
Title アクセス修飾子過剰性の変遷に着目したJavaプログラ
ム部品の分析

Author(s) 石居, 達也; 小堀, 一雄; 松下, 誠 他

Citation 情報処理学会研究報告. ソフトウェア工学研究会報
告. 2013, 2013-SE-180(1), p. 1-8

Version Type VoR

URL https://hdl.handle.net/11094/50219

rights © 2013 Information Processing Society of Japan

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

情報処理学会研究報告

IPSJ SIG Technical Report

アクセス修飾子過剰性の変遷に着目した

Javaプログラム部品の分析

石居 達也1,a) 小堀 一雄2,b) 松下 誠1,c) 井上 克郎1,d)

概要：Javaでは，フィールドおよびメソッドに対してアクセス修飾子を宣言することで，外部からアクセ

ス可能な範囲を制限することができる．しかし，既存ソフトウェアには実際の利用範囲に対して過剰に広

く設定されているアクセス修飾子が多数存在することが知られている．一方で，それらのアクセス修飾子

の修正状況については，過去に分析が行われていない．そこで本研究では，ソフトウェア開発の履歴を対

象として，過剰なアクセス修飾子に対する修正作業の実行頻度について分析した．分析対象とするデータ

は，既存のアクセス修飾子過剰性検出ツールを拡張して既存の 7つの Javaプロジェクトから取得した．分

析を行うに当たり，宣言されているアクセス修飾子と実際の利用範囲に基づき，フィールドおよびメソッ

ドを 3状態へ分類した．さらに，バージョン間における状態遷移を，性質ごとに 6つのグループへと分類

した．その結果，過剰なアクセス修飾子の大半は，修正されずそのまま放置されていることを確認した．

一方，一部の種類の過剰なアクセス修飾子については，分析対象の全プロジェクトにおいて修正が行われ

ていることを確認した．

キーワード：アクセス修飾子，Javaプログラム，開発履歴

An Analysis about Accessibility Excessiveness
of Revision Histories in Java Programs

Abstract: Developers can declare access modifiers for fields and methods in Java, and this lets them limit
access scopes for fields and methods. However, existing software has a lot of fields and methods that have
access modifiers whose access scopes are larger than actual ones. On the other hand, it is not clear how often
these access modifiers are modified. In this study, we analyzes how often developers modify excessive access
modifiers in software update. We get data of analysis subject from existing seven Java projects by using
a existing tool that detects fields and methods with excessive access modifiers, by extension. Moreover, we
labeled fields and methods as three states by the combination of declared and actual access scope. Then,
we also labeled state transitions of fields and methods between old and new versions as six states by their
behaviors. As a result, the tendency was confirmed that most of the excessive access modifiers were leaved
and not touched. By contrast, some kind of excessive access modifier was confirmed that they were modified
in all of intended Java projects.

Keywords: Access Modifier, Java Program, Revision History

1 大阪大学 大学院情報科学研究科

Graduate School of Information Science and Technology, Os-
aka University

2 株式会社 NTT データ
NTT DATA Corporation

a) t-isizue@ist.osaka-u.ac.jp
b) koborik@nttdata.co.jp
c) matusita@ist.osaka-u.ac.jp
d) inoue@ist.osaka-u.ac.jp

