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Abstract
In this paper we prove the existence, uniqueness and stability of solutions of an

inverse problem to a time-dependent Ginzburg–Landau modelfor superconductivity
with the final overdetermination.

1. Introduction

We consider an inverse problem of the following Ginzburg–Landau equations for
superconductivity under the Coulomb gauge:

� t C i�k� C �
i

k
r C A

�2 C (j j2 � 1) D 0,(1.1)

At Cr� C curl2 AC Re

��
i

k
r C  A

� N � D curl H ,(1.2) Z
� � dx D 0, div AD 0 in � � (0, T)(1.3)

with boundary and initial conditions

r � � D 0, A � � D 0, curl A� � D H � � on �� � (0, T),(1.4)

 ( � , 0)D  0, A( � , 0)D A0 in � � R3(1.5)

and the final overdetermination

(1.6) A(x, T) D �(x).

Here� � R3 is a bounded and simply connected domain with smooth boundary ��,� is the unit outward normal vector of��, i D p�1, N denotes the complex con-
jugate of , Re WD ( C N )=2. Also,  , A and � are C-valued, R3-valued and
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R-valued functions, and they are the order parameter, the magnetic potential and the
electric potential, respectively. Moreover,H (x) is the applied magnetic field which is
to be determined,�, k are the Ginzburg–Landau positive constants andj j2 is the
density of superconducting carriers. In (1.1)–(1.6), the unknown functions are , A,� and H (x).

For given initial data 0 2 H1(�) \ L1(�), A0 2 H1(�), Chen, Elliott, Tang
and Du [2, 3, 5, 15] proved the existence and uniqueness of global strong solutions
to (1.1)–(1.5) in the case of Coulomb and Lorentz as well as temporal gauges. The
regularity of solutions has been studied by Liang [10].

For given initial data 0 2 H1(�), A0 2 H1(�), Tang and Wang [16] studied
the Coulomb gauge case and proved the existence and uniqueness of strong solutions
to (1.1)–(1.5). Very recently, Fan and Jiang [6] proved the existence of global weak
solutions when ( 0, A0) 2 L2(�) � L2(�) in the case of Coulomb gauge or Lorentz
gauge, which answered an open problem in [16]. Zaouch [18] proved the existence of
time-periodic solutions to (1.1)–(1.4). Phillips and Shin[12], Chen and Hoffmann [4]
proved the existence and uniqueness of classical solutionsto the non-isothermal models
for superconductivity.

In this paper, we study the nonlinear inverse problem consisting of finding a set
of the functionsf , A, �, Hg satisfying (1.1)–(1.6). This is an inverse problems with
the final overdetermination. There are many studies on inverse problem for final over-
determination for parabolic equations and Navier–Stokes equations [1, 7, 8, 9, 13, 14].

Unless otherwise stated, we always assume
(H1)  0 2 H2(�), j 0j � 1 in �, r 0 � � D 0 on ��,
(H2) A0 2 H2(�), div A0 D 0 in �, A0 � � D 0, curl A0 � � D H � � on ��,
(H3) � 2 H2(�), div � D 0 in �, � � � D 0, curl� � � D H � � on ��,
through this paper.

We first give the existence and uniqueness result to the direct problem (1.1)–(1.5).

Theorem 1.1. Let  0 2 H1(�), j 0j � 1 in �, A0 2 H1(�), div A0 D 0 in�, A0 � � D 0 on ��, H 2 L2(�). Then there exists a unique solution( , A, �) to
(1.1)–(1.5) which satisfies8<

:
 2 L1((0, T)I H1(�)) \ L2((0, T)I H2(�)), t 2 L2(� � ((0, T))),j j � 1 in � � (0, T),8<

:
A 2 L1((0, T)I H1(�)) \ L2((0, T)I H2(�)),
At 2 L2(� � ((0, T))),
div AD 0 in � � (0, T)

and � 2 L1((0, T)I H1(�)).
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Moreover, let (H1) and (H2) be satisfied andcurl H 2 L2(�), then

 2 L1((0, T)I H2(�)),  t 2 L1((0, T)I L2(�)),

A 2 L1((0, T)I H2(�)), At 2 L1((0, T)I L2(�)),

� 2 L1((0, T)I H2(�)).

REMARK 1. The existence and uniqueness part has been proved in [1]. The reg-
ularity result has been proved in [10].

