
Title テキストマイニング技術を応用したメソッドクローン
検出手法の提案

Author(s) 山中, 裕樹; 吉田, 則裕; 崔, 恩瀞 他

Citation 情報処理学会研究報告. ソフトウェア工学研究会報
告. 2013, 2013-SE-182(28), p. 1-8

Version Type VoR

URL https://hdl.handle.net/11094/50224

rights © 2013 Information Processing Society of Japan

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

情報処理学会研究報告
IPSJ SIG Technical Report

テキストマイニング技術を応用した
メソッドクローン検出手法の提案
山中 裕樹1,a) 吉田 則裕2,b) 崔 恩瀞1,c) 井上 克郎1,d)

概要：ソフトウェア保守における問題の 1つとしてコードクローン（ソースコード中に存在する同一また
は類似した部分を持つコード片）が指摘されている．コードクローンを検出し，共通する処理に対して親
クラスへの引上げやライブラリ化といった集約を行うことによって，ソフトウェアの保守性や可読性を向
上させることが可能となる．これまでの研究において様々なコードクローン検出手法が提案されてきたが，
多くの手法がプログラムの構造的な類似性に着目しており，意味的に類似したコードクローンを検出する
ことを目的とした手法は少ない．また，プログラムの意味的な類似性に着目した手法では，検出時間に膨
大な時間がかかるという問題点がある．そこで本研究では，テキストマイニング技術を応用したメソッド
クローン（メソッド単位のコードクローン）を検出する手法を提案する．テキストマイニングは文字列を
対象としたデータマイニングのことであり，自然言語で書かれた文書の分類などに利用される．本手法で
はこの技術を利用し，ソースコード中の識別子や予約語に利用される単語に対して重要度の重み付けを行
うことによって，各メソッドの特徴ベクトルを計算する．そして，特徴ベクトル間の類似度を求めること
によってメソッドクローンの検出を行う．本手法によって，類似した処理を行うメソッドを高速に検出す
ることが可能であると考えられる．

キーワード：コードクローン，ソフトウェア保守，テキストマイニング

Method Clone Detection Using Text Mining Techniques

Abstract: Code clone (i.e., code fragment that has identical or similar fragment in source code) is one of
the major problems for software maintenance. Software developers can increase the maintainability and
the readability of source code by merging them (e.g., create library, pull up method). At present, a lot of
techniques have been done on the detection of code clones in source code. However, most of them focus
on structural similarities. Moreover, the detection techniques that focus on semantic similarities lack the
scalability for large-scale source code. In this study, we propose a technique to detect method clones using
text mining techniques (i.e., data mining technique intended for natural language text). In our approach,
we generate feature vectors for each method by weighting words in identifier and syntactic keyword based
on the important degree of them. And then, we detect method clones based on the similarity among the
feature vectors. We believe that our technique can perform the scalable detection of similar method clones
from source code.

Keywords: Code Clone, Software Maintenance, Text Mining

1 大阪大学
Osaka University

2 奈良先端科学技術大学院大学
Nara Institute of Science and Technology

a) y-yuuki@ist.osaka-u.ac.jp
b) yoshida@is.naist.jp
c) ejchoi@ist.osaka-u.ac.jp
d) inoue@ist.osaka-u.ac.jp

1. まえがき
ソフトウェア保守における問題の一つとしてコードク
ローンが指摘されている．コードクローンとは，ソース
コード中に存在する同一または類似した部分を持つコー
ド片のことであり，コピーアンドペーストなどの様々な理
由により生成される [1]．一般的に，コードクローンの存