1. はじめに

ソースコード中の変数およびメソッドが，ソースコード

のすべての場所から参照可能な状態であると，潜在的な不

具合の原因となる可能性がある [1]．Javaでは，この問題を

解決する手段として，フィールドおよびメソッドに対しア

クセス修飾子を宣言することができる．開発者は，適切な

c⃝ 2013 Information Processing Society of Japan 1

情報処理学会研究報告

IPSJ SIG Technical Report

アクセス修飾子を宣言することで，設計時に意図していな

い不適切なアクセスを未然に防止することができる [3][4]．

しかし，多くの開発者が関わるソフトウェア開発において

は，開発者全員がフィールドおよびメソッドの利用状況に

関する情報を共有することが難しい．その結果，実際の利

用範囲よりも広い範囲のアクセス修飾子を暫定的に宣言し

ておいたものが，そのまま残り続ける場合がある．

我々の研究グループでは，過去の研究 [2]においてアク

セス修飾子過剰性検出ツール ModiCheckerを開発してい

る．既存 Javaプロジェクトに対しModiCheckerを実行し

た結果，過剰となっているアクセス修飾子が多数存在して

いることが確認された．一方，プログラムの開発履歴にお

いて，過剰なアクセス修飾子がどのタイミングで修正され

るのか，あるいは修正されずに残り続けるのかということ

については，過去に分析が行われていない．

そこで本研究では，Javaプログラムの開発履歴におけ

る，過剰なアクセス修飾子に対する修正作業の実行頻度に

関する分析を行った．分析対象としたのは既存の 7 つの

Javaプロジェクトであり，これらに対して機能拡張された

ModiCheckerを実行して得られたデータを利用した．分析

を行うに当たり，宣言されているアクセス修飾子と実際の

利用範囲に基づき，フィールドおよびメソッドを 3状態に

分類した．さらに，バージョン間における状態遷移につい

て，遷移の性質ごとに 6つのグループへと分類した．

これらの分類に基づき分析を行った結果，過剰なアクセ

ス修飾子の大半は，修正されずそのまま放置されているこ

とを確認した．一方で，一部の種類の過剰なアクセス修飾

子については，7つの Javaプロジェクト全てにおいて修正

が行われていることを確認した．

以降，2章では本研究に関連する用語を説明する．3章で

は本研究で行った分析の詳細について述べ，4章では分析

結果の提示と結果に対する考察を行う．5章では関連研究

について述べ，6章でまとめと今後の課題について述べる．

2. 背景

2.1 アクセス修飾子

Javaの言語仕様では，フィールドおよびメソッドに対し

て外部からのアクセス範囲を制限する修飾子を宣言するこ

とができる．これをアクセス修飾子と呼ぶ．何もアクセス

修飾子を付けない場合 (default)を含めると，Javaでは 4

種類のアクセス制限を科すことができる (表 1)[5]．

アクセス修飾子を適切に設定することで，開発者はフィー

ルドおよびメソッドに対するクラス外部からの想定外の

干渉を防ぐことができる．これをカプセル化と呼び，オブ

ジェクト指向プログラミングの主要な性質の 1つとされて

いる [6]．しかし，実際のソフトウェア開発においては，各

フィールドおよびメソッドに対する最終的なアクセス範囲

が不透明なままコーディングを開始する場合がある．そう

表 1 アクセス修飾子の種類

アクセス修飾子 アクセスを許容する範囲

public 全ての部品

protected
自身と同じパッケージに所属する部品

および自身のサブクラス

default 自身と同じパッケージに所属する部品

private 自身と同じクラス

いった状況下では，最終的なアクセス範囲よりも広い範囲

からのアクセスを許可するアクセス修飾子が設定されるこ

とがあり，このことが不具合の原因となる可能性がある．

想定しているメソッドの用途に対して過剰なアクセス修

飾子を設定した場合に起こりうる問題の例として，以下に

示すクラス Xを用いて説明する．

public class X {

// フィールド yの初期値は null．

private String y = null;

// フィールド yに値を設定する．

// クラス外から呼ばれることを想定していない．

private void methodA() {

y = "hello";

}

// フィールド yの文字列長を返す．

// クラス外から呼ばれることを想定していない．

public int methodB() {

return y.length();

}

// 値の設定されたフィールド yの文字列長を返す．

// クラス外から呼ばれることを想定している．

public int methodC() {

this.methodA();

return this.methodB();