In order to determineH (x) uniquely, we further assume:

(1.7) div H D 0 in �, H � � D 0 on ��.

Let � 2 L2(�) be such that

(1.8) div� D 0 a.e. in � and
Z
�� � � � d� D 0.

Then, there exists a unique solutionH (x) 2 H1(�) to

(1.9)

8<
:

curl H D � , in �,
div H D 0, in �,
H � � D 0, on ��

with the estimates ([11, 17]):

(1.10) kHkH1(�) � C1k�k, p�1kHk � k�k,
for some positive constant�1, C1 > 0 independent of� and the first Dirichlet eigen-
value �1 of �1 in � depending only onj�j. Here k � k stands for theL2(�) norm
of scalar valued functions and vector valued functions throughout this paper, and we
sometimes suppress� for function spacesH1(�) etc.

For this H , we define the nonlinear operator

B W L2(�) ! L2(�)

by

(1.11)

(B� )(x) WD At (x, T)Cr�(x, T)C curl2 �
C Re

��
i

k
r (x, T)C  (x, T)A(x, T)

� N (x, T)

�
,
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where , A, � are those which can be found as the unique solution of the system
(1.1)–(1.5). We will proceed to study the operator equationof the second kind in the
spaceL2(�):

(1.12) � D B� .

The relation between the inverse problem (1.1)–(1.7) and solvability of the non-
linear equation (1.12) is revealed in the following assertion.

Theorem 1.2. If equation (1.12) has a solution, then there exists a solution of
the inverse problem(1.1)–(1.7).

Proof. The proof is the same as that in [13, pp. 244–245], hence, we omit it here.

We will use the Tikhonov fixed point theorem to prove that (1.12) has a solution.
For the reader’s convenience, we recall the Tikhonov theorem.

Theorem 1.3 (Tikhonov theorem). Let D be a nonempty closed convex subset of
a separable reflexive Banach spaceX and let BW D ! D be a weakly continuous map-
ping (i.e. if xn 2 D, xn * x weakly inX, then Bxn * Bx weakly inX as well). Then
B has at least one fixed point in D.

Now we are in a position to state our main theorem:

Theorem 1.4. Let (H1)–(H3) be satisfied and the constant�1 is large enough,
then there exists a unique solutionf , A, �, Hg to the inverse problem(1.1)–(1.7).
Moreover, let ( i , Ai , �i , Hi ) (i D 1, 2) be the unique solution to the inverse problem
(1.1)–(1.7) corresponding to the input data( 0i , A0i , �i ), then

(1.13)
k 1 �  2kH1 C kA1 � A2kH1 C k�1 � �2kH1 C kH1 � H2kH1

� O(1)(k 01�  02kH1 C kA01� A02kH2 C k�1 � �2kH2) in (0, T).

REMARK 2. (i) Similar results can be proved when initial data 0 2 H1(�) and
A0 2 H1(�), div A0 D 0 in �, A0 � � D 0 on �� are given only.
(ii) The assumption that�1 is large enough was needed in [1] for inverse parabolic
problem with final overdetermination.
(iii) The largeness required for�1 can be calculated clearly in the following proofs.

In the next section, we give some preliminaries to the proof of Theorem 1.4, which
is given in Section 3.
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2. Preliminaries

In this section, we provide some estimates for the solution ( , A,�) to (1.1)–(1.5).
To begin with, we state the maximum principle forj j and the Gibbs free energy:

(2.1)
G( , A) WD 1

2

Z
�
���� ikr C  A

����
2

dx

C 1

2

Z
�(curl A� H )2dxC 1

4

Z
�(j j2 � 1)2dx.

Lemma 2.1.

j j � 1 in � � (0, T),(2.2)

G( , A)C Z t

0

Z
� �j t C ik� j2dx dsC Z t

0

Z
�[ A2

t C (r�)2] dx dsD G( 0, A0)

in (0, T).

(2.3)

Proof. Since the proof can be found in [3], we omit the detailshere.

Corollary 2.2.

kcurl Ak � kcurl A0k C




 i

k
r 0 C  0A0





C kj 0j2 � 1k C 2p�1
k�k,(2.4)

kr k � �1C 1p�1

�
k

�kcurl A0k C




 i

k
r 0 C  0A0





C kj 0j2 � 1k�

C �
1C 2p�1

�
kp�1
k�k(2.5)

in (0, T) and

(2.6)
Z T

0

Z
� �j t j2dx dt� 2

�
1C �k2

�1

�
G( 0, A0).

