Based Detec-
tion of Code Clones, Proceedings of the 29th Interna-
tional Conference on Software Engineering, pp. 96–105
(2007).

[8] Sridhara, G., Hill, E., Muppaneni, D. and Pollick, L.:
Towards Automatically Generating Summary Comments
for Java Methods, Proceedings of the 25th IEEE/ACM
International Conference on Automated Software En-
gineering, pp. 43–52 (2010).

[9] Higo, Y., Kamiya, T., Kusumoto, S., and Inoue, K.:
Method and Implementation for Investigating Code
Clones in a Software System, Information and Software
Technology, Vol. 49, No. 9-10, pp. 985–998 (2007).

[10] Horwitz, S., Reps, T. and Binkley, D.: Interprocedural
Slicing Using Dependence Graphs, ACM Transactions
on Programming Languages and Systems, Vol. 12, No. 1,
pp. 26–60 (1990).

c© 2013 Information Processing Society of Japan 8

Vol.2013-SE-179 No.15
2013/3/11


