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Abstract
In this paper we prove the existence, uniqueness and $gatilisolutions of an
inverse problem to a time-dependent Ginzburg—Landau mimdeduperconductivity
with the final overdetermination.

1. Introduction

We consider an inverse problem of the following Ginzburgrdau equations for
superconductivity under the Coulomb gauge:

: 2
@y e+ kg + (L9 + A) v (0= 1y =0
(1.2) A+ Ve +curP A+ Re{ (%w + wA)¢} =curlH,
(1.3) /qbdx:O, dvA=0 in Qx(0,T)

Q

with boundary and initial conditions
(1.4) Vy.-v=0, A-v=0, culAxv=Hxv on aQx(0,T),
(1.5) ¥(-,0)=1vo, A(-,0)=A; in QCR®

and the final overdetermination
(1.6) AX, T) = x(x).

Here @ c R® is a bounded and simply connected domain with smooth boyngiag

v is the unit outward normal vector df2, i = +/—1, ¥ denotes the complex con-

jugate of ¥, Rey := (¥ + ¥)/2. Also, ¥, A and ¢ are C-valued, R3-valued and
2000 Mathematics Subject Classification. Primary 35R30pSdary 35Q99.
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R-valued functions, and they are the order parameter, thenatiggpotential and the
electric potential, respectively. Moreove (x) is the applied magnetic field which is
to be determinedy;, k are the Ginzburg—Landau positive constants &P is the
density of superconducting carriers. In (1.1)—(1.6), tim&known functions arey, A,

¢ and H(x).

For given initial datay, € HY(Q) N L>®(R), A € HY(R), Chen, Elliott, Tang
and Du [2, 3, 5, 15] proved the existence and uniqueness dfaglstrong solutions
to (1.1)—(1.5) in the case of Coulomb and Lorentz as well asptgal gauges. The
regularity of solutions has been studied by Liang [10].

For given initial datayy € HY(R), Ay € HY(), Tang and Wang [16] studied
the Coulomb gauge case and proved the existence and ungguehetrong solutions
to (1.1)—(1.5). Very recently, Fan and Jiang [6] proved tRkestence of global weak
solutions when o, Ag) € L2(R2) x L?(Q) in the case of Coulomb gauge or Lorentz
gauge, which answered an open problem in [16]. Zaouch [18}eut the existence of
time-periodic solutions to (1.1)—(1.4). Phillips and SHi2], Chen and Hoffmann [4]
proved the existence and uniqueness of classical solutiottee non-isothermal models
for superconductivity.

In this paper, we study the nonlinear inverse problem ctingiof finding a set
of the functions{yr, A, ¢, H} satisfying (1.1)—(1.6). This is an inverse problems with
the final overdetermination. There are many studies on $everoblem for final over-
determination for parabolic equations and Navier—Stokpsgons [1, 7, 8, 9, 13, 14].

Unless otherwise stated, we always assume
(H1) o € HA(RQ), [¥o| <1in Q, Vio-v =0 on oL,

(H2) Ag e H(Q), divA;=01in Q, Ag-v =0, curlAg xv =H x v on a,
(H3) x e H3(Q), divy =0in Q, x-v=0, curly xv=H xv on L,
through this paper.
We first give the existence and uniqueness result to thetdwablem (1.1)—(1.5).

Theorem 1.1. Let yo € HY(RQ), || < 1in Q, Ay € HYQ), divA; = 0 in
Q, Ag-v=00ndQ, H e L*R). Then there exists a unique solutigtr, A, ¢) to
(1.1)1.5) which satisfies

Y € LA(Q x ((0, T))),
lw| <1 in Q@x(0,T),

[A € L=((0, T); HY(R)) N L3((0, T); H3(R)),

{w € L((0, T): HY(2)) N L*((0, T): H¥(%2)),

A € L2(2 x ((0, T))),
dvA=0 in @x(0,T)

and ¢ € L=((0, T); HY(R)).
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Moreover let (H1) and (H2) be satisfied andurl H € L%(R2), then

¥ € L2((0, T); HA(Q)), ¥ € L=((0, T); LA(Q)),
A e L>®(0, T); H¥(S)), A € L®((0,T); L%Q)),
¢ € L™((0, T); H3(R)).

REMARK 1. The existence and uniqueness part has been proved in lj&]rég-
ularity result has been proved in [10].