Proof. (2.4), (2.5) and (2.6) easily follow from (2.1), (2.2), (2.3) and the follow-
ing Poincaré type inequalities:

p�1kAk � kcurl Ak, p�1k�k � kr�k in (0, T).
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Lemma 2.3. � satisfies

�1� D div Re

��
i

k
r C  A

� N �,
Z
� � dx D 0,(2.7)

���� D 0 on ��,(2.8)

and

kr�( � , t)k � 



 i

k
r ( � , t)C  ( � , t)A( � , t)





,(2.9)

kr�tk �




 i

k
r C  A






L6

k tkL3 C 1

k
kr tk C kAkL6k tkL3 C kAtk(2.10)

in (0, T).

Proof. By applying div to both sides of (1.2), we have (2.7). The proof of (2.8)
is given in [6]. Multiplying (2.7) by� and integrating by parts imply (2.9). Finally,
we have (2.10) by differentiating (2.7) with respect to timet and then multiplying by�t and integrating by parts.

In the following proofs, we will frequently use the following inequalities:

kr kL3 � C0kr k1=2k1 k1=2, k tkL3 � C0k tk1=2kr tk1=2CC0k tk in (0, T)

which follow from Gagliardo–Nirenberg inequality and the

kr kL6 � C0k1 k, kAkL6 � C0kcurl Ak in (0, T)

which follow from [17] and Poincaré inequality,C0 denotes an absolute positive con-
stant throughout this paper.

Lemma 2.4.

(2.11) k1 k � 2�k2k t C ik� k C 2k2j�j1=2 C 2k2kAk2
L4 C 4C2

0k2kAk2
L6kr k.

Proof. We rewrite (1.1) in the form:

(2.12) � t C i�k� � 1

k2
1 C 2

k
i Ar C A2 C (j j2 � 1) D 0.
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Multiplying (2.12) by�1 N and integrating by parts, then taking the real part, we have

1

k2
k1 k2 � �k t C ik� kk1 k C 2k1 kj�j1=2 C kAk2

L4k1 k
C 2

k
kAkL6kr kL3k1 k

and hence

k1 k � �k2k t C ik� k C k2j�j1=2 C k2kAk2
L4 C 2kkAkL6 � C0kr k1=2k1 k1=2.

Then, we have (2.11) if we estimate the last term as follows:

2kkAkL6C0kr k1=2k1 k1=2 � 1

2
k1 k C 2C2

0k2kAk2
L6kr k.

Lemma 2.5. If �1 is large enough, then

(2.13)

kAt ( � , T)k � k�ke�d�T=2 C kcurl2 A0k C 3





 i

k
r 0 C  0A0






C 1p�






�

i

k
r C A0

�2 0 C (j 0j2 � 1) 0






C 8p� (2C 2d1 C d6 C �)1=2G( 0, A0) in (0, T),

where d1, d6 and d� are some positive constants depending on the initial data.

Proof. Applying �=�t to (1.2), we see that

At t Cr�t C curl2 At C Re

��
i

k
r C  A

� N t C
�

i

k
r t C  t AC  At

� N � D 0

in (0, T).

Multiplying the above equation byAt and integrating by parts, and using

Z
�

i

k
r t � N At dx D � i

k

Z
�  tr N � At dx,

we have

1

2

d

dt

Z
� A2

t dxC Z
�(curl At )

2dxC Z
� j j2A2

t dx

C Re
Z
�
��

i

k
r C  A

� N t At C
�� i

k
r N C N A

� t At

�
dx D 0 in (0, T)
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and hence

(2.14)

1

2

d

dt

Z
� A2

t dxC Z
�(curl At )

2dxC Z
� j j2A2

t dx

D �2 Re
Z
�
�

i

k
r C  A

� N t At dx

� 2





 i

k
r C  A





k tkL3kAtkL6

� 2





 i

k
r C  A





k tkL3 � C0kcurl Atk
� 1

6
kcurl Atk2 C 6C2

0





 i

k
r C  A






2k tk2

L3

� 1

6
kcurl Atk2 C 6C3

0





 i

k
r C  A






2

(k tkkr tk C k tk2)

� 1

6
kcurl Atk2 C 1

12

1

k2
kr tk2

C �
(3C3

0)212k2





 i

k
r C  A






4 C 6C3

0





 i

k
r C  A






2�k tk2

� 1

6
kcurl Atk2 C 1

12

1

k2
kr tk2 C d1k tk2 in (0, T)

for some constantd1 > 0 which can be bounded as follows:

d1 � (3C3
0)212k2 � 4G2( 0, A0)C 6C3

0 � 2G( 0, A0).

