
Title コードクローン変更管理システムの開発と実プロジェ
クトへの適用

Author(s) 山中, 裕樹; 崔, 恩瀞; 吉田, 則裕 他

Citation 情報処理学会論文誌. 2013, 54(2), p. 883-893

Version Type VoR

URL https://hdl.handle.net/11094/50223

rights © 2013 Information Processing Society of Japan

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

情報処理学会論文誌 Vol.54 No.2 883–893 (Feb. 2013)

コードクローン変更管理システムの開発と
実プロジェクトへの適用

山中 裕樹1,a) 崔 恩瀞1 吉田 則裕2 井上 克郎1 佐野 建樹3

受付日 2012年5月12日,採録日 2012年11月2日

概要：ソフトウェア保守における大きな問題の 1 つとしてコードクローンが指摘されている．コードク
ローンとは，ソースコード中に，互いに一致または類似した部分を持つコード片のことである．コードク
ローンに対する主な保守作業として，クローンセット（互いにコードクローンとなっているコード片の集
合）に含まれるすべてのコード片を一貫して編集する同時修正と，クローンセットを 1つのサブルーチン
にまとめる集約があげられる．本研究では，コードクローンに対する保守作業を支援することを目的とし
たコードクローン変更管理システムの開発を行った．そして，企業で行われているソフトウェア開発に適
用することによって，本システムの有用性を確かめることができた．

キーワード：コードクローン，ソフトウェア保守，変更管理

A Development of Clone Change Management System
and Its Application to Actual Project

Yuki Yamanaka
1,a)

Eunjong Choi
1

Norihiro Yoshida
2

Katsuro Inoue
1

Tateki Sano
3

Received: May 12, 2012, Accepted: November 2, 2012

Abstract: Code clone is one of the major problems for software maintenance. A code clone is a code frag-
ment that has identical or similar portion in source code. In order to manage code clones, software developers
should consider consistent modification of clone sets (i.e., a set of code clones identical or similar to each
other) and merging clone set into a single function. In this study, we developed a code clone change man-
agement system for clone maintenance. Moreover, we confirmed the usefulness of the developed system by
applying to industrial software development.

Keywords: code clone, software maintenance, change management

1. まえがき

ソフトウェアの保守工程における大きな問題の 1 つと

してコードクローンが指摘されている．コードクローンと

は，ソースコード中に互いに一致または類似した部分を持

つコード片のことであり，主にソースコードのコピーアン

1 大阪大学
Osaka University, Suita, Osaka 565–0871, Japan

2 奈良先端科学技術大学院大学
Nara Institute of Science and Technology, Ikoma, Nara 630–
0192, Japan

3 日本電気株式会社
NEC Corporation, Minato, Tokyo 108–8001, Japan

a) y-yuuki@ist.osaka-u.ac.jp

ドペーストなどによって発生する [1]．コードクローンに

対する主な保守作業として，同時修正と集約があげられ

る．同時修正とは，クローンセット（互いにコードクロー

ンとなっているコード片の集合）に含まれるすべてのコー

ド片を一貫して編集することである．たとえば，クローン

セット中の 1つのコード片に欠陥が含まれている場合，そ

のコード片とコードクローンになっている他のコード片も

一貫した修正を行う必要が考えられる．また，集約とはク

ローンセットを 1 つのサブルーチンにまとめることであ

る．集約を行うことによって，ソースコード中のコードク

ローンを削減することが可能である．

上述したコードクローンに対する保守作業を効率良く行

c© 2013 Information Processing Society of Japan 883

情報処理学会論文誌 Vol.54 No.2 883–893 (Feb. 2013)