}

}

クラス Xは，変数 yの文字列長を取得することを目的と

したクラスである．yの文字列長を取得するにはmethodB

を呼び出す必要があるが，yには初期値として nullが代入

されているため，目的を達成するためには

(1) methodAを呼び出し，yに文字列を代入する．

(2) methodBを呼び出し，lengthメソッドにより yの文

字列長を取得する．

という手順を踏む必要がある．この手順を実行するために

methodCが用意されており，開発者はmethodCがクラス

外から呼ばれることを想定してアクセス修飾子を publicと

している．しかし，この例ではmethodBのアクセス修飾子

として誤って privateではなく publicが設定されてしまっ

ている．これにより，methodAを呼び出す前に methodB

を外部から直接呼び出すことができる．こうした呼び出さ

c⃝ 2013 Information Processing Society of Japan 2

情報処理学会研究報告

IPSJ SIG Technical Report

表 2 AE の種類
ab public protected default private No Access

public pub-pub pub-pro pub-def pub-pri pub-na

protected x pro-pro pro-def pro-pri pro-na

default x x def-def def-pri def-na

private x x x pri-pri pri-na

a 列タイトル：宣言されているアクセス修飾子
b 行タイトル：実際にアクセスされている範囲

れ方をした場合，yが nullの状態で lengthメソッドを呼び

出すことになるため，例外NullPointerExceptionが発生す

る．この例のような状況が生じる原因としては，例えば実

際のアクセス範囲が不透明なために暫定的に publicを宣言

しておいたものが，修正されずに残り続けてしまうことが

考えられる．

2.2 Accessibility Excessiveness

本研究では，Javaのソースコード群に宣言されたフィー

ルドおよびメソッドに対し，宣言されているアクセス修飾

子と実際に呼び出されている範囲との差異を表現するため

にAccessibility Excessiveness(以下AE)[2]を用いる．

なお，各 AEの名称については，便宜上 [2]とは異なるも

のを用いる．

AEは表 2のように分類される．例えば，あるフィール

ドに対して宣言されているアクセス修飾子が publicである

のに対し，実際にアクセスされる範囲が private相当であ

る場合，そのフィールドは表 2の内の pub-priの状態にあ

るとみなす．

フィールドおよびメソッドの中には，宣言されてはいる

が実際にはどこからもアクセスされないものが存在する．

本研究では，そういったどこからもアクセスされない状態

(No Access)についても考慮することとする．

本研究においては，pub-pro，pub-def，pub-pri，pro-def，

pro-pri，def-priの 6つの状態について，開発者の想定して

いるアクセス範囲よりも広いアクセス修飾子が宣言されて

いる状態とみなし，これらを AEであると定義する．

なお，表 2において xと表示されている箇所に相当する

記述は，通常はコンパイラによりエラーとして検出される

ために，本研究では考慮しない．

2.3 ModiChecker

プロジェクト中のフィールドおよびメソッドに対する適切

なアクセス範囲の把握を支援するため，我々は過去の研究 [2]

においてアクセス修飾子過剰性検出ツールModiChecker

を開発した．ModiCheckerは，ソースコード群に対して，

アクセス修飾子の宣言とフィールドおよびメソッドの被参

照状況を静的解析することにより，AEとなっている可能

性のあるアクセス修飾子を持つフィールドおよびメソッド

を抽出する．その結果は図 1のように表示される．図 1の

3列目 (Current Modifier)が解析時点で宣言されているア

クセス修飾子を，4列目 (Recommended Modifier)が静的

解析により判明した実際のアクセス範囲に基づく適切なア

クセス修飾子を表す．

ModiCheckerの開発により，ツール利用者は AEとなっ

ている可能性のあるフィールドおよびメソッドの一覧と，

それらの実際のアクセス範囲に基づいた適切なアクセス修

飾子に関する情報を容易に取得することができる．

3. アクセス修飾子の過剰性分析

フィールドおよびメソッドに対して実際のアクセス範囲

に即したアクセス修飾子を宣言することは，開発者の想定

していないアクセスによる不具合を未然に防止することに

つながる．すなわち，アクセス修飾子を適切に宣言するこ

とは，高品質なソフトウェアを構築するための重要な手段

の一つであるといえる．しかし，現在のソフトウェア開発

現場においては，要件の複雑化などに伴い，開発者が全て

のフィールドおよびメソッドに関する適切なアクセス範囲

を把握することは困難であるのが実情である．実際，Ant

や jEditの 1バージョンにおいて，AEであるようなフィー

ルドおよびメソッドが多数存在していることが確認されて

いる [2]．一方で，AEであるアクセス修飾子の修正状況に

ついては，過去に分析が行われていない．

そこで，本研究では既存の Javaプロジェクトを対象とし

て，現在のソフトウェア開発においてアクセス修飾子の修

正作業がどの程度行われているのかについての分析を行っ

た．今回分析を行うに当たって，以下の研究課題 (research

question)を設定した．

RQ1 アクセス修飾子の修正作業はどれほどの頻度で行

われているのか

RQ2 AEの種類ごとに修正頻度の差は存在するのか

RQ1 についてはアクセス修飾子の遷移状況について，

RQ2については AEの種類ごとの修正状況について，それ

ぞれ分析対象とした Javaプロジェクトの全バージョンに

おける全てのフィールドおよびメソッドを対象として追跡

調査を行った．

3.1 分析対象とした Javaプロジェクト

今回の分析では，SourceForge.jp[7]からダウンロード可

能な Javaプロジェクトの中から比較的バージョン数が多

く，開発期間が長いものを 7つを分析対象とした．分析の

対象としたプロジェクトの一覧を表 3に示す．なお，表 3

中の開発期間については，分析対象のバージョンのリリー

ス日を基に記述している．

3.2 フィールドおよびメソッドの状態の分類

分析を円滑に行うため，本研究ではまず，プロジェクト

c⃝ 2013 Information Processing Society of Japan 3

情報処理学会研究報告

IPSJ SIG Technical Report

図 1 ModiChecker の解析結果表示画面

表 3 分析対象としたプロジェクト一覧

プロジェクト名 バージョン番号 バージョン数

フィールド

アクセス修飾子

変遷総数

メソッド

アクセス修飾子

変遷総数 開発期間 (年)