Now, differentiating (2.12) with respect to timet , we have

� t t C i�k� t C i�k�t � 1

k2
1 t C 2

�
i

k
r C  A

�
At

C 2

k
i Ar t C A2 t C 2j j2 t C  2 N t D  t .

Multiplying the above equation byN t and integrating by parts, then taking the real
part, we obtain

�
2

d

dt

Z
� j t j2dxC 1

k2

Z
� jr t j2dxC Z

� j t j2A2dxC Z
� j j2j t j2dx

� �kk�tkk tk C 2





 i

k
r C  A





kAtkL6k tkL3

C 2

k
kr tkkAkL6k tkL3 C k tk2 in (0, T).
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Then, it follows from (2.10) that

(2.15)

�
2

d

dt

Z
� j t j2dxC 1

k2

Z
� jr t j2dxC Z

� j t j2A2dxC Z
� j j2j t j2dx

� �kp�1

�



 i

k
r C  A






L6

k tkL3 C 1

k
kr tk C kAkL6k tkL3 C kAtk

�k tk
C 2





 i

k
r C  A





kAtkL6k tkL3 C 2

k
kr tkkAkL6k tkL3 C k tk2

� �p�1
kr kL6k tkL3k tk C 2

�kp�1
kAkL6k tkL3k tk

C �p�1
kr tkk tk C �kp�1

kAtkk tk
C 2





 i

k
r C  A





kAtkL6k tkL3 C 2

k
kr tkkAkL6k tkL3 C k tk2

DW 7X
iD1

I i in (0, T).

Here, each termI i can be estimated as follows

I1 � �p�1
C0k1 k � C0(k tk1=2kr tk1=2 C k tk)k tk

� �p�1
C2

0k1 kkr tk1=2k tk3=2 C �p�1
C2

0k1 kk tk2

� 1

12

1

k2
kr tk2 C �

3

4
(3k2)1=3� �p�1

�4=3
C8=3

0 k1 k4=3 C �p�1
C2

0k1 k
�k tk2

� 1

12

1

k2
kr tk2 C �

3

4
(3k2)1=3� �p�1

�4=3
C8=3

0

�
1

3
C 2

3
k1 k2

�

C �p�1
C2

0

�
1

2
C 1

2
k1 k2

��k tk2

D 1

12

1

k2
kr tk2 C �

1

2
(3k2)1=3� �p�1

�4=3
C8=3

0 C 1

2

�p�1
C2

0

�k1 k2k tk2

C �
1

4
(3k2)1=3� �p�1

�4=3
C8=3

0 C 1

2

�p�1
C2

0

�k tk2 in (0, T)

and we have

k1 k2 � 8�2k4k t C ik� k2 C 32k4j�j C 8k4kAk4
L4 C 16C4

0k4kAk4
L6kr k2

in (0, T).
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Hence

I1 � 1

12

1

k2
kr tk2 C �

(3k2)1=3� �p�1

�4=3
C8=3

0 C �p�1
C2

0

�
4�2k4k t C ik� k2k tk2

C ��
(3k2)16=3� �p�1

�4=3
C8=3

0 C �p�1
C2

0

�
� (8k4j�j C 4k4kAk4

L4 C 8C4
0k4kAk4

L6kr k2)

C �
1

4
(3k2)1=3� �p�1

�4=3
C8=3

0 C 1

2

�p�1
C2

0

��k tk2

D 1

12

1

k2
kr tk2 C d0k� t C i�k� k2k tk2 C d2k tk2 in (0, T),

where d0 and d2 are positive constants such thatd0 D O(1=p�1), d2 D O(1=p�1)
(�1 !1). As for I2 and I3, we have