In order to determineH (x) uniquely, we further assume:
2.7) dvH =0 in @ H-v=0 on Q.

Let £ € L2(2) be such that

(1.8) dvE=0 ae. in Q and &-vdo =0.
Q2

Then, there exists a unique solutith(x) € HY(Q) to

(1.9) dvH =0, in

culH =&, in g,
H-v=0, on 0%

with the estimates ([11, 17]):

(1.10) IHlne < Call&ll, V2l HI < 1],

for some positive constarit;, C; > 0 independent ot and the first Dirichlet eigen-
value A1 of —A in Q depending only onQ2|. Here|| - || stands for theL?($2) norm
of scalar valued functions and vector valued functions uphmut this paper, and we
sometimes suppres® for function spaced(Q) etc.

For this H, we define the nonlinear operator

B: L) — LAR)
by
(BE)(X) := A(X, T) + Vo(x, T) + curl x

(1.12) i .
+ Re[(va(x, T) + ¥ (x, T)AKX, T))tﬁ(x, T)],
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where ¢, A, ¢ are those which can be found as the unique solution of thersyst
(1.1)—(1.5). We will proceed to study the operator equatbrihe second kind in the
spacelL?(Q):

(1.12) £ = BE.

The relation between the inverse problem (1.1)—(1.7) ardabiity of the non-
linear equation (1.12) is revealed in the following asserti

Theorem 1.2. If equation (1.12) has a solution then there exists a solution of
the inverse problenfl.1)}+1.7).

Proof. The proof is the same as that in [13, pp.244—245], dilene omit it here.
O

We will use the Tikhonov fixed point theorem to prove that 2).has a solution.
For the reader’'s convenience, we recall the Tikhonov thaore

Theorem 1.3 (Tikhonov theorem). Let D be a nonempty closed convex subset of
a separable reflexive Banach spaXeand let B D — D be a weakly continuous map-
ping (i.e. if x, € D, x, — x weakly inX, then By — Bx weakly inX as wel). Then
B has at least one fixed point in.D

Now we are in a position to state our main theorem:

Theorem 1.4. Let (H1)—(H3) be satisfied and the constaat is large enough
then there exists a unique solutiqw, A, ¢, H} to the inverse problenf{l.1)+1.7).
Moreover let (vi, Ai, ¢i, Hi) (i =1, 2) be the unique solution to the inverse problem
(1.1)(1.7) corresponding to the input dat@/g, Agi, xi), then

Y1 — V2llvr + 1AL — Azllnr + lld1 — @2llHe + |H1 — Hallps

1.13
19 < O@)(IYor — Yoallur + I Aoz — Aozllnz + lIx1 — x2llwz) in (0, T).
REMARK 2. (i) Similar results can be proved when initial datae H(2) and
Ao € HY(Q), divA;=0in Q, Ag-v =0 onaQ are given only.
(i) The assumption thak; is large enough was needed in [1] for inverse parabolic
problem with final overdetermination.
(iii) The largeness required for; can be calculated clearly in the following proofs.

In the next section, we give some preliminaries to the prddfteeorem 1.4, which
is given in Section 3.
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2. Preliminaries

In this section, we provide some estimates for the solutibnA; ¢) to (1.1)—(1.5).
To begin with, we state the maximum principle fpF| and the Gibbs free energy:

- 2
G, A ::3/"-%/; + YAl dx
@2.1) 2 Jalk
+ 1 /(curl A—H)2dx + 1 f(|w|2—1)2dx.
2 Jg 4 Jg

Lemma 2.1.
2.2) wi<1 in @x(,T),
2.3)

t t
G W)+ [ [ v+ ikpydxds+ [ [ [A2+ (VeI dx ds= Glvo, Ao
0JQ 0JQ
in (0, T).
Proof. Since the proof can be found in [3], we omit the dethise. ]
Corollary 2.2.
i 2
@4 lourl Al < fourl Aol + | (Fo+ voro| + Vol - 11 + =l
. .
L (2+ <= )| eur ol + | 7o+ voo| + 11vol2 - 11
' 2\ k
14+ 2 |
# (e ) gme
in (0, T) and
T nk2
(2.6) [ [ niviax < z(1+ —)G(wo, Ao).
0 Ja Al

Proof. (2.4), (2.5) and (2.6) easily follow from (2.1), (R.42.3) and the follow-
ing Poincaré type inequalities:

VAA] < lleurl All,  Vadllgll < Ve[l in (O, T). O
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Lemma 2.3. ¢ satisfies

(2.7) —A¢ = div Re[(i—vw + x/fA)z/}] f ¢ dx =0,
‘ ;
(2.8) % =0 on 9%,
v
and
@9 V6 01 = | (9¥( 0+ v 0AC, 0,

(2.10) IVl <

i 1

A wAH GllwtllLs o IVl Al ¥l + 1A
L

in (0, T).