c© 2013 Information Processing Society of Japan 1

Vol.2013-SE-182 No.28
2013/10/25

情報処理学会研究報告
IPSJ SIG Technical Report

在はソフトウェアの保守を困難にするといわれている．例
えば，あるコード片に対して変更を加える場合，もしその
部分がコードクローンであれば，対応する全てのコードク
ローンに対しても同様の変更が必要であるか否かの検討を
行わなければならない．コードクローンを検出し，共通す
る処理に対して親クラスへの引上げやライブラリ化といっ
た集約を行うことによって，ソフトウェアの保守性や可読
性を向上させることが可能となる [2], [3]．
これまでに様々なコードクローン検出手法が提案されて
きたが，その多くの手法がプログラムの構造的な類似性の
みに着目している [4]．そのため，同一の処理を実装してい
るにも関わらず，for文と while文の違いなど構文上の実装
が異なる場合，コードクローンとして検出することができ
る手法は少ない．また，プログラムの意味的な類似性に着
目した手法もいくつか提案されているが，検出時間に膨大
な時間がかかるという問題点がある [5], [6], [7]．
そこで本研究では，テキストマイニング技術を応用する
ことによって，識別子名などの情報から意味的に処理が類
似したメソッド単位のコードクローン（以下，メソッドク
ローン）を検出する手法を提案する．テキストマイニング
とは，テキストデータを対象としたデータマイニングのこ
とであり，自然言語で書かれた文書の分類などに利用され
る [8]．なお，一般的なコードクローン検出手法ではコード
片単位の検出を行うが，本研究ではメソッド単位の検出を
行う．コード片単位で検出を行う場合，処理の途中や曖昧
なところで終了するコード片など，集約を行う事が困難で
あるコードクローンが多く検出されることがある．一方，
メソッドでは単一または少数の機能を実装しているため，
処理内容がまとまっている．従って，検出の単位をメソッ
ドとすることによって，コード片単位で検出を行う場合に
比べて集約を行うことが容易であると考えられる．
本手法では，テキストマイニング技術を用いて，ソー
スコード中の識別子名や構文に用いられる単語に対して
重み付けを行う事によって各メソッドの特徴ベクトルの
計算を行う．そして，特徴ベクトル間の類似度を計算す
ることによってメソッドクローンの検出を行う．また，
LSH(Locality-Sensitive Hashing)アルゴリズム [9]を用い
て特徴ベクトルをあらかじめクラスタリングしておくこと
によって，類似度の計算コストを削減し，既存手法に比べ
て高速な検出を可能とした．
以降，2節では，本研究の関連研究として，既存のコー
ドクローン検出手法とテキストマイニング技術について述
べる．3節では，本研究で提案するメソッドクローン検出
手法について述べる．4節では，本手法の評価実験として，
検出精度と検出時間の評価について述べる．最後に，5節
でまとめと今後の課題について述べる．

2. 関連研究
本節では，本研究の関連研究として，既存のコードク
ローン検出手法，および，テキストマイニング技術につい
て述べる．

2.1 コードクローン検出
これまでの研究において様々なコードクローン検出手法
が提案されてきたが，そのどれもが異なったコードクロー
ンの定義を持つ．Royらは，コードクローンを以下の 4つ
のタイプに分類している [10]．
タイプ 1: 空白の有無，レイアウト，コメントの有無など
の違いを除き完全に一致するコードクローン

タイプ 2: タイプ 1の違い加えて，変数名などのユーザ定
義名，変数の型などが異なるコードクローン

タイプ 3: タイプ 2の違いに加えて，文の挿入や削除，変
更などが行われたコードクローン

タイプ 4: 同一の処理を実行するが，文の並び替えなど構
文上の実装が異なるコードクローン
コードクローン検出には，主に構文の類似性に着目した
検出手法 [11], [12], [13], [14]と意味的な類似性に着目した
検出手法 [5], [6], [7]が存在する．構文の類似性に着目した
手法では主にタイプ 1からタイプ 3までのコードクローン
が検出の対象であるが，意味的な類似性に着目した手法で
は全タイプのコードクローンの検出が可能である．以降，
それぞれの手法について説明する．
2.1.1 構文の類似性に着目した検出手法
構文の類似性に着目した手法として，トークンベースの検
出手法 [11], [12]や，抽象構文木を用いた検出手法 [13], [14]

が存在する．
トークンベースの検出ツールの代表として，Kamiyaら
が開発したCCFinder[11]が挙げられる．この手法では，字
句解析を行うことによってソースコードをトークン列に変
換し，変数名や関数名などのユーザ定義名を同一のトーク
ンに変換する．そして，閾値以上の長さの共通トークン列
を探索することによって，コードクローンの検出を行う．
従って，タイプ 2までのコードクローンの検出を行うこと
が可能である．
また，抽象構文木を用いた検出ツールの代表として，

Jiangらが開発したDECKARD[13]が挙げられる．抽象構
文木とはソースコードの構文構造を木構造で表したグラフ
のことを意味する．この手法では，構文解析を行うことに
よってソースコードを抽象構文木に変換し，類似した部分
木を探索することによってコードクローンの検出を行う．
従って，タイプ 3までのコードクローンの検出を行うこと
が可能である．
これらの手法では，比較的高速にコードクローンの検出

c© 2013 Information Processing Society of Japan 2

Vol.2013-SE-182 No.28
2013/10/25

情報処理学会研究報告
IPSJ SIG Technical Report

���

��

��

�	
��

���� �

���

��� ���

��������

�������	

�

�

�

��������

�������

�������	

��������
�������

���

��

��

�	
��

���� �

��� �

��� ���

�������

�������	
��������
��������

	
�������

	
�������

�

�

�

�

�

�

������

��	

��
 ����� ����

���� ��������
��������

���� �������	
��������

���� �������	
��������

���� ��������
���������

��� ��� ���

������� ������
�����

� �!