I2 � 2
�kp�1

kAkL6 � C0k tk3=2kr tk1=2
� 1

12

1

k2
kr tk2 C 3

4
(3C0k2)1=3� 2�kp�1

�4=3kAk4=3
L6 k tk2

� 1

12

1

k2
kr tk2 C d3k tk2 in (0, T),

and

I3 � 1

12

1

k2
kr tk2 C 3k2�2

�1
k tk2 D 1

12

1

k2
kr tk2 C d4k tk2 in (0, T),

whered3 D O((1=p�1)4=3) and d4 D O(1=�1). Also, for I4, I5 and I6, we have

I4 � �k�1
kcurl Atkk tk � 1

6
kcurl Atk2 C 6

4

(�k)2

�2
1

k tk2

� 1

6
kcurl Atk2 C d5k tk2 in (0, T),

I5 � 1

6
kcurl Atk2 C 1

12

1

k2
kr tk2

C �
(3C3

0)212k2





 i

k
r C  A






4 C 6C4

0





 i

k
r C  A






2�k tk2

� 1

6
kcurl Atk2 C 1

12

1

k2
kr tk2 C d1k tk2 in (0, T),
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I6 � 2

k
kr tk � C0kcurl Ak � C0(k tk1=2kr tk1=2 C k tk)

� 2

k
C2

0kcurl Akk tkkr tk C 2

k
C2

0kcurl Akk tk1=2kr tk3=2
� 1

24

1

k2
kr tk2 C 24C4

0kcurl Ak2k tk2

C 1

24

1

k2
kr tk2 C 4(18)3C8

0k2kcurl Ak4k tk2

D 1

12

1

k2
kr tk2 C [24C4

0kcurl Ak2 C 4(18)3C8
0k2kcurl Ak4]k tk2

D 1

12

1

k2
kr tk2 C d6k tk2 in (0, T)

where d1, d5 and d6 are positive constants such thatd1 D O(1=�1), d5 D O(1=�2
1)

(�1 !1) and d6 can be bounded by (2.4).
Using these estimates for (2.15) and combining (2.14), we have

(2.16)

1

2

d

dt

Z
�(A2

t C �j t j2) dxC 1

2

Z
�
�
(curl At )

2 C 1

k2
jr t j2

�

� d0k� t C i�k� k2k tk2 C
 

1C 6X
iD1

di

!
k tk2 in (0, T).

Then, adding (1=2)�R� j t j2dx on both sides of (2.16) and settingd� WDmin(�1, �),
we have

d

dt

Z
�(A2

t C �j t j2) dxC d�
Z
�(A2

t C �j t j2) dx

� 2d0k� t C i�k� k2k tk2 C 2

 
1C �C 6X

iD1

di

!
k tk2

� 2d0� k� t C i�k� k2 � Z�(A2
t C �j t j2) dxC 2

 
1C �C 6X

iD1

di

!
k tk2

in (0, T).

Solving this inequality with respect to
R�(A2

t C �j t j2) dx, we haveZ
�(A2

t C �j t j2) dx

� Z (A2
t (x, 0)C �j t (x, 0)j2) dx � e�d�t � exp

�Z t

0

2d0� k� t C i�k� k2 dt

�

C 2

 
1C �C 6X

iD1

di

! Z T

0
k tk2dt � exp

�
2d0�

Z T

0
k� t C i�k� k2dt

�

in (0, T).
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This implies that if�1 is large enough,

kAt ( � , T)k
� (kAt ( � , 0)k Cp�k t ( � , 0)k)e�d�T=2
C 2

 
1C �C 6X

iD1

di

!1=2�Z T

0
k tk2dt

�1=2

� exp

�
d0�
Z T

0
k� t C i�k� k2dt

�

� �kcurl2 A0k C 2





 i

k
r 0 C  0A0





C k�k Cp�k � 1p�1





 i

k
r 0 C  0A0






C 1p�






�

i

k
r C A0

�2 0 C (j 0j2 � 1) 0






�

e�d�T=2
C 2p� (2C 2d1 C d6 C �)1=2 � 2�1C �k2

�1

�
G( 0, A0) � exp

�
d0� G( 0, A0)

�

� k�k � e�d�T=2 C kcurl2 A0k C 3





 i

k
r 0 C  0A0






C 1p�






�

i

k
r C A0

�2 0 C (j 0j2 � 1) 0






C 8p� (2C 2d1 C d6 C �)1=2G( 0, A0).