Apache Ant 1.1 ～ 1.8.4 23 80920 185156 2003～2012

Areca Backup 5.0 ～ 7.2.17 66 131170 258748 2007～2012

ArgoUML 0.10.1 ～ 0.34 19 85038 252130 2002～2011

FreeMind 0.0.2 ～ 0.9.0 16 8676 30048 2000～2011

JDT Core 2.0.1 ～ 3.7 16 134374 240726 2002～2012

jEdit 3.0 ～ 4.5.2 21 50626 99008 2000～2012

Apache Struts 1.0.2 ～ 2.3.7 34 104218 274271 2002～2012

表 4 アクセス修飾子の組み合わせによる状態の分類

public protected default private No Access

public pub-pub pub-pro pub-def pub-pri pub-na

protected x pro-pro pro-def pro-pri pro-na

default x x def-def def-pri def-na

private x x x pri-pri pri-na

の各バージョンにおけるフィールドおよびメソッドの状態

について分類を行った．

ここでは，ソースコード上のフィールドおよびメソッド

について，宣言されているアクセス修飾子と実際のアクセ

ス範囲との組み合わせにより以下の 3状態に分類する (表

4)．

適切 実際のアクセス範囲に即したアクセス修飾子が宣言

されている状態 (表 4：白色セル)．

AE 実際のアクセス範囲に比べて過剰なアクセス範囲が

宣言されている状態 (表 4：薄灰色セル)．

No Access フィールドおよびメソッドが宣言されては

いるが，プロジェクト内のどこからもアクセスがなさ

れていない状態 (表 4：濃灰色セル)．

3.3 バージョン間における状態遷移の分類

前節で定義した 3 状態は，プロジェクトがバージョン

アップされる際に，リファクタリングなどの操作によって

別の状態へと遷移したり，同じ状態の中の別のパターンへ

と遷移したりする．フィールドおよびメソッドの生成・削

除や，2バージョン間で状態の変遷が生じなかった場合を

考慮に含めると，アクセス修飾子の 2バージョン間におけ

る状態遷移には，図 2に示す 18種類が存在する．これら

18種類の遷移は，その性質ごとに 6つにグループ分けでき

る．なお，図 2中の「なし」は，対象となるフィールドお

よびメソッドがあるバージョンにおいては存在していない

ことを表す状態である．また，「なし」から「なし」への遷

移については，状態遷移そのものが発生していないものと

し，本研究においては考慮しない．

AE修正 「適切」に向かって伸びる矢印 a,b,cの 3つが

該当する．アクセス修飾子の修正，あるいはアクセス

範囲の調整により，アクセス修飾子が適切なものへと

変化するような遷移を指す．なお，aについてはバー

ジョン間でアクセス修飾子が修正されたもののみを

対象とする．以降で解説する eと iについても同様と

c⃝ 2013 Information Processing Society of Japan 4

情報処理学会研究報告

IPSJ SIG Technical Report

する．

AE発生 「AE」に向かって伸びる矢印 d,e,fの 3つが該

当する．アクセス修飾子，あるいはアクセス範囲の変

化により，アクセス修飾子が AEとなるような遷移を

指す．

アクセス消失 「No Access」に向かって伸びる矢印 g,h,i

の 3つが該当する．アクセス修飾子，あるいはアクセ

ス範囲の変化により，フィールドおよびメソッドへの

アクセスが消失するような遷移を指す．

フィールド/メソッド作成 「なし」から伸びる矢印 j,k,l

の 3 つが該当する．旧バージョンに存在しなかった

フィールドおよびメソッドが，新バージョンにおいて

新たに作成されるような遷移を指す．

フィールド/メソッド削除 「なし」に向かって伸びる矢

印m,n,oの 3つが該当する．旧バージョンに存在した

フィールドおよびメソッドが，新バージョンにおいて

削除されるような遷移を指す．

変化なし 「適切」，「AE」，「No Access」から自身へとルー

プする矢印 p,q,rの 3つが該当する．2バージョン間

でアクセス修飾子およびアクセス範囲の双方共に変化

がないような遷移を指す．

図 2 プロジェクト 2 バージョン間におけるアクセス修飾子の状態

遷移図

3.4 分析手順

今回の分析は以下の手順で実施した．

(1) 分析対象のプロジェクトの各バージョンに対し

ModiCheckerを実行し，各バージョンごとの全フィー

ルドおよびメソッドのアクセス修飾子宣言状況に関す

るデータの記載された csvファイルを生成する

(2) 全バージョン中の重複しないフィールドおよびメソッ

ドの一覧を取得する．重複の判定には，フィールドの

場合はフィールド名とパッケージ名，メソッドの場合

はメソッド名，パッケージ名およびシグネチャの組を

用いる

(3) 2.で取得したフィールドおよびメソッドの各バージョ

ンにおけるアクセス修飾子宣言情報を perlスクリプト

により一つの csvファイルに統合する

(4) 3.で取得したデータを基に各種分析を行う

なお，初期状態の ModiCheckerは AEであるフィール

ドおよびメソッドのみを出力とするが，本研究においては

アクセス修飾子が適切であるフィールドおよびメソッドを

考察対象に含めるため，事前準備として ModiCheckerが

適切なフィールドおよびメソッドも同時に出力するように

改変を行った．

3.5 分析環境

本研究における分析環境に関する情報は以下の通り．

• OS : Microsoft Windows 7 Enterprise Service Pack 1

(64bit)