うために，コードクローンの変更管理が必要である．たと

えば，欠陥を含むクローンセット中の一部のコード片が編

集された場合，同時修正が行われておらず，修正漏れの可

能性がある．また，ソフトウェア開発企業では，システム

テストに大きなコストを要した場合，コードクローンを集

約し再度システムテストを行うということは，コスト面の

問題から避けられることが多い．したがって，システムテ

スト前に発生したコードクローンを発見し，集約すること

で，大きなコストをかけずにコードクローンを削減するこ

とが可能となる．しかし，検出されたコードクローンの量

が膨大となる場合，同時修正が行われていないクローン

セットや，新たに発生したコードクローンなどの変更履歴

を人手で確認することは困難である．

そこで本研究では，コード片の追加，編集，削除といっ

た変更履歴に基づいたコードクローンの分類手法を提案す

る．そして，分類に基づいて，保守作業の対象となるコー

ドクローンの情報を定期的に開発者に通知するコードク

ローン変更管理システムの開発を行った．本システムの利

用者は，コードクローンに対して保守作業が必要であるか

否かの判断を行うソフトウェア開発者である．また，評価

実験として，開発したシステムを企業で行われているソフ

トウェア開発に約 40日間適用した．実験の結果，本シス

テムを用いることによって，開発者は保守作業の対象とな

る 11個のクローンセットを発見することができた．

本稿の構成は次のとおりである．2 章では，本研究の背

景を述べる．3 章では，コードクローンの分類手法につい

て説明する．4 章では，本研究で開発したコードクロー

ン変更管理システムの概要について説明する．5 章では，

コードクローン変更管理システムの実プロジェクトに対す

る適用実験について述べる．6 章では，本研究の関連研究

について述べる．7 章では，本研究のまとめと今後の課題

について述べる．

2. 背景

本章では，本研究の背景として，コードクローンとその

検出ツール CCFinder，および，コードクローンの変更管

理の必要性について述べる．

2.1 コードクローン

コードクローン（Code clone）とは，ソースコード中に

存在する，互いに一致または類似した部分を持つコード片

のことである [1]．一般的に，コードクローンの存在はソフ

トウェアの保守を困難にするといわれている．たとえば，

コードクローンとなっているコード片中に欠陥が存在する

場合，そのコード片と一致または類似した他のコード片に

ついても同様の欠陥が含まれている可能性があり，確認が

必要である．

一般的に，互いに一致または類似したコードクローンの

対をクローンペア（Clone pair）と呼ぶ．また，クローン

ペアにおいて推移関係が成り立つコードクローンの集合を

クローンセット（Clone set）と呼ぶ．

2.2 コードクローン検出ツールCCFinder

ソフトウェアの規模が大きい場合，ツールを用いた自動

的なコードクローン検出が行われる．本研究では，字句解

析ベースの検出ツールである CCFinder [2]を用いてコー

ドクローンの検出を行っている．CCFinderは，字句解析

でソースコードをトークン列に変換し，変換処理で変数名

や関数名などを同一のトークンに変換する．そして，閾値

以上の長さの共通トークン列を探索し，すべてのコードク

ローンの対のリストを出力する．

CCFinderを用いることによって，空白やタブの有無な

どのコーディングスタイルを除いて完全に一致するコード

クローンだけではなく，ユーザ定義名や一部の予約語のみ

が異なるコードクローンを検出することが可能である [3]．

2.3 コードクローンの変更管理の必要性

コードクローンに対する主な保守作業として，以下の項

目があげられる．

同時修正：クローンセット中のコード片を一貫して編集す

ること．

集約：クローンセット中のコード片に共通するロジックを

実装するサブルーチンを作り，各コード片をそのサブ

ルーチンの呼び出し文に置き換えること．

位置情報の記録：ソースコード中にコメントとして，コー

ドクローンとなっている他のコード片の位置を書く

こと．

上述したコードクローンに対する保守作業を効率良く行

うために，コードクローンの変更管理が必要である．たと

えば，欠陥を含むクローンセット中の一部のコード片が修

正された場合，そのクローンセットに含まれる他のコード

片についても同様の修正を検討する必要がある．また，ソ

フトウェアのテスト終了後におけるクローンセットの集約

は，不具合を生む可能性がありコストが大きい．新たに発

生したコードクローンを集約の対象とすることで，不具合

を生むコストを削減することが可能である．また，集約す

ることが困難である場合，新たに発生したコードクローン

は位置情報の記録の対象になる可能性がある [4]．

本研究で開発を行ったコードクローン変更管理システ

ムでは，同時修正が行われていないクローンセットや，新

たに発生したコードクローンなどの変更履歴に基づいて，

コードクローンの分類を行っている．開発者はこれらの分

類結果を見ることによって，保守作業が必要であるコード

クローンを把握することが可能となる．たとえば，同時修

正が行われていないクローンセットに含まれるコード片

は，修正漏れの可能性があり，一貫した修正を行うか否か

c© 2013 Information Processing Society of Japan 884

情報処理学会論文誌 Vol.54 No.2 883–893 (Feb. 2013)