This completes the proof of the lemma.

3. Proof of Theorem 1.4

In this section, we prove Theorem 1.4 using the estimates in Section 2. Let

(3.1) D WD �
h 2 L2(�) div h D 0 in �,

Z
�� h � � d� D 0, khk � R

�
,

where R WD R( 0, A0, � , �, k, T ) is a positive constant which will be specified later in
the proof of the next lemma.

Lemma 3.1. If �1 is large enough, then there exists a positive constant R such
that B maps D into itself.

Proof. First of all, it is easy to show that

div(B� ) D 0 in �,
Z
�� � � � d� D 0.
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Then together with this and (1.1), (2.3), (2.9), (2.13), we see that

kB�k � kAt ( � , T)k C kr�( � , T)k C 




�

i

k
r C  A

�
( � , T)





C kcurl2 �k
� kAt ( � , T)k C 2






�

i

k
r C  A

�
( � , T)





C kcurl2 �k
� k�ke�d�T=2 C O(1)

� Re�d�T=2 CO(1)

� R

if we take

R WD O(1)

1� e�d�T=2 ,

where O(1) is some positive constant independent of� and bounded as�1 !1. We
will use the notationO(1) to denote such constant in the rest of the paper.

Lemma 3.2. B is weakly continuous from D to D.

Proof. Let �n 2 D and �n * � weakly in D, then � 2 D. Also, let ( n, An, �n)
be the corresponding unique solution to (1.1)–(1.5). Then it follows from [10] that n,
An, �n 2 L1(0,T IH2(�)) and nt, Ant 2 L1(0,T IL2(�)) are uniformly bounded inn.

Hence, by the standard weak convergence argument, it is easyto prove thatB�n *
B� weakly in D.

Lemma 3.3. If �1 is large enough, then

k , A, �kL1(0,T IH2(�)) � O(1),(3.2)

k t , AtkL1(0,T IL2(�)) � O(1),(3.3)

k t , At , �tkL2(0,T IH1(�)) � O(1).(3.4)

Proof. From Lemma 3.1 we know that if�1 is large enough, then

k�k � R

and (3.2), (3.3), (3.4) follow from the same proofs as in [10], and so we omit the
details here.

Let ( i , Ai ,�i , Hi ,�i ) (�i D curlHi , i D 1, 2) be the solutions to the inverse problem
(1.1)–(1.7) corresponding to the input data ( 0i , A0i , �i ) (i D 1, 2). Also, let

 WD  1 �  2, A WD A1 � A2, � WD �1 � �2, H WD H1 � H2, � WD �1 � �2,

 0 WD  01�  02, A0 WD A01� A02, � WD �1 � �2.
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Then we can estimate as follows.

Lemma 3.4.

(3.5) kr�k � O(1)(kAk C k kH1) in (0, T).

Proof. It follows from (2.7) that

(3.6) �1� D div Re

��
i

k
r 1 C  1A1

� N C �
i

k
r C  A1 C  2A

� N 2

�
,

(3.7)
Z
� � dx D 0,

����
������ D 0.

Then, multiplying (3.6) by� and integrating by parts imply

(3.8)
kr�k � 



 i

k
r 1 C  1A1






L6

k kL3 C 1

k
kr k C k kkA1kL1 C kAk

� O(1)(kAk C k kH1) in (0, T).

This completes the proof.

Lemma 3.5.

k kH1 C kAk C kcurl Ak � O(1)(k 0kH1 C kA0k C kcurl A0k)C O(1)
1p�1
k�k,

(3.9)

k tkL2(��(0,T)) � O(1)(k 0kH1 C kA0k C kcurl A0k)C O(1)
1p�1
k�k(3.10)

in (0, T).

Proof. Substracting the equation (2.12) for each i (i D 1, 2), we have

� t C i�k�1 C i�k� 2 � 1

k2
1 C 2i

k
A1r C 2i

k
Ar 2

C A2
1 C (A1 C A2)A 2 C j 1j2 C N 1 2 N C  2

2
N �  D 0.

(3.11)

Multiplying (3.11) by N and integrating by parts, then taking the real part, we have

�
2

d

dt

Z
� j j2dxC 1

k2

Z
� jr j2dx

� �kk�kk k C 2

k
kA1kL1kr kk k

C 2

k
kAkkr 2kL6k kL3 C kA1 C A2kL1kAkk k C 3k k2 in (0, T).
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The first term of the right hand side can be bounded by (3.5) andhence

(3.12)
d

dt

Z
� j j2dxC 1�k2

Z
� jr j2dx � O(1)(kAk2 C k k2

H1) in (0, T).