Proof. By applying div to both sides of (1.2), we have (2.7heTproof of (2.8)
is given in [6]. Multiplying (2.7) by¢ and integrating by parts imply (2.9). Finally,
we have (2.10) by differentiating (2.7) with respect to timand then multiplying by
¢ and integrating by parts. O

In the following proofs, we will frequently use the followgninequalities:

IV lics < Col VU2 AY 72, 1¥elles < CollylYV2IVYRllY? + Collyell in (0, T)
which follow from Gagliardo—Nirenberg inequality and the

IVl = Coll Ay, AllLe < Collcurl Al in (0, T)

which follow from [17] and Poincaré inequalityyy denotes an absolute positive con-
stant throughout this paper.

Lemma 2.4.
(2.11)  [|AY]| < 29K3||y + ikgy | + 2k2QIY2 + 2K2|| A2, + ACZK?|| AllZ6 | Vi .

Proof. We rewrite (1.1) in the form:

. 1 2.
(2.12) i + inkey — FA@& + ol AVY + A%y + (Jy)> — L)y = 0.
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Multiplying (2.12) by —Av and integrating by parts, then taking the real part, we have

Liav)? < ik A 21 Ay QY2 + [|A]Z]A

i IAVIT = nllvn + ikey AV + 2 Ay 1217+ [AlLIAY]

2
+ Al Vel Ay
and hence
Ay < nk?[ly + ikgw || + K2IQIY2 + K2 Al + 2K Alls - Coll Vi V2 Ay |72,
Then, we have (2.11) if we estimate the last term as follows:
1
2k[| AllLsColl VIV Ay |2 < SIavi+ 2C5KAAITs V- o

Lemma 2.5. If A, is large enoughthen

i
A T = lelle 72+ flour? Aol + 3| Vo + Yok

1 /i 2
(213) + %H (EV + Ao) Yo+ (IYol” = Lo
8 .
+ —=(2+ 2dy + ds + n)’G(Yo, A)) in (0, T),
VN
where d, ds and d. are some positive constants depending on the initial .data
Proof. Applyingd/at to (1.2), we see that

A + Vo + curl A + Re[(i;w n wA)v?t + ('Ewt + A+ M)zﬁ] =0
in (0, T).

Multiplying the above equation by; and integrating by parts, and using
i - i -
[ evmeimax=— [ wvi-adx
o k k Jo

we have

1
_i/ Afdx+/(curl At)zdx+/ | [2AZdx

+Re/[<iEV1//+1//A)xﬁtAt+(—iEV1ﬁ+1/}A)1//tAt}dx=O in (0,T)
Q
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and hence

=2 Re/ﬂ(EVI// + IﬁA)IﬁtAt dx

< zHiwa T wAH el I Adls

< zHiwa T wAH ¥ - Collcurl A

12

1 . 2
(2.14) < Zlourl AP + 6C IEW + YA

i—Verl/fA

IA

1
é||cur| Adl? + ecg

IVl + llvl®)

IA

1
glourl A I” + ”th”2

12 k2
4

+ [(303)2128 Lo +va| +ecs i-w + YA

2
}nmz

1
< —||cur| Al +

SVl dll? i ©,T)

for some constantl; > 0 which can be bounded as follows:
dy < (3C3)*12k2 - 4G (o, Ao) + 6CF - 2G (o, Av).