判断する必要がある．また，新たに発生したコードクロー

ンに対して，集約，および，位置情報の記録を行うか否か

判断する必要がある．

もし検出されたコードクローンの量が膨大となる場合，

その中から，同時修正が行われていないクローンセットや

新たに発生したコードクローンなどの変更履歴を人手で確

認することは困難である．また，ほとんどのコードクロー

ンは短期間の開発では変更されない [5]．そのため，バー

ジョン間のコードクローン検出結果を人手で比較すること

で，変更されたコードクローンのみを発見することは非効

率的な作業であるといえる．本システムを用いてコードク

ローンの変更管理を行うことによって，保守作業の対象と

なるコードクローンの確認コストを削減することが可能に

なると考えられる．

3. コードクローンの分類手法

本研究では，保守作業の対象となるコードクローンの情

報を開発者に提供するため，コード片の追加，編集，削除

といった変更履歴に基づいたコードクローンの分類手法を

提案する．以下に，本手法の手順を示す．入力は，分析の

対象となる 2バージョンのソースコード Vt−1，Vt である．

Vt は最新バージョンのソースコード，また，Vt−1 は 1つ

前のバージョンのソースコードを表す．また，Viのソース

コードに含まれるすべてのコードクローンの集合を Ci と

表す．

手順 1：Vt−1，Vt全体にCCFinderを適用し，コードクロー

ン集合 Ct−1，Ct の検出を行う．

手順 2：コードクローンの変更履歴を分析するために，Ct−1

に含まれるコードクローンと Ct に含まれるコードク

ローンの対応関係を求める必要がある．そこで，3.1節

で説明する定義に基づいて，コードクローンの親子関

係を求める．

手順 3：3.2 節で説明する定義に基づいて，2バージョンの

ソースコードに含まれるすべてのコードクローンを分

類する．

手順 4：3.3 節で説明する定義に基づいて，2バージョンの

ソースコードに含まれるすべてのクローンセットを分

類する．

3.1 コードクローンの親子関係

コードクローンの変更履歴を分析するためには，Ct−1に

含まれるコードクローンと Ct に含まれるコードクローン

の対応関係を求める必要がある．本手法では，文献 [6]の

コードクローンの履歴分析と同様の手法を用いてコードク

ローンの親子関係を求める．ここでは，あるコードクロー

ン A ∈ Ct−1 に対応するコードクローンが B ∈ Ct である

場合，コードクローン B をコードクローン Aの子クロー

ン，コードクローン Aをコードクローン B の親クローン

(a) ケース 1 (b) ケース 2

図 1 コードクローンの親子関係

Fig. 1 Parent-child relationship of code clones.

と定義する．

図 1 はコードクローンの親子関係の例を示している．

図 1 (a)では，コードクローン A ∈ Ct−1 の前で 4行の挿

入と 2行の削除が行われているため，Aに対応するコード

片 B の開始行番号と終了行番号は，それぞれ Aの開始行

番号と終了行番号に 2行追加した値となる．B が Ct に含

まれる場合，コードクローン Aの子クローンはコードク

ローン B となる．また，図 1 (b)では，コードクローン A

の前で編集操作は行われていないため，対応するコード片

Bの開始行番号は Aの開始行番号と同じになる．一方，A

に 2行の挿入が行われているために，Bの終了行番号は A

の終了行番号に 2行追加した値となる．B が Ct に含まれ

る場合，コードクローン Aの子クローンはコードクローン

B となる．このように，あるコードクローン A ∈ Ct−1 に

対応するコード片をその開始行番号と終了行番号の対応に

基づいて求め，そのコード片Bがコードクローンとなって

いる場合，コードクローン Aとコードクローン B の間に

親子関係を定義する*1．

3.2 コードクローンの分類

まず最初に，任意のコードクローンX について以下の 4

つの命題を定める．

• P (X)：X の親クローンが存在する．

• C(X)：X の子クローンが存在する．

• M(X)：前バージョンからX が編集されている．

• CP (X)：X の親クローンとX がクローンペアである．

本手法では，これらの命題を用いて 2 バージョン間の

ソースコード Vt−1，Vt に含まれるすべてのコードクロー

ンを以下の 5項目に分類している．

Stable Clone：P (X)∧¬M(X)を充足するコードクロー

ンX ∈ Ctとその親クローンを指す．すなわち，Stable

Cloneは，2バージョン間で変更がないコードクロー

ンを意味する．

Modified Clone：P (X) ∧ M(X) ∧ CP (X) を充足する

コードクローン X ∈ Ct とその親クローンを指す．す

なわち，Modified Cloneは，変数名の変更などの編集

がなされたが，編集後も同じクローンセットに属する

*1 コードクローンの親子関係は 2 バージョン間での位置の対応関
係を表しており，それらがクローンペアの関係にあるとは限らな
い．

c© 2013 Information Processing Society of Japan 885

情報処理学会論文誌 Vol.54 No.2 883–893 (Feb. 2013)

図 2 コードクローン・クローンセットの分類例

Fig. 2 Example of categorization of code clones and clone sets.