On the other hand, multiplying (3.11) byN t and integrating by parts, then taking
the real part, we see that

(3.13)

1

2k2

d

dt

Z
� jr j2dxC � Z� j t j2dx

� �kk�1kL1k kk tk C �kk�kk tk
C 2

k
kA1kL1kr kk tk C 2

k
kAkL3kr 2kL6k tk

C kA1k2
L1k kk tk C kA1 C A2kL1kAkk tk C 4k kk tk

� O(1)(k k C k�k C kr k C kAkL3 C kAk)k tk
� O(1)(k kH1 C kAkL3)k tk
� �

2
k tk2 C O(1)(k k2

H1 C kAk2
L3) in (0, T).

Combining (3.12) and (3.13), we have

(3.14)

d

dt

Z
�(j j2 C jr j2) dxC O(1)

Z
� j t j2dx

� O(1)(kAk2
L3 C k k2

H1) in (0, T).

Now, substracting equation (1.2) for eachAi (i D 1, 2), we have

(3.15)
At Cr� C curl2 AC Re

�
i

k
r 1 C  1A1

� N C Re

�
i

k
r C  1AC  A2

� N 2

D curl H .

Testing (3.15) byA we have

1

2

d

dt

Z
� A2dxC Z

�(curl A)2dx

� Z� H curl A dxC 



 i

k
r 1 C  1A1






L6

k kL3kAk
C 1

k
kr kkAk C kAk2 C k kkAkkA2kL1

� 1

2
kcurl Ak2 C O(1)(kAk2 C k k2

H1)C O(1)
1�1
k�k2
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in (0, T). Hence, we have

(3.16)

d

dt

Z
� A2dxC Z

�(curl A)2dx

� O(1)(kAk2 C k k2
H1)C O(1)

1�1
k�k2 in (0, T).

Multiplying (3.15) by curl(curlA� H ) and integrating by parts, we have

1

2

d

dt

Z
�(curl A� H )2dxC Z

�jcurl(curl A� H )j2dx

� �



 i

k
r 1 C  1A1






L6

k kL3 C 1

k
kr k C kAk C k kkA2kL1

�kcurl(curl A� H )k
� 1

2
kcurl(curl A� H )k2 C O(1)(kAk2 C k k2

H1) in (0, T)

and hence

(3.17)

d

dt

Z
�(curl A� H )2dxC Z

�jcurl(curl A� H )j2dx

� O(1)(kAk2 C k k2
H1) in (0, T).

Combining (3.14), (3.16) and (3.17), we have

(3.18)

d

dt
(k k2

H1 C kAk2 C kcurl A� Hk2)C O(1)k tk2

� O(1)
1�1
k�k2 C O(1)(k k2

H1 C kAk2 C kcurl A� Hk2) in (0, T).

Then, by the Gronwall’s inequality, we have

k k2
H1 C kAk2 C kcurl A� Hk2

� O(1)(k 0k2
H1 C kA0k2 C kcurl A0 � Hk2)C O(1)

1�1
k�k2 in (0, T)

and hence

k k2
H1 C kAk2 C kcurl Ak2

� O(1)(k 0k2
H1 C kA0k2 C kcurl A0k2)C O(1)

1�1
k�k2 in (0, T).

This proves (3.9).
As for (3.10), it follows by integrating (3.18) over (0,T) and using (3.9).
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Lemma 3.6. If �1 is large enough, then

(3.19)
k�k � O(1)(kA0k C kcurl A0k C kcurl2 A0k C k�k C kcurl2 �k C k 0kH1)

in (0, T).

Proof. Applying �=�t to (3.15), we have
(3.20)

At t Cr�t C curl2 At C Re

��
i

k
r 1t C  1t A1 C  1A1t

� N �

C Re

��
i

k
r 1 C  1A1

� N t

�C Re

��
i

k
r t C  1At C  1t AC  t A2 C  A2t

� N 2

�

C Re

��
i

k
r C  1AC  A2

� N 2t

� D 0 in (0, T).