Now, differentiating (2.12) with respect to time we have
N + inkeyn + inkgeyy — A‘//t + 2( Vy + ¢A> A
2. 2 2 2.7
+ ElAVWt + A+ 21Y Y + Y Y = Y

Multiplying the above equation by, and integrating by parts, then taking the real
part, we obtain

/w dx + zf |V1ﬁt|2dx+/ |wt|2A2dx+/ [ 2l 2dx
Zdt Q Q Q

i
< kil el + ZHEWI + "’AH Al e

2 .
+ L IVl Alles vl + Iyl in (0, T).
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Then, it follows from (2.10) that

d 1
%d—/ thlzdx+—2/ |V¢t|2dx+/ |1ﬁt|2A2dX+/ Y17 yaldx
Q Q

A

2
+ ZHEW/ + WAH IAdlellelies + L IVl Al lldls + 12

VY + YA

1
elllﬂtllm Vil + Al vl + AT

L

(2.15) IIVWIL6 lle vl +2- = ||A||L6||1/ft sl

ﬁ

v

inmnuww K A

Nz

i
Vg + wAH I AclliellvellLs + -IIVlﬁtII IAT s ells + NIyl

7
=Y I in (O,T)
i=1

~ |

2

Here, each terni; can be estimated as follows
n 1/2 1/2
l1 < —=CollAy || - Colllve I I VY= + e Dl
VA1

n n
< —=CallAY VY212 + —=CFl Ay Il 1y |

Vit Vi
3 n 4/3 82 7
24| 2@V —= 43, N -2 2
S1zkz”W’t” [4(3") (m) Co v +Wco||Aw||]||wt||

| /\

L vl + [ 2aaps (-2 coe( L RN
12k2 ‘ 4 Nz 0
1 1
+ =5+ EnAwnz)}nmz

1 2 1 ovs( 1 PP gs 1 9
= Toiel VI + | 5@ ) G+ G| lav i

1 n \*? 1
+[Z(3k2)1/3<ﬁ) c8/3+§Tco}||¢t||2 in (0, T)
and we have

A1 < 80K [[W + kv ||* + 324 + 8K*|| All {4 + 16CoK* || All Ll Vi |2
in (0, T).
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Hence
1

1 4/3 n
1< = V12 + | (3K2 1/3( ) co/3 _C2i|4 2)4 ik 2 2
I SV ” + [( ) N o +\/)L_1 o |47k 1 + ikey |7 vl
8/3

2k?
loer() e e

x (8k*|2| + 4k Allts + 8CSKHI Al I VY (1)

1 n 43 8/3 1l
+[awere( ) et g e fwr

11 . .
=TZ@IIV%ﬁtIIZeroIIm/ft+H7|<¢x0||2||¢t||2+d2||1ﬁt||2 in (0, T),

where dy and d, are positive constants such thdg = O(1/+/A1), do = O(1/+/A1)
(A1 = o). As for I, and I3, we have

nk 3/2 1/2
l, < 2——||Al|s- C 12|V ||V
2 < ﬂ_ll s - Coll e 171V el

Zﬂk 4/3
< \V/ 2 3C k21/3 A / 2
= DoVl + Sacey (5 RIE
11

IVyl? + dallyel® in (0, T),

12k2
and

IIV1//t||2+3k277 lall? = ||V'Wt||2+d4||'(//t”2 in (0, T),

|
3= ke 12|<2

whereds = O((1/+/21)*®) and d; = O(1/A1). Also, for l4, 15 and lg, we have

6(n
lg < —||CUF| Ayl = —IICUfl Al + Z(/\z) le1?

56||curlAt||2+ds||wt||2 in (0.T),

1
5 = glourl Al? + || ll?

12 K2
4

. 2
+[cdraae|pvu +wal +oct]pvw+val e

=Y

11 .
< Zleurl Al? + ZF”V‘/ft”z‘}‘dl”‘/ft”Z in (0, T),

»
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2
le < EIIWII - Colleurl A]| - Co(Jl e |2 V|2 + [1vel)

IA

2 2
EC§IICUF| ATV el + RCSchrI A RS AR

1
2_4F”th 12 + 24Cg||curl AJ|?||y||?

IA

2 S IVUI? + 4Pl curl ALyl

= 12 @ IIV%II2 [24C3 | curl A||? + 4(18)°Cok?|curl Al|*T||yx |2

11 .
= S| VWP + delvel® i ©,T)

where d;, ds and dg are positive constants such thdt = O(1/A;), ds = O(l/)&)
(A1 — o0) and ds can be bounded by (2.4).
Using these estimates for (2.15) and combining (2.14), we ha

1
st L+ atwydcs ;5 [ o Ap+ G 1vnE]
(2.16) 6
= collptn -+ ik |71 + <1+ Zdi>|wft||2 n ©.7)

i=1

Then, adding (12)y [, |¥¢|dx on both sides of (2.16) and setting := min(i, ),
we have

d 2 2 2 2
gt [ tuyax-r d. [ (A nlin dx

6
< 2do||nyr + i nkep |||y |1* + 2<1 +n+ Y da) 12

i=1
2d . 6
< 22w+ inkgy 1P [ (A +nf? dx+ 2(1 0 Zm)nwnz
i=1

in (0, T).