��������

��	

"#$%&'

������

"#$%('

������

�)*

"#$%+'

������

�� �!,�-

"#$%.'

������/�

���
�)*

},,,{ 321 …�aaa

},,,{
321

…�ccc

},,,{
321

…�bbb

図 1 検出手法の概要
Fig. 1 Overview of our detection technique

を行うことができる．しかし，プログラムの構造的な類似
性にのみ着目しているため，for文や while文の置き換えと
いったタイプ 4のコードクローンの検出を行うことが困難
である．
2.1.2 意味的な類似性に着目した検出手法
意味的な類似性に着目した手法として，プログラム依存
グラフを用いた検出手法 [5], [6]や，メモリベースの検出手
法 [7]などが存在する．
プログラム依存グラフを用いた検出ツールの代表とし
て，肥後らが開発した Scorpio[5]が挙げられる．プログラ
ム依存グラフとは，プログラム内の要素間に存在する依存
関係を表した有効グラフのことを意味する．この手法で
は，ソースコードからプログラム依存グラフを構築し，類
似した構造の部分グラフを探索することによってコードク
ローンの検出を行う．
また，メモリベースの検出手法の代表として，Kimらが
開発したMeCC[7]が挙げられる．この手法では，静的解
析を行うことによって，各手続きが終了した時点における
抽象的なメモリの状態を予測する．そして，それらの状態
の比較を行い，コードクローンの検出を行う．
これらの手法では，タイプ 4までのコードクローンの検
出を行うことが可能である．しかし，プログラム依存グラ
フを用いた手法では，グラフの頂点が膨大な数となるため，
コードクローンの検出に時間がかかる．また，メモリベー
スの手法においても，メモリの状態の予測を行うための静

的解析に膨大な時間がかかる．
本研究では，識別子名などに基づいてソースコード中の
各メソッドを特徴ベクトルに変換し，それらの類似度を計
算することによってタイプ 4までのコードクローンの検出
を行う．また，あらかじめ特徴ベクトルをクラスタリング
しておくことによって，既存のタイプ 4のコードクローン
検出手法に比べて高速な検出を行うことが可能である．

2.2 テキストマイニング
テキストマイニングとは，テキストデータを対象にした
データマイニングのことである．テキストマニングでは，
定型化されていないドキュメントの集まりを自然言語解析
の手法を用いて単語やフレーズに分割し，それらの出現頻
度や相関関係を分析することによって有用な情報を抽出す
る [8]．
Uramoto らは，テキストマイニングを行い，互いに類
似した内容が記載されているドキュメントの分類を行っ
ている [15]．この手法では，自然言語処理解析を行うこと
によって，各ドキュメントから単語の抽出を行う．次に，
単語の出現頻度や希少さに基づいて，ドキュメント中に存
在する各単語に対して重要度の重み付けを行い，それらの
値を特徴量として各ドキュメントを特徴ベクトルに変換
する．そして，特徴ベクトル間の類似度を計算することに
よって，互いに内容が類似したドキュメントのクラスタリ
ングを行っている．

c© 2013 Information Processing Society of Japan 3

Vol.2013-SE-182 No.28
2013/10/25

情報処理学会研究報告
IPSJ SIG Technical Report

表 1 識別子名の分割例
Table 1 Examples of segmentation of identifier

識別子 ワードへの分割
value of item value, of, item

itemValue item, value

Uramotoらの手法では分類の対象が新聞であるが，本研
究ではソースコード中の各メソッドを対象とする．すなわ
ち，各メソッドに存在する識別子名や予約語に利用される
単語に対して重み付けを行い，それらの値を特徴量として
利用する．

3. メソッドクローン検出手法
本節では，本研究で提案するメソッドクローン検出手法
の概要について説明する．本手法ではテキストマイニング
技術を応用することによって，ソースコード中のワードか
ら意味的に処理が類似したメソッドクローンを高速に検出
することを目的とする．ここでワードとは，以下の 2つを
対象とする．
• 変数や関数などに付けられた識別子名を構成する単語
• 条件文や繰り返し文などの構文に利用される予約語を
構成する単語
図 1は本手法の概要を表している．本手法ではソース
コードを入力とし，クローンペア（互いに処理の内容が類
似したメソッドの対）の集合をリストとして出力する．本
手法は以下の 4つのステップから構成される．
STEP1: ソースコード中の各メソッドからワードの抽出
を行う．