コードクローンを意味する．

Moved Clone：P (X)∧M(X)∧¬CP (X)を充足するコー

ドクローン X ∈ Ct とその親クローンを指す．すなわ

ち，Moved Cloneは，文の挿入など大幅な編集がなさ

れたため，異なるクローンセットに属するようになっ

たコードクローンを意味する．

Added Clone：¬P (X)を充足するコードクローン X ∈
Ct を指す．すなわち，Added Cloneは，コード片の

コピーアンドペーストなどによって Vt で新たに発生

したコードクローンを意味する．

Deleted Clone：¬C(X) を充足するコードクローン

X ∈ Ct−1 を指す．すなわち，Deleted Clone は，ク

ローンセットの集約やコード片の削除などによって除

去されたコードクローンを意味する．

3.3 クローンセットの分類

本手法では，変更履歴に基づいて，2バージョン間のソー

スコード Vt−1，Vt に含まれるすべてのクローンセットを

以下の 4項目に分類している（図 2*2）．

Stable Clone Set：図 2 のクローンセット Aのように，

Vt−1，Vt の 2バージョンにわたって存在するクロー

ンセットで，属するコードクローンがすべて Stable

Cloneに分類されるクローンセットを指す．

*2 図 2 の Vt−1 に含まれるコードクローンの分類に関しては，その
子クローンが Vt に存在する場合，子クローンと同じ分類となる
（3.2 節参照）．

Changed Clone Set：Vt−1，Vtの 2バージョンにわたっ

て存在するクローンセットで，属するコードクローン

に 1つでも Stable Clone以外のコードクローンが含

まれるクローンセットを指す．たとえば，図 2 のク

ローンセットBは一部のコードクローンに対して変数

名が変更されたため，Modified Cloneに分類されてい

る．この場合，一方の Stable Cloneに対しても同様の

編集が必要となる可能性がある．また，クローンセッ

ト Eでは，一部のコードクローンに対して文の挿入が

なされたため，Vt では異なるクローンセット F を形

成している．この場合，Vt 中のクローンセット E に

対しても，クローンセット F と同様に文の挿入が必要

となる可能性がある．このように，同時修正がなされ

ておらず，修正漏れの可能性があるクローンセットは

Changed Clone Setに分類される．

New Clone Set：Vt のみに存在するクローンセットを指

す．たとえば，図 2 のクローンセット Cのようにコー

ド片のコピーアンドペーストなどによって新たに発生

したクローンセットを意味する．2.3 節で述べたよう

に，新たに発生したクローンセットは集約，あるいは，

位置情報の記録の対象となる可能性がある．したがっ

て，開発者は New Clone Set に分類されたクローン

セットを確認することによって，保守作業の対象とな

るコードクローンを発見することが可能となる．

Deleted Clone Set：Vt−1 のみに存在するクローンセッ

トを指す．たとえば，図 2 のクローンセット D のよ

うに集約などによって除去されたクローンセットを意

味する．したがって，開発者は Deleted Clone Setに

分類されたクローンセットを確認することによって，

集約が行われたクローンセットを確認することが可能

となる．

4. コードクローン変更管理システム

本研究では，3 章で説明したコードクローンの分類に基

づいて，保守作業の対象となるコードクローンの情報を開

発者に提供するコードクローン変更管理システムの開発を

行った．分析結果の提供方法として，テキストベースの電

子メールによる通知とウェブベースのユーザインタフェー

スの提供を実現している．

コードクローン変更管理システムの処理手順を以下に示

す（図 3）．なお，本システムでは，ソフトウェア開発に

CVS *3，Subversion *4などの版管理システムを用いること

を想定している．

手順 1：最新バージョンのソースコード Vt を版管理シス

テムから取得する．Vt−1は過去のバージョンのソース

コードであるため，前回の分析時に最新バージョンと

*3 http://cvs.nongnu.org/
*4 http://subversion.apache.org/

c© 2013 Information Processing Society of Japan 886

情報処理学会論文誌 Vol.54 No.2 883–893 (Feb. 2013)

(a) プロジェクト情報 (a) クローンセット一覧

図 4 テキストファイルの出力例

Fig. 4 Example of text-based visualization.

図 3 コードクローン変更管理システムの処理の流れ

Fig. 3 Process of code clone change management system.

して分析したソースコードを Vt−1 として用いる．

手順 2：3 章で説明した手法で，変更履歴に基づいて Vt−1

と Vt のソースコードに含まれるコードクローン，お

よび，クローンセットの分類を行う．

手順 3：手順 2の分類結果に基づいて，HTMLファイルと

電子メールによる通知のためのテキストファイルの生

成を行う．

本システムでは，手順 3で生成したテキストファイルを

添付した電子メールを送信することによって，変更された

コードクローンの存在を開発者に認識させる．そして，開

発者はウェブユーザインタフェースを用いて，実際に変更

されたコードクローンに対する保守作業の必要性の判断を

行う．

4.1 電子メールを用いた通知

電子メールに添付されるテキストファイルの例として，

Apache Antプロジェクト*5のある 2バージョン間に適用

した結果を図 4 に示す．テキストファイルには以下の情報

が出力される．

*5 http://ant.apache.org/

• プロジェクト情報（図 4 (a)）

– ファイル情報：総ファイル数，追加ファイル数，削

除ファイル数，コードクローンを含むファイル数を

示す．

– クローンセット分類情報：クローンセットの各々の

分類数を示す．

– コードクローン分類情報：コードクローンの各々の

分類数を示す．

• クローンセット一覧（図 4 (b)）

Changed Clone Set，New Clone Set，Deleted Clone

Set に分類されたクローンセットの一覧が出力され

る*6．図 4 (b) は Changed Clone Setに分類されたク

ローンセットの一例を示している．各々のクローン

セットに関して，以下の情報を出力している．

– クローンセット ID

– クローンセットに属するコードクローンの一覧

– コードクローンとなっているコード片

4.2 ウェブユーザインタフェースの提供

ウェブユーザインタフェースの例として，Apache Ant

プロジェクトのある 2バージョン間に適用した結果を図 5

に示す．本稿では，クローンセット一覧ページとソース

ファイルページについて説明する．

• クローンセット一覧ページ（図 5 (a)）

2バージョン間に含まれるクローンセットの一覧が，

Changed Clone Set，New Clone Set，Deleted Clone

Set，Stable Clone Setの順で表示される．また，各々

のクローンセットに関して，属するコードクローン

の一覧が表示される．各々のコードクローンは，ID，

分類，コードクローンが含まれるソースファイル名，

*6 Stable Clone Setは変更がないクローンセットであるため，ユー
ザに提供する価値は低くテキストベースの通知では省略してい
る．

c© 2013 Information Processing Society of Japan 887

情報処理学会論文誌 Vol.54 No.2 883–893 (Feb. 2013)

(a) クローンセット一覧ページ

(b) ソースファイルページ

図 5 ウェブユーザインタフェースの例

Fig. 5 Example of web-based user interface.