• CPU : Intel(R) Xeon(R) CPU E5507 @ 2.27GHz

2.26GHz (2プロセッサ)

• RAM : 24.0GB

• Eclipse classic 3.7.2

• JDK 1.7.0 07

• perl v5.14.2

また，分析にかかる時間はソフトウェアの規模に比例し，

一つのソフトウェアバージョンにつき最小で約 60秒，最

大で約 360秒程度である．

4. 分析結果と考察

各プロジェクトにおいて，RQ1では，3.3節で定義を行っ

たアクセス修飾子の各種変遷がそれぞれどの程度発生した

のかについて集計を行った．表 5，表 6は，各種変遷が変

遷全体に占める割合について，フィールドおよびメソッド

それぞれの値を示している．RQ2では，各 AEがそれぞれ

どの程度修正されているのかについて集計を行った．表 7，

表 8は，適切なアクセス修飾子への修正作業がフィールド

およびメソッドそれぞれについてどの程度行われたかの割

合を示している．また，表中の「N/A」は全バージョン間

において対象 AEが一度も出現しなかったことを表す．

4.1 RQ1：アクセス修飾子変遷分析 (フィールド)

RQ1：グループごとに見られる傾向

表 5を基に，フィールドのアクセス修飾子変遷について，

6つのグループそれぞれに見られる傾向の分析を行う．

AE修正 全体に対する割合としては，全プロジェクトに

おいて 1%に満たない．グループ内でみると，bの「AE

→適切」について，Arecaを除く 6プロジェクトにお

いて a,cに比べて約 2.6～28倍の頻度で修正が行われ

ていることがわかる．

AE発生，アクセス消失 全体に対する割合としては，2

グループ共に全プロジェクトにおいて 1%に満たない．

グループ内でみると，f,iの No Accessからの遷移は，

c⃝ 2013 Information Processing Society of Japan 5

情報処理学会研究報告

IPSJ SIG Technical Report

表 5 フィールドのバージョン間変遷割合 (%)

Ant Areca ArgoUML FreeMind JDT Core jEdit Struts

a 適切→適切 0.02 0.01 0.03 0.12 0.02 0.02 0.01

b AE →適切 0.16 0.01 0.42 0.31 0.30 0.15 0.28

c No Access →適切 0.02 0.01 0.05 0.07 0.07 0.05 0.01

d 適切→ AE 0.04 0.04 0.04 0.38 0.22 0.09 0.14

e AE → AE 0.07 0.01 0.04 0.17 0.12 0.02 0.07

f No Access → AE 0.00 0.01 0.02 0.01 0.01 0.02 0.01

g 適切→ No Access 0.03 0.02 0.19 0.21 0.06 0.07 0.05

h AE → No Access 0.03 0.01 0.07 0.02 0.05 0.03 0.03

i No Access → No Access 0.00 0.01 0.05 0.00 0.00 0.00 0.00

j なし→適切 6.41 1.45 6.84 22.59 4.08 6.16 5.57

k なし→ AE 1.41 0.55 1.56 7.13 1.79 1.78 2.52

l なし→ No Access 0.21 0.07 1.38 3.27 0.24 0.81 0.59

m 適切→なし 2.03 0.66 4.05 7.28 0.80 3.48 2.67

n AE →なし 0.46 0.27 2.20 2.80 0.78 1.07 1.14

o No Access →なし 0.13 0.03 1.36 2.04 0.09 0.58 0.22

p 変化なし (適切) 71.42 65.50 58.72 35.85 64.98 63.67 50.34

q 変化なし (AE) 15.28 26.74 12.26 12.99 22.72 16.22 29.00

r 変化なし (No Access) 2.28 4.62 10.72 4.75 3.66 5.79 7.34

表 6 メソッドのバージョン間変遷割合 (%)