Solving this inequality with respect td,(A? + n|y|%) dx, we have
[ 42 iy

tod
< / (A(x, )+ nlr(x, O)) dx. e -exp( /0 20w + inkwnzdt)

6 T 2do [T
+2<1+n+Zdi)/o fouledt-exp 52 [ i + ko)

i=1
in (0, T).
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This implies that ifA, is large enough,

IAC-, Tl
<A, O + allvre(-, O)e %T/2

6 vz o+ 1/2
+ 2<1+ n Zoh) (/ ||«m||2dt)
0

i=1

db [T _ ,
« exp(; /0 I+ inkey | dt)

_ -,
< (lewrf ol + 2] v+ voho| + 1l + V- <= (7o + Vo]

2 o
+ — g%
1

2
+ i(2 + 2dy + dg + n)Y/?- 2(1 + ﬁ)ﬂlﬁo, Ao) - eXP(%G(lﬁo. A0)>
SN A n

: 2
<IEV - Ao) Yo + (1Wol? — 1o

< 61 T2 ¢ fourP Aol + 3 Vo + Yok

1 /(i 2 5
# 7= (§7+ o) v Gwol =)o

8
+ —(2+ 2y + d + 1)Y*G (Yo, Av).
ﬁ( 1+ ds + 1)7°G(¥o, Ao)

This completes the proof of the lemma. ]

3. Proof of Theorem 1.4

In this section, we prove Theorem 1.4 using the estimatesetti@ 2. Let

(3.1) D:= {h e L% Q) |divh=0in, h-vdo =0, |h| < R},

IR

where R := R(vq, Ao, x, 1, K, T) is a positive constant which will be specified later in
the proof of the next lemma.

Lemma 3.1. If A, is large enough then there exists a positive constant R such
that B maps D into itself

Proof. First of all, it is easy to show that

div(BE) =0 in £.vdo = 0.
Q2
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Then together with this and (1.1), (2.3), (2.9), (2.13), we shat
IBel = IAC T+ 196C, T+ | (90 + wA) . )| + lowf

< IAC DI+ 2] (70 + wA) T + ot 1)

< |lgle®T2 + 0(1)
<Re*T/24+0(1)
<R

if we take
_ o(1)
R:= 1_egdT/2’
where O(1) is some positive constant independenttodnd bounded as; — co. We
will use the notationO(1) to denote such constant in the rest of the paper. [

Lemma 3.2. B is weakly continuous from D to.D

Proof. Let&é, € D and&, — & weakly in D, thené € D. Also, let W, An, ¢n)
be the corresponding unique solution to (1.1)—(1.5). Thdullows from [10] thatvr,,
An, én € L0, T: H2(Q)) and ynt, Ant € L=(0,T;L%(RQ)) are uniformly bounded im.

Hence, by the standard weak convergence argument, it istegsypve thatBg, —
B¢ weakly in D. O

Lemma 3.3. If A, is large enoughthen

(3.2) [V, A @llL~o,T:H2e) < O(),
(3.3) ¥, AdllieoT:L2@) =< O(1),
(3.4) [V, At dtllzom:Hy @) < O(L).

Proof. From Lemma 3.1 we know that if; is large enough, then

<R
and (3.2), (3.3), (3.4) follow from the same proofs as in [18hd so we omit the
details here. ]
Let (i, Ai,¢i, Hi &) (§ = curlH;, i = 1,2) be the solutions to the inverse problem

(2.1)—(2.7) corresponding to the input datg( Ao, xi) (i = 1, 2). Also, let
Vi=vy1—vY2, A=Ai—Ay ¢:=¢1—¢2, H:=Hi—Hy §&:=6-&,
Vo :=vYo1— Yoz Ao:=Ao— A2 X = X1— X2
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Then we can estimate as follows.