ソースファイル中のコードクローンの位置が表示さ

れる．Modified Clone，Moved Clone，Added Clone，

Deleted Cloneの 2バージョン間で変更されたコードク

ローンはハイライトされ，見やすくなっている．コー

ドクローン IDをクリックすることによって，そのコー

ドクローンが含まれるソースファイルページへ移動

する．

• ソースファイルページ（図 5 (b)）

コードクローンが含まれるソースファイルが表示され

る．コードクローンとなっているコード片は黄色の背

景色が付いている．“+”は追加行を，“-”は削除行を

示し，削除行は灰色の背景色がついている．

4.3 本システムの利用例

コードクローンの変更管理を行う際の本システムの利用

例を以下に示す．

(1) 電子メールによる通知により，開発プロジェクトメン

バに対して，一定時間ごとに，図 4 に示すようなコー

ドクローンの分類結果が出力されたテキストファイル

が送付される．

(2) プロジェクトメンバは，電子メールに添付されたテキ

ストファイルによって，同時修正が行われていないク

ローンセットや，新たに発生したコードクローンなど

の変更を確認する．確認の例を以下に示す．

• Changed Clone Setに分類されたクローンセットで

Stable Cloneが含まれるものは，同時修正が行われ

ておらず，不具合を含む可能性がある．たとえば，

図 4 (b) では，クローンセット中の 1個のコード片の

みが編集されている．このようなクローンセットは

一貫した修正が必要となる可能性がある．

• New Clone Setに分類されたクローンセットは，2.3節

で述べたように，集約，および，位置情報の記録が必

要となる可能性がある．

• Deleted Clone Setに分類されたクローンセットを確

認することで，計画どおりにクローンセットの集約

が行われているか把握することが可能となる．

(3) 電子メールによる通知で，同時修正が行われていない

クローンセットや新たに発生したコードクローンが見

つかった場合，図 5 に示すようなウェブユーザインタ

フェースを用いて，周囲のソースコードを見ながら実

際に保守作業が必要であるか否か判断する．

(4) 保守作業が必要であると判断したコードクローンに対

して，実際に保守作業を行う．

5. 適用実験

実験として，企業で行われているソフトウェア開発に対

してコードクローン変更管理システムの適用を行った．適

用実験の目的は以下のとおりである．

• 開発者がコードクローン変更管理システムを用いて保
守作業が必要となるコードクローンを発見することが

できたか，本システムの有用性を評価する．

• 保守作業の対象となる可能性が高いコードクローンを
開発者に提示できるようにシステムを改善するため，

評価実験において保守作業の対象となったコードク

ローンの特徴を調査する．

5.1 実プロジェクトに対する評価実験

5.1.1 実験内容

本研究では，日本電気株式会社のウェブアプリケーショ

ンソフトウェア開発を対象に評価実験を行った．対象とし

たソフトウェアの実装言語は Javaであり，ファイル数は

約 350，行数は約 12万である．コードクローン変更管理

システムを 2011/12/18から 2012/01/31の約 40日間適用

し，1日ごとに電子メールによる通知とウェブユーザイン

タフェースの更新を行った．なお，本実験では CCFinder

のトークンの閾値をデフォルトである 30に設定した．そ

して，コードクローン変更管理システムの有用性を評価す

c© 2013 Information Processing Society of Japan 888

情報処理学会論文誌 Vol.54 No.2 883–893 (Feb. 2013)

表 1 保守作業の対象となったクローンセット

Table 1 Clone sets that required additional maintenance.

検出日 保守実施日 分類 Q1 Q2 RAD(S) LEN(S) RNR(S) NIF(S) POP(S) DFL(S)