Ant Areca ArgoUML FreeMind JDT Core jEdit Struts

a 適切→適切 0.03 0.00 0.03 0.12 0.02 0.02 0.00

b AE →適切 0.10 0.03 0.12 0.26 0.22 0.16 0.07

c No Access →適切 0.13 0.07 0.26 0.36 0.24 0.13 0.09

d 適切→ AE 0.05 0.02 0.08 0.13 0.13 0.15 0.04

e AE → AE 0.06 0.00 0.05 0.09 0.12 0.03 0.03

f No Access → AE 0.08 0.01 0.03 0.04 0.03 0.03 0.13

g 適切→ No Access 0.07 0.05 0.25 0.34 0.13 0.19 0.05

h AE → No Access 0.05 0.00 0.06 0.03 0.05 0.05 0.01

i No Access → No Access 0.01 0.00 0.02 0.02 0.01 0.00 0.00

j なし→適切 2.31 1.10 3.63 12.34 2.48 3.85 1.96

k なし→ AE 1.08 0.28 1.06 2.10 0.78 1.38 1.52

l なし→ No Access 4.44 1.10 5.48 17.41 2.71 3.32 5.73

m 適切→なし 0.54 0.63 1.88 5.41 1.04 2.12 0.73

n AE →なし 0.28 0.19 0.84 0.68 0.46 0.86 1.08

o No Access →なし 0.95 0.71 3.44 9.72 1.27 1.85 2.99

p 変化なし (適切) 26.46 44.30 28.44 23.29 38.83 38.58 19.16

q 変化なし (AE) 12.89 11.88 8.92 3.10 11.22 14.02 11.07

r 変化なし (No Access) 50.47 39.64 45.42 24.55 40.27 33.24 55.34

他 2状態からの遷移に比べて出現頻度が少ないことが

わかる．

フィールド/メソッド作成 全体に対する割合としては，約

2～33%を占める．グループ内でみると，全プロジェク

トにおいて遷移先が適切 (j)，AE(k)，No Access(l)の

順に出現頻度が高い．

フィールド/メソッド削除 全体に対する割合としては，約

1～12%を占める．グループ内では，全プロジェクトに

おいて遷移前が適切 (m)，AE(n)，No Access(o)の順

に出現頻度が高い．

変化なし 全体に対する割合としては，6グループの中で

最も大きい約 53～97%を占める．全プロジェクトにお

いて適切 (p)，AE(q)，No Access(r)の順に出現頻度

が高い．

RQ1：考察

フィールドにおけるアクセス修飾子の変遷について，最

も多く見られたのは「変化なし」に属する pの「変化なし

(適切)」であった．また，「フィールド/メソッド作成」中

でも jの「なし→適切」は比較的多い傾向が見られる．

これらのことから，フィールドは最初から用途を明確に

して作成されることが多く，一度適切なアクセス修飾子が

宣言されると，その後長期にわたって利用される場合が多

c⃝ 2013 Information Processing Society of Japan 6

情報処理学会研究報告

IPSJ SIG Technical Report

表 7 AE であるフィールドの修正状況 (%)

Ant Areca ArgoUML FreeMind JDT Core jEdit Struts

pub-pro 0.0055 0.0000 0.0013 0.0000 0.0150 0.0000 0.0038

pub-def 0.0038 0.0017 0.0195 0.1607 0.0076 0.0078 0.0036

pub-pri 0.0024 0.0005 0.0379 0.0073 0.0269 0.0070 0.0013

pro-def 0.0254 0.0023 0.0149 0.0000 0.0068 0.0326 0.0267

pro-pri 0.0112 0.0002 0.0177 0.0000 0.0085 0.0045 0.0118

def-pri 0.0157 0.0000 0.0365 0.0063 0.0060 0.0077 0.0021

表 8 AE であるメソッドの修正状況 (%)