STEP2: STEP1で抽出したワードに重み付けを行うこ
とによって，各メソッドの特徴ベクトルを計算する．

STEP3: LSHアルゴリズム [9]を用いて，STEP2で求め
た特徴ベクトルのクラスタリングを行う．

STEP4: STEP3で求めたクラスタにおいて，特徴ベク
トル間の類似度の計算を行い，メソッドクローンを検
出する．
以降の節で，それぞれのステップの詳細について説明
する．

3.1 STEP1:ワードの抽出
まず最初に，ソースコードの各メソッドに含まれる識別
子名や構文に利用される予約語から，ワードの抽出を行う．
識別子名が複数の単語から構成される場合，以下の方法
でワード単位に分割する．
• ハイフンやアンダースコアなどの区切り記号（デリミ
タ）による分割

• 識別子名中の大文字になっているアルファベットによ
る分割

識別子名の分割例を表 1に示す．また，2文字以下の識別

子名に対してはそれらをまとめて 1つのワードとして扱う．
この理由は，繰り返し文などによく利用される “i”や “j”と
いった意味情報が込められない変数を全て同一のものとし
て扱うためである．このように識別子の情報を利用するこ
とによって，各メソッドが実装する機能を表すことができ
ると考えられる．これまでの研究においても，識別子にそ
の実態を表す名前を付けることがソフトウェアの品質を保
つ上で重要であることが指摘されている [16], [17], [18]．
また，構文に利用される単語とは，条件文に用いられる

“if”や “switch”，繰り返し文に用いられる “for”や “while”

といった予約語のことを示しており，それらをワードとし
て扱う．

3.2 STEP2:特徴ベクトルの計算
次に，STEP1で抽出したワードに重み付けを行うこと
によって，各メソッドから特徴ベクトルの計算を行う．こ
こでは，TF-IDF法 [19]を利用して各ワードの重みを計算
し，その値を特徴量として利用する．TF-IDF法はテキス
トマイニングにおいて，文書の類似性の判定や情報抽出に
利用されている．TF-DIF法による値は tf 値（メソッド中
のワードの出現頻度）と idf 値（メソッド集合中のワード
の希少さ）の積で与えられる．ワード wの重み vw の計算
式を以下に示す．

tfw =
メソッド中のワード wの出現回数

メソッド中に出現する全ワードの出現回数の合計

idfw = log
全メソッド数

ワード wが出現するメソッド数
vw = tfwidfw

本手法では，全メソッド中の各ワードに対して重要度の重
みを計算し，それらを特徴量として用いることによって，
特徴ベクトルを求める．従って，各メソッドの特徴ベクト
ルの次元はソースコード中に存在する全ワードの数となる．

3.3 STEP3:特徴ベクトルのクラスタリング
このステップでは，STEP2で計算した各メソッドの特
徴ベクトルに対してクラスタリングを行うことによって，
クローンペアと成り得る候補を絞ることを目的とする．
ここでは，近似最近傍探索アルゴリズムの一種である

LSH(Locality-Sensitive Hashing)アルゴリズム [9]を用い
て特徴ベクトルのクラスタリングを行う．LSHアルゴリ
ズムは，高次元ベクトル空間において，ハッシュ関数を用
いることによって確率的に近傍点探索を高速に行う手法で
ある．なお，本手法では LSHアルゴリズムの実装である
E2LSH*1[20]を利用している．
データセットの次元を d，データセットの数を n，確率
に関するパラメータを ρとしたとき，LSHのクラスタリ
*1 http://www.mit.edu/~andoni/LSH/

c© 2013 Information Processing Society of Japan 4

Vol.2013-SE-182 No.28
2013/10/25

情報処理学会研究報告
IPSJ SIG Technical Report

表 2 ベンチマークによる検出精度の評価
Table 2 Evaluation of detection accuracy using benchmark set

　 タイプ 1 タイプ 2 タイプ 3 タイプ 4

ベンチマーク 3 4 5 4

検出結果 3 2 5 4

ングの時間計算量は O(dnρ log n) と表される．一方，全メ
ソッドに対して特徴ベクトル間の類似度を計算する場合の
時間計算量は O(dn2)となる．従って，本ステップであら
かじめクラスタリングを行い，クローンペアと成り得る候
補を絞ることによって，検出時間にかかる計算コストを削
減できると考えられる．