1 ’11/12/28 ’12/01/05 New NO 集約 0 141 78 1 2 141

2 ’11/12/28 ’12/01/05 New NO 集約 1 36 83 2 2 36

3 ’12/01/13 - New NO 集約 1 48 95 7 7 288

4 ’12/01/13 - New NO 位置情報の記録 3 54 90 2 2 54

5 ’12/01/13 - New NO 集約 0 52 61 1 2 52

6 ’12/01/13 ’12/01/17 New NO 集約 0 57 94 1 2 57

7 ’12/01/13 - New NO 集約 0 32 93 1 2 32

8 ’12/01/16 - New NO 集約 0 37 83 1 2 37

9 ’12/01/16 - New NO 集約 2 32 84 2 3 64

10 ’12/01/18 - New NO 集約 0 53 90 1 2 53

11 ’12/01/24 - New NO 集約 0 72 86 1 3 144

るために，アンケートを実施した．アンケートの対象者は，

Java言語の経験が 10年以上のプロジェクトマネージャで

あり，本プロジェクトにおいてコードクローンに対する保

守作業の必要性の判断を行っている．主なアンケート内容

を以下に示す．

Q1 保守作業の対象となったコードクローンの存在をす

でに知っていたか

Q2 どのような保守作業を行ったか

• 集約
• 同時修正
• 位置情報の記録
• その他
本実験では，アンケートの対象者であるマネージャが

コードクローン変更管理システムを用いて，各々のコード

クローンの分類に対して保守作業が必要となるか否かの判

断を行う．そして，実際に開発者に対して保守作業の指示

を出す．

5.1.2 結果と考察

実験の結果，アンケート対象者であるマネージャは，コー

ドクローン変更管理システムを用いて保守作業の対象とな

る 11個のクローンセットを発見することができたことが

分かった．表 1 左部は，保守作業の対象となった各々のク

ローンセットに対するアンケートの回答を示している*7．

Q1に対する回答はすべて “NO”であり，これらのクロー

ンセットは本システムを用いて新たに発見することができ

たものである．

図 6 に，本アンケートで集約の対象となったクローン

セットの例を示す*8．クローンセット 1は，コンテンツの

移動機能（コードクローン 1）とコピー機能（コードクロー

*7 今回の適用実験では，納期が近く集約するためのコストが大きい
と判断されたため，保守作業が実施されなかったクローンセッ
トが存在する．保守実施日が記述されていないクローンセット
は，’12/01/31時点で保守作業が実施されていないものを意味し
ている．

*8 本例では，機密情報保護のため実物のソースコードに対して変数
名の変更などの整形を施している．

ン 2）の 2つのコードクローンから構成されている．これ

らのコードクローンは，呼び出すメソッド名のみが異なっ

ている．また，クローンセット 2 は，最近参照されたコ

ンテンツをリストに追加する機能（コードクローン 1）と

ユーザから指定されたコンテンツをリストに追加する機能

（コードクローン 2）の 2つのコードクローンから構成され

ている．これらのコードクローンは，変数名のみが異なっ

ている．このような呼び出すメソッド名や変数名のみが異

なっているクローンセットは，今後同時修正が必要となる

可能性があり，集約の対象となると考えられる．また，集

約するコストが大きい場合は位置情報の記録が必要である

と考えられる [4]．

図 6 は実際に集約が行われた 2つのクローンセットの例

であるが，他のクローンセットについても，フィードバッ

クから，呼び出すメソッド名や変数名のみが異なっている

ため，今後同時修正が必要となる可能性があると判断され

ている．したがって，マネージャによって今後保守作業に

おいて悪影響を及ぼすと判断されたため，集約，および，

位置情報の記録の対象となった．

上述したように，開発者は本システムを用いて 11個の

保守作業の対象となったクローンセットを発見することが

できた．単一バージョンのソースコードに対してコードク

ローン検出を行う場合，集約が困難であったり，悪影響を

及ぼさないなどの理由から集約が行われなかったクローン

セットも検出される [7]．したがって，以前にも検出され，

すでに保守作業が必要か否か判断されたコードクローン

が多く含まれる可能性がある．図 7 は，本実験における

1日ごとのクローンセット数の遷移と，それぞれのクロー

ンセットの分類数を示している．この図からも，実際に変

更があったクローンセットは最大でも全体の 8.9%であり，

大半が Stable Clone Setに分類されていることが分かる．

Stable Clone Setに分類されたクローンセットに対して再

び保守作業が必要が否かを人手で判断することは冗長に

なり，非効率的であると考えられる．アンケート結果から

c© 2013 Information Processing Society of Japan 889

情報処理学会論文誌 Vol.54 No.2 883–893 (Feb. 2013)

図 6 集約の対象となったクローンセットの例

Fig. 6 Example of a clone set that needs merging.

図 7 クローンセットの分類

Fig. 7 Categorization of clone sets.

も，実際に New Clone Setに分類されたクローンセットが

集約の対象として判断されていることが分かる．本システ

ムを用いて，Stable Clone Set以外に分類された各クロー

ンセットに対してのみ，保守作業が必要か否か判断するこ

とによって，全体のコードクローンの確認コストを削減で

きたと考えられる．

5.2 保守作業の対象となったコードクローンの調査

本実験では，適用期間中に 119 個のクローンセットが

New Clone Setに分類されたが，実際に保守作業の対象と

なったのはその中の 11個である．そこで，より保守作業

の対象となる可能性が高いクローンセットを開発者に提示

できるようにシステムを改善するため，保守作業の対象と

なったコードクローンと，保守作業の対象とはならなかっ

たコードクローンの特徴の違いについて調査を行った．

5.2.1 調査方法

本調査では，Gemini [8], [9]を用いてクローンセットメ

トリクスの抽出を行った．あるクローンセット Sが与えら

れたとき，Geminiで分析することができるクローンセッ

トメトリクスを以下に示す．

c© 2013 Information Processing Society of Japan 890

情報処理学会論文誌 Vol.54 No.2 883–893 (Feb. 2013)

表 2 マンホイットニー U 検定の結果

Table 2 Result of Mann-Whitney U test.