Ant Areca ArgoUML FreeMind JDT Core jEdit Struts

pub-pro 0.0141 0.0000 0.0119 0.0398 0.0074 0.0083 0.0077

pub-def 0.0091 0.0026 0.0132 0.0606 0.0279 0.0121 0.0056

pub-pri 0.0038 0.0028 0.0112 0.0169 0.0098 0.0111 0.0007

pro-def 0.0153 0.0000 0.0160 0.0000 0.0054 0.0000 0.0142

pro-pri 0.0046 0.0000 0.0113 0.1325 0.0038 0.0037 0.0100

def-pri 0.0000 N/A 0.0066 0.0000 0.0141 0.0015 0.0015

いといえる．一方，その他のグループの状態遷移について

考察を行った場合，「AE修正」「AE発生」「アクセス消失」

のようなアクセス範囲の変化に伴う状態遷移の数と比べる

と，「フィールド/メソッド削除」のようなフィールドその

ものが消滅する場合の状態遷移の数が多くなる傾向にあ

る．このことは，フィールドの利用方法が変更されるよう

な場合には，アクセス修飾子の修正ではなくフィールドそ

のものが変更されることが多いことを示している．

4.2 RQ1：アクセス修飾子変遷分析 (メソッド)

RQ1：グループごとに見られる傾向

表 6を基に，メソッドのアクセス修飾子変遷について，

6つのグループそれぞれに見られる傾向の分析を行う．

AE修正 全体に対する割合としては，全プロジェクトに

おいて 1%に満たない．グループ内でみると，cの「No

Access→適切」が，bの「AE→適切」と同等もしく

はやや高い頻度で出現していることが分かる．

AE発生，アクセス消失 全体に対する割合としては，2

グループ共に全プロジェクトにおいて 1%に満たない．

グループ内でみると，d,gの適切からの遷移が他 2状

態からの遷移に比べてやや出現頻度が少ないことがわ

かる．

フィールド/メソッド作成 全体に対する割合としては，約

2～32%を占める．グループ内でみると，jEditを除く

6プロジェクトにおいて，遷移先が No Access(l)，適

切 (j)，AE(k)の順に出現頻度が高い．

フィールド/メソッド削除 全体に対する割合としては，約

1～16%を占める．グループ内では，jEditを除く 6プ

ロジェクトにおいて遷移前がNo Access(o)，適切 (m)，

AE(n)の順に出現頻度が高い．

変化なし 全体に対する割合としては，6 グループの中

で最も大きい約 51～96%を占める．グループ内では，

Arecaと jEditでは適切 (p)，No Access(r)の順である

以外は，No Access(r)，適切 (p)，AE(q)の順に出現頻

度が高い．

RQ1：考察

メソッドにおけるアクセス修飾子の変遷については，最も

多いのが「変化なし」に属する rの「変化なし (No Access)」

であり，次いで pの「変化なし (適切)」であった．「フィー

ルド/メソッド作成」においても同様の傾向が見られ，jEdit

で逆転が見られる以外では，oの「なし→ No Access」が

mの「なし→適切」を上回った．

これらのことから，メソッドについては，作成時点から

利用されているものよりも，作成時点では用途が定まって

いないか，利用する側のメソッドがまだ作成されていない

もののほうが多いことがわかる．また，その他のグループ

の状態遷移について考察を行った場合，フィールドと同様

に「AE修正」「AE発生」「アクセス消失」に比べて「フィー

ルド/メソッド削除」の遷移が多い傾向にある．このこと

は，フィールドと同様に，メソッドの利用方法が変更され

るような場合には，メソッドそのものが変更されることが

多いことを示している．

4.3 RQ2：AE修正状況の分析と考察 (フィールド)

フィールドに対する AE の修正作業が行われる割合は

最大でも 0.16%であり，大半は修正がなされていない，と

いうことが挙げられる．各 AEごとの傾向を見ていくと，

pub-def，pub-priは全プロジェクトで，pro-def，pro-pri，

def-priは 1プロジェクトを除く 6プロジェクトで修正作業

が行われていることがわかる．

よって，これら 5つの AEについては，ModiCheckerの

ようなツールを用いてアクセス修飾子の修正を行うことに

より，後に開発者が費やすことになるアクセス修飾子修正

作業へのコストを軽減することが可能であると考えられる．

c⃝ 2013 Information Processing Society of Japan 7

情報処理学会研究報告

IPSJ SIG Technical Report

4.4 RQ2：AE修正状況の分析と考察 (メソッド)

フィールドと同様に，AEであるメソッドに対するアク

セス修飾子修正作業が行われることはほとんどない，とい

うことが挙げられる．また，各 AEごとの傾向としては，

pub-def，pub-priについては全プロジェクトで，pub-pro，

pro-priについては 1プロジェクトを除く 6プロジェクト

で修正作業が行われる傾向にある．

よって，これら 4つの AEについては，アクセス修飾子

過剰性検出ツールを利用することによるアクセス修飾子修

正作業のコスト削減が期待できる．

5. 関連研究

アクセス修飾子の解析に関して，我々の研究以前にいく

つかの研究がなされている．

Mullerは Javaのアクセス修飾子をチェックするための

バイトコード解析手法を提案している [8]．しかし，バイト

コードに対する解析は，コンパイル時に追加されるフィー

ルドやメソッドの影響で，本研究で行ったようなソース

コードに対する解析とは必ずしも同じ結果にはならない．

また，Mullerの研究ではチェックしたアクセス修飾子に対

する分析はなされていない．一方，本研究では既存の複数

のソフトウェアに対して取得したデータを用いて，複数の

側面からの分析を行った．

Tal Cohenは複数のサンプルメソッドにおける各アクセ

ス修飾子の数の分布を調査した [9]．また，Evansらは静的

解析によるセキュリティ脆弱性の解析を研究した [10]．こ

れらの研究で課題となっているアクセス修飾子の宣言に関

してはViegaらによって議論されている [11]．Viegaらは，

privateにすべきだがそのように宣言されていないメソッ

ドやフィールドについて警告を出すツール Jslintを開発し

ている．一方，本研究では，privateだけでなく全ての過

剰なアクセス修飾子を分析対象としている．アクセス修飾