3.4 STEP4:特徴ベクトルの類似度の計算
最後に，STEP3で求めた各クラスタ中のメソッドの対
に対して，コサイン類似度を用いてクローンペアであるか
否かの判定を行う．コサイン類似度は多次元ベクトルの類
似度を測定するものであり，次元が dである 2つの特徴ベ
クトル ~a,~b間の類似度は以下の式で表すことができる．

sim(~a,~b) = cos(~a,~b) =

∑d

i=1 aibi
√

∑d

i=1 ai
2

√

∑d

i=1 bi
2

TF-IDF法の計算式から分かるように，特徴量は常に正の
値となるため，コサイン類似度は 0から 1の範囲となる．
もし，コサイン類似度が閾値以上であれば，それら 2つの
メソッドはクローンペアであると判定する．本手法では，
類似度の閾値として 0.9を利用している．
このように，テキストマイニング技術を応用して各メ
ソッドに出現するワードから特徴ベクトルの計算を行い，
それらの類似度を求めることによって，タイプ 4のメソッ
ドクローンの検出が可能となる．本手法では，各クローン
ペアに対して類似度を計算しているため，類似度によるメ
ソッドクローンのランキング付けも可能である．また，あ
らかじめ特徴ベクトルのクラスタリングを行い，クローン
ペアと成り得る候補を絞ることによって，より高速なメ
ソッドクローンの検出を実現できる．

4. 評価実験
本節では，3節で述べたメソッドクローン検出手法の評
価実験について述べる．本実験では，ベンチマークを用い
た検出精度の評価と，検出時間の評価を行った．4.1節と
4.2節で，それぞれの詳細な実験手法と結果について述べ
る．また，4.3節では，MeCC[7]と比較を行い，本実験の
考察について述べる．

4.1 検出精度
検出精度の評価では，Royらのベンチマーク [10]を用い
た実験と，OSSへの適用実験を行った．なお，メソッドク

表 3 提案手法の適用対象の OSS

Table 3 OSS for application of our detection technique

OSS 規模 概要
Apache Ant 109KLOC アプリケーションサーバ
ArgoUML 192KLOC UML モデリングツール

表 4 OSS を用いた検出精度の評価
Table 4 Evaluation of detection accuracy using OSS

OSS 検出クローンペア数 適合率 再現率
Apache Ant 474 個 0.92 0.62

ArgoUML 880 個 0.96 0.55

表 5 メソッドクローンのタイプ別の検出数
Table 5 Statistics of method clones by type

　 タイプ 1 タイプ 2 タイプ 3 タイプ 4

Apache Ant 56 139 220 22

ArgoUML 222 219 371 33

ローンとして検出される類似度の閾値は，本手法のデフォ
ルト値である 0.9を利用した．
4.1.1 Royらのベンチマークを用いた評価
最初に，Royらのベンチマーク [10]を用いた検出精度の
評価実験について説明する．このベンチマークでは，タイ
プ 1からタイプ 4までの合計 16個のクローンペアが用意
されており，文献 [7]の評価実験でも利用されている．
表 2は，ベンチマークで用意されているクローンペアの
タイプ毎の個数と，本手法で検出できたクローンペアのタ
イプ毎の個数を示している．結果として，全体で 16個中
14個のクローンペアを検出することができた．また，タイ
プ 1，タイプ 3，タイプ 4において，本手法を用いて全て
のクローンペアを検出することを確認できた．タイプ 4で
は，文の並び替えや for文と while文の繰り返し処理文の
置き換えが存在するクローンペアが用意されているが，本
手法を用いることによってそれらをコードクローンとして
検出することができた．
一方で，タイプ 2では，2つのクローンペアの検出を行
うことができなかった．これらのクローンペアは，元の変
数名が 1文字のアルファベットに省略されており，意味を
もたない変数名に変換されていたため，本手法ではコード
クローンとして検出できなかったと考えられる．しかし，
実際のソフトウェア開発では，変数名を意味のないものに
置換する場合は少ないと考えられる．
4.1.2 OSSへの適用
次に，Java言語で実装された 2つのOSS（表 3）に対し
て本手法を適用し，Temperoらのベンチマーク [21]を用い
て適合率と再現率の評価を行った．適合率は全検出結果に
対して，ベンチマークで正解集合と判定されているクロー
ンペアの割合を表している．また，再現率は，ベンチマー
ク中のクローンペアに対して，本手法によって検出された

c© 2013 Information Processing Society of Japan 5

Vol.2013-SE-182 No.28
2013/10/25

情報処理学会研究報告
IPSJ SIG Technical Report

(a) 変数の null チェック有り

(b) 変数の null チェック無し

図 2 タイプ 3 のメソッドクローンの例（ArgoUML）
Fig. 2 Examples of detected type 3 method clones in ArgoUML