RAD(S) LEN(S) RNR(S) NIF(S) POP(S) DFL(S)

p 値 0.5106 0.2419 0.0368 0.5955 0.2793 0.2283

帰無仮説 採択 採択 棄却 採択 採択 採択

RAD(S)：クローンセット S中のコード片が含まれるファ

イル集合が，ファイルシステムの中でディレクトリ構

造的にどれだけ分散しているかを表す．

LEN(S)：クローンセット S中のコード片のトークン数の

平均値を表す．

RNR(S)：クローンセット S 中のコード片がどの程度非

繰返しであるかを表す．f をクローンセット S 中の

コード片，TOC(f)をコード片 f を構成している字句

の数，TOCrepeated(f)をコード片 f を構成している

字句のうち，繰返し要素の字句の数とする．このとき

RNR(S)は以下の式で表される．

RNR(S) =

(
1 −

∑
f∈S TOCrepeated(f)∑

f∈S TOC(f)

)
× 100

RNR(S)が低い場合，“ソフトウェア開発・保守を行う

視点でコードクローン情報を扱う場合に特に対象とす

る必要がないもの”である可能性が高いことが分かっ

ている [10]．

NIF(S)：クローンセット S 中のコードクローンを所有す

るファイルの数を表す．

POP(S)：クローンセット S 中のコード片単位の要素数

を表す．

DFL(S)：クローンセット S中の全コード片を集約した場

合，減少が予測されるトークン数を表す．

そして，保守作業の対象のクローンセットと保守作業の

対象以外のクローンセットの各々のメトリクス値の分布に

対して違いがあるか否か，マンホイットニー U 検定を用い

て調査した．なお，同時修正が必要であったクローンセッ

トは確認できなかったため，集約の対象となったクローン

セットについてのみ分析を行う．ここでは，“集約対象の

クローンセットと集約対象以外のクローンセットの間でメ

トリクス値による違いがない”という帰無仮説が棄却され

るか否か，有意水準 0.05で片側検定を行った．

5.2.2 調査結果

表 1 の右部に保守作業の対象となったクローンセットの

各々のメトリクス値を示す．また，表 2 に各々のメトリク

ス値におけるマンホイットニー U 検定の結果を示す．

この結果，RNR(S)のみが帰無仮説が棄却され，集約対

象のクローンセットと集約対象以外のクローンセットの間

で違いが大きいことが分かった．図 8 では，集約対象と

なったクローンセットの RNR(S)メトリック値とそれ以外

の RNR(S)メトリック値の分布を比較している．この図か

図 8 RNR (S) メトリックの比較

Fig. 8 Comparison of RNR (S) metric.

ら，RNR(S)のメトリック値が比較的大きいクローンセッ

トが集約の対象として選ばれていることが分かる．開発者

からも，変数宣言の羅列などのコードクローンが多く検出

されているとフィードバックがあった．これらの結果か

ら，RNR(S)メトリック値によるフィルタリングを行うこ

とによって，集約の対象となる可能性が高いクローンセッ

トを開発者に提示することが可能となると考えられる．

6. 関連研究

本研究と同様にコードクローンの履歴を調査する研究と

して，文献 [11]がある．この研究では，クローンセットの

履歴に対してモデルを定義し，長期間にわたって分析する

ことによってコードクローンの存在する期間とその特徴の

関係について調査を行っている．文献 [11]では，分析の

対象となっているのはクローンセットのみであるが，本研

究ではコードクローンも詳細に分類を行っている．また，

本研究はソフトウェア開発者への保守作業の対象となる

コードクローンの情報の提供を目的としている．そのため，

コードクローン変更管理システムの開発を行い，企業で行

われているソフトウェア開発に適用することによって，そ

の有用性を評価している．

また，本研究と同様に，企業のソフトウェア開発に適用

した研究として文献 [10], [12]があげられる．文献 [10]で

は，産業界への適用と意見交換に基づいて，本研究でも利

用した Geminiの改良を行っている．本研究では，ユーザ

である日本電気株式会社の開発者からのフィードバックに

基づいて，コードクローン変更管理システムの有用性の評

価，および，保守作業の対象となったコードクローンの特

徴の調査を行っている．

c© 2013 Information Processing Society of Japan 891

情報処理学会論文誌 Vol.54 No.2 883–893 (Feb. 2013)