Lemma 3.4.
(3.5) Vol = O)(IAIl + [¥]ln) in (O, T).

Proof. It follows from (2.7) that

(3.6) —A¢ = div Re|:<iEV1h + ¢1A1>1ﬁ + <iRV¢ + Y AL+ 1//2A>1ﬁ2],

=0.

(3.7) /¢dx=0, 9
o 9

L FTe}

Then, multiplying (3.6) by¢ and integrating by parts imply

Vo < H'wal + YAy

1
Ml 4 VY DY T Al + A
L

(3.8)
= OUAI+ ll¥llw:) in (O, T).

This completes the proof. ]

Lemma 3.5.
(3.9

1

¥ i + A+ lleurl Al <= O@)([¥ollne + [ Aoll + llcurl Aoll) + 0(1)\/——||$|I,
(3.10) [VtllLa@xo,my = O@)(IWollne + Il Aoll + llcurl Aoll) + O(l)flléll
in (0, T).

Proof. Substracting the equation (2.12) for eagh(i = 1, 2), we have

. . 1 2i 2i
N + inkoryr + inkeyn — Fmp + rAlw + ?Avwz

Ay + (AL + A)AYo + Y2y + Yoy + Y3y — ¢ = 0.

(3.11)

Multiplying (3.11) by v and integrating by parts, then taking the real part, we have

2dt/ [ 2dx + = /|V1//| dx

= nkllelH vl + EIIAllleIIVWII Il

2 .
ANV 2lelv il + 1A+ Aelle= ATV I+ 3yl* in (0, T).
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The first term of the right hand side can be bounded by (3.5)ente
d 2 1 2 2 2 ;
(312)  — [ [y[fdx+ —= [ [Vy[7dx <= O)(|AI" + [¥]}F.) in (O, T).
dt Jo nk2 Jo
On the other hand, multiplying (3.11) by, and integrating by parts, then taking

the real part, we see that

1 d
— V1//2dx+n/ Vi) ?dx
2kzdt/g| | [ 1w

< nkllgallL= 1Y Il + nkll@l ¥l
2 2
+ A= IVl + Al IVl

F A< I el + 1AL+ Aol ALl + 4l T |
= O@)U I+ lloll + IV + 1Al + TAD T
= O@)UIltne + AT
< %Illﬂtll2 +O@) (Il + I1AIZ) in (0, T).

(3.13)

Combining (3.12) and (3.13), we have

d 2 2 2
gt [+ vy o) [ junPax

< O(IAIE: + ¥ liF:) in (0, T).

(3.14)

Now, substracting equation (1.2) for eagh (i = 1, 2), we have

A+ Vo +curP A+ Re<i—V1//1 + ¢1A1>1/; + Re(i—vw + Y A+ l//Az)l/;z
(3.15) K K

= curl H.

Testing (3.15) byA we have

1d 2 2
EE/QA dx+/g(curIA) dx

5/ chrIAdx+HIEV1pl+w1A1
Q

[ [les (T Al
L6

1 2
+ L IVVITTAT+ TAI + T AT Azl

1 1
< 5llcurl A2+ O@UAIZ + ¥ 13) + o(1)A—l||*<5||2
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in (0, T). Hence, we have

E/ A2dx+/(curl A)?dx

(3.16) )
< O)(IAI? + [l¥lIf) + 0(1)71”5”2 in (0, T).

Multiplying (3.15) by curl(curlA— H) and integrating by parts, we have

1d

__/(curIA— H)de+/|curl(curIA— H)[2dx

i 1
< ([t vama] 11+ Ivw+ 1A+ 1l Al feureu A H)
L

1 :
= Sleuricurl A= H) |2 + O)(IAI® + 1¥[}:) in (0, T)
and hence

317 %/ﬁ(curlA— H)de—l—/9|curl(curIA— H)[2dx
< O@)(IAIP + 11§ in (0, T).

Combining (3.14), (3.16) and (3.17), we have

d

a(lll//llﬁl + [IAI? + [lcurl A= H?) + O@)|[y]I®
(3.18) L
=< C)(1)/\—1||$||2 + O)(I¥ 15 + IAIZ + leut A= H[?) in (0, T).