(a) if 文を用いた条件分岐処理

(b) 三項演算子を用いた条件分岐処理

図 3 タイプ 4 のメソッドクローンの例（Apache Ant）
Fig. 3 Examples of detected type 4 method clones in Apache

Ant

クローンペアの割合を表している．
結果を表 4に示す．実験の対象とした 2つの OSSに対
して再現率は 6割前後であるが，適合率は 9割を超えてお
り，誤検出をほとんど含まずメソッドクローンを検出する
ことができた．
さらに，検出精度の評価で正解集合と判定したクローン
ペアを手作業で各タイプに分類した．結果を表 5に示す．
この表から分かるように，本手法を用いることによって，

��������	

���� �
�������������
�����
���������������� ���

	

���� ���������
��

�

�

�

�
������
���
����
������
�����������������������

�����������	�����������	�����������	�����������	
�����������
�����������
�����������
�����������
��
��
��
��

���� �
�!�
����������

��������"��

������������������������

��
����
����
����
����

����
������
������
������
���	�	�	�	����������������������������
��
��
��
��

���
����
����
����
���
�����
�����
�����
�����

 ����	������ ����	������ ����	������ ����	������

����!�����!�����!�����!�

""""

""""

#��
���

�

�

�

$%

&%

�

�

�

'%

$(%

$$%

$&%

$)%

$*%

$+%

$,%

$-%

$.%

$'%

&(%

�

�

�

(a) while 文を用いた繰り返し処理

��������	

���� �
���������� ���
���������������� ���

	

���� ���������
��

�

�

�

�
������
���
����
������
���������������������

���� �
�!�
����������

��������"��

��������������������������	
������
�
�������������	
������
�
�������������	
������
�
�������������	
������
�
���

������������������������
���
	�	������
���
	�	������
���
	�	������
���
	�	��������������������������

��
�����
�	��
�����
�	��
�����
�	��
�����
�	����

��	�����	�����	�����	���

����

����

#��
������

�

�

�

$%

&%

�

�

�

'%

$(%

$$%

$&%

$)%

$*%

$+%

$,%

$-%

$.%

�

�

�

(b) for 文を用いた繰り返し処理

図 4 タイプ 4 のメソッドクローンの例（ArgoUML）
Fig. 4 Examples of detected type 4 method clones in ArgoUML

タイプ 1からタイプ 4までの全てのメソッドクローンの検
出を行うことができた．
図 2は，本手法によって検出したタイプ 3のメソッド
クローンの例である．図 2(a)では変数 listenerListの null

チェックが行われているが，図 2(b)では行われていない．
この例のように，本手法を用いて nullチェック漏れなど，
不具合に直接関わるメソッドクローンを検出できることを
確認できた．
また，検出されたタイプ 4のメソッドクローンとしては，
文の並び替え，if文と三項演算子を用いた条件分岐処理の
置き換え，for文と while文を用いた繰り返し処理の置き
換えなどの違いが存在するメソッドクローンを検出するこ
とができた．図 3，図 4に本手法で検出したタイプ 4のメ
ソッドクローンの例を示す．

c© 2013 Information Processing Society of Japan 6

Vol.2013-SE-182 No.28
2013/10/25

情報処理学会研究報告
IPSJ SIG Technical Report

表 6 検出時間の評価
Table 6 Evaluation of detection time

OSS 規模 検出時間（パラメータ計算有） 検出時間（パラメータ計算無）
Python 435KLOC 294 秒 83 秒

Apache HTTPD 343KLOC 213 秒 68 秒
PostgreSQL 937KLOC 447 秒 196 秒

図 3は，条件分岐処理が置き換わっている例である．図
3(a)では if-else文を用いて標準出力と標準エラー出力の条
件分岐処理を実装しているが，図 3(b)では三項演算子を
用いて条件分岐処理を実装している．図 4は，繰り返し岐
処理が置き換わっている例である．図 4(a)では 13-19行
目で while文を用いて繰り返し処理を実装しているが，図
4(b)では 12-17行目で for文を用いて全く同一の繰り返し
処理を実装している．これらの例のように，本手法を用い
て，同一または類似している処理を実装しているにも関わ
らず，構文上の実装が異なるメソッドクローンを検出でき
ることを確認できた．