7. まとめと今後の課題

本研究では 2バージョン間のコード片の変更履歴に基づ

いたコードクローンの分類手法を提案した．そして分類結

果に基づき，保守作業が必要である可能性があるコードク

ローンの情報を開発者に提供することを目的とした，コー

ドクローン変更管理システムの開発を行った．さらに，実

際に企業で行われているソフトウェア開発に適用し，その

有用性を確かめることができた．

今後の課題として，以下が考えられる．

• 長期にわたる適用と，様々なプロジェクトに対して本
システムの有用性を評価する必要がある．また，コー

ドクローン，クローンセットの分類の妥当性も評価す

る必要がある．

• 今回のアンケート対象者はプロジェクトマネージャ 1

人であったが，他の開発者からのフィードバックも調

査する必要がある．

• 保守作業の対象となる可能性が高いコードクローンの
情報を開発者に提示できるように，システムを改善す

る必要がある．具体的には，RNR(S)メトリック値に

基づいたフィルタリングが考えられる．

謝辞 本研究において様々なご協力をいただいた日本電

気株式会社三橋二彩子氏，岩崎新一氏に深く感謝する．ま

た，本研究は日本学術振興会科学研究費補助金基盤研究

（A）（課題番号：21240002）の助成を得た．

参考文献

[1] 肥後芳樹，楠本真二，井上克郎：コードクローン検出とそ
の関連技術，電子情報通信学会論文誌，Vol.J91-D, No.6,
pp.1465–1481 (2008).

[2] Kamiya, T., Kusumoto, S. and Inoue, K.: CCFinder: A
multilinguistic token-based code clone detection system
for large scale source code, IEEE Trans. Softw. Eng.,
Vol.28, No.1, pp.654–670 (2002).

[3] Bellon, S., Koschke, R., Antoniol, G., Krinke, J. and
Merlo, E.: Comparison and evaluation of clone detection
tools, IEEE Trans. Softw. Eng., Vol.31, No.10, pp.804–
818 (2007).

[4] 井上克郎，楠本真二，神谷年洋：コードクローン検出法，コ
ンピュータソフトウェア，Vol.18, No.5, pp.47–54 (2001).

[5] Krinke, J.: Is Cloned Code More Stable than Non-cloned
Code?, Proc. SCAM ’08, pp.57–66 (2008).

[6] 川口真司，松下 誠，井上克郎：版管理システムを用い
たクローン履歴分析手法の提案，電子情報通信学会論文
誌，Vol.J89-D, No.10, pp.2279–2287 (2006).

[7] Kapser, C. and Godfrey, M.W.: Cloning Considered
Harmful Considered Harmful, Proc. WCRE ’06, pp.19–
28 (2006).

[8] Ueda, Y., Kamiya, T., Kusumoto, S. and Inoue, K.:
Gemini: Maintenance support environment based on
code clone analysis, Proc. METRICS ’02, pp.67–76
(2002).

[9] Higo, Y., Kamiya, T., Kusumoto, S. and Inoue, K.:
Method and Implementation for Investigating Code, In-
formation and Software Technology, Vol.49, No.9-10,

pp.95–98 (2007).
[10] 肥後芳樹，吉田則裕，楠本真二，井上克郎：産学連携に基

づいたコードクローン可視化手法の改良と実装，情報処
理学会論文誌，Vol.48, No.2, pp.811–822 (2007).

[11] Kim, M., Sazawal, V., Notkin, D. and Murphy, G.C.:
An empirical study of code clone genealogies, Proc. SIG-
SOFT/FSE ’05, pp.187–196 (2005).

[12] 吉村健太郎，ガネサンダルマリンガム，ムーティックディ
ルク：プロダクトライン導入に向けたレガシーソフトウェ
アの共通性・可変性分析法，情報処理学会論文誌，Vol.48,
No.8, pp.2482–2491 (2007).

山中 裕樹

平成 24年大阪大学基礎工学部情報科

学科卒業．現在，大阪大学大学院情報

科学研究科博士前期課程 1年．コード

クローン管理に関する研究に従事．

崔 恩瀞

平成 24年大阪大学大学院情報科学研

究科博士前期課程修了．現在，大阪大

学大学院情報科学研究科博士後期課

程 1年．コードクローン管理やリファ

クタリング支援手法に関する研究に

従事．

吉田 則裕 （正会員）

平成 16年九州工業大学情報工学部知

能情報工学科卒業．平成 21年大阪大

学大学院情報科学研究科博士後期課

程修了．同年日本学術振興会特別研究

員（PD）．平成 22年奈良先端科学技

術大学院大学情報科学研究科助教．博

士（情報科学）．コードクローン分析手法やリファクタリ

ング支援手法に関する研究に従事．

c© 2013 Information Processing Society of Japan 892

情報処理学会論文誌 Vol.54 No.2 883–893 (Feb. 2013)

井上 克郎 （フェロー）

昭和 59年大阪大学大学院基礎工学研

究科博士後期課程修了（工学博士）．

同年大阪大学基礎工学部情報工学科助

手．昭和 59～61年ハワイ大学マノア

校コンピュータサイエンス学科助教

授．平成 3年大阪大学基礎工学部助教

授．平成 7年同学部教授．平成 14年大阪大学大学院情報

科学研究科教授．平成 23年 8月より大阪大学大学院情報科

学研究科研究科長．ソフトウェア工学，特にコードクロー

ンやコード検索などのプログラム分析や再利用技術の研究

に従事．

佐野 建樹 （正会員）

平成元年日本電気株式会社入社．平成

21年より同社ソフトウェア生産革新

部シニアエキスパート．ソフトウェア

開発方法論や開発支援ツールに関する

業務に従事．

c© 2013 Information Processing Society of Japan 893