子の数を分析対象としている点については，小堀らの研究

とも関連がある [12]．この過去の研究では，Javaのソース

コードの類似性を計算するための分析手段の一つとして，

アクセス修飾子の宣言数が用いられている．

6. まとめと今後の課題

本研究では，既存の 7つの Javaプロジェクトの全バー

ジョンに対してModiCheckerを実行し，取得できたフィー

ルドおよびメソッドに関するアクセス修飾子について分析

を行った．その結果，大半の AEとなっているアクセス修

飾子は，変更されることはなくそのまま放置される傾向が

見られた．また，一部の種類の AEであるフィールドおよ

びメソッドについては，7つの Javaプロジェクト全てにお

いて修正が行われていることを確認した．

今後の課題としては，アクセス修飾子の修正がソフト

ウェアの品質向上にどの程度寄与するのかを調査すること

が挙げられる．また，今回行った分析ではバージョン間の

状態遷移数および AEの修正数に関する割合の大小につい

てしか調査を行っていないため，統計的に検定を行い，結果

に有意差が存在するかどうかを調査するということが挙げ

られる．さらに，各遷移が行われた後の遷移状況を詳しく

調べることで，アクセス修飾子の修正が推奨されるフィー

ルドおよびメソッドに特徴的な遷移というものが存在する

かどうかを調査したい．

参考文献

[1] Bertrand Meyer, “Object-Oriented Software Construc-
tion SECOND EDITION”, Prentice Hall, 2000.

[2] Dotri Quoc, Kazuo Kobori, Norihiro Yoshida, Yoshiki
Higo, Katsuro Inoue, ModiChecker: Accessibility Exces-
siveness Analysis Tool for Java Program, コンピュータ
ソフトウェア, Vol.29, No.3, pp.212-218(2012).

[3] G. Booch, R.A. Maksimchuk, M.W. Engel, B.J. Young,
J. Conallen and K.A. Houston,“Object-Oriented Analy-
sis and Design with Applications”, Addison Wesly, 2007.

[4] K. Arnold, J. Gosling, D. Holmes,“The Java Program-
ming Language, 4th Edition”, Prentice Hall, 2005.

[5] James Gosling, Bill Joy, Guy Steele, Gi-
lad Bracha, Alex Buckley, The Java Lan-
guage Specification, Java SE 7 Edition,
http://docs.oracle.com/javase/specs/jls/se7/html/index.html

[6] K. Khor, Nathaniel L.Chavis, S.M.Lovett and D. C.
White. “Welcome to IBM Smalltalk Tutorial”, 1995

[7] SourceForge.jp, http://sourceforge.jp/

[8] A. M¨ uller,“Bytecode Analysis for Checking Java Ac-
cess Modifiers”, Work in Progress and Poster Session,
8th Int. Conf. on Principles and Practice of Program-
ming in Java (PPPJ 2010), Vienna, Austria, 2010.

[9] Tal Cohen, “Self-Calibration of Metrics of Java Meth-
ods towards the Discovery of the Common Programming
Practice”, The Senate of the Technion, Israel Institute
of Technology, Kislev 5762, Haifa, 2001.

[10] D. Evans, and D. Larochells,“Improving Security Using
Extensible Lightweight Static Analysis”, IEEE software,
vol.19, No.1, pp. 42-51,Jan/Feb 2002.

[11] J. Viega, G. McGraw, T. Mutdosch and E. Felten,“Stat-
ically Scanning Java Code: Finding Security Vulnerabil-
ities”, IEEE software, Vol.17 No.5 pp. 68-74, Sep/Oct
2000.

[12] K. Kobori, T. Yamamoto, M. Matsushita , and K. In-
oue,“Java Program Similarity Measurement Method Us-
ing Token Structure and Execution Control Structure”,
Transactions of IEICE , Vol. J90-D No.4, pp. 1158-1160,
2007.

[13] FindBugs, http://findbugs.sourceforge.net/

[14] Jlint, http://jlint.sourceforge.net/

[15] N. Rutar, C. Almazan, and J. Foster, “ A Comparison
of Bug Finding Tools for Java”, 15th International Sym-
posium on Software Reliability Engineering (ISSRE 04),
pp. 245-256, Saint-Malo, France, 2004.

[16] Apache Ant, http://ant.apache.org/

[17] jEdit, http://www.jedit.org/

[18] 小堀一雄，石居達也，松下誠，井上克郎，Javaプログラ
ムのアクセス修飾子過剰性分析ツールModiCheckerの機
能拡張とその応用例，SEC Journal，(採録決定・採録号
等未定)

c⃝ 2013 Information Processing Society of Japan 8