4.2 検出時間
検出時間の評価として，本実験では，MeCC[7]のスケー
ラビリティの評価で用いられている C言語で実装された
3つの OSS（Python，Apache HTTPD，PostgreSQL）に
対して適用を行った．なお，本実験は以下のワークステー
ションの下で行った．
• OS: Windows 7 64-bit

• CPU: Intel Xeon 2.40GHz

• RAM: 16.0GB

結果を表 6に示す．表中のパラメータ計算とは，特徴ベ
クトルのクラスタリングで利用している E2LSHに対する
ものである．E2LSHは LSHのパラメータを自動的に決定
する機能を持つ．この機能はデータセットの中からいくつ
かのデータをランダムに選択し，その値の傾向を見て適当
なパラメータを自動的に設定する．従って，1つの適用対
象に対してパラメータの値を一度計算すれば，その後の検
出においてもその値を再利用することが可能であると考え
られる．
結果として，パラメータ計算を行う場合において，500

秒以下でメソッドクローンを検出できることを確認でき
た．また，パラメータ計算を行わない場合においては，全
ての OSSに対して 200秒以下でメソッドクローンを検出
できることを確認できた．

4.3 考察
本実験の考察として，本手法同様にタイプ 4のメソッド
クローンの検出を目的とするMeCC[7]と比較を行った，
検出精度の評価において，本手法では，Royらのベンチ
マークを用いた実験で 16個中 14個のクローンペアを検出

することができた（表 2）．また，OSSへの適用実験では適
合率が 9割以上と高い値であることがわかった（表 4）．一
方MeCCでは，Royらのベンチマークを用いた実験で 16

個 15個のクローンペアの検出に成功している．しかし，3

つのOSSに対して適用実験を行っているが，適合率は全て
9割未満と本手法に比べて低い．本手法では集約の対象と
なるメソッドクローンを効率よく開発者に提示することが
目的であるため，適合率が高いことは非常に重要である．
従って，本手法の検出精度は高いと言える．
また，検出時間の評価では，LSHアルゴリズムのパラ
メータを計算する場合で 500秒以下，パラメータの計算を
行わない場合においては 200秒と現実的な時間でメソッド
クローンを検出できることを確認できた（表 6）．MeCC

における評価実験と本手法の実行環境は異なっているが，
MeCCでは 3つの OSSに対して静的解析に 1時間以上か
かるため，本手法は高速にクローン検出を行うことが可能
であると言える．
ただし，本実験では検出精度の評価に，Java言語で実装
された 2つの OSSに対してのみ適用を行っている．その
ため，他の言語で実装された OSSに対しても適用し，検
出精度の評価を行う必要がある．また，検出時間の評価に
ついても，さらに規模が大きい OSSに対して適用を行い，
評価を行う必要がある．

5. まとめと今後の課題
本研究では，テキストマイニング技術を応用したメソッ
ドクローン検出手法の提案を行った．本手法では，ソース
コード中の各ワードに対して TF-IDF法を用いて重みを計
算し，それらを特徴量として各メソッドの特徴ベクトルを
計算する．そして，特徴ベクトル間の類似度を計算するこ
とによって，意味的に処理内容が類似したメソッドクロー
ンの検出を行う．また，LSHアルゴリズムを用いてあらか
じめ特徴ベクトルのクラスタリングを行うことによって，
高速なメソッドクローンの検出を実現した．
評価実験では，検出精度の評価として，Royらのベンチ
マークと Java言語で実装された 2つの OSSに対して適用
を行い，高い精度で検出できることを確認した．さらに，
繰り返し処理や条件分岐処理の実装が異なっているタイプ
4のメソッドクローンの検出を行う事を確認できた．また，
C言語で実装された 3つの OSSに対して検出時間の評価
を行い，既存手法に比べて高速にメソッドクローンを検出

c© 2013 Information Processing Society of Japan 7

Vol.2013-SE-182 No.28
2013/10/25

情報処理学会研究報告
IPSJ SIG Technical Report

できることを確認できた．
今後の課題として，以下が挙げられる．
• 再現率の精度を向上させる必要がある．具体的には，
類義語や同位語の関係を用いたワードのクラスタリン
グや，ワードの品詞による重み付けを行うことによっ
て，リネームが行われた場合のメソッドクローンの検
出精度を向上させる．

• 現状では Java言語と C/C++言語にのみ対応してい
るが，手法を拡張させて COBOLなど他の言語にも対
応する必要がある．

• 他の OSSに対して適用し，既存手法と比較しながら
本手法の有用性を評価する必要がある．
謝辞 本研究は JSPS科研費 25220003，21240002の助
成を得たものである．

参考文献
[1] 肥後芳樹，楠本真二，井上克郎：コードクローン検出とそ

の関連技術，電子情報通信学会論文誌，Vol. J91-D, No. 6,
pp. 1465–1481 (2008).