Testing (3.20) byAt and using

(3.21)
Z
�

i

k
r t � N 2At dx D � Z�

i

k
 t Atr N 2 dx,

we have

1

2

d

dt

Z
� A2

t dxC Z
�(curl At )

2dx

� 1

k
kr 1tkk kL3kAtkL6 C k 1tkkA1kL1k kL3kAtkL6

C kA1tkL6k kL3kAtk C




 i

k
r 1 C  1A1






L6

k tkkAtkL3

C 1

k
kr 2kL6k tkkAtkL3 C kAtk2 C k 1tkL6kAkL3kAtk

C k tkkA2kL1kAtk C k kL6kA2tkL3kAtk
C �

1

k
kr k C kAk C k kkA2kL1

�k 2tkL6kAtkL3

� O(1)k 1tkH1k kH1kcurl Atk C O(1)kA1tkH1k kH1kAtk
C O(1)k tkkAtkL3 C O(1)kAtk2 C O(1)k 1tkH1kAkL3kAtk
C O(1)k tkkAtk C O(1)kA2tkH1k kH1kAtk
C O(1)k 2tkH1(k kH1 C kAk)kAtkL3 in (0, T).

Then, using
p�1kAtk � kcurl Atk, kAtkL3 � O(1)kcurl Atk, and reminding"-Cauchy
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inequality: 2ab� "a2 C (1=")b2 and if �1 is large enough, we have

d

dt

Z
� A2

t dxC Z
�(curl At )

2dx � O(1)(k 1tk2
H1 C k 2tk2

H1 C kA1tk2
H1 C kA2tk2

H1),

(kAk2
H1 C k k2

H1)C O(1)k tk2 in (0, T)

and hence

d

dt

Z
� A2

t dxC �1

Z
� A2

t dx � O(1)(k 1tk2
H1 C k 2tk2

H1 C kA1tk2
H1 C kA2tk2

H1),

(kAk2 C kcurl Ak2 C k k2
H1)C O(1)k tk2 in (0, T).

Solving this inequality implies

kAt ( � , T)k2 � kAt ( � , 0)k2e��1T C O(1) sup
0�t�T

(kAk2 C kcurl Ak2 C k k2
H1)

� Z T

0
(k 1tk2

H1 C k 2tk2
H1 C kA1tk2

H1 C kA2tk2
H1) dt

C O(1)
Z T

0
k tk2dt in (0, T),

and hence by Lemma 3.3 and Lemma 3.5, we have

(3.22)

kAt ( � , T)k � kAt ( � , 0)ke��1T=2
C O(1) sup

0�t�T
(kAk C kcurl Ak C k kH1)C O(1)k tkL2(��(0,T))

� kAt ( � , 0)ke��1T=2
C O(1)(k 0kH1 C kA0k C kcurl A0k)C O(1)

1p�1
k�k.

Now using (3.15) at timet D 0, we have

(3.23)
kAt ( � , 0)k � kcurl2 A0k C kr�( � , 0)k C 



 i

k
r 01C  01A01






L6

k 0kL3

C 1

k
kr 0k C kA0k C kA02kL1k 0k C k�k.

Also, using (3.5) at the timet D 0 and t D T , we have

kr�( � , 0)k � O(1)(kA0k C k 0kH1),(3.24)

kr�( � , T)k � O(1)(k ( � , T)kH1 C k�k).(3.25)
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Moreover, using (3.15) at the final timet D T , we have

(3.26)

k�k � kAt ( � , T)k C kr�( � , T)k C kcurl2 �k
C 



 i

k
r 1 C  1A1






L6

k kL3 C 1

k
kr k C k�k C k�2kL1k k.

By combining (3.22)–(3.26) and using Lemma 3.5, we have

k�k � O(1)(kA0k C kcurl A0k C kcurl2 A0k C k�k C kcurl2 �k C k 0kH1)

for large enough�1.
This proves (3.19).

Based on what we have obtained, we can quickly give the proof of Theorem 1.4
as follows.

Proof of Theorem 1.4. By Tikhonov’s fixed point theorem, the existence part of
Theorem 1.4 follows from Lemmas 3.1, 3.2 and Theorem 1.2. Theuniqueness and
stability parts of Theorem 1.4 is a corollary of (1.13) whichfollows from (3.5), (3.9)
and (3.19).
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