Then, by the Gronwall’s inequality, we have
112 + AI? + [lcurl A— H |12

1 .
= O IYolif: + 1 Aoll? + llcurl Ao — H1?) + O(l)x—llléll2 in (0, T)

and hence
112 + A2 + flcurl AJ2

1 .
< O@)(Ivollfx + | Aoll® + llcurl Ao||?) + 0(1)71”5”2 in (0, T).

This proves (3.9).
As for (3.10), it follows by integrating (3.18) over (T,) and using (3.9). ]
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Lemma 3.6. If A, is large enoughthen

€] < O@)(l Aoll + llcurl Aol + llcur? Aoll + Ilx || + llcur® x || + llvoll )
in (0, T).

(3.19)

Proof. Applyingo/at to (3.15), we have
(3.20)

Ay + Ve + curP A + Re[(iivwn + YA+ w1A1t>1/}}
+ Re|:<:sz1 + wlAl>x/}t] + Re[(iEVl/lt + Y1 A+ Y A+ Y Ar + ¢A2t>1/;2:|
+ Re|:<:sz + YA+ 1//A2>1ﬁ2t:| =0 in (0,T).

Testing (3.20) byA; and using

(3.21) /Q :;th oA dx = —fQ :zthtv@ dx,

we have

1d 5 5
—— | A
2dthA[der/Q(cur ¢)°dx

1
= IVl el Adiee + Il Ao el Adls

i
Al I IAL + [T + vamy

[Vl 1| AcllLs
|_6

1
IVl el Adls + TADZ + [l Al A
el Acl A+ 1l Al sl A
1
+ (RI71+ DAL+ 1Al ) e DA

= OMlYaellnellv melleurt Acll + O Aatll e [ T | Al
+ O ¥l Adllis + O AU + O@)IYae el All sl A
+ Ol Al + Ol Azt [ ¥ [T [l Acll
+ OMIYlln:(l¥ e + IADI A= in (0, T).

Then, usingy/A1] Al < [lcurl Adl, [[AtllLe < O()|lcurl A, and remindings-Cauchy
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inequality: 2ab < ga? + (1/¢)b? and if A, is large enough, we have

. | Aeaxr [ (eurl Aax < OWIals + IWal + NAuls + 1 Aa ),
(IAIG: + ¥ 1) + O@)lIyell® in (0, T)
and hence
%/QAdeM/Q Azdx < O(Iullf + [Vl + 1Al + 1Azl
(TAIZ + fleurl Al + ¥ [15:) + Oyl in (0, T).
Solving this inequality implies

IAC T < 1A, O)Fe T +O(1) sup(JAIE + lleur A + [[2,)
T S
x /O UvalP + Wl + [ AxlZe + [ Axl) dt
T
+ o) / lvl2dt in (0, T),
0

and hence by Lemma 3.3 and Lemma 3.5, we have

IAC, T < IA(-, O)fle ™72

+ O(1)0Stulg(||'°~|| + lleurt Al + [¥]ln) + O ¥l Lz@x(0,y)
(3.22) -
< |A(-, O)je T/

1
+ O Ulollnr + [ Aoll + llourl Aoll) + O(l)Trllléll-

Now using (3.15) at tim¢ = 0, we have

A O = fourP Aol + [6(-, Ol + | Vo + osho

l1¥ollLe
(3.23) L8

1
+ L Vol + Aol + 1l AozllL< lloll + [IE-

Also, using (3.5) at the timé = 0 andt = T, we have

(3.24) IVe(-, O)l = O Aol + lI¥ollna),
(3.25) IVe(-, T = 0@ (-, Tllne + 11D
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Moreover, using (3.15) at the final tinte= T, we have

IEN < 1A, T+ IIVe(-, T + leur x|
(3.26)

i 1
S R A W R A P PR PR 171
L6

By combining (3.22)—(3.26) and using Lemma 3.5, we have

151 < O@)( Aoll + lleurl Aoll + llcur Aol -+ [l Il + lleur? x || + [[¥oll:)

for large enoughi;.
This proves (3.19). ]

Based on what we have obtained, we can quickly give the prbdtheorem 1.4
as follows.

Proof of Theorem 1.4. By Tikhonov's fixed point theorem, théstence part of
Theorem 1.4 follows from Lemmas 3.1, 3.2 and Theorem 1.2. {ihigueness and
stability parts of Theorem 1.4 is a corollary of (1.13) whidhlows from (3.5), (3.9)
and (3.19). O
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