[2] Fowler, M.: Refactoring: improving the design of exist-

ing code, Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA (1999).

[3] 肥後芳樹，神谷年洋，楠本真二，井上克郎：コードクロー
ンを対象としたリファクタリング支援環境，電子情報通
信学会論文誌，Vol. 88, No. 2, pp. 186–195 (2005).

[4] Rattan, D., Bhatia, R. and Singh, M.: Software clone de-
tection: a systematic review, Information and Software

Technology, Vol. 55, pp. 1165–1199 (2013).

[5] 肥後芳樹，楠本真二：プログラム依存グラフを用いたコー
ドクローン検出法の改善と評価，情報処理学会論文誌，
Vol. 51, No. 12, pp. 2149–2168 (2010).

[6] Komondoor, R. and Horwitz, S.: Using slicing to iden-
tify duplication in source code, Proceedings of the 8th

International Symposium on Static Analysis, SAS ’01,
pp. 40–56 (2001).

[7] Kim, H., Jung, Y., Kim, S. and Yi, K.: MeCC: mem-
ory comparison-based clone detector, Proceedings of the

33rd International Conference on Software Engineer-

ing, ICSE ’11, pp. 301–310 (2011).

[8] Hearst, M. A.: Untangling text data mining, Proceed-
ings of the 37th annual meeting of the Association for

Computational Linguistics on Computational Linguis-

tics, ACL ’99, pp. 3–10 (1999).

[9] Indyk, P. and Motwani, R.: Approximate nearest neigh-
bors: towards removing the curse of dimensionality, Pro-
ceedings of the thirtieth annual ACM Symposium on

Theory of Computing, STOC ’98, pp. 604–613 (1998).

[10] Roy, C. K., Cordy, J. R. and Koschke, R.: Compari-
son and evaluation of code clone detection techniques
and tools: a qualitative approach, Science of Computer

Programming, Vol. 74, No. 7, pp. 470–495 (2009).

[11] Kamiya, T., Kusumoto, S. and Inoue, K.: CCFinder: a
multilinguistic token-based code clone detection system
for large scale source code, IEEE Transactions on Soft-

ware Engineering, Vol. 28, No. 7, pp. 654–670 (2002).

[12] Li, Z., Lu, S., Myagmar, S. and Zhou, Y.: CP-Miner:
Finding Copy-Paste and Related Bugs in Large-Scale
Software Code, IEEE Transactions on Software Engi-

neering, Vol. 32, No. 3, pp. 176–192 (2006).
[13] Jiang, L., Misherghi, G., Su, Z. and Glondu, S.:

DECKARD: scalable and accurate tree-based detection
of code clones, Proceedings of the 29th International

Conference on Software Engineering, ICSE ’07, pp. 96–
105 (2007).

[14] Baxter, I. D., Yahin, A., Moura, L., Sant’Anna, M. and
Bier, L.: Clone detection using abstract syntax trees,
Proceedings of the International Conference on Soft-

ware Maintenance, ICSM ’98, pp. 368–377 (1998).

[15] Uramoto, N. and Takeda, K.: A method for relating
multiple newspaper articles by using graphs, and its ap-
plication to Webcasting, Proceedings of the 36th Annual

Meeting of the Association for Computational Linguis-

tics, ACL ’98, pp. 1307–1313 (1998).

[16] Kernighan, B. W. and Pike, R.: The practice of pro-

gramming, Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA (1999).

[17] Hunt, A. and Thomas, D.: The pragmatic programmer:

from journeyman to master, Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA (1999).

[18] McConnell, S.: Code complete, Second Edition, Mi-
crosoft Press, Redmond, WA, USA (2004).

[19] 徳永健伸：情報検索と言語処理，東京大学出版会 (1999).

[20] Andoni, A. and Indyk, P.: Near-optimal hashing algo-
rithms for approximate nearest neighbor in high dimen-
sions, Communications of the ACM, Vol. 51, No. 1, pp.
117–122 (2008).

[21] Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J.,
Lumpe, M., Melton, H. and Noble, J.: The qualitas cor-
pus: a curated collection of Java code for empirical stud-
ies, Proceedings of the 2010 Asia Pacific Software En-

gineering Conference, APSEC ’10, pp. 336–345 (2010).

c© 2013 Information Processing Society of Japan 8

Vol.2013-SE-182 No.28
2013/10/25

